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When the first edition of this textbook was published in 2003, the Human Genome Proj-
ect had just been completed at a cost of nearly US$ 3 billion. When the second edition 
came into print in 2009, the first genome sequence of an individual (J. Craig Venter) had 
recently been published at an estimated cost of US$ 80 million.

Let me tell you a remarkable story. It is now 2015 and it costs just several thousand 
dollars to obtain the complete genome sequence of an individual. Sturge‐Weber syn-
drome is a rare neurocutaneous disorder (affecting the brain and skin) that is sometimes 
debilitating: some patients must have a hemispherectomy (removal of half the brain) 
to alleviate the severe seizures. We obtained paired samples from just three individuals 
with Sturge‐Weber syndrome: biopsies were from affected parts of the body (such as 
port‐wine stains that occur on the face, neck, or shoulder) or from presumably unaf-
fected regions. We purified DNA and sequenced these six whole genomes, compared the 
matched pairs, and identified a single base pair mutation in the GNAQ gene as responsible 
for Sturge‐Weber syndrome. (The mutation is somatic, mosaic, and activating: somatic in 
that it occurs during development but is not transmitted from the parents; mosaic in that 
it affects just part of the body; and activating because GNAQ encodes a protein that in 
the mutated form turns on a signaling cascade.) We found that mutations in this gene also 
cause port‐wine stain birthmarks (which affect 1 in 300 people or about 23 million people 
worldwide). Matt Shirley, then a graduate student in my lab, performed the bioinformat-
ics analyses that led to this discovery. He analyzed about 700 billion bases of DNA. After 
finding the mutation he confirmed it by re‐sequencing dozens of samples, typically at over 
10,000‐fold depth of coverage. We reported these findings in the New England Journal 
of Medicine in 2013.

This story illustrates several aspects of the fields of bioinformatics and genomics. 
First, we are in a time period when there is an explosive growth in the availability of DNA 
sequence. This is enabling us to address biological questions in unprecedented ways. Sec-
ond, while it is inexpensive to acquire DNA sequences, it is essential to know how to ana-
lyze them. One goal of this book is to introduce sequence analysis. Third, bioinformatics 
serves biology: we can only interpret the significance of DNA sequence variation in the 
context of some biological process (such as a disease state). In the case of the GNAQ 
mutation, that gene encodes a protein (called Gαq) that we can study in tremendous detail 
using the tools of bioinformatics; we can evaluate its three‐dimensional structure, the 
proteins and chemical messengers it interacts with, and the cellular pathways it partici-
pates in. Fourth, bioinformatics and genomics offer us hope. For Sturge‐Weber syndrome 
patients and those with port‐wine stain birthmarks, we are hopeful that a molecular under-
standing of these conditions will lead to treatments.

This book is written by a biologist who has used the tools of bioinformatics to help 
understand biomedical research questions. I introduce concepts in the context of biolog-
ical problem‐solving. Compared to earlier editions, this new text emphasizes command‐
line software on the Linux (or Mac) platform, complemented by web‐based approaches. 

Preface to the Third 
Edition



xxxii PrEfacE To ThE Third EdiTion

In an era of “Big Data” there is a great divide between those whose intellectual core is 
centered in biomedical science and those whose focus involves computer science. I hope 
this book helps to bridge the divide between these two cultures.

Writing a book like this is a wonderful and constant learning experience. I thank past 
and present members of my lab who taught me including Shruthi Bandyadka (for advice 
on R), Christopher Bouton, Carlo Colantuoni, Donald Freed (for extensive advice on 
next‐generation sequencing or NGS), Laurence Frelin, Mari Kondo, Sarah McClymont, 
Nathaniel Miller, Alicia Rizzo, Eli Roberson, Matt Shirley (who also provided extensive 
NGS advice), Eric Stevens, and Jamie Wangen. For advice on specific chapters, I thank: 
Ben Busby of the National Center for Biotechnology Information (NCBI) for advice 
regarding Chapters 1, 2, and 5 and detailed comments on Chapters 9 and 10; Eric Sayers 
and Jonathan Kans of NCBI for advice on EDirect in Chapter 2; Heiko Schmidt for advice 
on TREE‐PUZZLE and MrBayes in Chapter 7; Joel Benington for detailed comments on 
Chapters 8 and 15–19 and helpful discussions about teaching; Harold Lehmann for guid-
ance on various fields of informatics; and N. Varg for helpful comments on all chapters. I 
thank many colleagues who participated in teaching bioinformatics and genomics courses 
over the years. I've learned from all these teachers, including Dimitri Avramopoulos, Jef 
Boeke, Kyle Cunningham, Garry Cutting, George Dimopoulos, Egert Hoiczyk, Rafael 
Irizarry, Akhilesh Pandey, Sean Prigge, Ingo Ruczinski, Alan Scott, Alan F. Scott, Kirby 
D. Smith, David Sullivan, David Valle, and Sarah Wheelan. I am grateful to faculty mem-
bers with whom I taught genomics workshops including Elana Fertig, Luigi Marchionni, 
John McGready, Loris Mulroni, Frederick Tan, and Sarah Wheelan. This book includes 
several thousand literature references, but I apologize to the many more colleagues whose 
work I did not cite. I also cite 900 websites and again apologize to the developers of the 
many I did not include.

I also acknowledge the support of Dr Gary W. Goldstein, President and CEO of the 
Kennedy Krieger Institute where I work. Kennedy Krieger Institute sees 22,000 patients a 
year, mostly children with neurodevelopmental disorders from common conditions (such 
as autism spectrum disorder and intellectual disability) to rare genetic diseases. I am 
motivated to try to apply the tools of bioinformatics and genomics to help these children. 
This perspective has guided my writing of this book, which emphasizes the relevance of 
all the topics in bioinformatics and genomics to human disease in general. We are hopeful 
that genomics will lead to an understanding of the molecular bases of so many devastating 
conditions, and this in turn may one day lead to better diagnosis, prevention, treatment, 
and perhaps even cures.

It is my pleasure to thank my editors at Wiley‐Blackwell – Laura Bell, Celia Carden, 
Beth Dufour, Elaine Rowan, Fiona Seymour, Audrie Tan, and Rachel Wade – for generous 
support throughout this project. I appreciate all their dedication to the quality of the book.

On a personal note I thank my wife Barbara for her love and support throughout the 
very long process of writing this textbook. Finally, to my girls Ava and Lillian: I hope 
you'll always be inspired to be curious and full of wonder about the world around us.



xxxiii

This book is accompanied by a companion website:

www.wiley.com/go/pevsnerbioinformatics

Readers can visit this website for supplemental information, such as PowerPoint files of 
all the figures and tables from the book, solutions to the Self-Test Quizzes and Problems 
found at the end of each chapter.

The author also maintains a comprehensive website for the book:

www.bioinfbook.org

This site features lecture files (in PowerPoint and audiovisual format), over 900 Web 
Links and over 130 Web Documents that are referred to throughout the book as well as 
videocasts of how to perform many basic operations.

about the companion 
Website

http://www.wiley.com/go/pevsnerbioinformatics
http://www.bioinfbook.org
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The first third of this book covers essen-
tial topics in bioinformatics. Chapter 1 
provides an overview of the approaches 
we take, including the use of web-based 
and command-line software. We describe 
how to access sequences (Chapter 2). 
We then align them in a pairwise fashion 
(Chapter 3) or compare them to members 
of a database using BLAST (Chapter 4), 
including specialized searches of protein 
or DNA databases (Chapter 5). We next 
perform multiple sequence alignment 
(Chapter 6) and visualize these alignments 
as phylogenetic trees with an evolution-
ary perspective (Chapter 7).

The upper image shows the connectivity of the internet (from the Wikipedia entry for “internet”), 
while the lower image shows a map of human protein interactions (from the Wikipedia entry for 
“Protein–protein interaction”). We seek to understand biological principles on a genome-wide scale 
using the tools of bioinformatics. 

Sources: Upper: Dcrjsr, 2002. Licensed under the Creative Commons Attribution 3.0 Unported license. Lower: The 
Opte Project, 2006. Licensed under the Creative Commons Attribution 2.5 Generic license.
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Penetrating so many secrets, we cease to believe in the unknowable. But there it sits nev-
ertheless, calmly licking its chops.

— H.L. Mencken

Introduction C h a p t e r 

1
LeArNING OBjeCTIveS

After reading this chapter you should be able to:
 ■ define the terms bioinformatics;
 ■ explain the scope of bioinformatics;
 ■ explain why globins are a useful example to illustrate this discipline; and
 ■ describe web-based versus command-line approaches to bioinformatics.

Bioinformatics represents a new field at the interface of the ongoing revolutions in molec-
ular biology and computers. I define bioinformatics as the use of computer databases and 
computer algorithms to analyze proteins, genes, and the complete collection of deoxy-
ribonucleic acid (DNA) that comprises an organism (the genome). A major challenge 
in biology is to make sense of the enormous quantities of sequence data and structural 
data that are generated by genome‐sequencing projects, proteomics, and other large‐scale 
molecular biology efforts. The tools of bioinformatics include computer programs that 
help to reveal fundamental mechanisms underlying biological problems related to the 
structure and function of macromolecules, biochemical pathways, disease processes, and 
evolution.

According to a National Institutes of Health (NIH) definition, bioinformatics is 
“research, development, or application of computational tools and approaches for expand-
ing the use of biological, medical, behavioral, or health data, including those to acquire, 
store, organize, analyze, or visualize such data.” The related discipline of computational 
biology is “the development and application of data‐analytical and theoretical methods, 
mathematical modeling, and computational simulation techniques to the study of bio-
logical, behavioral, and social systems.” Another definition from the National Human 
Genome Research Institute (NHGRI) is that “Bioinformatics is the branch of biology that 
is concerned with the acquisition, storage, display, and analysis of the information found 
in nucleic acid and protein sequence data.”

Russ Altman (1998) and Altman and Dugan (2003) offer two definitions of bioinfor-
matics. The first involves information flow following the central dogma of molecular biol-
ogy (Fig. 1.1). The second definition involves information flow that is transferred based 

The NIH Bioinformatics Definition 
Committee findings are reported 
at  http://www.bisti.nih.gov/
docs/CompuBioDef.pdf (WebLink 
1.1 at http://bioinfbook.org). The 
NHGRI definition is available at  

 http://www.genome.gov/ 
19519278 (WebLink 1.2).

http://www.bisti.nih.gov/docs/CompuBioDef.pdf
http://bioinfbook.org
http://www.genome.gov/19519278
http://www.wiley.com/go/pevsnerbioinformatics
http://www.bisti.nih.gov/docs/CompuBioDef.pdf
http://www.genome.gov/19519278


AnAlyzing DnA, RnA, AnD PRotein SequenceS4

on scientific methods. This second definition includes problems such as designing, vali-
dating, and sharing software; storing and sharing data; performing reproducible research 
workflows; and interpreting experiments.

While the discipline of bioinformatics focuses on the analysis of molecular 
sequences, genomics and functional genomics are two closely related disciplines. The 
goal of genomics is to determine and analyze the complete DNA sequence of an organ-
ism, that is, its genome. The DNA encodes genes can be expressed as ribonucleic acid 
(RNA) transcripts and then, in many cases, further translated into protein. Functional 
genomics describes the use of genome‐wide assays to study gene and protein function. 
For humans and other species, it is now possible to characterize an individual’s genome, 
collection of RNA (transcriptome), proteome and even the collections of metabolites and 
epigenetic changes, and the catalog of organisms inhabiting the body (the microbiome) 
(Topol, 2014).

The aim of this book is to explain both the theory and practice of bioinformatics and 
genomics. The book is especially designed to help the biology student use computer pro-
grams and databases to solve biological problems related to proteins, genes, and genomes. 
Bioinformatics is an integrative discipline, and our focus on individual proteins and genes 
is part of a larger effort to understand broad issues in biology such as the relationship of 
structure to function, development, and disease. For the computer scientist, this book 
explains the motivations for creating and using algorithms and databases.

OrganizatiOn Of the BOOk
There are three main sections of the book. Part I (Chapters 2–7) explains how to access 
biological sequence data, particularly DNA and protein sequences (Chapter  2). Once 
sequences are obtained, we show how to compare two sequences (pairwise alignment; 

Figure 1.1 A first perspective of the field of bioinformatics is the cell. Bioinformatics has emerged 
as a discipline as biology has become transformed by the emergence of molecular sequence data. Data-
bases such as the European Molecular Biology Laboratory (EMBL), GenBank, the Sequence Read 
Archive, and the DNA Database of Japan (DDBJ) serve as repositories for quadrillions (1015) of nucle-
otides of DNA sequence data (see Chapter 2). Corresponding databases of expressed genes (RNA) and 
protein have been established. A main focus of the field of bioinformatics is to study molecular sequence 
data to gain insight into a broad range of biological problems.

RNA proteinDNA

Central dogma of molecular biology

Central dogma of genomics

DNA RNA protein

cellular
phenotype

genome transcriptome proteome

cellular
phenotype
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Chapter 3) and how to compare multiple sequences (primarily by the Basic Local Align-
ment Search Tool or BLAST; Chapters 4 and 5). We introduce multiple sequence align-
ment (Chapter 6) and show how multiply aligned proteins or nucleotides can be visu-
alized in phylogenetic trees (Chapter 7). Chapter 7 therefore introduces the subject of 
molecular evolution.

Part II describes functional genomics approaches to DNA, RNA, and protein and the 
determination of gene function (Chapters 8–14). The central dogma of biology states that 
DNA is transcribed into RNA then translated into protein. Chapter 8 introduces chro-
mosomes and DNA, while Chapter 9 describes next‐generation sequencing technology 
(emphasizing practical data analysis). We next examine bioinformatic approaches to RNA 
(Chapter 10), including both noncoding and coding RNAs. We then describe the measure-
ment of mRNA (i.e., gene expression profiling) using microarrays and RNA‐seq. Again 
we focus on practical data analysis (Chapter 11). From RNA we turn to consider proteins 
from the perspective of protein families, and the analysis of individual proteins (Chap-
ter 12) and protein structure (Chapter 13). We conclude the second part of the book with 
an overview of the rapidly developing field of functional genomics (Chapter 14),which 
integrates contemporary approaches to characterizing the genome, transcriptome, and 
proteome.

Part III covers genome analysis across the tree of life (Chapters 15–21). Since 1995, 
the genomes have been sequenced for several thousand viruses, bacteria, and archaea as 
well as eukaryotes such as fungi, animals, and plants. Chapter 15 provides an overview 
of the study of completed genomes. We describe bioinformatics resources for the study 
of viruses (Chapter 16) and bacteria and archaea (Chapter 17; these are two of the three 
main branches of life). Next we explore the genomes of a variety of eukaryotes includ-
ing fungi (Chapter 18), organisms from parasites to primates (Chapter 19) and then the 
human genome (Chapter  20). Finally, we explore bioinformatic approaches to human 
disease (Chapter 21).

The third part of the book, spanning the tree of life from the perspective of genomics, 
depends strongly on the tools of bioinformatics from the first two parts of the book. I felt 
that this book would be incomplete if it introduced bioinformatics without also applying 
its tools and principles to the genomes of all life.

BiOinfOrmatics: the Big Picture
We can summarize the fields of bioinformatics and genomics with three perspectives. 
The first perspective on bioinformatics is the cell (Fig. 1.1). Here we follow the central 
dogma. A focus of the field of bioinformatics is the collection of DNA (the genome), 
RNA (the transcriptome), and protein sequences (the proteome) that have been amassed. 
These millions–quadrillions of molecular sequences present both great opportunities and 
great challenges. A bioinformatics approach to molecular sequence data involves the 
application of computer algorithms and computer databases to molecular and cellular 
biology. Such an approach is sometimes referred to as functional genomics. This typifies 
the essential nature of bioinformatics: biological questions can be approached from levels 
ranging from single genes and proteins to cellular pathways and networks or even whole‐
genomic responses. Our goals are to understand how to study both individual genes and 
proteins and collections of thousands of genes/proteins.

From the cell we can focus on individual organisms, which represents a second per-
spective of the field of bioinformatics (Fig. 1.2). Each organism changes across different 
stages of development and (for multicellular organisms) across different regions of the 
body. For example, while we may sometimes think of genes as static entities that specify 
features such as eye color or height, they are in fact dynamically regulated across time and 
region and in response to physiological state. Gene expression varies in disease states or 
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in response to a variety of signals, both intrinsic and environmental. Many bioinformat-
ics tools are available to study the broad biological questions relevant to the individual: 
there are many databases of expressed genes and proteins derived from different tissues 
and conditions. One of the most powerful applications of functional genomics is the use 
of DNA microarrays or RNA‐seq to measure the expression of thousands of genes in 
biological samples.

At the largest scale is the tree of life (Fig. 1.3; see also Chapter 15). There are many 
millions of species alive today, and they can be grouped into the three major branches 
of bacteria, archaea, and eukaryotes. Molecular sequence databases currently hold DNA 
sequence from ∼300,000 different species. The complete genome sequences of thousands 
of organisms are now available. One of the main lessons we are learning is the funda-
mental unity of life at the molecular level. We are also coming to appreciate the power of 
comparative genomics, in which genomes are compared. Through DNA sequence anal-
ysis we are learning how chromosomes evolve and are sculpted through processes such 
as chromosomal duplications, deletions, and rearrangements, and through whole‐genome 
duplications (Chapters 8 and 18–19).

Figure 1.4 depicts the contents of this book in the context of these three perspectives 
of bioinformatics.

a Consistent example: globins

Throughout this book, we will focus on the globin gene family to provide a consistent 
example of bioinformatics and genomics concepts. The globin family is one of the best 
characterized in biology.

 • Historically, hemoglobin is one of the first proteins to be studied, having been 
described in the 1830s and 1840s by Gerardus Johannes Mulder, Justus Liebig, and 
others.

 • Myoglobin, a globin that binds oxygen in the muscle tissue, was the first protein to 
have its structure resolved by X‐ray crystallography (Chapter 13).

Figure 1.2 A second perspective of bioinformatics is the organism. Broadening our view from the 
level of the cell to the organism, we can consider the individual’s genome (collection of genes), including 
the genes that are expressed as RNA transcripts and the protein products. For an individual organism, 
bioinformatics tools can therefore be applied to describe changes through developmental time, changes 
across body regions, and changes in a variety of physiological or pathological states.

time of
development

region of
body

physiological or
pathological state
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 • Hemoglobin, a tetramer of four globin subunits (principally α
2
β

2
 in adults), is the 

main oxygen carrier in the blood of vertebrates. Its structure was also one of the 
earliest to be described. The comparison of myoglobin, alpha globin, and beta globin 
protein sequences represents one of the earliest applications of multiple sequence 
alignment (Chapter 6), and led to the development of amino acid substitution matri-
ces used to score protein relatedness (Chapter 3).

 • As DNA sequencing technology emerged in the 1980s, the globin loci on human chro-
mosomes 16 (for α globin) and 11 (for β globin) were among the first to be sequenced 
and analyzed. The globin genes are exquisitely regulated across time (switching from 
embryonic to fetal to adult forms) and with tissue‐specific gene expression. We will 
discuss these loci in the description of the control of gene expression (Chapters 10 
and 14).

 • While hemoglobin and myoglobin remain the best‐characterized globins, the fam-
ily of homologous proteins extends to separate classes of plant globins, invertebrate 

Figure 1.3 A third perspective of the field of bioinformatics is represented by the tree of life. The 
scope of bioinformatics includes all of life on Earth, including the three major branches of bacteria, 
archaea, and eukaryotes. Viruses, which exist on the borderline of the definition of life, are not depicted 
here. For all species, the collection and analysis of molecular sequence data allow us to describe the 
complete collection of DNA that comprises each organism (the genome). We can further learn the varia-
tions that occur between species and among members of a species, and we can deduce the evolutionary 
history of life on Earth. Adapted from Barns et al. (1996), Hugenholtz and Pace (1996), and Pace (1997).
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hemoglobins (some of which contain multiple globin domains within one protein 
molecule), bacterial homodimeric hemoglobins (consisting of two globin subunits), 
and flavohemoglobins that occur in bacteria, archaea, and fungi. The globin family is 
therefore useful as we survey the tree of life (Chapters 15–21).

OrganizatiOn Of the chaPters
The chapters of this book are intended to provide both the theory of bioinformatics 
subjects as well as a practical guide to using computer databases and algorithms. Web 
resources are provided throughout each chapter. Chapters end with brief sections called 
Perspective, Pitfalls, and Advice for Students. The perspective feature describes the rate 
of growth of the subject matter in each chapter. For example, a perspective on Chapter 2 
(access to sequence information) is that the amount of DNA sequence data deposited 
in repositories is undergoing an explosive rate of growth. In contrast, an area such as 

Figure 1.4 Overview of the chapters in this book.

RNA proteinDNA

Molecular sequence
databases

Part I: Bioinformatics: analyzing DNA, RNA, and protein

Chapter 1: Introduction
Chapter 2: How to obtain sequences
Chapter 3: How to compare two sequences
Chapters 4 and 5: How to compare a sequence 
 across databases
Chapter 6: How to multiply align sequences
Chapter 7: How to view multiply aligned sequences
 as phylogenetic trees

Part III: Genomics

Chapter 15: The tree of life
Chapter 16: Viruses
Chapter 17: Bacteria and archaea
Chapter 18: Fungi
Chapter 19: Eukaryotes from parasites to plants to primates
Chapter 20: The human genome
Chapter 21: Human disease

Part II: Functional genomics: from DNA to RNA to protein

Chapter 8: DNA: The eukaryotic chromosome
Chapter 9: DNA analysis: next-generation sequencing
Chapter 10: Bioinformatics approaches to RNA
Chapter 11: Microarray and RNA-seq data analysis
Chapter 12: Protein analysis and protein families
Chapter 13: Protein structure
Chapter 14: Functional genomics
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pairwise sequence alignment, which is fundamental to the entire field of bioinformat-
ics (Chapter 3), was firmly established in the 1970s and 1980s. Even for fundamental 
operations such as multiple sequence alignment (Chapter 6) and molecular phylogeny 
(Chapter 7), dozens of novel, ever‐improving approaches are being introduced at a rapid 
rate. For example, hidden Markov models and Bayesian approaches are being applied to 
a wide range of bioinformatics problems.

The pitfalls section of each chapter describes some common difficulties encountered 
by biologists using bioinformatics tools. Some errors might seem trivial, such as searching 
a DNA database with a protein sequence. Other pitfalls are more subtle, such as artifacts 
caused by multiple sequence alignment programs depending upon the type of param-
ters that are selected. Indeed, while the field of bioinformatics depends substantially on 
analyzing sequence data, it is important to recognize that there are many categories of 
errors associated with data generation, collection, storage, and analysis. We address the 
problems of false positive and false negative results in a variety of searches and analyses.

Each chapter includes multiple‐choice quizzes to test your understanding of the chap-
ter materials. There are also problems that require you to apply the concepts presented in 
each chapter. These problems may form the basis of a computer laboratory for a bioin-
formatics course.

The reference list at the end of each chapter is preceded by a discussion of recom-
mended articles. This “Suggested Reading” section includes classic papers that show how 
the principles described in each chapter were discovered. Particularly helpful review arti-
cles and research papers are highlighted.

suggestiOns fOr students and teachers:  
exercises, find-a-gene, and  
characterize-a-genOme
This is a textbook for two separate courses: the first course is an introduction to bioinformat-
ics (Parts I and II, i.e., Chapters 1–14), and the second is an introduction to genomics (Part III, 
i.e., Chapters 15–21). In a sense, the discipline of bioinformatics serves biology, facilitating 
ways of posing and then answering questions about proteins, genes, and genomes. Part III of 
this book surveys the tree of life from the perspective of genes and genomes, and could not 
progress without the bioinformatics tools described in Parts I and II of the book.

Students often have a particular research area of interest such as a gene, a physiolog-
ical process, a disease, or a genome. It is hoped that, in the process of studying globins 
and other specific proteins and genes throughout this book, students can simultaneously 
apply the principles of bioinformatics to their own research questions.

The websites described in this book are posted on the home page for this book 
(  http://www.bioinfbook.org) as “WebLinks.” That site contains 900 URLs, organized 
by chapter. Each chapter also refers to web documents posted on the site. For example, 
if you see a figure of a phylogenetic tree or a sequence alignment, you can easily retrieve 
the raw data and make the figure yourself.

Another feature of a Johns Hopkins bioinformatics course is that each student is 
required to discover a novel gene by the last day of the course. The student must begin 
with any protein sequence of interest and perform database searches to identify genomic 
DNA that encodes a protein no one has described before. This problem is described in 
detail in Chapter 4 (and summarized in Web Document 4.5 at  http://www.bioinfbook.
org/chapter4). The student therefore chooses the name of the gene and its corresponding 
protein, and describes information about the organism and evidence that the gene has 
not been described before. The student then creates a multiple sequence alignment of the 
new protein (or gene) and creates a phylogenetic tree showing its relation to other known 
sequences.

http://www.bioinfbook.org
http://www.bioinfbook.org/chapter4
http://www.bioinfbook.org/chapter4
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Each year, some beginning students are slightly apprehensive about accomplishing 
this exercise; in the end, all of them succeed. A benefit of this exercise is that it requires a 
student to actively use the principles of bioinformatics. Many students choose a gene (or 
protein) relevant to their own research area.

For a genomics course, students select a genome of interest and describe five aspects 
in depth (described at the start of Chapter 15):

 1. The basic characteristics of the genome, such as its size, number of chromosomes, 
and other features, are described.

 2. A comparative genomic analysis is performed to study the relation of the species to 
its neighbors.

 3. The student describes biological principles that are learned through genome analysis.
 4. The human disease relevance is described.
 5. Bioinformatics aspects are described, such as key databases or algorithms used for 

genome analysis.

Teaching bioinformatics and genomics is notable for the diversity of students learn-
ing these new disciplines. Each chapter provides background on the subject matter. For 
more advanced students, key research papers are listed at the end of each chapter. These 
papers are technical, and reading them along with the chapters will provide a deeper 
understanding of the material.

BiOinfOrmatics sOftware: twO cultures
There are two dramatically different approaches to bioinformatics: using web‐based 
and command‐line tools (Fig. 1.5). Web‐based tools, sometimes called “point‐and‐
click,” do not require knowledge of programming and are immediately accessible. 

Figure 1.5 Bioinformatics resources. Web-based or “point-and-click” resources are shown to the left, 
including the major portals (National Center for Biotechnology Information, European Bioinformatics 
Institute), major genome browsers (Ensembl, UCSC), databases, and specialized websites. Command-line 
resources are shown to the right. These include programming languages (such as Biopython, BioPerl, and 
the R language) and command-line software (typically accessed using the Linux operating system).

Web-based or 
graphical user interface (GUI) 

Command line (often Linux)

Central resources
(NCBI,
EBI,

DDBJ)

Genome browsers
(NCBI, UCSC,

Ensembl)

Programming 
languages: BioPerl, 

Python, R, 
Biopython

Next generation 
sequencing tools 

Software for data 
analysis: sequences, 

proteins, genomes

GUI software
(Partek, MEGA,

RStudio,
BioMart,

IGV)

Galaxy 
(web access 
to NGS tools, 
browser data)

Manipulate
data files
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Command‐line tools may have a steeper learning curve, but almost always offer more 
options for executing programs. They are more appropriate for analyzing large‐scale 
datasets that are now routinely encountered in bioinformatics. Even for smaller data-
sets, command‐line approaches can offer more flexibility and precision in accom-
plishing your tasks and more reproducible research since you can document your 
analysis steps.

Web-Based Software

The field of bioinformatics relies heavily on the Internet as a place to access sequence 
data, to access software that is useful to analyze molecular data, and as a place to inte-
grate different kinds of resources and information relevant to biology. We will describe a 
variety of websites. Initially, we will focus on the main publicly accessible databases that 
serve as repositories for DNA and protein data. These include:

 1. the National Center for Biotechnology Information (NCBI), which hosts GenBank 
and other resources;

 2. the European Bioinformatics Institute (EBI);
 3. Ensembl, which includes a genome browser and resources to study dozens of 

genomes; and
 4. the University of California at Santa Cruz (UCSC) Genome bioinformatics site, 

including a web browser and table browser for a variety of species.

Throughout the chapters of this book we introduce almost 1000 additional websites 
that are relevant to bioinformatics. The main advantages offered by websites are easy 
access, rapid updates, good visibility to the community, and ease of use (since in general 
programming skills, command line skills, and the use of Linux‐type operating systems 
are not required).

Command-Line Software

Command‐line tools offer distinct, critical advantages. High‐throughput approaches to 
biology result in the creation of both large and small datasets which require sophisticated 
analyses. We can think about command‐line software in several ways.

 1. The operating system is often Linux (a Unix‐like environment). The Mac O/S is com-
patible with Linux as well (and is POSIX‐compliant). However, while Windows‐type 
operating systems are popular, they are not appropriate for the majority of command‐
line programs. In this book I assume the reader has no background in Unix. Begin-
ning in Chapter 2, I provide basic instructions for becoming acquainted with Linux 
by providing examples of commands for a variety of software.

 2. Programming languages are commonly used in bioinformatics. Examples are Perl (or 
its relative BioPerl; Stajich, 2007), Python (as well as Biopython), and R to manip-
ulate data. Learning such languages is important as it is extremely useful to be able 
to write scripts and thus accomplish a broad range of tasks. Modules are available 
for hundreds of bioinformatics applications. For example, the BioConductor project 
currently includes > 1,000 packages that are useful for solving many tasks. Acquir-
ing knowledge of R is a steep learning curve, and I provide suggestions of books, 
articles, and websites you can use to achieve this aim. It is also possible to use an R 
package without being an R “power user,” however. For example, in Chapter 8 we 
use the R package Biostrings to extract information about the features on chro-
mosomes, and in Chapter 11 we use R packages to analyze gene expression datasets 
from microarrays and next‐generation sequencing. Once you learn to use a few pack-
ages, you will be in a postion to learn many more.

 The URLs for these sites are 
NCBI,  http://ncbi.nlm.nih.gov 
(WebLink 1.3); EBI,  http://www 
.ebi.ac.uk/ (WebLink 1.4); Ensembl, 

 http://www.ensembl.org/ 
(WebLink 1.5); and UCSC,  http://
genome.ucsc.edu/ (WebLink 1.6). 
For information on vast numbers 
of available databases, see the 
annual January issue of the 
journal Nucleic Acids Research, 

 http://nar.oxfordjournals.org/ 
(WebLink 1.7).

POSIX is an acronym for Portable 
Operating System Interface. It 
offers standards for maintaining 
compatibility between operating 
systems.

See http://bioinfbook.org/chapter1 
for links to resources for learning 
Unix.

http://ncbi.nlm.nih.gov
http://www.ebi.ac.uk/
http://www.ensembl.org/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://nar.oxfordjournals.org/
http://bioinfbook.org/chapter1
http://www.ebi.ac.uk/
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 3. The command line of Unix systems offers Bash, a default shell for Linux and Mac 
OS X operating systems. We introduce a variety of Bash scripts in this book. Bash 
includes a series of utilities that can accomplish tasks such as sorting a table of data, 
transposing it, counting the numbers of rows and columns, merging data, or working 
with regular expressions. We’ll see examples of Bash commands in Box 2.3 and in 
Chapter 9 on next‐generation sequencing, for example.

Which operating system should you use? Linux is essential for many bioinfor-
matics experts, often because it is used to access very large datasets (e.g., terabytes 
of data) with large amounts of RAM. For example, I recommend installing Bio‐Linux 
on a laptop or a virtual machine. For many students approaching bioinformatics for 
the first time, the Macintosh O/S works well because it offers a Unix‐like terminal. 
For Windows users, Cygwin provides a Unix‐like environment. If you have access to 
a Linux server you can access it from a Windows or Mac environment using software 
such as PuTTY.

We may further distinguish between using command‐line software and using a pro-
gramming language. Learning Perl, Python, or other languages offers tremendous bene-
fits (Dudley and Butte, 2009). However, even if you do not program, you still should learn 
basic information about how to acquire, store, manipulate, and explore large files. Many 
files used in bioinformatics and genomics are simply too large to be handled efficiently 
(if at all) by web‐based or GUI‐based software. Many files that are generated by software 
tools require some level of restructuring to be further studied (e.g., to be analyzed by 
additional software tools). For many students, it has become essential to learn techniques 
to manipulate files on the command line.

Bridging the two Cultures

Many bioinformatics resources are available to bridge the cultures of web‐based and 
command‐line software. This book introduces you to both (table 1.1). For example, NCBI 
offers the web‐based Entrez database that lets you type a query and obtain information. 
NCBI also provides EDirect, a set of command‐line programs to access databases (see 
Chapter 2). Similarly, Ensembl offers programmatic access using Perl application pro-
gramming interfaces (APIs). As another example, Galaxy hosts a broad range of web‐
based tools that are otherwise available as command‐line software run on the Linux envi-
ronment.

What is your best approach? Each person engaged in bioinformatics work should 
decide what problem he or she wants to solve, then choose the appropriate tool(s). If you 
are working with next‐generation sequence data, it will be essential to learn how to use 
software tools in the Linux operating system. If that is new to you, you could use the more 
accessible Galaxy tools to start becoming familiar with the types of data and algorithms 
you will encounter as you transition to Linux‐based tools. If you are doing phylogeny 
you can also start with MEGA software to learn a variety of approaches before comple-
menting your analyses with command‐line software to perform Bayesian analyses (see 
Chapter 7).

In this book we will use examples to try to help bridge these cultures. In Chapter 8 
we will encounter both BioMart (an Ensembl web‐based resource that interconnects hun-
dreds of databases) and biomaRt (an R package that performs BioMart queries).

We will also see that the bioinformatics community is continuously improving 
existing software and developing new methods. There are often “competitions” in 
which organizers of an event obtain evidence of the gold standard “truth” for some 
problem, such as solving a protein structure or assembling a genome. Members of the 
community are then invited to compete to solve the answer within some time frame. By 
comparing the various results it is possible to assess the performance of each software 

Bio‐Linux 8 (released July 
2014) is available at  http://
environmentalomics.org/bio‐
linux/ (WebLink 1.8). Cygwin is 
available at  http://www 
.cygwin.com (WebLink 1.9). 
PuTTY is at  http://www.putty 
.org (WebLink 1.10).

http://environmentalomics.org/bio%E2%80%90linux/
http://environmentalomics.org/bio%E2%80%90linux/
http://environmentalomics.org/bio%E2%80%90linux/
http://environmentalomics.org/bio%E2%80%90linux/
http://www.cygwin.com
http://www.putty.org
http://www.cygwin.com
http://www.putty.org
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taBLe 1.1 Overview of some web-based (or graphical user interface (gui)) and command-line software used in 
various chapters of this book.

Part: Chapter Topic Web‐based or GUI software Command‐line software

I: 2 Access to information BioMart
Genome Workbench

EDirect

I: 3 Pairwise alignment BLAST BLAST+
Biopython
needle (EMBOSS)
water (EMBOSS)

I: 4 BLAST BLAST BLAST+

I: 5 Database searching DELTA‐BLAST
Megablast

HMMER

I: 6 Multiple alignment Pfam, MUSCLE MAFFT

I: 7 Phylogeny MEGA MrBayes

II: 8 Chromosomes Galaxy geecee (EMBOSS) isochore (EMBOSS)

II: 9 Next‐generation sequencing Galaxy, SIFT, PolyPhen2 SAMTools, tabix, VCFtools

II: 10 RNA RNAfam, tRNAscan

II: 11 RNAseq Galaxy affy (R package), RSEM

II: 12 Proteomics ExPASy pepstats (EMBOSS)

II: 13 Protein structure Cn3D, Pymol psiphi (EMBOSS)

II: 14 Functional genomics FLink, Cytoscape

III: 15 Tree of life Velvet (assembly)

III: 16 Viruses MUMmer (alignment)

III: 17 Bacteria and archaea MUMmer GLIMMER (gene‐finding)

III: 18 Fungi YGOB Ensembl (variants)

III: 19 Eukaryotic genomes

III: 20 Human genome PLINK

III: 21 Human disease OMIM, BioMart EDirect, MitoSeek

(i.e., true and false positives, true and false negatives); by defining the sensitivity and 
specificity of software we learn which tools to use. Examples of critical assessments 
are given in table 1.2.

New paradigms for Learning programming for Bioinformatics

It is an excellent idea to learn a programming language to facilitate your bioinformatics 
work. You may want to run programs that are written in a language such as R or Python 
(as we do in this book), or you may want to write your own code and manipulate data to 
solve some task. In addition to available books and courses, many websites offer online 
training in the forms of tutorials or courses. David Searls (2012a, 2014) has reviewed 
many such online resources. These include Massive Open Online Courses (MOOCs) that 
tens of thousand of students may register for. Searls (2012b) also suggests ten rules for 
online learning. Briefly, these include: make a plan; be selective; organize your learning 
environment; do the readings; do the exercises; do the assessments; exploit the advantages 
(e.g., convenience); reach out to others; document your achievements; and be realistic 

Excellent websites that guide you 
to learn a language include Code 
School (  https://www 
.codeschool.com, WebLink 1.11), 
Code Academy (  http://www 
.codecademy.com, WebLink 1.12), 
Data Camp (  https://www 
.datacamp.com, WebLink 1.13), 
and Software Carpentry  
(  http://software‐carpentry 
.org, WebLink 1.14). Rosalind 
offers bioinformatics instruction 
through problem solving (  http://
rosalind.info/problems/locations/, 
WebLink 1.15).

https://www.codeschool.com
https://www.codeschool.com
http://www.codecademy.com
http://www.codecademy.com
https://www.datacamp.com
https://www.datacamp.com
http://software%E2%80%90carpentry.org
http://software%E2%80%90carpentry.org
http://rosalind.info/problems/locations/
http://rosalind.info/problems/locations/


AnAlyzing DnA, RnA, AnD PRotein SequenceS14

about your expectations for what you can learn. These rules also apply to reading a text-
book such as this one.

reproducible research in Bioinformatics

Science by its nature is cumulative and progressive. Whether you use web‐based or com-
mand‐line tools, research should be conducted in a way that is reproducible by the inves-
tigator and by others. This facilitates the cumulative, progressive nature of your work. In 
the realm of bioinformatics this means the following.

 • A workflow should be well documented. This may include keeping text documents 
on your computer in which you can copy and paste complex commands, URLs, or 
other forms of data. Many people choose to maintain a traditional lab notebook, writ-
ten by hand, but increasingly this must be accompanied by some form of electronic 
notebook.

 • To facilitate your work, information stored on a computer should be well organized. 
In Box 2.3 we introduce a paper by Noble (2009), offering guidance on how to orga-
nize your files.

 • Data should be made available to others. Repositories are available to store high‐
throughput data in particular. Examples are Gene Expression Omnibus (GEO) and 
Sequence Read Archive (SRA) at NCBI and ArrayExpress and European Nucleotide 
Archive (ENA) at EBI.

 • Metadata can be equally as crucial as data. Metadata refers to information about 
datasets. For a bacterial genome that has been sequenced, the metadata may include 
the location from which the bacterium was isolated, the culture conditions, and 
whether it is pathogenic. For a study of gene expression in human brain, the meta-
data may include the post‐mortem interval, the gender, the disease phenotype, and 
the method of RNA isolation. Metadata provide key information for statistical anal-
yses, allowing the investigator to explore the effects of various parameters on the 
outcome measure.

 • Databases that are used should be documented. Since the contents of databases 
change over time, it is important to document the version number and the date(s) 
of access.

 • Software should be documented. For established packages, the version number 
should be provided. Further documenting the specific steps you use allows others to 
independently repeat your analyses. In an effort to share software, many researchers 
use repositories such as GitHub.

Git is the most popular 
distributed version control 
system for software 
development. It allows scientists 
to access software having 
specific versions. Github hosts 
both open and private projects. 
It is available online at  https://
github.com (WebLink 1.16). As of 
early 2015, it has almost  
20 million repositories and  
8 million users.

taBLe 1.2 Critical assessment competitions in bioinformatics.

Name/Acronym Competition Chapter

Alignathon Compare whole‐genome alignment methods 6

EGASP ENCODE Genome Annotation Assessment Project 8

Assemblathon Compare the performance of genome assemblers 9

GAGE Genome Assembly Gold‐standard Evaluations 9

ABRF Association of Biomolecular Resource Facilities (ABRF) 
assessment of phosphorylation

12

CASP Critical Assessment of Structure Prediction 13

CAFA Critical Assessment of Protein Function 14

CAGI Critical Assessment of Genome Interpretation 14

https://github.com
https://github.com
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BiOinfOrmatics and Other infOrmatics disciPlines
In recent years there has been a proliferation of other informatics fields including medical 
informatics, health care informatics, nursing informatics, and library informatics (Fig. 1.6). 
Bioinformatics has some overlap with these disciplines but is distinguished by its empha-
sis on DNA and other biomolecules. We may also distinguish tool users (e.g., biologists 
using bioinformatics software to study gene function, or medical informaticists using 
electronic health records) from tool makers (e.g., those who build databases, create infor-
mation technology infrastructure, or write computer software). In bioinformatics, more 
than in other informatics disciplines, the tool users are also increasingly adept at being 
tool makers.

advice fOr students
The fields of bioinformatics and genomics are extremely broad. You should decide what 
range of problems you want to study, and what techniques are best suited to tackling 
those problems. Looking at Figure 1.5, you can see a broad range of available tools and 
approaches. As we move through the chapters it will likely become clear which is right 
for you. I encourage you to approach this textbook as actively as possible. When we 
discuss a website or a software package, take it as an opportunity to explore it in depth.

There are many ways to get help. Try using Biostars, an online forum in which you 
can post questions, get answers from the community, explore tutorials, and more (Parnell 
et al., 2011). By the year 2015, over 16,000 registered users have created >125,000 posts. 
Try joining Biostars or other bioinformatics forums to find others who have questions 
similar to yours.

suggested reading
Dudley and Butte (2009) provide an excellent guide to developing effective bioinformat-
ics programming skills (including the use of open source software and Unix). There have 
been relatively few general overviews of the field of bioinformatics in the past five years, 
perhaps because of its broadening scope. Thousands of reviews cover specialized topics. 
For all of Chapters 2–21 I provide sets of recent review articles.

Biostars was started in 2009 
by Istvan Albert of Penn State 
University. Visit Biostars at  

 http://www.biostars.org 
(WebLink 1.17).

Figure 1.6 Tool users and tool makers. The term “informatics” has been applied to an increas-
ing number of disciplines in recent years including bioinformatics, public health informatics, medical 
informatics, and library informatics. Each of these disciplines is concerned with systematizing and ana-
lyzing increasingly large datasets. The focus of bioinformatics and genomics is on proteins, genes, and 
genomes in particular.

bioinformatics

medical 
informatics

public health
informatics

development of
algorithms

information
technology

infrastructure

development of
databases

Tool users Tool makers

http://www.biostars.org
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In 2011 Eric Green, Mark Guyer and colleagues at the National Human Genome 
Research Institute published the highly recommended article: “Charting a course for 
genomic medicine from base pairs to bedside” (Green et al., 2011). This paper describes 
achievements in genomics and prospects for the coming decade.

Each January the journal Nucleic Acids Research offers a Database Issue that 
describes many central bioinformatics resources (Fernández‐Suárez et al., 2014). That 
journal provides access to a vast number of papers via its website.
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Chapter 2 introduces ways to access 
molecular data, including information 
about DNA and proteins. One of the first 
scientists to study proteins was Iacopo 
Bartolomeo Beccari (1682–1776), an Ital-
ian philosopher and physician who dis-
covered protein as a component of veg-
etables. This image is from page 123 of 
the Bologna Commentaries, written by a 
secretary on the basis of a 1728 lecture 
given by Beccari (Zanotti, 1745). Beccari 
separated gluten (plant proteins) from 
wheaten flour. The passage beginning 
Res est parvi laboris (“it is a thing of little 
labor”; see closed arrowhead) is translated 
as follows (Beach, 1961, p. 362):

It is a thing of little labor. Flour is taken of 
the best wheat, moderately ground, the 
bran not passing though the sieve, for it is 
necessary that this be fully purged away, 
so that all traces of a mixture have been 
removed. Then it is mixed with pure water 
and kneaded. What is left by this procedure, 
washing clarifies. Water carries off with 
itself all it is able to dissolve, the rest remains 
untouched. After this, what the water leaves 
is worked with the hands, and pressed 
upon in the water that has stayed. Slowly 
it is drawn together in a doughy mass, and 
beyond what is possible to be believed, tena-
cious, a remarkable sort of glue, and suited 

to many uses; and what is especially worthy of note, it cannot any longer be mixed 
with water. The other particles, which water carries away with itself, for some time float 
and render the water milky; but after a while they are carried to the bottom and sink; 
nor in any way do they adhere to each other; but like powder they return upward on 
the lightest contact. Nothing is more like this than starch, or rather this truly is starch. 
And these are manifestly the two sorts of bodies which Beccari displayed through hav-
ing done the work of a chemist and he distinguished them by their names, one being 
appropriately called glutinous (see open arrowhead) and the other amylaceous.

In addition to purifying gluten, Beccari identified it as an “animal substance” 
in contrast to starch, a “vegetable substance,” based on differences on how they 
decomposed with heat or distillation. A century later Jons Jakob Berzelius pro-
posed the word protein; he also posited that plants form “animal materials” that 
are eaten by herbivorous animals. 

Source: Zanotti (1745).



19

Bioinformatics and Functional Genomics, Third Edition, Jonathan Pevsner.  
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.  
Companion Website: www.wiley.com/go/pevsnerbioinformatics

The body of data available in protein sequences is something fundamentally new in biol-
ogy and biochemistry, unprecedented in quantity, in concentrated information content and 
in conceptual simplicity … For the past four years we have published an annual Atlas of 
Protein Sequence and Structure, the latest volume of which contains nearly 500 sequences 
or partial sequences established by several hundred workers in various laboratories.

— Margaret Dayhoff (1969), p. 87

Access to Sequence Data 
and Related Information

C h a p t e r

2

LeARNINg OBJeCTIveS

After studying this chapter you should be able to:
 ■ define the types of molecular databases;
 ■ define accession numbers and the significance of RefSeq identifiers;
 ■ describe the main genome browsers and use them to study features of a genomic region; and
 ■ use resources to study information about both individual genes (or proteins) and large sets 

of genes/proteins.

IntroductIon to BIologIcal dataBases
All living organisms are characterized by the capacity to reproduce and evolve. The 
genome of an organism is defined as the collection of DNA within that organism, including 
the set of genes that encode RNA molecules and proteins. In 1995 the complete genome 
of a free-living organism was sequenced for the first time, the bacterium Haemophilus 
influenzae (Fleischmann et al., 1995; Chapters 15 and 17). In the years since then the 
genomes of thousands of organisms have been completely sequenced, ushering in a new 
era of biological data acquisition and information accessibility. Publicly available data-
banks now contain quadrillions (>1015) of nucleotides of DNA sequence data, soon to be 
quintillions (>1018 bases). These have been collected from over 300,000 different species 
of organisms (Benson et al., 2015). The goal of this chapter is to introduce the databases 
that store these data and strategies to extract information from them.

There are two main technologies for DNA sequencing (we will discuss these in detail 
in Chapter 9). Beginning in the 1970s dideoxynucleotide sequencing (“Sanger sequenc-
ing”) was the principal method. Since 2005 next-generation sequencing (NGS) technol-
ogy has emerged, allowing orders of magnitude more sequence data to be generated. The 
availability of vastly more sequence data (at a relatively low cost per base) has impacted 
most areas of bioinformatics and genomics. There are new challenges in acquiring, 

http://www.wiley.com/go/pevsnerbioinformatics
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analyzing, storing, and distributing such data. It is no longer unusual for researchers to 
analyze datasets that are many terabytes in size.

In this chapter (and in this book) we will introduce two ways of thinking about access-
ing data. The first is in terms of individual genes, proteins, or related molecules. Taking 
human beta globin as an example, there is a locus (on chromosome 11) harboring the 
beta globin gene (HBB) and associated genomic elements such as a promoter and introns. 
There is tremendous variation between people (variants include single-nucleotide variants, 
differencs in repetitive DNA elements, and differences in chromosomal copy number). 
This gene can be transcribed to beta globin mRNA which is expressed in particular tissues 
(and particular times of development) and may be tranlsated into beta globin protein. This 
protein is a subunit of the hemoglobin protein, a tetramer that has various functions in 
health and diseases. All this information about the beta globin gene, RNA, and protein is 
accessible through the databases and resources introduced in this chapter.

A second perspective is on large datasets related to a problem of interest. Here are 
three examples:

 1. We might want to study all the variants that have been identified across all human 
globin genes.

 2. In patients having mutations in a gene we might want to study the collection of all 
of the tens of thousands of RNA transcripts in a given cell type in order to assess the 
functional consequences of that variation. After performing a microarray or RNAseq 
experiment (see Chapter 11), it might be of interest to identify a set of regulated tran-
scripts and assign their protein products to some cellular pathways.

 3. Perhaps we want to sequence the DNA corresponding to a set of 100 genes implicated 
in hemoglobin function. Databases and resources such as Entrez, BioMart, and Gal-
axy (introduced below) facilitate the manipulation of larger datasets. You can acquire, 
store, and analyze datasets involving some set of molecules that have been previously 
characterized (e.g., all known protein-coding genes on human chromosome 11) or 
are novel (e.g., data you obtain experimentally that you can annotate and compare to 
known data).

centralIzed dataBases store dna sequences
How much DNA sequence is stored in public databases? Where are the data stored? We begin 
with three main sites that have been responsible for storing nucleotide sequence data from 
1982 to the present (Fig. 2.1). These are: (1) GenBank at the National Center for Biotechnology 
Information (NCBI) of the National Institutes of Health (NIH) in Bethesda (NCBI Resource 
Coordinators, 2014; Benson et al., 2015); (2) the European Molecular Biology Laboratory 
(EMBL)-Bank Nucleotide Sequence Database (EMBL-Bank), part of the European Nucle-
otide Archive (ENA) at the European Bioinformatics Institute (EBI) in Hinxton, England 

We write gene names using 
the official gene notation, for 
example HBB. For human genes, 
this is given by the HUGO Gene 
Nomenclature Committee 
(HGNC) (http://www.genenames 
.org) (WebLink 2.1) (Gray et al., 
2013). The website also provides 
guidelines for when to use upper 
case and italics for human gene 
symbols. For other species 
(e.g., yeast, Chapter 18) the 
conventions vary.

 International Nucleotide Sequence Database Collaboration (INSDC)

DDBJENAGenBank

FIGUre 2.1 The nucleotide collections of GenBank at NCBI, EMBL-Bank at the European Bioin-
formatics Institute, and DDBJ at the DNA Data Bank of Japan are all coordinated by the International 
Nucleotide Sequence Database Collaboration (INSDC).

http://www.genenames.org
http://www.genenames.org
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(b) European Bioinformatics Institute

(a) National Center for Biotechnology Information

Sequence Read 
Archive (SRA)

Trace ArchiveGenBank

Entrez system (40 molecular and literature databases)

Genome Survey
Sequences (GSS)

Nucleotide
Expressed Sequence
Tag (EST)

Access via web browser,
NCBI E-Utils, EDirect

EBI genomics resources

Ensembl
(vertebrate)

European Genome-
Phenome Archive (EGA)

European Nucleotide
Archive (ENA)

Ensembl Genomes
(invertebrate metazoans,
fungi, plants, bacteria)

Sequence Read 
Archive (SRA)Trace ArchiveEMBL-Bank

Access via web browser,
BioMart, Perl APIs

(c) DNA Database of Japan

BioProject
BioSamples

Sequence Read 
Archive (SRA)Trad

DDBJ

FIGUre 2.2 DNA sequences are shared by three major repositories. (a) The National Center for Biotech-
nology Information (NCBI) houses GenBank as part of its Entrez system of 40 moleuclar and literature data-
bases. The Trace Archive stores sequence traces, and the Sequence Read Archive (SRA) stores next-generation 
sequence data. GenBank includes separate divisions for nucleotides, genome survey sequences, and expressed 
sequence tags. (b) The European Bioinformatics Institute resources include Ensembl (with a focus on verte-
brate genomes), Ensembl Genomes (centralizing data on broader groups of species), the European Nucleotide 
Archive (ENA), and the European Genome-Phenome Archive (EGA). Within ENA, EMBL-Bank includes 
the same raw sequence data as GenBank at NCBI. Similar data are also housed in the Trace Archive and SRA.  
(c) The DNA Database of Japan (DDBJ) also includes a SRA. Its traditional (Trad) division shares the same 
raw sequence data with GenBank and EMBL-Bank on a daily basis. All these various databases can be 
accessed by web browsing or via programs such as EDirect (for command-line access to Entrez databases).

(Pakseresht et al., 2014; Brooksbank et al., 2014); and (3) the DNA Database of Japan (DDBJ) 
at the National Institute of Genetics in Mishima (Ogasawara et al., 2013; Kosuge et al., 2014). 
All three are coordinated by the International Nucleotide Sequence Database Collaboration 
(INSDC) (Nakamura et al., 2013; Fig. 2.1), and they share their data daily. GenBank, EMBL-
Bank, and DDBJ are organized as databases within NCBI, EBI, and DDBJ which offer many 
dozens of other resources for the study of sequence data (see Fig. 2.2).

 NCBI is at  http://www.ncbi 
.nlm.nih.gov/ and GenBank is at 

 http://www.ncbi.nlm.nih.gov/
Genbank; DDBJ is at  http://
www.ddbj.nig.ac.jp/; and EMBL-
Bank is at  http://www.ebi 
.ac.uk/. You can visit the INSDC 
at  http://www.insdc.org/. 
You can access these URLs by 
visiting this book’s website (http://
bioinfbook.org) and using Chapter 
2 WebLinks 2.2 to 2.6.

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/Genbank
http://www.ddbj.nig.ac.jp/
http://www.ddbj.nig.ac.jp/
http://www.ebi.ac.uk/
http://www.insdc.org/
http://bioinfbook.org
http://bioinfbook.org
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
http://www.ncbi.nlm.nih.gov/Genbank
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Members of the research community can submit records directly to sequence repos-
itories at NCBI, EBI, and DDBJ. Quality control is assured through guidelines enforced 
at the time of submission, and through projects such as RefSeq that reconcile differences 
between submitted entries. For GenBank, NCBI offers the command-line tool tbl2asn to 
automate the creation of sequence records.

The growth of DNA in repositories is shown in Figure 2.3. GenBank (representative of 
the holdings of EMBL-Bank and DDBJ) has received submissions since 1982, including 
sequences from thousands of individual submitters. Over the past 30 years the number of 
bases in GenBank has doubled approximately every 18 months.

GenBank, EMBL-Bank, and DDBJ accept sequence data that consist of complete 
or incomplete genomes (or chromosomes) analyzed by a whole-genome shotgun (WGS) 
strategy. The WGS division consists of sequences generated by high-throughput sequenc-
ing efforts. WGS sequences have been available since 2002, but they are not considered 
part of the GenBank/EMBLBank/DDBJ releases. As indicated in Figure 2.3, the number 
of base pairs of DNA included among WGS sequences now exceeds the holdings of 
GenBank.

You can access tbl2asn 
at  http://www.ncbi.nlm 
.nih.gov/genbank/tbl2asn2/ 
(WebLink 2.7).

FIGUre 2.3 Growth of DNA sequence in repositories. Data are shown for GenBank (blue diamonds) 
from release 3 (December 1982) to release 206 (February 2015). Additional DNA sequences from the 
whole-genome shotgun sequencing projects, begun in 2002, are shown (open black squares). SRA data 
from NCBI are plotted including total bases (red triangles) and the subset of open-access bases (purple 
+ symbols). Data plotted from the GenBank release notes at  http://www.ncbi.nlm.nih.gov/Genbank 
and SRA notes at  http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?. The total number of DNA bases 
sequenced at major sequencing centers in 2014 is shown (green bar; ∼40 petabases). This estimate is 
extrapolated from the output of the Broad Institute for 2014 which is ∼9% of the output of the set of major 
centers described in Figure 15.10. Consideration of additional output from sources such as companies 
involved in high-throughput sequencing would greatly increase this estimate. According to NCBI, for 
SRA the 3.5 × 1015 bases in the current release (March 2015) correspond to 2.3 × 1015 bytes of data.
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In 2015 the number of bases in 
GenBank reached 188 billion 
(contained in ∼181 million 
sequences). To see statistics on 
the growth of EMBL-Bank visit 

 http://www.ebi.ac.uk/ena/
about/statistics (WebLink 2.8).

http://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/
http://www.ncbi.nlm.nih.gov/Genbank
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?
http://www.ebi.ac.uk/ena/about/statistics
http://www.ncbi.nlm.nih.gov/genbank/tbl2asn2/
http://www.ebi.ac.uk/ena/about/statistics
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Inspection of Figure 2.3 reveals that the recently developed Sequence Read Archive 
(SRA) contains vastly more sequence data than the sum of GenBank and WGS; in fact, 
SRA currently holds 3000 times more bases of DNA. Each sequence read in SRA is 
relatively short (typically 50–400 base pairs), reflecting next-generation sequencing tech-
nology (described in Chapter 9). Most of the SRA data are publicly available (such as 
sequences from various organisms across the tree of life); these are shown as open-access 
bases in Figure 2.3 Some of the data are derived from humans, and can potentially lead to 
the identification of particular clinical subjects or research participants. Access to those 
data is therefore restricted, requiring application to a committee from qualified research-
ers who agree to adhere to ethical guidelines. Figure 2.3 shows data from SRA at NCBI, 
including total data and open access data.

To make sense of such large numbers of bases of DNA we can look at several spe-
cific examples (table 2.1). The first eukaryotic genome to be completed (Saccharomyces 
cerevisiae; Chapter 19) is ∼13 million base pairs (Mb) in size. An average-sized human 
chromosome is ∼150 Mb, and a single human genome consists of >3 billion base pairs 
(3 Gb). For next-generation sequencing (Chapter 9), short sequence reads (typically 100–
300 base pairs in length) are obtained in vast quantities that allow each single base pair 
to be represented (“covered”) by some average number of independent reads such as 
30. There is therefore 30 × depth of coverage. For a recent study in my lab, we obtained 
paired affected/unaffected samples from three individuals with a disease, performed 
whole-genome sequencing, and obtained 700 billion (7 × 1011) bases of DNA sequence. 
For a large-scale cancer study involving 20,000 tumor/normal comparisons, a massive 
1016 bases of DNA can be generated. Even larger studies involving 200,000 tumor/normal 
comparisons are being planned. Other experimental approaches such as whole-exome 
sequencing (involving sequencing the collection of exons in a genome that are thought 
to be functionally most important) and sequencing of the transcriptome (RNASeq; Chap-
ter 11) also generate large amounts of data.

We can also consider amounts of sequence data in terms of terabytes. A byte is a unit of 
computer storage information, consisting of 8 bits and encoding one character. table 2.2 shows 

We will discuss WGS in Chapter 
15. To learn more about it, visit 

 http://www.ncbi.nlm.nih.gov/
genbank/wgs (WebLink 2.9). By 
February 2015 there were ∼873 
billion bases in WGS at NCBI 
(release 206).

 In addition to SRA, next-
generation sequence data are 
stored and can be obtained from 
the European Nucleotide Archive 
(ENA,  http://www.ebi.ac.uk/ena, 
WebLink 2.10) and the DDBJ Read 
Archive (DRA,  http://trace 
.ddbj.nig.ac.jp/dra/index_e.html, 
WebLink 2.11).

table 2.1 Scales of DNa base pairs.

Base pairs Unit Abbreviation Example

1 1 base pair 1 bp

1000 1 kilobase pair 1 kb Size of a typical coding region of a gene

1,000,000 1 megabase pair 1 Mb Size of a typical bacterial genome

109 1 gigabase pair 1 Gb The human genome is 3 billion base pairs

1012 1 terabase pair 1 Tb

1015 1 petabase pair 1 Pb

table 2.2 range of files sizes and typical examples.

Size Abbreviation No. bytes Examples

Bytes – 1 1 byte is typically 8 bits, used to encode a single character of text

Kilobytes 1 kb 103 Size of a text file with up to 1000 characters

Megabytes 1 MB 106 Size of a text file with 1 million characters

Gigabytes 1 GB 109 600 GB: size of GenBank (uncompressed flat files)
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt (WebLink 2.84)

Terabytes 1 TB 1012 385 TB: United States Library of Congress web archive (http://www.loc.gov/
webarchiving/faq.html) (WebLink 2.85)

464 TB: Data generated by the 1000 Genomes Project (http://www.1000genomes.org/
faq/how-much-disk-space-used-1000-genomes-project) (WebLink 2.86)

(Continued)

http://www.ncbi.nlm.nih.gov/genbank/wgs
http://www.ebi.ac.uk/ena
http://trace.ddbj.nig.ac.jp/dra/index_e.html
ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt
http://www.loc.gov/webarchiving/faq.html
http://www.loc.gov/webarchiving/faq.html
http://www.1000genomes.org/faq/how-much-disk-space-used-1000-genomes-project
http://www.1000genomes.org/faq/how-much-disk-space-used-1000-genomes-project
http://www.ncbi.nlm.nih.gov/genbank/wgs
http://trace.ddbj.nig.ac.jp/dra/index_e.html
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Size Abbreviation No. bytes Examples

Petabytes 1 PB 1015 1 PB: size of dataset available from The Cancer Genome Atlas (TCGA)

5 PB: size of SRA data available for download from NCBI

15 PB: amount of data produced each year at the physics facility CERN (near Geneva) 
(http://home.web.cern.ch/about/computing) (WebLink 2.87)

Exabytes 1 EB 1018 2.5 exabytes of data are produced worldwide (Lampitt, 2014)

table 2.2 (continued)

some typical sizes for various files and projects. A typical desktop might have 500 gigabytes 
(Gb) of storage. The uncompressed flatfiles of the current release of GenBank (introduced 
below) are ∼600 Gb. One thousand gigabytes is equivalent to one terabyte (1000 Gb = 1 Tb), 
which is the amount of storage some researchers use to study a singe whole human genome. 
One thousand terabytes is equivalent to one petabyte (1000 Tb = 1 Pb). Large-scale sequenc-
ing projects, for example one that involves whole-genome sequences of 10,000 individuals, 
require several Pb of storage.

contents of dna, rna, and ProteIn dataBases
While the sequence information underlying DDBJ, EMBL-Bank, and GenBank are 
equivalent, we begin our discussion with GenBank. GenBank is a database consisting 
of most known public DNA and protein sequences (Benson et al., 2015), excluding 
next-generation sequence data. In addition to storing these sequences, GenBank con-
tains bibliographic and biological annotation. Its data are available free of charge from 
NCBI.

Organisms in Genbank/eMbl-bank/DDbJ

Over 310,000 different species are represented in GenBank, with over 1000 new species 
added per month (Benson et al., 2015). The number of organisms represented in GenBank 
is shown in table 2.3. We define the bacteria, archaea, and eukaryotes in detail in Chap-
ters 15–19. Briefly, eukaryotes have a nucleus and are often multicellular, while bacteria 
do not have a nucleus. Archaea are single-celled organisms, distinct from eukaryotes and 
bacteria, and constitute a third major branch of life. Viruses, which contain nucleic acids 
(DNA or RNA) but can only replicate in a host cell, exist at the borderline of the definition 
of living organisms.

A megabase is one million (106) 
bases of DNA. A gigabase is one 
billion (109) bases. A terabase is 
one trillion (1012) bases.

table 2.3 taxa represented in Genbank. 

Ranks Higher taxa Genus Species Lower taxa Total

Archaea 143 140 525 0 808

Bacteria 1,370 2,611 13,331 819 18,131

Eukaryota 20,443 67,606 297,207 22,608 407,864

Fungi 1,550 4,620 29,450 1,128 36,748

Metazoa 14,670 45,517 145,044 11,428 216,659

Viridiplantae 2,622 14,680 113,529 9,789 140,620

Viruses 618 442 2,349 0 3,409

All taxa 22,603 70,806 313,443 23,427 430,279

Source: GenBank, NCBI,  http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi.

http://home.web.cern.ch/about/computing
http://www.ncbi.nlm.nih.gov/Taxonomy/txstat.cgi
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table 2.4 ten most sequenced organisms in Genbank. 

Entries Bases Species Common name

20,614,460 17,575,474,103 Homo sapiens Human

9,724,856 9,993,232,725 Mus musculus Mouse

2,193,460 6,525,559,108 Rattus norvegicus Rat

2,203,159 5,391,699,711 Bos taurus Cow

3,967,977 5,079,812,801 Zea mays Maize

3,296,476 4,894,315,374 Sus scrofa Pig

1,727,319 3,128,000,237 Danio rerio Zebrafish

1,796,154 1,925,428,081 Triticum aestivum Bread wheat

744,380 1,764,995,265 Solanum lycopersicum Tomato

1,332,169 1,617,554,059 Hordeum vulgare subsp. vulgare Barley

Source: GenBank, NCBI,  ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt (GenBank release 194.0).

We have seen so far that GenBank is very large and growing rapidly. From table 2.3 
we see that the organisms in GenBank consist mostly of eukaryotes. Of the microbes, 
there are about 25 times more bacterial than archaeal species represented in GenBank.

The number of entries and bases of DNA/RNA for the 10 most sequenced organ-
isms in GenBank is provided in table 2.4 (excluding chloroplast and mitochondrial 
sequences). This list includes some of the most common model organisms that are 
studied in biology. Notably, the scientific community is studying a series of mammals 
(e.g., human, mouse, cow), other vertebrates (chicken, frog), and plants (corn, rice, 
bread wheat, wine grape). Different species are useful for a variety of different studies. 
Bacteria, archaea, fungi, and viruses are absent from the list in table 2.4 because they 
have relatively small genomes.

To help organize the available information, each sequence name in a GenBank record 
is followed by its data file division and primary accession number. (We will define acces-
sion numbers below.) The following codes are used to designate the data file divisions:

 1. PRI: primate sequences
 2. ROD: rodent sequences
 3. MAM: other mammalian sequences
 4. VRT: other vertebrate sequences
 5. INV: invertebrate sequences
 6. PLN: plant, fungal, and algal sequences
 7. BCT: bacterial sequences
 8. VRL: viral sequences
 9. PHG: bacteriophage sequences
 10. SYN: synthetic sequences
 11. UNA: unannotated sequences
 12. EST: expressed sequence tags
 13. PAT: patent sequences
 14. STS: sequence-tagged sites
 15. GSS: genome survey sequences
 16. HTG: high-throughput genomic sequences
 17. HTC: high-throughput cDNA sequences
 18. ENV: environmental sampling sequences
 19. CON: constricted sequences
 20. TSA: transcriptome shotgun assembly sequences.

We will discuss how genomes of 
various organisms are selected 
for complete sequencing in 
Chapter 15.

ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt


AnAlyzing DnA, RnA, AnD PRotein SequenceS26

types of Data in Genbank/eMbl-bank/DDbJ

There are enormous numbers of molecular sequences in the DDBJ, EMBL-Bank, and 
GenBank databases. We will next look at some of the basic kinds of data present in Gen-
Bank. We then address strategies to extract the data you want from GenBank.

We start with an example. We want to find out the sequence of human beta globin. A 
fundamental distinction is that both DNA, RNA-based, and protein sequences are stored 
in discrete databases. Furthermore, within each database sequence data are represented in 
a variety of forms. For example, beta globin may be described at the DNA level (e.g., as 
a gene), at the RNA level (as a messenger RNA or mRNA transcript), and at the protein 
level (see Fig. 2.4). Because RNA is relatively unstable, it is typically converted to comple-
mentary DNA (cDNA), and a variety of databases contain cDNA sequences correspond-
ing to RNA transcripts.

Beginning with the DNA, a first task is to learn the official name and symbol of a 
gene (and its gene products, including the protein). Beta globin has the official name of 
“hemoglobin, beta” and the symbol HBB. (From one point of view there is no such thing 
as a “hemoglobin gene” because globin genes encode globin proteins, and the combina-
tion of these globins with heme forms the various types of hemoglobin. Perhaps “globin, 
beta” might be a more appropriate official name.) For humans and many other species, the 
RNA or cDNA is generally given the same name (e.g., HBB), while the protein name may 

The International Human 
Genome Sequencing Consortium 
adopted the Bermuda Principles 
in 1996, calling for the rapid 
release of raw genomic 
sequence data. You can read 
about recent versions of these 
principles at  http://www 
.genome.gov/10506376 
(WebLink 2.12).

Databases

Protein

mRNA

Splicing
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Precursor
mRNA

Intron 1
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DNA

Exon 3Exon 2Exon 1

dbEST
UniGene
GEO profiles
GEO datasets

UniProt
Protein Data Bank
Conserved Domain Database

GenBank
SRA
dbGSS
dbHTGS
UniSTS
dbSNP

Translation

Genome
dbVar

Chromosome

Intron 2

FIGUre 2.4 The types of data stored in various databases (right column) can be conceptualized in 
terms of the central dogma of biology in which genomic DNA (organized in chromosomes; top rows) 
includes protein-coding genes that are transcribed to precursor messenger RNA (mRNA), processed to 
mature mRNA, and translated to protein. The protein structure is from accession 1HBS (see Cn3D soft-
ware, Chapter 13). To learn more about these various databases, search the alphabetical list of resources 
from the NCBI homepage. 

Source: NCBI (  http://www.ncbi.nlm.nih.gov/).

http://www.genome.gov/10506376
http://www.ncbi.nlm.nih.gov/
http://www.genome.gov/10506376
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differ and is not italicized. Often, multiple investigators study the same gene or protein 
and assign different names. The human genome organization (HUGO) Gene Nomencla-
ture Committee (HGNC) has the critical task of assigning official names to genes and 
proteins.

For our example of beta globin, the various forms are described in the following 
sections.

Genomic DNa Databases

A gene is localized to a chromosome. The gene is the functional unit of heredity (further 
defined in Chapter 8) and is a DNA sequence that typically consists of regulatory regions, 
protein-coding exons, and introns. Often, human genes are 10–100 kb in size. In the case of 
human HBB this gene is situated on chromosome 11 (see Chapter 8 on the eukaryotic chro-
mosome). The beta globin gene may be part of a large fragment of DNA such as a cosmid, 
bacterial artificial chromosome (BAC), or yeast artificial chromosome (YAC) that may contain 
several genes. A BAC is a large segment of DNA (typically up to 200,000 base pairs or 200 kb) 
that is cloned into bacteria. Similarly, YACs are used to clone large amount of DNA into yeast. 
BACs and YACs are useful vectors with which to sequence large portions of genomes.

DNA-Level Data: Sequence-Tagged Sites (STSs)
The Probe database at NCBI includes STSs, which are short (typically 500 base pairs 
long) genomic landmark sequences for which both DNA sequence data and mapping 
data are available (Olson et al., 1989). STSs have been obtained from several hundred 
organisms, including primates and rodents. Because they are sometimes polymorphic, 
containing short sequence repeats (Chapter 8), STSs can be useful for mapping studies.

DNA-Level Data: Genome Survey Sequences (GSSs)
All searches of the NCBI Nucleotide database provide results that are divided into three 
sections: GSS, ESTs, and “CoreNucleotide” (i.e., the remaining nucleotide sequences; 
Fig. 2.2a). The GSS division of GenBank consists of sequences that are genomic in origin 
(in contrast to entries in the EST division which are derived from cDNA [mRNA]). The 
GSS division contains the following types of data (see Chapters 8 and 15):

 • random “single-pass read” genome survey sequences;
 • cosmid/BAC/YAC end sequences;
 • exon-trapped genomic sequences; or
 • the Alu polymerase chain reaction (PCR) sequences.

DNA-Level Data: High-Throughput Genomic Sequence (HTGS)
The HTGS division was created to make “unfinished” genomic sequence data rapidly 
available to the scientific community. It was set up from a coordinated effort between 
the three international nucleotide sequence databases: DDBJ, EMBL, and GenBank. The 
HTGS division contains unfinished DNA sequences generated by the high-throughput 
sequencing centers.

rNa data

We have described some of the basic kinds of DNA sequence data in GenBank, EMBL-
Bank, and DDBJ. We next consider RNA-level data.

RNA-Level Data: cDNA Databases Corresponding to Expressed Genes
Protein-coding genes, pseudogenes, and noncoding genes are all transcribed from DNA 
to RNA (see Chapters  8 and 10). Genes are expressed from particular regions of the 

See  http://www.genenames.org 
(WebLink 2.1).

Human chromosome 11, which 
is a mid-sized chromosome, 
contains about 1800 genes and 
is about 134 × 106 base pairs 
(134 Mb) in length.

Visit the Probe database at 
 http://www.ncbi.nlm.nih.gov/

probe (WebLink 2.13). Search for 
STSs within this database with 
the qualifier “unists”[Properties]. 
As of February 2015 there are 
300,000 human STSs.

There are currently 38 million GSS 
entries from over 1000 organisms 
(February 2015). The top four 
organisms account for about one-
third of all entries (these are the 
mouse Mus musculus, a marine 
metagenome collection, the 
maize Zea mays, and human). This 
database is accessed via  http://
www.ncbi.nlm.nih.gov/nucgss 
(WebLink 2.14).

The HTGS home page is  http://
www.ncbi.nlm.nih.gov/HTGS/ 
(WebLink 2.15) and its sequences 
can be searched via BLAST (see 
Chapters 4 and 5).

http://www.genenames.org
http://www.ncbi.nlm.nih.gov/probe
http://www.ncbi.nlm.nih.gov/nucgss
http://www.ncbi.nlm.nih.gov/nucgss
http://www.ncbi.nlm.nih.gov/HTGS/
http://www.ncbi.nlm.nih.gov/HTGS/
http://www.ncbi.nlm.nih.gov/probe
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body and times of development. If one obtains a tissue such as liver, purifies RNA, then 
converts the RNA to the more stable form of complementary DNA (cDNA), some of the 
cDNA clones contained in that cDNA are likely to encode beta globin. Beta globin RNA 
is therefore represented in databases as an expressed sequence tag (EST), that is, a cDNA 
sequence derived from a particular cDNA library.

RNA-Level Data: Expressed Sequence Tags (ESTs)
The database of expressed sequence tags (dbEST) is a division of GenBank that contains 
sequence data and other information on “single-pass” cDNA sequences from a number of 
organisms (Boguski et al., 1993). An EST is a partial DNA sequence of a cDNA clone. 
All cDNA clones, and therefore all ESTs, are derived from some specific RNA source 
such as human brain or rat liver. The RNA is converted into a more stable form, cDNA, 
which may then be packaged into a cDNA library (refer to Fig. 2.4). Typically ESTs are 
randomly selected cDNA clones that are sequenced on one strand (and therefore may 
have a relatively high sequencing error rate). ESTs are often 300–800 base pairs in length. 
The earliest efforts to sequence ESTs resulted in the identification of many hundreds of 
genes that were novel at the time (Adams et al., 1991).

Currently, GenBank divides ESTs into three major categories: human, mouse, and 
other. table 2.5 shows the 10 organisms from which the greatest number of ESTs has been 
sequenced. Assuming that there are 20,300 human protein-coding genes (see Chapter 20) 
and given that there are about 8.7 million human ESTs, there is currently an average of 
over 400 ESTs corresponding to each human protein-coding gene.

RNA-Level Data: UniGene
The goal of the UniGene (unique gene) project is to create gene-oriented clusters by 
automatically partitioning ESTs into nonredundant sets. Ultimately there should be one 
UniGene cluster assigned to each gene of an organism. There may be as few as one EST 
in a cluster, reflecting a gene that is rarely expressed, to tens of thousands of ESTs asso-
ciated with a highly expressed gene. We discuss UniGene clusters further in Chapter 10 
(on gene expression). The 19 phyla containing 142 organisms currently represented in 
UniGene are listed in table 2.6.

For human beta globin, there is only a single UniGene entry. This entry currently has 
∼2400 human ESTs that match the beta globin gene. This large number of ESTs reflects 
how abundantly the beta globin gene has been expressed in cDNA libraries that have 

In DNA databases, the 
convention is to use the four 
DNA nucleotides (guanine, 
adenine, thymidine, cytosine; G, 
A, T, C) when referring to DNA 
derived from RNA. The RNA base 
uridine (U) corresponding to T is 
not used.

In February 2015 GenBank had 
about 76,000,000 ESTs. We 
will discuss ESTs further in 
Chapter 10.

To find the entry for beta globin, 
go to  http://www.ncbi.nlm.nih.
gov, select All Databases then 
click UniGene, select human, 
then enter beta globin or HBB. 
The UniGene accession number 
is Hs.523443; note that Hs refers 
to Homo sapiens. The HBB entry 
in UniGene is at  http://www.
ncbi.nlm.nih.gov/UniGene/clust.
cgi?UGID=914190&TAXID= 
9606&SEARCH=beta%20globin 
(WebLink 2.16). To see the DNA 
sequence of a typical EST, click 
on an EST accession number 
from the UniGene page (e.g., 
AA970968.1), then follow the link 
to the GenBank entry in NCBI 
Nucleotide (  http://www.ncbi.
nlm.nih.gov/nucest/3146258; 
WebLink 2.17).

table 2.5 top ten organisms for which eSts have been sequenced. Many thousands 
of cDNa libraries have been generated from a variety of organisms, and the total 
number of public entries is currently over 41 million. 

Organism Common name Number of ESTs

Homo sapiens Human 8,704,790

Mus musculus + domesticus Mouse 4,853,570

Zea mays Maize 2,019,137

Sus scrofa Pig 1,669,337

Bos taurus Cattle 1,559,495

Arabidopsis thaliana Thale Cress 1,529,700

Danio rerio Zebrafish 1,488,275

Glycine max Soybean 1,461,722

Triticum aestivum Wheat 1,286,372

Xenopus (Silurana) tropicalis Western clawed frog 1,271,480

Source: NCBI,  http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html (dbEST release 130101).

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi?UGID=914190&TAXID=9606&SEARCH=beta%20globin
http://www.ncbi.nlm.nih.gov/nucest/3146258
http://www.ncbi.nlm.nih.gov/nucest/3146258
http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/UniGene/clust.cgi?UGID=914190&TAXID=9606&SEARCH=beta%20globin
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table 2.6 19 phyla and 142 organisms represented in UniGene. 

Phylum Number of species Example

Chordata 42 Equus caballus (horse)

Echinodermata 2 Strongylocentrotus purpuratus (purple sea urchin)

Arthropoda 19 Apis mellifera (honey bee)

Mollusca 2 Aplysia californica (California sea hare)

Annelida 2 Alvinella pompejana

Nematoda 2 Caenorhabditis elegans (nematode)

Platyhelminthes 3 Schistosoma mansoni

Porifera 1 Amphimedon queenslandica

Cnidaria 3 Nematostella vectensis (starlet sea anemone)

Ascomycota 5 Neurospora crassa

Basidiomycota 1 Filobasidiella neoformans

Codonosigidae 1 Monosiga ovata

Streptophyta 50 Zea mays (maize)

Chlorophyta 2 Chlamydomonas reinhardtii

Apicomplexa 1 Toxoplasma gondii

Bacillariophyta 1 Phaeodactylum tricornutum

Oomycetes 2 Phytophthora infestans (potato late blight agent)

Dictyosteliida 1 Dictyostelium discoideum (slime mold)

Ciliophora 2 Paramecium tetraurelia

Source: UniGene, NCBI (accessed April 2013).

been sequenced. A UniGene cluster is a database entry for a gene containing a group of 
corresponding ESTs (Fig. 2.5).

There are now thought to be approximately 20,300 human protein-coding genes (see 
Chapter 20). One might expect an equal number of UniGene clusters. However, there are 
far more human UniGene clusters (currently 130,000) than there are genes. This discrep-
ancy could occur for three reasons.

 1. Much of the genome is transcribed at low levels (see the description of the ENCODE 
project in Chapters 8 and 10). Currently (UniGene build 235), 64,000 human Uni-
Gene clusters consist of a single EST and ∼100,000 UniGene clusters consist of just 
1–4 ESTs. These could reflect rare transcription events of unknown biological rele-
vance.

 2. Some DNA may be transcribed during the creation of a cDNA library without corre-
sponding to an authentic transcript; it is therefore a cloning artifact. We discuss the 
criteria for defining a eukaryotic gene in Chapter 8. Alternative splicing (Chapter 10) 
may introduce apparently new clusters of genes because the spliced exon has no 
homology to the rest of the sequence.

 3. Clusters of ESTs could correspond to distinct regions of one gene. In that case there 
would be two (or more) UniGene entries corresponding to a single gene (see Fig. 2.5). 
As a genome sequence becomes finished, it may become apparent that the two Uni-
Gene clusters should properly cluster into one. The number of UniGene clusters may 
therefore collapse over time.

access to Information: protein Databases

In many cases you are interested in obtaining protein sequences. The Protein database 
at NCBI consists of translated coding regions from GenBank as well as sequences from 
external databases such as UniProt (UniProt Consortium 2012), The Protein Information 

We are using beta globin as a 
specific example. If you want to 
type “globin” as a query, you will 
simply get more results from any 
database; in UniGene, you will find 
almost 200 entries corresponding 
to a variety of globin genes in 
various species.

The UniGene project has become 
extremely important in the effort 
to identify protein-coding genes in 
newly sequenced genomes. We 
discuss this in Chapter 15.
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Resource (PIR), SWISS-PROT, Protein Research Foundation (PRF), and the Protein Data 
Bank (PDB) (Rose et al., 2013). The EBI similarly provides information on proteins via 
these major databases. We will next explore ways to obtain protein data through UniProt, 
an authoritative and comprehensive protein database.

EBI offers access to over 
a dozen different protein 
databases, listed at 

 http://www.ebi.ac.uk/services/
proteins (WebLink 2.18).

FIGUre 2.5 The UniGene database includes clusters of expressed sequence tags (ESTs) from human and a large variety of other eukary-
otes. (a) The UniGene entry for human HBB indicates that 2363 ESTs have been identified from 234 different cDNA libraries. UniGene 
reports selected protein similarities, and summarizes gene expression including profiles of regional and temporal expression of HBB. (b) ESTs 
are mapped to a particular gene and to each other. The number of ESTs that constitute a UniGene cluster ranges from 1 to over 1000; on 
average there are 100 ESTs per cluster. Sometimes, separate UniGene clusters correspond to distinct regions of a gene (particularly for large 
genes). Here human beta globin (HBB) mRNA (NM_000518.4) was used as a query with BLAST (Chapter 4) and searched against nine 
ESTs selected from among >2000 available ESTs. Four of them are 5’ ESTs, four are 3’ ESTs (including a poly(A)+ tail), and one is a full-
length EST. The accession numbers are AA985606.1, AA910627.1, AI089557.1, AI150946.1, R25417.1, R27238.1, R27242.1, R27252.1, 
R31622.1, R32259.1.

5’ ESTs 3’ ESTsfull-length EST

query

(a)

(b)

http://www.ebi.ac.uk/services/proteins
http://www.ebi.ac.uk/services/proteins
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UniProt
The Universal Protein Resource (UniProt) is the most comprehensive, centralized protein 
sequence catalog (Magrane and UniProt Consortium, 2011). Formed as a collaborative 
effort in 2002, it consists of a combination of three key databases:

 1. Swiss-Prot is considered the best-annotated protein database, with descriptions of 
protein structure and function added by expert curators.

 2. The translated EMBL (TrEMBL) Nucleotide Sequence Database Library provides 
automated (rather than manual) annotations of proteins not in Swiss-Prot. It was cre-
ated because of the vast number of protein sequences that have become available 
through genome sequencing projects.

 3. PIR maintains the Protein Sequence Database, another protein database curated by 
experts.

UniProt is organized in three database layers.

 1. The UniProt Knowledgebase (UniProtKB) is the central database that is divided into 
the manually annotated UniProtKB/Swiss-Prot and the computationally annotated 
UniProtKB/TrEMBL.

 2. The UniProt Reference Clusters (UniRef) offer nonredundant reference clusters 
based on UniProtKB. UniRef clusters are available with members sharing at least 
50%, 90%, or 100% identity.

 3. The UniProt Archive, UniParc, consists of a stable, nonredundant archive of protein 
sequences from a wide variety of sources (including model organism databases, pat-
ent offices, RefSeq, and Ensembl).

You can access UniProt directly from its website, or from EBI or ExPASy. A search 
for beta globin yields dozens of results. At present RefSeq accessions are not displayed, 
so for a given query it may be unclear which sequence is the prototype.

central BIoInformatIcs resources: ncBI and eBI
We have looked at the amount of DNA in centralized databases, and the types of DNA, 
RNA, and protein entries. We next visit two of the main centralized bioinformatics hubs: 
the National Center for Biotechnology Information (NCBI) and the European Bioinfor-
matics Institute (EBI). The relation of DNA repositories in NCBI, EBI, and DDBJ is 
outlined in Figure 2.2.

Introduction to NCbI

The NCBI creates public databases, conducts research in computational biology, develops 
software tools for analyzing genome data, and disseminates biomedical information (Sayers 
et al., 2012; NCBI Resource Coordinators, 2014). Prominent resources include the following:

 • PubMed is the search service from the National Library of Medicine (NLM) that pro-
vides access to over 24 million citations in MEDLINE (Medical Literature, Analysis, 
and Retrieval System Online) and other related databases, with links to participating 
online journals.

 • Entrez integrates the scientific literature, DNA, and protein sequence databases, 
three-dimensional protein structure data, population study datasets, and assemblies 
of complete genomes into a tightly coupled system. PubMed is the literature compo-
nent of Entrez. For tips on searching Entrez databases see Box 2.1.

 • BLAST (Basic Local Alignment Search Tool) is NCBI’s sequence similarity search 
tool designed to support analysis of nucleotide and protein databases (Altschul et al., 
1990, 1997). BLAST is a set of similarity search programs designed to explore all of 

The European Bioinformatics 
Institute (EBI) in Hinxton and the 
Swiss Institute of Bioinformatics 
(SIB) in Geneva created Swiss-
Prot and TrEMBL. PIR is a division 
of the National Biomedical 
Research Foundation (  http://pir.
georgetown.edu/, WebLink 2.19) in 
Washington, DC. PIR was founded 
by Margaret Dayhoff, whose work 
is described in Chapter 3. The 
UniProt web site is  http://www 
.uniprot.org (WebLink 2.20).

To access UniProt from EBI, visit 
 http://www.ebi.ac.uk/uniprot/ 

(WebLink 2.21). To access UniProt 
from the major proteomics 
resource ExPASy, visit  http://
web.expasy.org/docs/swiss-
prot_guideline.html (WebLink 
2.22). For release 2014_09 
(September 2014) UniProtKB 
contains 84 million sequence 
entries, comprising ∼27 billion 
amino acids. Additional statistics 
are available at ftp://ftp.uniprot.
org/pub/databases/uniprot/
relnotes.txt (WebLink 2.23).

Extremely useful tutorials are 
available for Entrez, PubMed, and 
other NCBI resources at an NCBI 
education site  http://www.ncbi.
nlm.nih.gov/Education/ (WebLink 
2.24) as well as the PubMed home 
page (  http://www.ncbi.nlm.nih.
gov/pubmed, WebLink 2.25). You 
can also access this from the 
education link on the NCBI home 
page (  http://www.ncbi.nlm. 
nih.gov).

http://pir.georgetown.edu/
http://pir.georgetown.edu/
http://www.uniprot.org
http://www.ebi.ac.uk/uniprot/
http://web.expasy.org/docs/swiss-prot_guideline.html
http://web.expasy.org/docs/swiss-prot_guideline.html
http://web.expasy.org/docs/swiss-prot_guideline.html
http://web.expasy.org/docs/swiss-prot_guideline.html
ftp://ftp.uniprot.org/pub/databases/uniprot/relnotes.txt
http://www.ncbi.nlm.nih.gov/Education/
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.uniprot.org
ftp://ftp.uniprot.org/pub/databases/uniprot/relnotes.txt
http://www.ncbi.nlm.nih.gov/Education/
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the available sequence databases, regardless of whether the query is protein or DNA. 
We explore BLAST in Chapters 3–5.

 • Online Mendelian Inheritance in Man (OMIM) is a catalog of human genes and 
genetic disorders. It was created by Victor McKusick and his colleagues and devel-
oped for the World Wide Web by NCBI (Amberger et al., 2011). The database con-
tains detailed reference information. It also contains links to PubMed articles and 
sequence information. We describe OMIM in Chapter 21 (on human disease).

 • Books: NCBI offers about 200 books online. These books are searchable, and are 
linked to PubMed. See recommended reading (at the end of this chapter) for several 
relevant bioinformatics titles.

 • Taxonomy: the NCBI taxonomy website includes a taxonomy browser for the major 
divisions of living organisms (archaea, bacteria, eukaryota, and viruses) (Fig 2.6). The 
site features taxonomy information such as genetic codes and taxonomy resources 
and additional information such as molecular data on extinct organisms and recent 
changes to classification schemes. We visit this site in Chapters 7 (on evolution) and 
15–19 (on genomes and the tree of life).

 • Structure: the NCBI structure site maintains the Molecular Modelling Database 
(MMDB), a database of macromolecular three-dimensional structures, as well as 
tools for their visualization and comparative analysis. MMDB contains experimen-
tally determined biopolymer structures obtained from the Protein Data Bank (PDB). 
Structure resources at NCBI include PDBeast (a taxonomy site within MMDB), 
Cn3D (a three-dimensional structure viewer), and a vector alignment search tool 
(VAST) which allows comparison of structures (see Chapter 13 on protein structure.)

the european bioinformatics Institute (ebI)

The EBI website is comparable to NCBI in its scope and mission, and it represents 
a complemenatary, independent resource. EBI features six core molecular data-
bases (Brooksbank et al., 2014): (1) EMBL-Bank is the repository of DNA and RNA 
sequences that is complementary to GenBank and DDBJ (Brooksbank et al., 2014); 
(2) Swiss-Prot and (3) TrEMBL are two protein databases that are further described in 
Chapter 12; (4) MSD is a protein structure database (see Chapter 13); (5) Ensembl is one 

The Protein Data Bank (  http://
www.rcsb.org/pdb/, WebLink 
2.26) is the single worldwide 
repository for the processing 
and distribution of biological 
macromolecular structure data. 
We explore PDB in Chapter 13.

Box 2.1 tIPs for usIng entrez dataBases

 • The Boolean operators AND, OR, and NOT must be capitalized. By default, AND is assumed to connect two terms; subject terms 
are automatically combined.

 • Perform a search of a specific phrase by adding quotation marks. This may potentially restrict the output, so it is a good idea to repeat 
a search with and without quotation marks.

 • Boolean operators are processed from left to right. If you add parentheses, the enclosed terms will be processed as a unit rather than 
sequentially. A search of NCBI Gene with the query “globin AND promoter OR enhancer” yields 31,000 results; however, by adding 
parantheses, the query “globin AND (promoter OR enhancer)” yields just 66 results.

 • If interested in obtaining results from a particular organism (or from any taxonomic group such as the primates or viruses), try 
beginning with TaxBrowser to select the organism first. Adding the search term human[ORGN] will restrict the output to human. 
Alternatively, you can use the taxonomy identifier for human, 9606: txid9606[Organism:exp]

 • A variety of limiters can be added. In NCBI Protein, the search 500000:999999[Molecular weight] will return proteins having a 
molecular weight from 500,000 to 1 million daltons. To view proteins between 10,000 and 50,000 daltons that I have worked on, 
enter 010000:050000[Molecular weight] pevsner j (or, equivalently, 010000[MOLWT] : 050000[MOLWT] AND pevsner j[Author]).

 • By truncating a query with an asterisk, you can search for all records that begin with a particular text string. For example, a search of 
NCBI Nucleotide with the query “globin” returns 6777 results; querying with “glob*” returns 490,358 results. These include entries 
with the species Chaetomium globosum or the word global.

 • Keep in mind that any Entrez query can be applied to a BLAST search to restrict its output (Chapter 4).

http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/
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of the main genome browsers (described below); and (6) ArrayExpress is one of the two 
main worldwide repositories for gene expression data, along with the Gene Expression 
Omnibus at NCBI; both are described in Chapter 10.

Throughout this book we will focus on both the NCBI and EBI websites. In many 
cases those sites begin with similar raw data and then provide distinct ways of organizing, 
analyzing, and displaying data across a broad range of bioinformatics applications. When 

You can access EBI at  http://
www.ebi.ac.uk/ (WebLink 2.5).

FIGUre 2.6 The entry for Homo sapiens at the NCBI Taxonomy Browser displays information about the genus and species as well as a 
variety of links to Entrez records. By following these links, a list of proteins, genes, DNA sequences, structures, or other data types that are 
restricted to this organism can be obtained. This can be a useful strategy to find a protein or gene from a particular organism (e.g., a species 
or subspecies of interest), excluding data from all other species. 

Source: Taxonomy Browser, NCBI.

http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
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Box 2.2 tyPes of accessIon numBers

Type of Record Sample Accession Format

GenBank/EMBL/DDBJ nucleotide 
sequence records

One letter followed by five digits (e.g., X02775);
two letters followed by six digits (e.g., AF025334).

GenPept sequence records (which contain 
the amino acid translations from GenBank/
EMBL/DDBJ records that have a coding 
region feature annotated on them)

Three letters and five digits (e.g., AAA12345).

Protein sequence records from SwissProt 
and PIR

Usually one letter and five digits (e.g., P12345). SwissProt 
numbers may also be a mixture of numbers and letters.

Protein sequence records from the Protein 
Research Foundation

A series of digits (often six or seven) followed by a letter (e.g., 
1901178A).

RefSeq nucleotide sequence records Two letters, an underscore bar, and six or more digits (e.g., 
mRNA records (NM_*): NM_006744; genomic DNA contigs 
(NT_*): NT_008769).

RefSeq protein sequence records Two letters (NP), an underscore bar, and six or more digits 
(e.g., NP_006735).

Protein structure records PDB accessions generally contain one digit followed by three 
letters (e.g., 1TUP). They may contain other mixtures of 
numbers and letters (or numbers only). MMDB ID numbers 
generally contain four digits (e.g., 3973.)

Many accession numbers include a suffix (e.g., .1 in NP_006735.1), indicating a version number.

working on a problem, such as studying the structure or function of a particular gene, 
it is often helpful to explore the wealth of resources in both these sites. For example, 
each offers expert functional annotation of particular sequences and expert curation of 
databases. The NCBI and EBI websites increasingly offer an integration of their database 
resources so that information between the two sites can be easily linked.

ensembl

Founded in 1999 to annotate the human genome, the Ensembl project now spans over 
70 vertebrate species. Related Ensembl projects include hundreds of other species from 
insects to bacteria.

access to InformatIon: accessIon numBers to 
laBel and IdentIfy sequences
If studying a problem that involves any gene or protein, it is likely that you will need to 
find information about some database entries. You can begin your research problem with 
information obtained from the literature, or you may have the name of a specific sequence 
of interest. Perhaps you have raw amino acid and/or nucleotide sequence data; we will 
explore how to analyze these in Chapters 3–5. The problem we will address now is how 
to extract information about your gene or protein of interest from databases.

An essential feature of DNA and protein sequence records is that they are tagged 
with accession numbers. An accession number is a string of about 4–12 numbers and/
or alphabetic characters that are associated with a molecular sequence record (some are 
much longer). An accession number may also label other entries, such as protein struc-
tures or the results of a gene expression experiment (Chapters 10 and 11). Accession num-
bers from molecules in different databases have characteristic formats (Box 2.2). These 
formats vary because each database employs its own system. As you explore databases 

Ensembl is a joint project of 
the EBI and WTSI (  http://
www.ensembl.org, WebLink 
2.27). Related Ensembl projects 
include Metazoans (  http://
metazoa.ensembl.org/, WebLink 
2.28), plants (  http://plants.
ensembl.org/, WebLink 2.29), 
fungi (  http://fungi.ensembl.
org/, WebLink 2.30), protists 
(  http://protists.ensembl.org/, 
WebLink 2.31), and bacteria 
(  http://bacteria.ensembl.org/, 
WebLink 2.32).

http://www.ensembl.org
http://www.ensembl.org
http://metazoa.ensembl.org/
http://metazoa.ensembl.org/
http://plants.ensembl.org/
http://plants.ensembl.org/
http://fungi.ensembl.org/
http://fungi.ensembl.org/
http://protists.ensembl.org/
http://bacteria.ensembl.org/
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from which you extract DNA and protein data, try to become familiar with the different 
formats for accession numbers. Some of the various databases (Fig. 2.2) employ accession 
numbers that tell you whether the entry contains nucleotide or protein data.

For a typical molecule such as beta globin there are thousands of accession numbers 
(Fig. 2.7). Many of these correspond to ESTs and other fragments of DNA that match beta 
globin. How can you assess the quality of sequence or protein data? Some sequences are 
full-length, while others are partial. Some reflect naturally occurring variants such as 
single-nucleotide polymorphisms (SNPs; Chapter 8) or alternatively spliced transcripts 
(Chapter 10). Many of the sequence entries contain errors, particularly in the ends of EST 
reads. When we compare beta globin sequence derived from mRNA and from genomic 
DNA we may expect them to match perfectly (or nearly so) but, as we will see, there are 
often discrepancies (Chapter 10).

Using Sanger sequencing, DNA 
is usually sequenced on both 
strands. However, ESTs are often 
sequenced on one strand only, 
and therefore have a high error 
rate. We discuss sequencing 
error rates in Chapter 9.

FIGUre 2.7 The Entrez search engine (accessed from the home page of NCBI) provides links to results from 40 different NCBI databases. 
For many genes and proteins there are thousands of accession numbers. The RefSeq project is particularly important in trying to provide the 
best representative sequence of each normal (nonmutated) transcript produced by a gene and of each distinct, wildtype protein sequence.

Source: Entrez search engine, NCBI.
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table 2.7 Formats of accession numbers for refSeq entries. there are currently 22 different refSeq accession 
formats. the methods include expert manual curation, automated curation, or a combination. abbreviations: baC, 
bacterial artificial chromosome; WGS, whole-genome shotgun (see Chapter 15). adapted from  http://www.ncbi 
.nlm.nih.gov/refseq/about/.

Molecule Accession format Genome

Complete genome NC_123456 Complete genomic molecules, including genomes, chromosomes, 
organelles, and plasmids

Genomic DNA NW_123456 or NW_123456789 Intermediate genomic assemblies

Genomic DNA NZ_ABCD12345678 Collection of whole-genome shotgun sequence data

Genomic DNA NT_123456 Intermediate genomic assemblies (BAC and/or WGS sequence data)

mRNA NM_123456 or NM_123456789 Transcript products; mature mRNA protein-coding transcripts

Protein NP_123456 or NM_123456789 Protein products (primarily full-length)

RNA NR_123456 Noncoding transcripts (e.g., structural RNAs, transcribed pseudogenes)

In addition to accession numbers, NCBI also assigns unique sequence identification 
numbers that apply to the individual sequences within a record. GenInfo (GI) numbers are 
assigned consecutively to each sequence that is processed. For example, the human beta 
globin DNA sequence associated with the accession number NM_000518.4 has a gene 
identifier GI:28302128. The suffix .4 on the accession number refers to a version number; 
NM_000518.3 has a different gene identifier, GI: 13788565.

the reference Sequence (refSeq) project

One of the most important developments in the management of molecular sequences is 
RefSeq. The goal of RefSeq is to provide the best representative sequence for each nor-
mal (i.e., nonmutated) transcript produced by a gene and for each normal protein product 
(Pruitt et al., 2014). There may be hundreds of GenBank accession numbers correspond-
ing to a gene, since GenBank is an archival database that is often highly redundant. How-
ever, there will be only one RefSeq entry corresponding to a given gene or gene product, 
or several RefSeq entries if there are splice variants or distinct loci.

Consider human myoglobin as an example. There are three RefSeq entries 
(NM_005368.2, NM_203377.1, and NM_203378.1), each corresponding to a distinct 
splice variant. Each splice variant involves the transcription of different exons from a 
single-gene locus. In this example, all three transcripts happen to encode an identical pro-
tein having the same amino acid sequence. The source of the transcript distinctly varies, 
and may be regulated and expressed under different physiological conditions. It therefore 
makes sense that each protein sequence, although having an identical string of amino acid 
residues, is assigned its own protein accession number (NP_005359.1, NP_976311.1, and 
NP_976312.1, respectively).

RefSeq entries are curated by the staff at NCBI and are nearly nonredundant (Pruitt 
et al., 2014). RefSeq entries have different status levels (predicted, provisional, and 
reviewed), but in each case the RefSeq entry is intended to unify the sequence records. 
You can recognize a RefSeq accession by its format, such as NP_000509 (P stands for beta 
globin protein) or NM_006744 (for beta globin mRNA). The corresponding XP_12345 
and XM_12345 formats imply that the sequences are not based on experimental evidence. 
A variety of RefSeq formats are shown in table 2.7 and identifiers corresponding to human 
beta globin are shown in table 2.8.

A GenBank or RefSeq accession number refers to the most recent version of a 
given sequence. For example, NM_000558.3 is currently a RefSeq identifier for human 

For an NCBI page discussing 
GI numbers see  http://www.
ncbi.nlm.nih.gov/Sitemap/
sequenceIDs.html (WebLink 2.33).

To see and compare the three 
myoglobin RefSeq entries at 
the DNA and the protein levels, 
visit  http://www.bioinfbook.
org/chapter2 and select Web 
Document 2.1. As another 
example, the human alpha 
1 globin and alpha 2 globin 
genes (HBA1 and HBA2) are 
physically separate genes that 
encode proteins with identical 
sequences. The encoded alpha 
1 globin and alpha 2 globin 
proteins are assigned the RefSeq 
identifiers NP_000549.1 and 
NP_000508.1.

Allelic variants, such as single 
base mutations in a gene, are 
not assigned different RefSeq 
accession numbers. However, 
OMIM and dbSNP (Chapters 
8 and 21) do catalog allelic 
variants.

http://www.ncbi.nlm.nih.gov/Sitemap/sequenceIDs.html
http://www.bioinfbook.org/chapter2
http://www.ncbi.nlm.nih.gov/refseq/about/
http://www.ncbi.nlm.nih.gov/Sitemap/sequenceIDs.html
http://www.bioinfbook.org/chapter2
http://www.ncbi.nlm.nih.gov/refseq/about/
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table 2.8 refSeq accession numbers corresponding to human beta globin. adapted 
from  http://www.ncbi.nlm.nih.gov/refseq/about/.

Category Accession Size Description

DNA NC_000011.9 135,006,516 bp Genomic contig

DNA NM_000518.4 626 bp DNA corresponding to mRNA

DNA NG_000007.3 81,706 bp Genomic reference

protein NP_000509.1 147 amino acids Protein

alpha 1 hemoglobin. We mentioned above that a suffix such as “.3” is the version num-
ber. By default, if you do not specify a version number then the most recent version is 
provided.

refSeqGene and the locus reference Genomic project

While the RefSeq project has a critical role in defining reference sequences, it has sev-
eral limitations. The changing version numbers of some sequences can lead to ambigu-
ity when scientists report RefSeq accession numbers without their version numbers. For 
example, a patient may have a variant at a specific nucleotide position in the beta globin 
gene corresponding to NM_000518.3 but (as often happens) the version number is not 
given. Once the record is subsequently updated to NM_000518.4, anyone studying this 
variant might be unsure of the correct position of the variant since it depends on which 
sequence version was used.

To address these concerns about gene variant reporting, the Locus Reference 
Genomic (LRG) sequence format was introduced (Dalgleish et al., 2010). The goal of 
this project is to define genomic sequences that can be used as reference standards for 
genes, representing a standard allele. No version numbers are used and sequence records 
are stable and designed to be independent of updates to reference genome assemblies. 
In a related response to this issue, the RefSeq project was expanded to include RefSeq-
Gene.

the Consensus Coding Sequence CCDS project

The Consensus Coding Sequence (CCDS) project was established to identify a core 
set of protein coding sequences that provide a basis for a standard set of gene annota-
tions (Farrell et al., 2014). The CCDS project is a collaboration between four groups 
(EBI, NCBI, the Wellcome Trust Sanger Institute and the University of California, Santa 
Cruz or UCSC). Currently, the CCDS project has been applied to the human and mouse 
genomes; its scope is considerably more limited than RefSeq. Its strength is that it offers 
a “gold standard” of best supported gene and protein annotations with extensive manual 
annotation by experts, enhancing the quality of the database (Harte et al., 2012).

the Vertebrate Genome annotation (VeGa) project

It is essential to correctly annotate each genome; in particular, we need to define gene 
loci and all their features. The Vertebrate Genome Annotation (VEGA) database offers 
high-quality, manual (expert) annotation of the human and mouse genomes, as well as 
selected other vertebrate genomes (Harrow et al., 2014).

Performing a search for HBB at the VEGA website, there is one human entry. This 
includes two main displays: (1) a transcript view which provides information such as 
cDNA and coding sequences and protein domain information; and (2) a gene view which 
includes data on orthologs and alternative alleles.

Carry out a NCBI nucleotide 
search for NM_000558.1 and 
learn about the revision history 
of that accession number. In 
Chapter 3 we will learn how 
to compare two sequences; 
you can BLAST NM_000558.1 
against NM_000558.3 to see the 
differences, or view the results 
in Web Document 2.2 at  http://
www.bioinfbook.org/chapter2. 
If you do not specify a version 
number for BLAST searches then 
the most recent version is used 
by default.

 LRG is pronounced “large.” 
You can access this project at 

 http://www.lrg-sequence.org 
(WebLink 2.34). You can access 
RefSeqGene at  http://www 
.ncbi.nlm.nih.gov/refseq/rsg/ 
(WebLink 2.35).

You can learn about the CCDS 
project at  http://www.ncbi.nlm 
.nih.gov/projects/CCDS/ (WebLink 
2.36). As of October 2014 there are 
18,800 human gene IDs (and over 
30,000 CCDS IDs) for this project.

VEGA is a project of the Human 
and Vertebrate Analysis and 
Annotation (HAVANA) group at the 
Wellcome Trust Sanger Institute. 
There are three main portals to 
access HAVANA annotation: 
Ensembl, UCSC, and VEGA. You 
can access Vega at  http://vega 
.sanger.ac.uk/ (WebLink 2.37). The 
HAVANA website is  http://www 
.sanger.ac.uk/research/projects/
vertebrategenome/havana/ 
(WebLink 2.38). At NCBI, Vega 
annotations are available in the 
Gene resource.

http://www.ncbi.nlm.nih.gov/refseq/about/
http://www.bioinfbook.org/chapter2
http://www.bioinfbook.org/chapter2
http://www.lrg-sequence.org
http://www.ncbi.nlm.nih.gov/refseq/rsg/
http://www.ncbi.nlm.nih.gov/projects/CCDS/
http://vega.sanger.ac.uk/
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/
http://www.ncbi.nlm.nih.gov/refseq/rsg/
http://www.ncbi.nlm.nih.gov/projects/CCDS/
http://vega.sanger.ac.uk/
http://www.sanger.ac.uk/research/projects/vertebrategenome/havana/
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access to InformatIon vIa gene resource at ncBI
How can one navigate through the bewildering number of protein and DNA sequences 
in the various databases? An emerging feature is that databases are increasingly inter-
connected, providing a variety of convenient links to each other and to algorithms that 
are useful for DNA, RNA, and protein analysis. NCBI’s Gene resource (formerly called 
Entrez Gene, and LocusLink before that) is particularly useful as a major portal. It is a 
curated database containing descriptive information about genetic loci (Maglott et al., 
2007). You can obtain information on official nomenclature, aliases, sequence accessions, 
phenotypes, Enzyme Commission (EC) numbers, OMIM numbers, UniGene clusters, 
HomoloGene (a database that reports eukaryotic orthologs), map locations, and related 
websites.

To illustrate the use of NCBI Gene we search for human beta globin. The result 
of entering an NCBI Gene search is shown in Figure 2.8. Note that in performing this 
search, it can be convenient to restrict the search to a particular organism of interest. 
(This can be done using the “limits” tab on the NCBI Gene page.) The “Links” button 

We discuss the definition of 
a gene and complex features 
such as alternative splice sites, 
pseudogenes, polyadenytion 
sites, other regulatory sites, 
and the structure of exons and 
introns in Chapter 8.

FIGUre 2.8 Result of a search for “beta globin” in NCBI Gene (via an Entrez search). Information is provided for a variety of organisms 
including Homo sapiens, Mus musculus, and several frog species. Links provides access to information on beta globin from a variety of other 
databases. 

Source: NCBI Gene.

You can view the VEGA page 
for HBB at  http://vega.sanger.
ac.uk/Homo_sapiens/Gene/
Summary?g= 
OTTHUMG00000066678;r= 
11:5246694-5250625 (WebLink 
2.39). The NCBI Gene entry for 
HBB also contains a link to the 
VEGA result.

http://vega.sanger.ac.uk/Homo_sapiens/Gene/Summary?g=OTTHUMG00000066678;r=11:5246694-5250625
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(Fig. 2.8, top right) provides access to various other databases entries on beta globin. 
Clicking on the main link to the human beta globin entry results in the following infor-
mation (Fig. 2.9):

 • At the top right, there is a table of contents for the NCBI Gene beta globin entry. 
Below it are further links to beta globin entries in NCBI databases (e.g., protein and 
nucleotide databases and PubMed), as well as external databases (e.g., Ensembl and 
UCSC; see below and Chapter 8).

 • Gene provides the official symbol (HBB) and name for human beta globin.
 • A schematic overview of the gene structure is provided, hyperlinked to the Map 
Viewer (see “The Map Viewer at NCBI” below).

 • There is a brief description of the function of beta globin, defining it as a carrier pro-
tein of the globin family.

 • The Reference Sequence (RefSeq) and GenBank accession numbers are provided.

Gene is accessed from the main 
NCBI web page (by clicking All 
Databases). Currently (2014), Gene 
encompasses about 12,000 taxa 
and 15 million genes. We explore 
many of the resources within 
NCBI’s Gene in later chapters 
such as its links to information on 
genes (Chapter 8), expression data 
such as RNA-seq data as available 
within its browser (Chapter 11), 
proteins (Chapter 12), links to 
pathway data (Chapter 14), and 
disease relevance (Chapter 21).

FIGUre 2.9 Portion of the NCBI Gene entry for human beta globin. Information is provided on the gene structure and chromosomal 
location, as well as a summary of the protein’s function. RefSeq accession numbers are also provided (not shown); access these by clicking 
“Reference sequences” in the table of contents (top right). The menu (right sidebar) provides extensive links to additional databases includ-
ing PubMed, OMIM (Chapter 21), UniGene (Chapter 10), a variation database (dbSNP; Chapter 20), HomoloGene (with information on 
homologs; Chapter 6), a gene ontology database (Chapter 12), and Ensembl viewers at EBI (Chapter 8). 

Source: NCBI Gene entry.
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FIGUre 2.10 Display of an NCBI Protein record for human beta globin. This is a typical entry for any protein. (Above) Top portion 
of the record. Key information includes the length of the protein (147 amino acids), the division (PRI, or primate), the accession number 
(NP_000509.1), the organism (H. sapiens), literature references, comments on the function of globins, and links to other databases (right 
side). At the top of the page, the display option allows this record to be obtained in a variety of formats, such as FASTA (Fig. 2.11). (Below) 
Bottom portion of the record, which includes features such as the coding sequence (CDS). The amino acid sequence is provided at the bottom 
in the single-letter amino acid code (although here not in the FASTA format). 

Source: NCBI Protein entry.

Figure 2.10 shows the standard, default form of a typical NCBI Protein record (for 
beta globin). It is simple to obtain a variety of formats by changing the display options. 
By clicking a tab (Fig. 2.10a) the commonly used FASTA format for protein (or DNA) 
sequences can be obtained, as shown in Figure 2.11. Note also that by clicking the CDS 
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(coding sequence) link of an NCBI Protein or NCBI Nucleotide record (shown in 
Fig. 2.10b at the upper left), the nucleotides that encode a particular protein, typically 
beginning with a start methionine (ATG) and ending with a stop codon (TAG, TAA, or 
TGA), can be obtained. This can be useful for a variety of applications including multiple 
sequence alignment (Chapter 6) and molecular phylogeny (Chapter 7).

relationship between NCbI Gene, Nucleotide, and protein resources

If interested in obtaining information about a particular DNA or protein sequence, it is 
reasonable to visit NCBI Nucleotide or NCBI Protein and perform a search. A variety 
of search strategies are available, such as limiting the output to a particular organism or 
taxonomic group of interest, or limiting the output to RefSeq entries.

There are also many advantages to beginning your search through NCBI Gene. 
The official gene name can be identified there, and you can be assured of the chromo-
somal location of the gene. Furthermore, each Gene entry includes a section of reference 
sequences that provides all the DNA and protein variants that are assigned RefSeq acces-
sion numbers.

Comparison of NCbI’s Gene and UniGene

As described above, the UniGene project assigns one cluster of sequences to one gene. 
For example, for HBB there is one UniGene entry with the UniGene accession num-
ber Hs.523443. This UniGene entry includes a list of all the GenBank entries, including 
ESTs, that correspond to the HBB gene. The UniGene entry also includes mapping infor-
mation, homologies, and expression information (i.e., a list of the tissues from which 
cDNA libraries were generated that contain ESTs corresponding to the RBP gene).

FASTA is both an alignment 
program (described in Chapter 3) 
and a commonly used sequence 
format (further described in 
Chapter 4 and used in web 
documents throughout this 
book). It is related to FASTQ and 
FASTG (formats used in next-
generation sequence analysis; 
see Chapter 9).

FIGUre 2.11 Protein entries can be displayed in the FASTA format. This includes a header row (beginning with the > symbol) containing 
a single line of text, then a single line break and the sequence (whether protein in the single-letter amino acid code or DNA in the GATC for-
mat). The FASTA format is used in a variety of software programs that we will use involving topics such as pairwise alignment (Chapter 3), 
BLAST (Chapter 4), next-generation sequencing (Chapter 9), and proteomics (Chapter 12). 

Source: NCBI.
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UniGene and NCBI Gene have features in common, such as links to OMIM, homo-
logs, and mapping information. They both show RefSeq accession numbers. There are 
four main differences between UniGene and NCBI Gene:

 1. UniGene has detailed expression information; the regional distributions of cDNA 
libraries from which particular ESTs have been sequenced are listed.

 2. UniGene lists ESTs corresponding to a gene, allowing them to be studied in detail.
 3. Gene may provide a more stable description of a particular gene; as described above, 

UniGene entries may be collapsed as genome-sequencing efforts proceed.
 4. Gene has fewer entries than UniGene, but these entries are more richly curated.

NCbI’s Gene and homoloGene

The HomoloGene database provides groups of annotated proteins from a set of com-
pletely sequenced eukaryotic genomes. Proteins are compared (by BLASTP; see 
Chapter 4), placed in groups of homologs, and the protein alignments are then matched to 
the corresponding DNA sequences. You can find a HomoloGene entry for a gene/protein 
of interest by following a link on the NCBI Gene page.

A search of HomoloGene with the term hemoglobin results in dozens of matches for 
myoglobin, alpha globin, and beta globin. By clicking on the beta globin group, access 
can be gained to a list of proteins with RefSeq accession numbers from human, chim-
panzee, dog, mouse, and chicken. The pairwise alignment scores (see Chapter  3) are 
summarized and linked, and the sequences can be downloaded (in genomic DNA, mRNA, 
and protein formats) and displayed as a protein multiple sequence alignment (Chapter 6).

command-lIne access to data at ncBI
The websites of NCBI, EBI, Ensembl, and other bioinformatics sites offer convenient 
access to resources through a web browser; an alternative is to use command-line tools. 
We now introduce command-line use and describe Entrez Direct (EDirect), which allows 
command-line access to Entrez databases.

Using Command-line Software

Many bioinformatics software packages were designed for command-line usage. We use 
such software such for a variety of applications such as BLAST (Chapter 4), sequence 
alignment (Chapter 6), phylogeny (Chapter 7), DNA analysis (Chapter 8), next-genera-
tion sequence analysis (Chapter 9), RNA-seq (Chapter 11), genome comparisons (Chap-
ter 16), and genome annotation (Chapter 17).

The three most popular operating systems are Windows, Mac OS, and Unix. Each 
operating system manages resources on a computer, executes tasks, and provides the user 
interface. Linux is a flavor of Unix that offers several advantages, especially for those 
manipulating datasets and software programs for bioinformatics:

 • It is a free operating system.
 • It has been developed by thousands of programmers and now features applications 
and interfaces that can provide an experience closer to the Windows and Mac OS 
environments that are more familiar to many students.

 • It is highly customizable and flexible.
 • For bioinformatics applications, it is well suited to process large datasets such as tables 
with millions of rows, or smaller data matrices that require sophisticated manipulation.

 • Microsoft Excel limits the number of rows a spreadsheet can have and, more impor-
tantly, as a default it automatically changes some names and numbers. Tables in a 
Unix environment are unrestricted in size (limited only by available disk space) and 
are not automatically reformatted.

NCBI Gene now has >200,000 
human entries (as of 2015). 
These include gene predictions, 
pseudogenes, and mapped 
phenotypes.

HomoloGene is available by 
clicking All Databases from the 
NCBI home page, or at  http://
www.ncbi.nlm.nih.gov/entrez/
query.fcgi?db=homologene 
(WebLink 2.40). Release 68 (2014) 
has >230,000 groups (including 
19,000 human groups). We define 
homologs in Chapter 3.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene
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A user types commands via a command processor. Bash is a Unix shell that is the 
default command processor for Linux and Mac OS X.

You can access a computer running Linux on a laptop or desktop, or by accessing 
a Linux server. For example, you can work on Microsoft Windows and access a Linux 
machine with a Secure Shell (SSH) client such as PuTTY. This is a free, open-source 
terminal emulator that enables one machine to communicate with another. PuTTY imple-
ments the client end of a session, opening a window on a PC that lets you type commands 
and receive results obtained from a remote Linux machine.

Mac OS offers a terminal (visit Applications > Utilities > Terminal). This provides a 
Unix-based shell (called Portable Operating System Interface or POSIX-compliant). For 
many bioinformatics researchers, the availability of a terminal with access to a vast num-
ber of Unix-based tools and resources makes Mac OS preferable to a PC.

For PC users, Cygwin offers a Unix-like environment and command-line interface on 
Microsoft Windows. We demonstrate some PC-based command-line tools in this book, 
but in most cases we rely on Linux or Mac OS.

Box 2.3 introduces several basic command-line tasks and operations. Open a terminal 
and try them. You will see other basic commands as we use command-line tools through-
out this book.

Bash stands for Bourne-again 
shell.

Cygwin is available at  http://
www.cygwin.com/ (WebLink 2.41).

Box 2.3 lInux commands

We can explore the command-line environment with six topics. A hash (#) symbol indicates a comment; any commented text is ignored. 
(If the # appears at the beginning of the line, the entire line is ignored; if # appears in the middle of a line, the commands that precede it 
are executed.) A $ symbol indicates a Unix command prompt whether you are working with Linux or Mac OS; some operating systems 
use other command prompts.

1. Finding where you are and moving around.

To find out what files are stored within a directory, use the following code.

2. Getting help. Try the manual (man) for usage of many utilities (or try info on some Mac OS terminals). The man page can have 
so much information that it is difficult to know the best way to begin using some function of interest. Many people therefore rely 
heavily on searches with their favorite search engine (typically Google) for help on accomplishing some task. Many other people 
have had questions similar to yours! There are also excellent forums such as Biostars (http://www.biostars.org) where you can read 
others’ questions and answers.

$ pwd # print working directory
/home/pevsner # this is your beginning working directory
$ cd /home/pevsner/mysubdirectory # change directory
# This results in a new command prompt; enter pwd to confirm that you have moved down 

into a subdirectory.
$ cd .. # The current directory is represented by a single dot (.). Using two dots 

(..) we change to the parent directory
$ cd ~ # Use this from any location to return to the home directory, e.g., /home/

pevsner

$ ls # list contents in a directory
$ ls -l # list files in the "long" format including file sizes and permissions
$ ls -lh # list files including file sizes (in human readable format) and permissions

$ man pwd # type q to exit any man entry
$ man cd
$ man ls

http://www.cygwin.com/
http://www.cygwin.com/
http://www.biostars.org
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Box 2.3 (continued)

3. Permissions. When you use ls -l to view your files, permissions are shown with the first 10 characters. For example:

 The first character is usually either d (for directory) or - (a regular file, and not a directory); in the example above there are two 
directories and one file, then three sets of three characters: rwx (read, write, executable). These three groups are (a) the owner of 
the file; (b) members of the group; and (c) all other users. These permissions settings specify who can read files, write to them, or 
execute them. Users routinely need to examine (and update) permissions.

 sudo should be used carefully by new users. It allows some users to execute a command as the “superuser,” for example setting 
permissions. sudo requires an administrator’s password.
 chmod refers to “change file mode bits” and changes the permissions for a file or directory, for example making it accessible to other 
users. The ugo+rwx option makes the file and/or folder readable, writable, and executable by the user (u), group (g), and others (o).

4. Making a directory.

 You can organize your data in many different ways. William Noble (2009) has written an excellent guide suggesting that you create 
subfolders such as doc (to store documents), data (to store fixed datasets such as sequence records or alignment files), results 
(to track experiments you perform on your data), src (for source code), and bin (for compiled binaries or scripts). A goal is to 
make it possible for someone unfamiliar with your work to examine your files and understand what you did and why.

5. Making a text file. There are several excellent editors. nano is perhaps the easiest to learn if you are just beginning; it offers helpful 
prompts to facilitate editing and saving files. Here we use vim.

6. Importing a file. Go to a web browser and visit NCBI > Downloads > FTP:RefSeq > Mitochondrion > ftp://ftp.ncbi.nlm.nih.gov/
refseq/release/mitochondrion/mitochondrion.1.protein.faa.gz. To grab a URL, be sure to “Copy Link Location,” which you can sub-
sequently paste.

 The EDirect documentation also lists some basic Unix filters for sorting text documents (sort), removing repeated lines (uniq), 
matching patterns (grep), and more.

$ mkdir myproject

$ man vim # get information on vim usage
$ vim mydocument.txt # we create a text file called mydocument.txt
# In the vim text editor,
# press :h for a main help file
# press i to insert text
# press Esc (escape key) to leave insert mode
# press :wq to write changes and quit

$ wget ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.1.pro-
tein. faa.gz

# Your file will be downloaded into your directory! On a Mac try curl in place of wget.

$ ls -lh
total 20K
-rw-rw-r–. 1 pevsner pevsner 1.5K Sep 24  2013 9globins.txt
drwxrwxr-x. 2 pevsner pevsner   43 Oct 17 09:09 ch01_intro
drwxrwxr-x. 3 pevsner pevsner  103 Apr 19 15:35 ch04_blast

$ sudo chmod ugo+rwx path/to/file

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.1.protein.faa.gz
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.1.pro-tein.faa.gz
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.1.pro-tein.faa.gz
ftp://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/mitochondrion.1.protein.faa.gz
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accessing NCbI Databases with eDirect

EDirect is a suite of Perl scripts that allows queries in the Unix environment, includ-
ing users of Linux and Macintosh OSX computers. (It also works with the Cyg-
win Unix-emulation environment on Windows computers.) EDirect allows you to 
access information in the various Entrez databases using command-line arguments 
(from a terminal window). Installation is simple (see Box 2.4) and produces a folder 
called edirect in your home directory. On a Linux machine, open a terminal win-
dow where you typically begin in your home directory. The # sign below indicates a 
comment that is not implemented as a command.

$ cd edirect # navigate to the folder with edirect scripts
$ ls # ls is a utility that lists entries within a directory
README edirutil einfo epost esummary
econtact efetch elink eproxy nquire
edirect.pl efilter enotify esearch xtract

 Box 2.4 usIng ncBI’s edIrect: command-lIne access to entrez dataBases

The Entrez system currently includes 40 databases, including those we will encounter for nucleotide and protein records (this chap-
ter), multiple alignments (HomoloGene and Conserved Domain Database, Chapter 6), gene expression (Gene Expression Omnibus, 
Chapter 9), proteins (Chapter 12), and protein structure (Chapter 13). An easy way to access these databases is by web searches.
 In many cases it is essential to use a structured interface to perform large-scale queries. For example, suppose you obtain a list 
of 100 genes of interest (perhaps they are significantly regulated in a gene expression study, or they have variants of interest from 
a whole-genome sequence). NCBI offers two main options. (1) The Entrez Programming Utilities (E-utils) allow you to search and 
retrieve information from Entrez databases. You use software that posts an E-util URL to NCBI using a fixed URL recognized by E-util 
servers at NCBI. We can employ Biopython, Perl, or other languages for this purpose. (2) EDirect allows command-line access to the 
Entrez databases. It is convenient, versatile, and far easier to use than E-utils.
 The programs accessed by EDirect (and the E-utils) are as follows:

1. Einfo: database statistics. This provides the number of records available in each field of a database. For example, you can determine 
how many records are in PubMed. Einfo also describes which other Entrez databases link to the given database you are interrogating.

2. Esearch: text searches. When you provide a text query (such as “globin”) this returns a list of UIDs. These UIDs can later be used in 
Esummary, Efetch, or Elink.

3. Epost: UID uploads. You may have a list of UIDs, such as PMIDs for a favorite query. You can upload these UIDs and store them on 
a History Server.

4. Esummary: document summary downloads. When you provide a list of UIDs, Esummary returns the corresponding document summaries.
5. Efetch: data record downloads. Note that Esearch and Efetch can be combined for more efficient searching.
6. Elink: Entrez links.
7. EGQuery: global query. Given a text query, this utility reports the number of records in each Entrez database. Similarly, when you 

enter a text query into the main page of NCBI you can see various database matches.
8. Espell: spelling suggestions.

Try EDirect. Start by installing it; directions are available at the NCBI website, along with sample queries. Repeat the examples given 
in this chapter. When you do any Entrez search using the NCBI website, see if you can repeat it using EDirect! To get started, copy the 
following commands from the EDirect website (also available at the Chapter 2 page for http://bioinfbook.org/). This will download 
scripts into a folder called edirect in your home directory.

  cd ~
  perl -MNet::FTP -e \
    '$ftp = new Net::FTP("ftp.ncbi.nlm.nih.gov", Passive => 1); $ftp->login;
     $ftp->binary; $ftp->get("/entrez/entrezdirect/edirect.zip");'
  unzip -u -q edirect.zip
  rm edirect.zip
  export PATH=$PATH:$HOME/edirect
  ./edirect/setup.sh

http://bioinfbook.org/
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Here we used the pipe symbol (|) to send our results from the esearch utility, efetch. 
That allowed us to select a particular output format called docsum for document summary. 
We can also use > to send the result to a file (called example1.txt):

$ esearch -db pubmed -query "pevsner j AND gnaq" | efetch -format docsum
1: Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, North 
PE, Marchuk DA, Comi AM, Pevsner J. Sturge-Weber syndrome and port-
wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013 May 
23;368(21):1971-9. doi: 10.1056/NEJMoa1213507. Epub 2013 May 8. PubMed 
PMID: 23656586; PubMed Central PMCID: PMC3749068.

$ esearch -db pubmed -query "pevsner j AND gnaq" | efetch -format docsum > 
example1.txt

You can view your query results on the screen, send them to a file, or view just part of 
the output. The less utility displays the output one page at a time; use the space bar to 
advance a page. In Linux you can enter $ man less to use the manual (man) utility for 
more information about less (or any other function). (Or try $ info less on a Mac.) Use 
head without an argument to display just the first 10 lines of the file.

EDirect Example 2
Perform a PubMed search without piping the results to efetch. Instead we will pipe the 
results to less. This will display on the screen how many results there are for various queries.

$ esearch -db pubmed -query "pevsner j" | less
<ENTREZ_DIRECT>
  <Db>pubmed</Db>

<WebEnv>NCID_1_142748046_130.14.18.34_9001_1391877213_1550387237</WebEnv>
  <QueryKey>1</QueryKey>
  <Count>99</Count>
  <Step>1</Step>
</ENTREZ_DIRECT>
(END)

These are the various scripts available in Edirect.
EDirect has functions that facilitate your ability to navigate Entrez databases 

(esearch, elink, efilter), retrieval functions (esummary, efetch), extract-
ing fields from XML results (xtract), and assorted other functions such as epost to 
upload unique identifiers or accession numbers. We next provide several specific exam-
ples, adapted from the EDirect online documentation at NCBI.

EDirect Example 1
Search PubMed for articles by the author J. Pevsner including the term GNAQ, fetch the 
results in the form of summaries, and send the results first to the screen and then to a file 
called example1.out. The $ sign indicates the start of a Unix (or Linux or Mac OSX) 
command.

When you download EDirect as 
described in Box 2.4, its scripts 
can be used when you are 
working in any directory. If you 
need to move the edirect 
folder to another location, you 
should also edit the .bash_
profile configuration file, 
updating the statement that 
sets the PATH environment 
variable. The general pattern 
for this statement is as follows: 
export PATH=$HOME/
subdirectory_

with_edirect_

scripts:$PATH:.

Entrez Direct can be downloaded 
by file transfer protocol (FTP) 
at  ftp://ftp.ncbi.nlm.nih.gov/
entrez/entrezdirect/ (WebLink 
2.42). EDirect documentation 
is provided at  http://www 
.ncbi.nlm.nih.gov/books/
NBK179288 (WebLink 2.43). 
NCBI developed EDirect to 
provide simplified access to 
NCBI’s Entrez Programming 
Utilities (E-utilities), which are 
a set of server-side programs 
that use a fixed URL syntax to 
provide a stable interface into 
the Entrez databases. EDirect 
can accomplish practically any 
E-utilities task on the command 
line, but without the need for 
programming experience.Visit 

 http://www.ncbi.nlm.nih.gov/
books/NBK25500/ (WebLink 2.44) 
to learn more about the 
E-utilities and obtain a deeper 
understanding of what EDirect 
can accomplish.

This command searches PubMed for articles by J. Pevsner and shows that there are 99. Sim-
ilar searches show the number of articles for the query hemoglobin (∼155,000), bioinformatics 
(∼131,000), or BLAST (∼23,000). Instead of using the pipe | to send the results to less, we 
could also send the results to a file with an argument such as > myoutput.txt.

EDirect Example 3
Search PubMed to find which authors have published the most in the area of bioinfor-
matics software. EDirect includes a useful function called sort-uniq-count-rank. 
Unix is a good environment for tasks such as sorting a large list and counting items. 

ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/
http://www.ncbi.nlm.nih.gov/books/NBK179288
http://www.ncbi.nlm.nih.gov/books/NBK25500/
ftp://ftp.ncbi.nlm.nih.gov/entrez/entrezdirect/
http://www.ncbi.nlm.nih.gov/books/NBK179288
http://www.ncbi.nlm.nih.gov/books/NBK25500/
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$ esearch -db pubmed -query "bioinformatics [MAJR] AND software [TIAB]" | 
efetch -format xml | xtract -pattern PubmedArticle -block Author -sep " " 
-tab "\n" -element LastName,Initials | sort-uniq-count-rank
29 Aebersold R
27 Wang Y
22 Deutsch EW
22 Zhang J
21 Chen Y
21 Martens L
20 Wang J
19 Zhang Y
18 Smith RD
17 Hermjakob H
17 Wang X
15 Li X
15 Zhang X
14 Chen L
14 Li C
14 Li L
14 Yates JR
13 Durbin R
13 Liu J
13 Salzberg SL
13 Sun H
13 Zhang L

Some Unix commands are used frequently and can be combined to simplify tasks. The 
sort-uniq-count-rank function will read lines of text, sort them alphabetically, 
count the number of occurrences of each unique line, and then resort by the line count.

We are now ready to search PubMed for a topic. Here we will use the major topic 
“bioinformatics” in the Medical Subjects Headings browser (MeSH, introduced in 
“Example of PubMed Search” below) and “software” in the title/abstract (the [TIAB] 
indexed field). We use esearch to search PubMed, then we send (“pipe” or | ) the 
output to the efetch program that formats the results in Extensible Markup Language 
(XML). We further use xtract to obtain the authors’ last names and first initials, then 
sort-uniq-count-rank to list the results.

The authors who have published the most articles on bioinformatics software 
(according to the particular search criteria we chose) include: Ruedi Aebersold (a pioneer 
in proteomics), Eric Deutsch (Institute for Systems Biology); Lennart Martens (proteomics 
and systems biology); Henning Hermjakob (European Bioinformatics Institute); Richard 
Durbin (Wellcome Trust Sanger Institute); and Steven Salzberg (Johns Hopkins).

EDirect Example 4
Perform a search of the Protein database for entries matching the query term “hemoglobin”, 
and pipe the results in the FASTA format to head to see the first 6 lines of the output.

$ esearch -db protein -query "hemoglobin" | efetch -format fasta | head -6  
# the -6 argument specifies that we want to see the first 6 lines of  
# output; the default setting is 10 lines
>gi|582086208|gb|EVU02130.1| heme-degrading monooxygenase IsdG [Bacillus 
anthracis 52-G]
MIIVTNTAKITKGNGHKLIDRFNKVGQVETMPGFLGLEVLLTQNTVDYDEVTISTRWNAKEDFQGWTKSP
AFKAAHSHQGGMPDYILDNKISYYDVKVVRMPMAAAQ

>gi|582080234|gb|EVT96395.1| heme-degrading monooxygenase IsdG [Bacillus 
anthracis 9080-G]
MIIVTNTAKITKGNGHKLIDRFNKVGQVETMPGFLGLEVLLTQNTVDYDEVTISTRWNAKEDFQGWTKSP

Although we searched the protein database, note that you can search any of the doz-
ens of Entrez databases.



AnAlyzing DnA, RnA, AnD PRotein SequenceS48

Next write a shell script called taxonomy.sh (it is provided at the EDirect website 
at NCBI and also available on this book’s website).

This example shows how commands can be entered on separate lines with the \ symbol.

EDirect Example 6
List the genes on human chromosome 16 including their start and stop positions.

EDirect Example 5
Find PubMed articles related to the query “hemoglobin”, use elink to find related articles, 
then use elink again to find proteins.

esearch -db pubmed -query "hemoglobin" | \
elink -related | \
elink -target protein

$ esearch -db gene -query "16[chr] AND human[orgn] AND alive[prop]" 
| esummary | xtract -pattern DocumentSummary -element Id -block 
LocationHistType -match "AssemblyAccVer:GCF_000001405.25" -pfx "\n" 
-element AnnotationRelease,ChrAccVer,ChrStart,ChrStop > example6.out

$ head -5 example6.out
999
105 NC_000016.9 68771127 68869444
4313
105 NC_000016.9 55513080 55540585
64127

The results are stored in the file example6.out (you can select any name). We use 
head -5 to view the first five lines of the output.

This example shows a complex command that can be used (by copying and pasting from 
the EDirect website documentation into a terminal prompt) without programming experience.

EDirect Example 7
Find the taxonomic family name and BLAST division for a set of organisms. In Chapter 14 
we explore eight model organisms. First make a text file listing these organisms (you can 
use a text editor to create a file by typing vim organisms.txt or nano organ-
isms.txt, and you can find this resulting file at http://bioinfbook.org). Let’s use cat 
(catalog) to display the contents of this file.

$ cat organisms.txt
Escherichia coli
Saccharomyces cerevisiae
Arabidopsis thaliana
Caenorhabditis elegans
Drosophila melanogaster
Danio rerio
Mus musculus
Homo sapiens

$ cat taxonomy.sh
#!/bin/bash
#EDirect script
while read org
  do
    esearch -db taxonomy -query "$org [LNGE] AND family [RANK]" < /dev/
null |
    efetch -format docsum |
    xtract -pattern DocumentSummary -lbl "$org" -element ScientificName 
Division
  done

http://bioinfbook.org
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$ ls -lh taxonomy.sh
-rw-rw-r–. 1 pevsner pevsner 244 Oct 17 17:00 taxonomy.sh
$ chmod ugo+rwx taxonomy.sh
$ ls -lh taxonomy.sh
-rwxr-xr-x. 1 pevsner pevsner 244 Oct 17 17:00 taxonomy.sh

$ cat organisms.txt | ./taxonomy.sh
Escherichia coli         Enterobacteriaceae enterobacteria
Saccharomyces cerevisiae Saccharomycetaceae ascomycetes
Arabidopsis thaliana     Brassicaceae     eudicots
Caenorhabditis elegans   Rhabditidae nematodes
Drosophila melanogaster  Drosophilidae flies
Danio rerio      Cyprinidae bony fishes
Mus musculus     Muridae  rodents
Homo sapiens     Hominidae primates

To execute this script we need appropriate permissions (see Box 2.3). We first use 
ls -lh (list the directory contents in the long format) to check the permissions on this 
file, then after changing the permissions it becomes executable.

The x (in the read/write/execute groups) indicates this is executable. We can now print 
the list of organisms (with the cat command), and pipe (|) the results to our shell script.

access to InformatIon: genome Browsers
Genome browsers are databases with a graphical interface that presents a representation 
of sequence information and other data as a function of position across the chromosomes. 
We focus on viral, bacterial, archaeal, and eukaryotic chromosomes in Chapters 16–20. 
Genome browsers have emerged as essential tools for organizing information about 
genomes. We now briefly introduce three principal genome browsers (Ensembl, UCSC, 
and NCBI) and describe how they may be used to acquire information about a gene or 
protein of interest.

Genome builds

On using the UCSC, Ensembl, or other genome browsers there is a corresponding “genome 
build” for any organism being studied. A genome build refers to an assembly in which 
DNA sequence is collected and arranged to reflect the sequence along each chromosome. 
For a given organism’s genome, a build is released only occasionally (typically every few 
years). This build includes annotation, that is, the assignment of information such as the 
start and stop position of genes, exons, repetitive DNA elements, or other features. When 
you use a browser you should explore available genome builds. In some cases it is best to 
use the most recent available build. It is however common for earlier builds to have richer 
annotation, and very different categories of information are presented in different builds.

The Genome Reference Consortium (GRC) maintains the reference genomes for 
human, mouse, and zebrafish. The most recent human genome build is GRCh38 (some-
times called hg38), released in 2013. Previous builds were GRCh37 (also called hg19) 
in 2009 and GRCh36 (also called hg18) in 2006. Issues that must be addressed for any 
genome build include the following:

 • What are the coordinates (start and end position) of each chromosome? For the human 
HBB gene spanning 1606 base pairs on chromosome 11, the start and end positions 
are given as chr11:5,246,696–5,248,301 in the GRCh37 build of February 2009, and 
chr11:5,203,272–5,204,877 in the previous build (NCBI36/hg18 of March 2006).

 • How many gaps are there in the genome sequence, and can they be closed? 
Some regions such as the short arms of acrocentric chromosomes, telomeres, and 

We discuss genome assembly in 
more detail in Chapters 9 and 15. 
NCBI describes the eukaryotic 
genome annotation process at  

 http://www.ncbi.nlm.nih 
.gov/genome/annotation_euk/
process/ (WebLink 2.45).

http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
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centromeres are so highly repetitive that it is extremely challenging to obtain an accu-
rate sequence (see Chapter 8).

 • How are structurally variant genomic loci represented? How are polymorphisms in 
nonfunctional sites (such as pseudogenes) represented? We define structural variants 
in Chapter 8.

 • How many erroneous bases are present in a genome build, and how can they be iden-
tified and corrected? If a reference genome assembly is accurate to an error rate of 1 
in 100,000 bases, then for 3 billion base pairs of sequence there are 30,000 expected 
errors. As reference genomes continue to be sequenced deeply (as described in Chap-
ter 9) this error rate is expected to decline.

Some loci are challenging to represent in a genome build. An example is the major 
histocompatibility complex (MHC) which is so diverse in humans that there is no single 
consensus. Primary and alternate loci are defined, with some genes (such as HLA-DRB3) 
appearing only on the alternate locus. Patches are released (such as patch 10 abbreviated 
GRCh37.p10) which correct errors, represent alternative loci that occur due to allelic 
diversity, and also involve as few changes as possible to chromosomal coordinates.

the University of California, Santa Cruz (UCSC) Genome browser

The UCSC browser currently supports the analysis of three dozen vertebrate and inver-
tebrate genomes, and is perhaps the most widely used genome browser for human and 
other prominent organisms such as mouse. The Genome Browser provides graphical 
views of chromosomal locations at various levels of resolution (from several base pairs 
up to hundreds of millions of base pairs spanning an entire chromosome). Each chro-
mosomal view is accompanied by horizontally oriented annotation tracks. There are 
hundreds of available user-selected tracks in categories such as mapping and sequenc-
ing, phenotype and disease associations, genes, expression, comparative genomics, 
and genomic variation. These annotation tracks offer the Genome Browser tremendous 
depth and flexibility. Literature on the UCSC Genome Browser includes an overview of 
its function (Pevsner, 2009; Karolchik et al., 2014), its resources for analyzing variation 
(Thomas et al., 2007), its Table Browser (Karolchik et al., 2004), and BLAT (Kent, 
2002) (Chapter 5).

As an example of how to use the browser, go the UCSC bioinformatics site, click 
Genome Browser, set the clade (group) to Vertebrate, the genome to human, the assembly 
to March 2009 (or any other build date), and under “position or search term” type hbb 
(Fig. 2.12a). Click submit and you will see a list of known genes and a RefSeq gene entry 
for beta globin on chromosome 11 (Fig. 2.12b). By following this RefSeq link you can 
view the beta globin gene (spanning about 1600 base pairs) on chromosome 11, and can 
perform detailed analyses of the beta globin gene (including neighboring regulatory ele-
ments), the messenger RNA (see Chapter 8), and the protein (Fig. 2.12c).

the ensembl Genome browser

The Ensembl project offers a series of comprehensive websites emphasizing a variety of 
eukaryotic organisms (Flicek et al., 2014). To many users, it is comparable in scope and 
importance to the UCSC Genome Browser, and it is often useful for new users to visit 
both sites. The Ensembl project’s goals are to automatically analyze and annotate genome 
data (see Chapter 15) and to present genomic data via its web browser.

We can begin to explore Ensembl from its home page by selecting Homo sapiens and 
performing a text search for “hbb,” the gene symbol for beta globin. This yields a link to 
the beta globin protein and gene; we will return to the Ensembl resource in later chapters. 
This entry contains a large number of features relevant to HBB, including identifiers, the 

The GRC website is  http://
www.genomereference.org 
(WebLink 2.46).

The MHC in humans is present 
on chromosome 6 from ∼29.6 to 
33.1 megabases of GRCh37/hg19.

The UCSC genome browser 
is available from the UCSC 
bioinformatics site at  http://
genome.ucsc.edu (WebLink 
2.47). You can see examples of it 
in Figures 5.16 and 6.10. We 
encounter specialized versions 
such as browsers for Ebola 
virus (Chapter 16) and cancer 
(Chapter 21).

Ensembl (  http://www.ensembl.
org, WebLink 2.27) is supported 
by the Wellcome Trust Sanger 
Institute (WTSI;  http://www.
sanger.ac.uk/, WebLink 2.48) and 
the EBI (  http://www.ebi.ac.uk/, 
WebLink 2.49). Ensembl focuses 
on vertebrate genomes, although 
its genome browser format is 
being adopted for the analysis 
of many additional eukaryotic 
genomes.

http://www.genomereference.org
http://www.genomereference.org
http://genome.ucsc.edu
http://genome.ucsc.edu
http://www.ensembl.org
http://www.ensembl.org
http://www.sanger.ac.uk/
http://www.ebi.ac.uk/
http://www.sanger.ac.uk/
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(a) Specifying the genome, assembly, and gene (or region or feature)

(b) Selecting a gene

(c) Genome browser

FIGUre 2.12 Using the UCSC Genome Browser. (a) Select from dozens of organisms (mostly vertebrates) and assemblies, then enter a 
query such as “beta globin” (shown here) or an accession number or chromosomal position. (b) By clicking submit, a list of known genes as 
well as RefSeq genes is displayed. (c) Following the link to the RefSeq gene for beta globin, a browser window is opened showing 1606 base 
pairs on human chromosome 11. A series of horizontal tracks are displayed including a list of RefSeq genes and Ensembl gene predictions; 
exons are displayed as thick bars, and arrows indicate the direction of transcription (from right to left, toward the telomere or end of the short 
arm of chromosome 11). 

Source: UCSC Genome Browser (  http://genome.ucsc.edu). Courtesy of UCSC.

http://genome.ucsc.edu
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DNA sequence, and convenient links to many other database resources. Ensembl offers a 
set of stable identifiers (table 2.9).

the Map Viewer at NCbI

The NCBI Map Viewer includes chromosomal maps (both physical maps and genetic 
maps; see Chapter 20) for a variety of organisms including metazoans (animals), fungi, 
and plants. Map Viewer allows text-based queries (e.g., “beta globin”) or sequence-based 
queries (e.g., BLAST; see Chapter 4). For each genome, four levels of detail are available: 
(1) the home page of an organism; (2) the genome view, showing ideograms (represen-
tations of the chromosomes); (3) the map view, allowing you to view regions at various 
levels of resolution; and (4) the sequence view, displaying sequence data as well as anno-
tation of interest such as the location of genes.

Entries in NCBI’s Gene resource include access to the graphical viewer. We will 
return to this browser in later chapters. Visit the HBB entry of NCBI Gene (Fig. 2.9.), 
scroll to the viewer, and try the Tools and Configure pull-downs to begin exploring its 
features.

examPles of How to access sequence data: 
IndIvIdual genes/ProteIns
We next explore two practical problems in accessing data: human histones and the Human 
Immunodeficiency Virus-1 (HIV-1) pol protein. Each presents distinct challenges.

histones

The biological complexity of proteins can be astonishing, and accessing information 
about some proteins can be extraordinarily challenging. Histones are among the most 
familiar proteins by name. They are small proteins (12–20 kilodaltons) that are localized 
to the nucleus where they interact with DNA. There are five major histone subtypes as 
well as additional variant forms; the major forms serve as core histones (the H2A, H2B, 
H3, and H4 families), which ∼147 base pairs of DNA wrap around, and linker histones 
(the H1 family). Suppose you want to inspect a typical human histone for the purpose of 
understanding the properties of a representative gene and its corresponding protein; the 
challenge is that there are currently 470,000 histone entries in NCBI Protein (April 2015).

The output can be restricted to a species or other taxonomic group of interest from the 
NCBI Protein site or from the Taxonomy Browser. Each organism or group in GenBank 

The Map Viewer is accessed 
from the main page of NCBI or 
via  http://www.ncbi.nlm 
.nih.gov/mapview/ (WebLink 
2.50). Records in NCBI Gene, 
Nucleotide, and Protein also 
provide direct links to the Map 
Viewer.

By viewing the search 
details on an NCBI Protein 
query, you can see that the 
command is interpreted as 
“txid9606[Organism:exp] AND 
histone[All Fields].” The Boolean 
operator AND is included 
between search terms by 
default.

table 2.9 ensembl stable identifiers. For human entries the prefix is eNS, while 
other common species prefixes include eNSbta (cow Bos taurus), eNSMUS (mouse Mus 
musculus), eNSrNO (rat Rattus norvegicus) and Fb (fruit fly Drosophila melanogaster).

Feature prefix Definition Human beta globin example

E exon ENSE00001829867

FM protein family ENSFM00250000000136

G gene ENSG00000244734

GT gene tree ENSGT00650000093060

P protein ENSP00000333994

R regulatory feature ENSR00000557622

T transcript ENST00000335295

Source: Ensembl Release 76; Flicek et al. (2014). Reproduced with permission from Ensembl.

http://www.ncbi.nlm.nih.gov/mapview/
http://www.ncbi.nlm.nih.gov/mapview/
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(e.g., kingdom, phylum, order, genus, species) is assigned a unique taxonomy identifier. 
Following the link to Homo sapiens, the identifier 9606, the lineage, and a summary of 
available Entrez records can be found (Fig. 2.6).

Using the NCBI Protein search string (“txid9606[Organism:exp] histone”) there are 
currently over 8000 human histone proteins of which >2000 have RefSeq accession num-
bers. Some of these are histone deacetylases and histone acetyltransferases; by expanding 
the query to “txid9606[Organism:exp] AND histone[All Fields] NOT deacetylase NOT 
acetytransferase” there are over 1700 proteins with RefSeq accession numbers.

How can the search be further pursued?

 1. The NCBI Gene entry for any histone offers a brief summary of the family, provided 
by RefSeq. We saw an example for globins in Figure 2.9.

 2. You could select a histone at random and study it, although you may not know 
whether it is representative.

 3. There are specialized, expert-curated databases available online for many genes, 
proteins, diseases, and other molecular features of interest. The Histone Sequence 
Database (Mariño-Ramírez et al., 2011) shows that the human genome has about 
113 histone genes, including a cluster of 56 adjacent genes on chromosome 6p. This 
information is useful to understand the scope of the family.

 4. There are databases of protein families, including Pfam and InterPro. We introduce 
these in Chapter 6 (multiple sequence alignment) and Chapter 12 (proteomics). Such 
databases offer succinct descriptions of protein and gene families and can orient you 
toward identifying representative members.

hIV-1 pol

Consider reverse transcriptase, the RNA-dependent DNA polymerase of HIV-1 (Frankel 
and Young, 1998). The gene encoding reverse transcriptase is called pol (for polymerase). 
How do you obtain its DNA and protein sequence?

From the home page of NCBI enter “hiv-1” (do not use quotation marks; the use of 
capital letters is optional). All Entrez databases are searched. Under the Nucleotide cate-
gory, there are over half a million entries. Click Nucleotide to see these entries. Over 3000 
entries have RefSeq identifiers; while this narrows the search considerably, there are still 
too many matches to easily find HIV-1 pol. One reason for the large number of entries in 
NCBI Nucleotide is that the HIV-1 genome has been re-sequenced thousands of times in 
efforts to identify variants. Another reason for the many hits is that entries for a variety 
of organisms, including mouse and human, refer to HIV-1 and are therefore listed in the 
output.

We can again use the species filter and restrict the output to HIV. There is now 
only one RefSeq entry (NC_001802.1). This entry refers to the 9181 bases that con-
stitute HIV-1, encoding just nine genes including gag-pol. Given the thousands of 
HIV-1 pol variants that exist this example highlights the usefulness of the RefSeq 
project, allowing the research community to have a common reference sequence to 
explore.

As alternative strategies, from the Entrez results for HIV-1 select the genome, assem-
bly, or taxonomy page to link to the single NCBI Genome record for HIV-1 and, through 
the genome annotation report, find a table of the nine genes (and nine proteins) encoded 
by the genome. Each of these nine NCBI Genome records contains detailed information 
on the genes; in the case of gag-pol, there are seven separate RefSeq entries, including 
one for the gag-pol precursor (NP_057849.4, 1435 amino acids in length) and one for the 
mature HIV-1 pol protein (NP_789740.1, 995 amino acids).

Note that other NCBI databases are not appropriate for finding the sequence of a 
viral reverse transcriptase: UniGene does not incorporate viral records, while OMIM is 

The Histone Sequence Database 
is available at  http://research.
nhgri.nih.gov/histones/ (WebLink 
2.51). It was created by David 
Landsman, Andy Baxevanis, and 
colleagues at the National Human 
Genome Research Institute.

You can find links to a large 
collection of specialized 
databases at  http://www.
expasy.org/links.html (WebLink 
2.52), the Life Science Directory 
at the ExPASy (Expert Protein 
Analysis System) proteomics 
server of the Swiss Institute of 
Bioinformatics (SIB).

We explore bioinformatics 
approaches to HIV-1 in detail in 
Chapter 16 on viruses.

As of October 2014 there are over 
600,000 entries in NCBI Nucleotide 
for the query “hiv-1.”

We will see that BLAST searches 
(Chapter 4) can be limited by any 
Entrez query; you can enter the 
taxonomy identifier into a BLAST 
search to restrict the output to 
any organism or taxonomic group 
of interest.

http://research.nhgri.nih.gov/histones/
http://www.expasy.org/links.html
http://research.nhgri.nih.gov/histones/
http://www.expasy.org/links.html
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limited to human entries (e.g., human genes implicated in susceptibility to HIV infec-
tion). UniGene and OMIM do however have links to genes that are related to HIV, such 
as eukaryotic reverse transcriptases.

How to access sets of data: large-scale querIes 
of regIons and features
thinking about One Gene (or element) Versus Many Genes (elements)

In many cases we are interested in a single gene. Throughout this book we focus on the 
beta globin gene (HBB) and the hemoglobin protein as a prototypical example of a gene 
and an associated protein product.

In many other cases we want to know about large collections of genes, proteins, or 
indeed any other element.

 • What is the complete set of human globin genes?
 • To which chromosomes are they assigned?
 • How many exons are on chromosome 11, and how many repeat elements occur in 
each exon?

It would be tedious, inefficient, and error-prone to collect information one gene at 
a time. There are many bioinformatics tools that allow us to collect genome-wide infor-
mation. We will focus on two sources: the Ensembl database (including the BioMart 
resource); and the UCSC Genome Browser (and Table Browser). These are complemen-
tary, equally useful resources that offer powerful search options. They differ significantly 
in format, and offer access to large datasets that are closely related but not exactly the 
same. Each can be accessed via Galaxy, also introduced below.

the bioMart project

The BioMart offers easy access to a vast amount of information in multiple databases. 
This project is based on two principles (Kasprzyk, 2011). The first is its “data agnostic 
modeling”: very large numbers of datasets are imported from assorted domains (including 
third-party databases), and a relational schema is employed to access data. This relational 
schema allows a query (such as a gene name or chromosomal locus) to be connected to 
associated information (such as annotation of gene structure), even if the information 
originated in projects that modeled the data in different ways. The second principle is 
data federation: many distributed databases are organized into a single, integrated, virtual 
database. When you use BioMart it is therefore possible to search information relevant 
to hundreds of resources (including topics we have described in this chapter such as Ref-
Seq, Ensembl, HGNC, LRG, UniProt, and CCDS) while BioMart functions as a single 
database resource.

We will explore two different ways to extract information from BioMart in Com-
puter Lab problems 2.4–2.6 below. Later we approach BioMart through the R package 
biomaRt (Chapter 8).

Using the UCSC table browser

The UCSC Table Browser is equally important and useful as the corresponding Genome 
Browser (Karolchik et al., 2014). The Table Browser enables accurate, complete tabular 
descriptions of the same data that can be visualized in the Genome Browser. These tables 
can be downloaded, viewed, and queried. For example, set the genome to human (clade: 
Mammal; genome: Human; assembly: GRCh37/hg19; Fig. 2.13a, arrow 1), and choose a 

From the NCBI Genome or other 
Entrez pages, try exploring the 
various options. For example, 
for the NCBI Genome entry for 
NC_001802.1 you can display a 
convenient protein table; from 
NCBI Nucleotide or Protein 
you can select Graph to obtain 
a schematic view of the HIV-1 
genome and the genes and 
proteins it encodes. The table 
of nine proteins is available at 

 http://www.ncbi.nlm.nih.gov/
genome/proteins/10319?project_
id=15476 (WebLink 2.53).

A 2011 issue of the journal 
Database is dedicated to 
BioMart. See  http://www 
.oxfordjournals.org/our_journals/
databa/biomart_virtual_issue.
html (WebLink 2.54).

A “relational schema” refers to 
the use of a relational database. 
Ensembl stores its data in a 
popular relational database 
called MySQL (  http://www.
mysql.com, WebLink 2.55).
Web Document 2.3 shows a 
schema of the tables used 
at Ensembl (from  http://
useast.ensembl.org/info/docs/
api/core/core_schema.html, 
WebLink 2.56).

The UCSC Table Browser can 
be reached via  http://genome.
ucsc.edu/cgi-bin/hgTables 
(WebLink 2.57).

http://www.ncbi.nlm.nih.gov/genome/proteins/10319?project_id=15476
http://www.oxfordjournals.org/our_journals/databa/biomart_virtual_issue.html
http://www.mysql.com
http://www.mysql.com
http://useast.ensembl.org/info/docs/api/core/core_schema.html
http://useast.ensembl.org/info/docs/api/core/core_schema.html
http://genome.ucsc.edu/cgi-bin/hgTables
http://www.oxfordjournals.org/our_journals/databa/biomart_virtual_issue.html
http://genome.ucsc.edu/cgi-bin/hgTables
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(a)

(b)

(c)

1

2

3

4

5

FIGUre 2.13 The University of California, Santa Cruz (UCSC) Genome Browser offers a complementary Table Browser that is equally 
useful. (a) The Table Browser includes options to select the clade, genome, and assembly (arrow 1), for example GRCh37 (also called hg19). 
(We discuss human genome assemblies in Chapter 20.) Groups (e.g., genes) and tracks (e.g., RefSeq genes) and a region of interest (arrow 
2) can be selected. Note that in the position box (arrow 3) you can enter a gene name (e.g., hbb), click “lookup”, and those genomic coordi-
nates will be entered. Next, choose the output format (arrow 4). Click “summary statistics” (arrow 5) for a summary of how many elements 
occur in your query, or click “get output” for full results. (b) Examples of available output formats. These typically lead to a further webpage 
offering additional options (e.g., sequence can include DNA or protein; a BED file can include a whole gene, coding exons, or other options). 
(c) Example of a BED file output. Such files are versatile and can be used for many further analyses, for example using next-generation 
sequencing software (described in Chapter 9). 

Source: UCSC Genome Browser (  http://genome.ucsc.edu). Courtesy of UCSC.

http://genome.ucsc.edu
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track such as RefSeq genes. A region of interest such as the entire human genome, the 
ENCODE region (introduced in Chapter 8), or a user-selected genomic region (Fig. 2.13a, 
arrow 2) can be defined. In the position box (arrow 3) you can also type the name of a 
gene of interest.The output format can be set to BED (browser extensible data; see below) 
or several other formats (Fig. 2.13b). Note that by checking the Galaxy or Great links 
(arrow 4) you can send the results to other programs. Fig. 2.13c shows the output for this 
particular query in the BED format. For any Table Browser query, you can get a summary 
of the size of the output (arrow 5) or click “get output” to return the results to a plain text 
html or (if you prefer) to a compressed file.

Custom tracks: Versatility of the beD File

Genome browsers display many categories of information about chromosomal features, 
including genes, regulatory regions, variation, and conservation. There are two main rea-
sons we might want to customize this information: either to obtain selected types of infor-
mation (e.g., all microRNA genes within a particular distance from a set of exons), or to 
upload information that we are interested in (e.g., results from a microarray experiment 
showing which RNA transcripts are regulated in our experiment, or many other types of 
data we acquire experimentally).

We will also encounter BED files as we analyze next-generation sequence data 
(Chapter 9). BED files include information from DNA sequencing experiments (as well 
as RNA sequencing or RNA-seq studies). We explore BEDTools software that analyzes 
BED files in a variety of ways, for example showing regions of overlap.

There are many file formats for custom tracks. The BED file (shown in Fig 2.13c 
as a Table Browser output) is one of the most popular. It can be uploaded to UCSC for 
visualization in the Genome Browser and/or for analysis in the Table Browser. It includes 
three required fields (columns): chromosome, start position, and end position. Additional, 
optional fields are as follows:

 • Column 4: name. In our example the RefSeq identifiers are given. (One way you 
could learn the corresponding gene names is to input that list into BioMart.)

 • Column 5: score. This ranges from 0 to 1000, with higher scores displayed as increas-
ing shades of gray.

 • Column 6: strand. These are all the minus strand (–) in our example.
 • Columnns 7, 8: thickStart and thickEnd. It is sometimes useful to display subportions 
of an entry with thick lines, such as coding regions within genes.

 • Column 9: itemRgb. The Red Blue Green (RGB) value (such as 0, 255, 0) specifies 
the color of the output.

 • Columns 10–12: blockCount, blockSizes, blockStarts. These display the number of 
blocks (e.g., exons) in each row, the block sizes, and the block start positions.

Many custom file formats are supported by Ensembl and UCSC (table 2.10). For 
each, we provide a web document allowing you to further explore it.

There are several caveats to using custom files. First, be careful to check whether the 
chromosome should be specified as a number (e.g., 11 for chromosome 11) or with the 
prefix chr (e.g., chr11 as in Fig. 2.13.c). Second, be careful to check whether the count-
ing is zero-based or one-based (0-based or 1-based; table 2.11). We explain these count-
ing schemes in Box 2.5. For the UCSC Genome Browser, which uses 1-based counting, 
the first nucleotide of the HBB gene begins on chromosome 11 at nucleotide position 
5,246,696; however, using the UCSC Table Browser the starting position is 5,246,695. 
This is not an error, but exemplifies how two different counting schemes are commonly 
employed. Of course, a one-nucleotide difference can be crucially important when you 
are analyzing genomic variants.

Details of the BED format are 
provided at  http://genome.
ucsc.edu/goldenPath/help/
customTrack.html#BED 
(WebLink 2.58).

For examples of file formats visit 
 http://bioinfbook.org and see 

Web Document 2.4. UCSC lists 
many publicly available custom 
tracks at  http://genome.ucsc 
.edu/goldenPath/customTracks/
custTracks.html (WebLink 2.59). 
Extensive help on custom tracks 
is given at  http://genome.
ucsc.edu/goldenPath/help/
customTrack.html (WebLink 2.60).

http://bioinfbook.org
http://genome.ucsc.edu/goldenPath/help/customTrack.html#BED
http://genome.ucsc.edu/goldenPath/customTracks/custTracks.html
http://genome.ucsc.edu/goldenPath/help/customTrack.html
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table 2.10 File formats for custom tracks used at ensembl and/or UCSC. two definitions of GtF (from ensembl and 
UCSC) are given.

File Format Definition Typical file size

BAM Any size; often millionsof rows

BED Browser extensible data Any size; often dozens to thousands or millions of rows

BedGraph Any size

bigBed

GFF/GTF General feature format, General transfer format
Gene transfer format

Any size

MAF

PSL Any size

WIG Wiggle Any size

BAM Binary alignment/map Very large

BigWig Very large

VCF Variant call format Very large

Galaxy: reproducible, Web-based, high-throughput research

Galaxy is a web-based analysis platform that accepts input from a variety of sources 
including BioMart and the UCSC Table Browser. Visit the Galaxy site and note that there 
are three panels: tools (at left), display (at center), and history (at right). The main advan-
tages of Galaxy are:

 1. it provides a large, integrated collection of software tools to import a variety of data 
types (particularly large, high-throughput datasets) and analyze them;

 2. it is web-based, providing access to many software packages that are otherwise avail-
able only in the command-line environment (for those learning about these tools it 
provides ready access to at least a simple version of the software); and

 3. it fosters reproducible research because the analysis steps you follow may be docu-
mented, stored, and shared with others.

The Galaxy Team has written articles on how to use Galaxy (Blankenberg et al., 2011; 
Goecks et al., 2010, 2013; Hillman-Jackson et al., 2012), including its use in next-gener-
ation sequence analysis (Goecks et al., 2012) and its Tool Shed and Tool Factory (Lazarus 
et al., 2012).

table 2.11 One-based and zero-based counting. 

Resource System WebLink

Python 0-based

UCSC browser in BED or other format 0-based

UCSC data returned in BED or other format 0-based

BAM files (Chapter 9) 0-based http://samtools.sourceforge.net/SAM1.pdf (WebLink 2.88)

Ensembl 1-based http://www.ensembl.org/Help/Faq?id=286 (WebLink 2.89)

UCSC browser in coordinate format 1-based http://genome.ucsc.edu/FAQ/FAQtracks.html (WebLink 2.90)

BLAST (Chapter 4) 1-based

GFF files (Chapter 9) 1-based

VCF files (Chapter 9) 1-based http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20
Format/vcf-variant-call-format-version-41 (WebLink 2.91)

Source:  http://alternateallele.blogspot.com/2012/03/genome-coordinate-cheat-sheet.html (WebLink 2.92).

http://samtools.sourceforge.net/SAM1.pdf
http://www.ensembl.org/Help/Faq?id=286
http://genome.ucsc.edu/FAQ/FAQtracks.html
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://alternateallele.blogspot.com/2012/03/genome-coordinate-cheat-sheet.html
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To try Galaxy, select “Get Data” from the list of tools then choose data from the 
UCSC Table Browser, which becomes available in the central Galaxy panel. Select beta 
globin (hbb), set the format to sequence, choose protein sequence, and send the output 
back to Galaxy. There the sequence will appear in the history panel at right; by clicking 
the eye icon you can display it. Then you can select from hundreds of tools to further 
analyze it.

We will encounter Galaxy in several contexts:

 • We can extract protein sequences (e.g., from UCSC) and perform pairwise alignment 
(problem 3.3 in Chapter 3).

 • It is useful to explore genomic DNA alignments (Chapter 6).
 • In exploring chromosomes we extract human microsatellites; we will create a table 
including their genomic coordinates and sort the results to find which is longest 
(Chapter 8, problem 8.1).

 • In analyzing next-generation sequence data (Chapter 9) we can import FASTQ files 
(and assess their quality using the FASTQC program within Galaxy), perform align-
ments, and analyze BAM and VCF files (introduced in Chapter 9).

 • Galaxy is popular for its suite of RNA-seq analysis tools; command-line software 
such as Bowtie and BWA that we introduce in Chapter 11 is also available in Galaxy.

access to BIomedIcal lIterature
The National Library of Medicine (NLM) is the world’s largest medical library. In 1971 the 
NLM created MEDLINE (Medical Literature, Analysis, and Retrieval System Online), a 
bibliographic database. MEDLINE currently contains over 24 million references to jour-
nal articles in the life sciences with citations from over 5600 biomedical journals. Free 
access to MEDLINE is provided through PubMed, which is developed by NCBI. While 
MEDLINE and PubMed both provide bibliographic citations, PubMed also contains links 
to online full-text journal articles. PubMed also provides access and links to the integrated 
molecular biology databases maintained by NCBI. These databases contain DNA and 
protein sequences, genome-mapping data, and three-dimensional protein structures.

Visit Galaxy at  http://
usegalaxy.org (WebLink 2.61).

The NLM website is  http://
www.nlm.nih.gov/ (WebLink 
2.61), and PubMed is at  http://
www.ncbi.nlm.nih.gov/pubmed/ 
(WebLink 2.63). Over 2.5 billion 
MEDLINE/PubMed searches 
were performed in 2013 (see 

 http://www.nlm.nih.gov/bsd/
bsd_key.html, WebLink 2.64).

A PubMed tutorial is offered at 
 http://www.nlm.nih.gov/bsd/

pubmed_tutorial/m1001.html 
(WebLink 2.65).

Box 2.5. 0-Based and 1-Based countIng
Counting nucleotide positions is surprisingly complicated. If we enter HBB into the UCSC Genome Browser (GRCh37/hg19 build), we 
can see that this gene spans 1606 base pairs at coordinates chr11:5,246,696–5,248,301. But if you then link to the UCSC Table Browser, 
choose this position (chr11:5,246,696–5,248,301) under the Region option, and select the BED (browser extensible data) output format, 
the result is chr11:5,246,695–5,248,301. Try it for any gene or locus! The first position now ends in a 5 rather than a 6, indicating a 
discrepancy of one base pair. Why?
 There are two different ways to count coordinate positions. The first is one-based (or 1-based) counting, in which the first base has 
position 1. Let’s use the example of the (hypothetical) nucleotide string GATCG at the beginning of chromosome 1. This would have the 
position chr1:1-5. The interval length is end − begin + 1 (here 5 − 1 + 1 = 5). The nucleotides TCG occur at positions 3-5. Such straight-
forward 1-based counting is used in the Ensembl and UCSC Genome Browsers as well as GFF, GTF, and VCF files that we describe in 
Chapter 9 (these provide information about variants in a genome). BLAST (Chapters 3–5) uses 1-based counting, as does the R program-
ming language. The advantage of 1-based counting is that it is intuitive and most of us are used to it. The disadvantage is that if you want 
to know the length of the interval, subtracting the lowest value (1) from the highest value (5) yields a length of 4, which is not correct.
 An alternate way to count is zero-based (or 0-based) counting. This is implemented in BED files that are part of the UCSC Genome 
browser, as well as other formats in which genomic data are presented. BAM/SAM files (Chapter  9) which represent nucleotide 
sequences aligned to a genome reference are 0-based, as is Python. For our simple example, 0-based coordinates of GATCG would be 
chr1:0-4. The end is at position 5, so the interval length is end − begin (here 5 − 0 = 5). Subtracting the value 0 from 5 yields the correct 
result of length 5 for this string.
 table 2.11 lists several resources that use either 0-based or 1-based counting. The 0-based BED format is also “half-open.” This 
means that the start position is inclusive, but the end position is not. For the region of five nucleotides that spans positions 1:5 in a 
1-based format, in the 0-based BED the start postion is position 0 while the end position is 5.

http://usegalaxy.org
http://usegalaxy.org
http://www.nlm.nih.gov/
http://www.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.nlm.nih.gov/bsd/bsd_key.html
http://www.nlm.nih.gov/bsd/pubmed_tutorial/m1001.html
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example of pubMed Search

A search of PubMed for information about “beta globin” (in quotation marks) yields 
∼6700 entries. Box 2.6 describes the basics of using Boolean operators in PubMed. There 
are many additional ways to limit this search. Use filters (on the left sidebar) and try 
applying features such as restricting the output to articles that are freely available through 
PubMed Central.

The Medical Subject Headings (MeSH) browser provides a convenient way to focus 
or expand a search. MeSH is a controlled vocabulary thesaurus containing over 26,000 
descriptors (headings). From PubMed (or from the main NCBI homepage), select 
MeSH and enter “beta globin.” The result suggests a series of possibly related topics 
including one for “beta-Globins.” By adding MeSH terms, a search can be focused and 
structured according to the specific information you seek. Lewitter (1998) and Fielding 
and Powell (2002) discuss strategies for effective MEDLINE searches, such as avoid-
ing inconsistencies in MeSH terminology and finding a balance between sensitivity 
(i.e., finding relevant articles) and specificity (i.e., excluding irrelevant citations). For 
example, for a subject that is not well indexed, it is helpful to combine a text keyword 
with a MeSH term. It can also be helpful to use truncations; for example, the search 
“therap*” introduces a wildcard that will retrieve variations such as therapy, therapist, 
and therapeutic.

PersPectIve
Bioinformatics is an emerging field whose defining feature is the accumulation of bio-
logical information in databases. The three major traditional DNA databases – GenBank, 
EMBL-Bank, and DDBJ – are adding several million new sequences each year as well 
as billions of nucleotides. At the same time, next-generation sequencing technology is 

The MeSH website is at  
http://www.ncbi.nlm.nih.gov/
mesh (WebLink 2.68); you can 
also access MeSH via the 
NCBI website including its 
PubMed page.

Box 2.6 venn dIagrams of Boolean oPerators and, or, and not for  
HyPotHetIcal searcH terms 1 and 2 

The AND command restricts the search to entries that are both present in a query. The OR command allows either one or both of the 
terms to be present. The NOT command excludes query results. The green areas represent search queries that are retrieved. Examples 
are provided for the queries “globin” or “disease” in PubMed. The Boolean operators affect the searches as indicated.

globin AND disease
~18,000 results in PubMed

globin OR disease
3.5 million results in PubMed

globin NOT disease
~110,000 results in PubMed

globin
125,000 results in PubMed

disease
3.3 million results in PubMed

globin

globin disease diseaseglobin diseaseglobin

disease

The growth of MEDLINE is 
described at  http://www.nlm.
nih.gov/bsd/index_stats_comp.
html (WebLink 2.66). Despite 
the multinational contributions 
to MEDLINE, the percentage of 
articles written in English has 
risen from 59% at its inception 
in 1966 to 93% in the year 2014 

 (http://www.nlm.nih.gov/bsd/
medline_lang_distr.html, WebLink 
2.67). 
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producing vastly greater amounts of DNA. A single lab that is sequencing ten human 
genomes might generate a trillion base pairs of DNA sequences (a terabase) within a 
month.

In this chapter, we have described ways to find information on the DNA and/or pro-
tein sequences of individual genes (using beta globin as an example) as well as sets of 
genes. Many other databases and resources are available, some as websites and some 
(such as R packages or NCBI E-Utilities) via programing languages. Increasingly, there 
is no single correct way to find information; many approaches are possible. Moreover, 
resources such as those described in this chapter (e.g., NCBI, ExPASy, EBI/EMBL, and 
Ensembl) are closely interrelated, providing links between the databases.

PItfalls
There are many pitfalls associated with the acquisition of both sequence and literature 
information. In any search, the most important first step is to define your goal: for exam-
ple, decide whether you want protein or DNA sequence data. A common difficulty that is 
encountered in database searches is receiving too much information; this problem can be 
addressed by learning how to generate specific searches with appropriate limits.

It is surprising how often students begin studying the wrong gene. It is a good idea 
to visit the Human Genome Organisation (HUGO) Gene Nomenclature Committee 
(HGNC) website (  http://www.genenames.org, WebLink 2.69). This shows the official 
gene symbol for human genes, with links to key resources such as Ensembl and NCBI. 
Given a list of gene symbols of interest, you can upload them in a text file to BioMart to 
confirm all symbols are correct.

advIce for students
I recommend that you visit the major bioinformatics websites (EBI, NCBI, Ensembl, 
UCSC) and spend many hours exploring each one. Some students have a favorite protein, 
gene, pathway, disease, organism, or other topic. If so, learn all you can about your favor-
ite topic; within reason you should know all that can be known about it. If you don’t have 
a particular topic, keep focused on our example of beta globin, a famous gene/protein that 
is well characterized. Try to practice studying one gene at a time versus a group of genes 
(or proteins or other molecules). When we mention performing batch queries on BioMart, 
try it yourself. Later we will work with high-throughput datasets that contain thousands or 
even many millions of rows of data, and it can be just as easy to query 100 objects (such 
as accession numbers) as a million. When you have questions, try Biostars (  http://www 
.biostars.org; WebLink 2.70) to see if others have posed similar questions, or sign up and 
post your own.

weB resources
You can visit the website for this book (  http://www.bioinfbook.org) to find WebLinks; 
Web Documents; PowerPoint, PDF, and audiovisual files of lectures; and additional URLs. 
Major sites often offer portals that are rich in information such as training and site over-
views. These include sites within Ensembl (  http://www.ensembl.org/info/, WebLink 
2.71), EBI (  http://www.ebi.ac.uk/training/, WebLink 2.72), NCBI (  http://www.ncbi 
.nlm.nih.gov/guide/training-tutorials/, WebLink 2.73), and UCSC Genome Bioinformatics 
(  http://genome.ucsc.edu/training.html, WebLink 2.74). For literature searches, the 
National Library of Medicine offers a PubMed tutorial (  http://www.nlm.nih.gov/bsd/
disted/pubmedtutorial/, WebLink 2.75) and excellent online training resources (  http://
www.nlm.nih.gov/bsd/disted/pubmed.html, WebLink 2.76).

http://www.genenames.org
http://www.biostars.org
http://www.biostars.org
http://www.bioinfbook.org
http://www.ensembl.org/info/
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Discussion Questions
[2-1] What categories of errors occur 
in databases? How are these errors 
assessed?

[2-2] How is quality control maintained 
in GenBank, given that thousands of individual investiga-
tors submit data?

prObleMS/COMpUter lab
[2-1] The purpose of this problem is to introduce you 
to using Entrez and related NCBI resources. How many 
human proteins are bigger than 300,000 daltons? What 
is the longest human protein? There are several different 
ways to solve these questions.

(1) From the home page of NCBI select the alphabetical 
list of resources or the pull-down menu, find Protein, 
and use the filter on the left sidebar to limit entries to 
human.

(2) Enter a command in the format xxxxxx:yyyyyy[molwt] 
to restrict the output to a certain number of daltons; for 
example, 002000:010000[molwt] will select proteins 
of molecular weight 2000–10,000.

(3) As a different approach, search 30000:50000[Sequence 
Length]

(4) You can read more about titin (NP_596869.4), the 
longest human protein, at NCBI Gene (http://www.
ncbi.nlm.nih.gov/gene/7273, WebLink 2.77). While 
the average protein has a length of several hundred 
amino acids, incredibly titin is 34,423 amino acids in 
length.

(5) Explore additional ways to limit Entrez searches by 
using an NCBI Handbook chapter (  http://www.ncbi.
nlm.nih.gov/books/NBK44864/, WebLink 2.78).

[2-2] The purpose of this problem is to obtain informa-
tion from the NCBI website. The RefSeq accession number 
of human beta globin protein is NP_000509. Go to NCBI  
(  http://www.ncbi.nlm.nih.gov/). What is the RefSeq 
accession number of beta globin protein from the chimpan-
zee (Pan troglodytes)?

(1) There are several different ways to solve this. Try typ-
ing chimpanzee globin into the home page of NCBI; 
or use the species limiter of NCBI Protein, or use the 
Taxonomy Browser to find chimpanzee NCBI Gene 
entries.

(2) HomoloGene (  http://www.ncbi.nlm.nih.gov/homol-
ogene, WebLink 2.38) is a great resource to learn about 
sets of related eukaryotic proteins. Use HomoloGene 
to find a set of beta globins including chimpanzee.

[2-3] The purpose of this exercise is to become familiar 
with the EBI website and how to use it to access infor-
mation.

(1) Visit the site (  http://www.ebi.ac.uk/, WebLink 2.5). 
Enter hemoglobin beta in the main query box (alterna-
tively, use the query human hemoglobin beta).

(2) Inspect the reults. Explore the various links to infor-
mation about pathways, genomes, nucleotide and 
protein sequences, structures, protein families, and 
more.

[2-4] Accessing information from BioMart: the beta glo-
bin locus.

(1) Go to  http://www.ensembl.org and follow the link to 
BioMart.

(2) First choose a database; we will select Ensembl Genes 
71.

(3) Choose a dataset: Homo sapiens genes (GRCh37.p10). 
Note the other available datasets.

(4) Choose a filter. Here the options include region, gene, 
transcript event, expression, multispecies compari-
sons, protein domains, and variation. Select “region”, 
chromosome 11, and enter 5240000 for the Gene Start 
(base pairs) and 5300000 for the Gene End. (Note 
that this region spans 60 kilobases and corresponds to 
chr11:5,240,001–5,300,000.)

(5) Choose attributes. Select the following features. Under 
“Gene” select Ensembl Gene ID and %GC content; 
under “External” select the external references CCDS 
ID, HGNC symbol (this is the official gene symbol), 
and HGNC ID(s).

(6) At the top left select “Count.” Currently there are  
8 genes matching these criteria.

(7) To view these results select “Results.”Note that you 
can export your results in several formats (includ-
ing a comma separated values or CSV file) that can  
be further manipulated (e.g., converted to a BED 
file).

[2-5] BioMart: working with lists. The goal of this exer-
cise is to access information in BioMart by uploading a text 
file listing gene identifiers of interest. Follow the steps from 
problem (2.4), but for the filter set choose Gene (instead of 
Region), select ID list limit and adjust the pulldown menu 
to HGNC symbol, then browse for a text file having a list 
of gene symbols. See Web Document 2.5 for a text file 
listing official HGNC symbols for 13 human globin genes 
(CYGB, HBA1, HBA2, HBB, HBD, HBE1, HBG1, HBG2, 
HBM, HBQ1, HBZ, MB, NGB). You could also enter these 

http://www.ncbi.nlm.nih.gov/gene/7273
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gene symbols manually. For attributes choose any set of 
features that is different from that in problem (2.4), so that 
you can further explore BioMart resources.

[2-6] Accessing information from Ensembl.

(1) Visit the Ensembl resource for humans (  http://www 
.ensembl.org/human).

(2) In the main search box enter 11:5,240,001–5,300,000. 
The resulting page displays several panels. At the 
top, all of chromosome 11 is shown. Where on the 
chromosome is the region we have selected? In what 
chromosomal band does this region reside?

(3) The next panel shows the region in detail. What is the 
size of the displayed region, in base pairs? In gen-
eral, genes encoding olfactory receptors are gamed 
OR followed by a string of numbers and letters (e.g., 
OR51F1). Approximately how many olfactory recep-
tor genes flank the 60  kb region we have selected? 
Can you determine exactly how many ORs are in that 
region?

(4) Next we see the region we selected (11:5240001–
5300000). Note that there are horizontal tracks (similar 
to the UCSC Genome Browser).

[2-7] Accessing information from UCSC. Hemoglobin is 
a tetramer composed primarily of two alpha globin sub-
units and two beta globin subunits. Consider alpha globin. 
There are two related human genes (official gene sym-
bols HBA1 and HBA2). Use the UCSC Genome Browser 
(  http://genome.ucsc.edu/) to determine the length of the 
intergenic region between the HBA1 and HBA2 genes.

[2-8] Accessing information from UCSC. What types of 
repetitive DNA elements occur in the human beta globin 
gene? The purpose of this exercise is for you to gain famil-
iarity with the UCSC Genome Browser. As a user, you 
choose which tracks to display. Visit and explore as many 
as possible. Try to get a sense for the main categories of 
information offered at the Genome Browser. As you work 
in the genome browser you may want to switch between 
builds GRCh37 and GRCh38. To do so, go the the “View” 
pull-down menu and use “In other genomes (convert).” 
Carry out the following steps.

(1) Go to  http://genome.ucsc.edu/cgi-bin/hgGateway. 
Make sure the clade is Mammal, genome is Human, 
assembly is NCBI37/hg19, and in the “gene” box 
enter hbb for beta globin. Click Submit. Note that 
HBB is the official gene symbol for beta globin, but 
you can use the lowercase hbb for this search. Use 
NCBI Gene (or  http://www.genenames.org for the 
HGNC site) to find the official gene symbol of your 
favorite gene.

(2) Click the “default tracks” button. Note the position you 
have reached (chromosome 11, spanning 1606 base 
pairs close to the beginning of the short or “p” arm of 
the chromosome). Note the appearance of over a dozen 
graphical tracks that are horizontally oriented.

(3) One of the tracks is “Repeating Elements by Repeat-
masker.” There are two black blocks. Right click on 
the block and select “Full.” Alternatively, scroll down 
to the section entitled “Variation and Repeats,” locate 
“RepeatMasker,” and change the pull-down menu set-
ting from “dense” to “full.” Note also that by click-
ing the blue heading “RepeatMasker” you visit a page 
describing the RepeatMasker program and its use at 
the UCSC Genome Browser.

(4) View the RepeatMasker output. Choose one answer.

(a) There are no repetitive elements.
(b) There is one SINE element and one LINE element.
(c) There is one LTR and one satellite.
(d) There is one LINE element and one low-complexity 

element.
(e) There are well over a dozen repetitive elements.

[2-9] Accessing information from the UCSC Table 
Browser. How many SNPs span the human beta globin 
gene? To solve this problem, use the UCSC Table Browser. 
The Table Browser is as equally useful as the Genome 
Browser. Instead of offering visual output, it offers tabu-
lar output. Often it is not practical (or accurate) to visu-
ally count elements from the Genome Browser. We often 
want quantitative information about genomic features in 
some chromosomal region or across the whole genome. 
This problem asks about single-nucleotide polymorphisms 
(SNPs), which are positions that vary (i.e., exhibit poly-
morphism) across individuals in a population. Carry out 
the following steps.

(1) Start at the HBB region of the UCSC Genome Browser 
and click the “Tables” tab along the top. Alternatively, 
you can go to the UCSC website (  http://genome.
ucsc.edu), and click Tables. Set the clade to Mammal, 
genome to Human, assembly to GRCh37/hg19, group 
to Variation, track to AllSNPs(142), table to snp142, 
and region to position chr11:5246696-5248301. Note 
that if the position is not already set, you can type hbb 
into the position box, click “lookup” and the correct 
position will be entered.

(2) To see the answer to this problem, click “summary/
statistics.” The item count tells you how many SNPs 
there are.

(3) To see the answer as a table, set the output format to 
“all fields from selected table,” make sure the “Send 

http://www.ensembl.org/human
http://www.ensembl.org/human
http://genome.ucsc.edu/
http://genome.ucsc.edu/cgi-bin/hgGateway
http://www.genenames.org
http://genome.ucsc.edu
http://genome.ucsc.edu


ACCeSS TO SequeNCe DATA AND ReLATeD INfORmATION 63

output to Galaxy/GREAT” boxes are not checked, and 
click the “get output” box. The SNPs are shown as a 
table including chromosome, start, and stop position.

(4) Try the various output options, such as a bed file or a 
custom track. Note that you can output the information 
as a file saved to your computer.

[2-10] Accessing information from Galaxy. How big is 
the largest RefSeq gene on human chromosome 21? Solve 
this problem by using Galaxy.

(1) First go to Galaxy (  http://usegalaxy.org). Optionally, 
you can register (under the “User” tab).

(2) On the left sidebar, choose “Get Data” then “UCSC 
Main Table Browser.”

(3) Set the clade (Mammal), genome (Human), assembly 
(GRCh37, or try GRCh38), group (Genes and Gene 
Prediction Tracks), track (RefSeq Genes), table (Ref-
Gene), region (click position then enter “chr21” with-
out the quotation marks) then click “lookup” right next 
to the position. Under output format choose “BED-
browser extensible data” and click the box “Send out-
put to Galaxy.”

(4) Optionally, click “summary/statistics” to get a quick 
look at how many proteins are assigned to chromo-
some 21. (That answer is currently 636.)

(5) At the lower left part of the page, click “get output.” 
Note that you now have a variety of output options; 
choose BED and click “Send query to Galaxy.”

(6) Galaxy’s central panel informs you that the job is 
added to the queue.

(7) Your dataset is available in the history panel to the 
right. Click the dataset header (1: UCSC Main on 
Human: refGene (chr21:1-46944323)) to see the 
number of regions and to see the column headers. 
Click the “eye” icon to see your data in the central 
panel.

(8) Next figure out the size of the genes. First, add a new 
column. On the left Galaxy panel click “Text Manip-
ulation” then “Compute an expression on every row.” 
Add the expression c3–c2 to take the end position of 
each gene and subtract the beginning. For “Round 
result?” choose “Yes.” Click “Execute.”

(9) A new dataset is created, called “Compute on data 1.” 
There is a new column 13 with the sizes of all the 
genes. Go to the left sidebar of Galaxy, click “Filter 
and Sort,” click “Sort data in ascending or descend-
ing order” and choose the query; the column (c13); 
the flavor (numerical sort); the order (descending); 
and click Execute.

(10) A new dataset is created. Click the eye icon to see 
your spreadsheet in the main Galaxy panel. Your 
answer is there on the first (top) row. Alternatively, go 
to “Text Manipulation,” select “Cut columns from a 
table,” and Cut columns (c5, c6, c7, c8, c9, c10, c11, 
c12). This will clean up your table, making it easier 
to see column 13 with the gene lengths.

Self-test Quiz
[2-1] Which one of the following does 
not have the proper format of an accession 
number? (Note: To answer the question, 
you do not need to look up the particular 

entries corresponding to each of these accession numbers.)

(a) rs41341344;

(b) J03093;

(c) 1PBO;

(d) NT_030059; or

(e) all of these have proper formats.

[2-2] KEY: Accession number NM_005368.2 corresponds 
to a human gene that is located on which chromosome? 
Suggestion: try following the link to NCBI Gene. Choose 
one answer.

(a) 11p15.5;

(b) 2q13.1;

(c) Xq28;

(d) 21q12; or

(e) 22q13.1.

[2-3] Approximately how many human clusters are cur-
rently in UniGene?

(a) About 8000;

(b) About 20,000;

(c) About 140,000; or

(d) About 400,000.

http://usegalaxy.org
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suggested readIng
Bioinformatics databases are evolving extremely rapidly. Each January, the first issue 
of the journal Nucleic Acids Research includes nearly 100 brief articles on databases. 
These include descriptions of NCBI (NCBI Resource Coodinators, 2014), GenBank 
(Benson et al., 2015), and EMBL (Cochrane et al., 2008). Gretchen Gibney and 
Andreas Baxevanis (2011) wrote an excellent tutorial, “Searching NCBI Databases 
Using Entrez”. The NCBI website offers extensive online documentation such as 
Entrez Sequences Help.
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[2-4] You have a favorite gene, and you want to determine 
in what tissues it is expressed. Which one of the following 
resources is likely the most direct route to this information?

(a) UniGene;

(b) Entrez;

(c) PubMed; or

(d) PCR.

[2-5] Is it possible for a single gene to have more than one 
UniGene cluster?

(a) Yes; or

(b) No.

[2-6] Which of the following databases is derived from 
mRNA information?

(a) dbEST;

(b) PBD;

(c) OMIM; or

(d) HTGS.

[2-7] Which of the following databases can be used to 
access text information about human diseases?

(a) EST;

(b) PBD;

(c) OMIM; or

(d) HTGS.

[2-8] What is the difference between RefSeq and Gen-
Bank?

(a) RefSeq includes publicly available DNA sequences 
submitted from individual laboratories and sequenc-
ing projects.

(b) GenBank provides nonredundant curated data.

(c) GenBank sequences are derived from RefSeq.

(d) RefSeq sequences are derived from GenBank and 
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Pairwise alignment involves matching 
two protein or DNA sequences. The first 
proteins that were sequenced include 
insulin (by Frederick Sanger and col-
leagues; see Fig. 7.3) and globins. This 
figure is from The Molecular Basis of 
Evolution by the Nobel laureate Chris-
tian Anfinsen (1959, p. 152). It shows 
the results of a pairwise alignment of a 
portion of adrenocorticotropic hormone 
(ACTH) from sheep or cow (top) with that 
of pig (below). Such alignments, per-
formed manually, led to the realization 
that amino acid sequences of proteins 
reflect the phylogenetic relatedness of 
different species. Furthermore, pairwise 
alignments reveal the portions of a pro-
tein that may be important for its biolog-
ical function. 

Source: Anfinsen (1959).
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An accepted point mutation in a protein is a replacement of one amino acid by another, 
accepted by natural selection. It is the result of two distinct processes: the first is the 
occurrence of a mutation in the portion of the gene template producing one amino acid of 
a protein; the second is the acceptance of the mutation by the species as the new predom-
inant form. To be accepted, the new amino acid usually must function in a way similar to 
the old one: chemical and physical similarities are found between the amino acids that 
are observed to interchange frequently.

—Margaret Dayhoff (1978, p. 345)

Pairwise Sequence 
Alignment

C h a p t e r

3

LeArNINg objeCTIveS

Upon completion of this chapter, you should be able to:
 ■ define homology as well as orthologs and paralogs;
 ■ explain how PAM (accepted point mutation) matrices are derived;
 ■ contrast the utility of PAM and bLoSUM scoring matrices;
 ■ define dynamic programming and explain how global (Needleman–Wunsch) and local 

(Smith–Waterman) pairwise alignments are performed; and
 ■ perform pairwise alignment of protein or DNA sequences at the NCbI website.

IntroductIon
One of the most basic questions about a gene or protein is whether it is related to any 
other gene or protein. Relatedness of two proteins at the sequence level suggests that they 
are homologous. Relatedness also suggests that they may have common functions. By 
analyzing many DNA and protein sequences, it is possible to identify domains or motifs 
that are shared among a group of molecules. These analyses of the relatedness of proteins 
and genes are accomplished by aligning sequences. As we complete the sequencing of the 
genomes of many organisms, the task of finding out how proteins are related within an 
organism and between organisms becomes increasingly fundamental to our understand-
ing of life.

In this chapter we introduce pairwise sequence alignment. We adopt an evolutionary 
perspective in our description of how amino acids (or nucleotides) in two sequences 
can be aligned and compared. We then describe algorithms and programs for pairwise 
alignment.

Two genes (or proteins) are 
homologous if they have evolved 
from a common ancestor.

http://www.wiley.com/go/pevsnerbioinformatics
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protein alignment: Often More Informative than DNa alignment

Given the choice of aligning a DNA sequence or the sequence of the protein it encodes, 
it is often more informative to compare protein sequence. There are several reasons for 
this. Many changes in a DNA sequence (particularly at the third position of a codon) do 
not change the amino acid that is specified. Furthermore, many amino acids share related 
biophysical properties (e.g., lysine and arginine are both basic amino acids). The import-
ant relationships between related (but mismatched) amino acids in an alignment can be 
accounted for using scoring systems (described in this chapter). DNA sequences are 
less informative in this regard. Protein sequence comparisons can identify homologous 
sequences while the corresponding DNA sequence comparisons cannot (Pearson, 1996).

When a nucleotide coding sequence is analyzed, it is often preferable to study its 
translated protein. In Chapter 4 (on BLAST searching), we see that we can move easily 
between the worlds of DNA and protein. For example, the TBLASTN tool from the NCBI 
BLAST website allows related proteins derived from a DNA database to be searched for 
with a protein sequence. This query option is accomplished by translating each DNA 
sequence into all of the six proteins that it potentially encodes.

Nevertheless, in many cases it is appropriate to compare nucleotide sequences. This 
comparison can be important in confirming the identity of a DNA sequence in a database 
search, in searching for polymorphisms, in analyzing the identity of a cloned cDNA frag-
ment, in comparing regulatory regions, or in many other applications.

Definitions: homology, Similarity, Identity

Let us consider the globin family of proteins. We begin with human myoglobin (accession 
number NP_005359.1) and beta globin (accession number NP_000509.1) as two proteins 
that are distantly but significantly related. The accession numbers are obtained from Gene 
at NCBI (Chapter 2). Myoglobin and the hemoglobin chains (alpha, beta, and other) are 
thought to have diverged some 450 million years ago, near the time that human and carti-
lagenous fish lineages diverged (Fig. 19.22).

Two sequences are homologous if they share a common evolutionary ancestry. There 
are no degrees of homology; sequences are either homologous or not (Reeck et al., 1987; 
Tautz, 1998). Homologous proteins almost always share a significantly related three-di-
mensional structure. Myoglobin and beta globin have very similar structures, as deter-
mined by X‐ray crystallography (Fig. 3.1). When two sequences are homologous, their 
amino acid or nucleotide sequences usually share significant identity. While homology 
is a qualitative inference (sequences are homologous or not), identity and similarity are 
quantities that describe the relatedness of sequences. Notably, two molecules may be 
homologous without sharing statistically significant amino acid (or nucleotide) iden-
tity. In the globin family for example, all the members are homologous but some have 
sequences that have diverged so greatly that they share no recognizable sequence identity 
(e.g., human beta globin and human neuroglobin share only 22% amino acid identity). 
Perutz and colleagues demonstrated that inviduals globin chains share the same overall 
shape as myoglobin, even though the myoglobin and alpha globin proteins share only 
about 26% amino acid identity. In general, three‐dimensional structures diverge much 
more slowly than amino acid sequence identity between two proteins (Chothia and Lesk, 
1986). Recognizing this type of homology is an especially challenging bioinformatics 
problem.

Proteins that are homologous may be orthologous or paralogous. Orthologs are 
homologous sequences in different species that arose from a common ancestral gene 
during speciation. Figure 3.2 shows a tree of myoglobin orthologs. There is a human myo-
globin gene and a rat gene. Humans and rodents diverged about 90 million years ago 
(MYA) (see Chapter 19), at which time a single ancestral myoglobin gene diverged by 

To see an example of this use 
human beta globin protein 
(NP_000509.1) in a DELTA‐BLAST 
query against plant RefSeq 
proteins; we learn how to do 
this in Chapter 5. There are 
many dozens of significant 
matches. Perform a BLASTN 
search with the coding region 
of the corresponding DNA 
(NM_000518.4); there are no 
significant matches. When 
BLASTN is used to query DNA 
from organisms that last shared 
a common ancestor with humans 
more recently, such as fish, there 
are many significant matches.

The website  http://timetree.
org (WebLink 3.1) of Sudhir 
Kumar and colleagues provides 
estimates of the divergence 
times of species across the tree 
of life (Hedges et al., 2006).

Some researchers use the term 
analogous to refer to proteins 
that are not homologous but 
share some similarity by chance. 
Such proteins are presumed 
not to have descended from a 
common ancestor.

You can see the protein 
sequences used to generate 
Figures 3.2 and 3.3 in Web 
Documents 3.1 and 3.2 and 

 http://www.bioinfbook.org/
chapter3.

http://timetree.org
http://timetree.org
http://www.bioinfbook.org/chapter3
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(a) Human myoglobin (3RGK) (b) Human hemoglobin tetramer (2H35)

(c) Human beta globin (subunit of 2H35) (d) Pairwise alignment of beta globin and myoglobin

FIgure 3.1 Three-dimensional structures of: (a) myoglobin (accession 3RGK); (b) the tetrameric 
hemoglobin protein (2H35); (c) the beta globin subunit of hemoglobin; and (d) myoglobin and beta 
globin superimposed. The images were generated with the program Cn3D (see Chapter 13). These pro-
teins are homologous (descended from a common ancestor) and share very similar three-dimensional 
structures. However, pairwise alignment of the amino acid sequences of these proteins reveals that the 
proteins share very limited amino acid identity. 

Source: Cn3D, NCBI.

In general, when we consider 
other paralogous families they 
are presumed to share common 
functions. Consider the lipocalins: 
all are about 20 kilodalton proteins 
that have a hydrophobic binding 
pocket that is thought to be used 
to transport a hydrophobic ligand. 
Members include retinol binding 
protein (a retinol transporter), 
apolipoprotein D (a cholesterol 
transporter), and odorant‐binding 
protein (an odorant transporter 
secreted from the lateral nasal 
gland).

speciation. Orthologs are presumed to have similar biological functions; in this example, 
human and rat myoglobins both transport oxygen in muscle cells. Paralogs are homolo-
gous sequences that arose by a mechanism such as gene duplication. For example, human 
alpha 1 globin (NP_000549.1) is paralogous to alpha 2 globin (NP_000508.1); indeed, 
these two proteins share 100% amino acid identity. Human alpha 1 globin and beta globin 
are also paralogs (as are all the proteins shown in Fig. 3.3). All of the globins have dis-
tinct properties, including regional distribution in the body, developmental timing of gene 
expression, and abundance. They are all thought to have distinct but related functions as 
oxygen carrier proteins.

The concept of homology has a rich history dating back to the nineteenth century 
(Box 3.1). Walter M. Fitch (1970, p. 113) provided our current definitions of these terms. 
He wrote that “there should be two subclasses of homology. Where the homology is the 
result of gene duplication so that both copies have descended side by side during the 
history of an organism (for example, α and β hemoglobin) the genes should be called 
paralogous (para = in parallel). Where the homology is the result of speciation so that the 
history of the gene reflects the history of the species (for example α hemoglobin in man 
and mouse) the genes should be called orthologous (ortho = exact).”

Notably, orthologs and paralogs do not necessarily have the same function. We pro-
vide various definitions of gene and protein function in Chapters 8–14. Later in the book, 
we explore genomes across the tree of life (Chapters 15–20). In all genome sequencing 
projects, orthologs and paralogs are identified based on database searches. Two DNA (or 
protein) sequences are defined as homologous based on achieving significant alignment 

We therefore define homologous 
genes within the same organism 
as paralogous. But consider 
further the case of globins. 
Human α‐globin and β‐globin 
are paralogs, as are mouse 
α‐globin and mouse β‐globin. 
Human α‐globin and mouse 
α‐globin are orthologs. What is 
the relation of human α‐globin to 
mouse β‐globin? These could be 
considered paralogs, because α‐
globin and β‐globin originate from 
a gene duplication event rather 
than from a speciation event. 
However, they are not paralogs 
because they do not occur in the 
same species. It may therefore be 
more appropriate to simply call 
them “homologs,” reflecting their 
descent from a common ancestor. 
Fitch (1970, p. 113) notes that 
phylogenies require the study of 
orthologs (see also Chapter 7).
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scores, as discussed below and in Chapter 4. However, some homologous proteins have 
entirely distinct functions.

We can assess the relatedness of any two proteins by performing a pairwise align-
ment. In this procedure, we place the two sequences directly next to each other. One 

 human

 chimpanzee

 orangutan

 rhesus monkey

 pig

 common tree shrew

 sheep

 cow

 sperm whale

 horse

 zebra

 rat

 mouse

 dog

 chicken

0.003

0.004
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0.018
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0.000
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0.001
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0.032
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0.002

0.016
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0.011
0.013

0.017

0.007

0.002
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0.02

FIgure 3.2 A group of myoglobin orthologs, visualized by multiply aligning the sequences (Chapter 6) 
then creating a phylogenetic tree by neighbor‐joining (Chapter 7). The accession numbers and species names 
are as follows: human, NP_005359 (Homo sapiens); chimpanzee, XP_001156591 (Pan troglodytes); orang-
utan, P02148 (Pongo pygmaeus); rhesus monkey, XP_001082347 (Macaca mulatta); pig, NP_999401 (Sus 
scrofa); common tree shrew, P02165 (Tupaia glis); horse, P68082 (Equus caballus); zebra, P68083 (Equus 
burchellii); dog, XP_850735 (Canis familiaris); sperm whale, P02185 (Physeter catodon); sheep, P02190 
(Ovis aries); rat, NP_067599 (Rattus norvegicus); mouse, NP_038621 (Mus musculus); cow, NP_776306 

(Bos taurus); chicken_XP_416292 (Gallus gallus). The sequences are shown in Web Document 3.1 (  

http://www.bioinfbook.org/chapter3). In this tree, sequences that are more closely related to each other are 
grouped closer together. Note that as entire genomes continue to be sequenced (Chapters 15–20), the number 
of known orthologs will grow rapidly for most families of orthologous proteins.

Box 3.1 A HIstory of Homology
Richard Owen (1804–1892) was one of the first biologists to use the term homology. He defined homology as “the same organ in differ-
ent animals under every variety of form and function” (Owen, 1843, p. 379). Charles Darwin (1809–1882) also discussed homology in 
the 6th edition of The Origin of Species or The Preservation of Favoured Races in the Struggle for Life (1872). He wrote:

That relation between parts which results from their development from corresponding embryonic parts, either in different 
animals, as in the case of the arm of man, the foreleg of a quadruped, and the wing of a bird; or in the same individual, as in 
the case of the fore and hind legs in quadrupeds, and the segments or rings and their appendages of which the body of a worm, 
a centipede, &c., is composed. The latter is called serial homology. The parts which stand in such a relation to each other are 
said to be homologous, and one such part or organ is called the homologue of the other. In different plants the parts of the 
flower are homologous, and in general these parts are regarded as homologous with leaves.

For a review of the history of the concept of homology see Hossfeld and Olsson (2005).

http://www.bioinfbook.org/chapter3
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 G-gamma globin

 A-gamma globin

 epsilon globin

 delta globin

 beta globin

 mu globin

 zeta globin

 theta 1 globin

 alpha 2 globin

 alpha 1 globin

 cytoglobin

 myoglobin

 neuroglobin

0.039
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0.037
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0.271
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0.000
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0.079
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0.052

0.1

}
}

 beta globin group

 alpha globin group

FIgure 3.3 Paralogous human globins: Each of these proteins is human, and each is a member of 
the globin family. This unrooted tree was generated using the neighbor‐joining algorithm in MEGA (see 
Chapter 7). The proteins and their RefSeq accession numbers (also shown in Web Document 3.2) are 
delta globin (NP_000510), G‐gamma globin (NP_000175),beta globin (NP_000509), A‐gamma globin 
(NP_000550), epsilon globin (NP_005321), zeta globin (NP_005323), alpha 1 globin (NP_000549), 
alpha 2 globin (NP_000508), theta 1 globin (NP_005322), hemoglobin mu chain (NP_001003938), 
cytoglobin (NP_599030), myoglobin (NP_005359), and neuroglobin (NP_067080). A Poisson correc-
tion model was used (see Chapter 7).

practical way to do this is through the NCBI BLASTP tool (for proteins) or BLASTN (for 
nucleotides) (Tatusova and Madden, 1999; Fig. 3.4). Perform the following steps:

 1. Choose the program BLASTP (for “BLAST proteins”) for our comparison of two 
proteins. Check the box “Align two or more sequences.”

 2. Enter the sequences or their accession numbers. Here we use the sequence of human 
beta globin in the FASTA format, and for myoglobin we use the accession number 
(Fig. 3.4).

 3. Select any optional parameters.
 • You can choose from eight scoring matrices: BLOSUM90, BLOSUM80, 
BLOSUM62, BLOSUM50, BLOSUM45, PAM250, PAM70, PAM30. Select 
PAM250.

 • You can change the gap creation penalty and gap extension penalty.
 • For BLASTN searches you can change reward and penalty values.
 • There are other parameters you can change, such as word size, expect value, 
filtering, and dropoff values. We discuss these in more detail in Chapter 4.

 4. Click “align.” The output includes a pairwise alignment using the single‐letter amino 
acid code (Fig. 3.5a).

Note that the FASTA format uses the single‐letter amino acid code; those abbrevia-
tions are shown in Box 3.2.

It is impractical to align proteins by visual inspection. Also, if we allow gaps in the 
alignment to account for deletions or insertions in the two sequences, the number of pos-
sible alignments rises exponentially. Clearly, we need a computer algorithm to perform 

The BLAST suite of programs is 
available at the NCBI site,  

 http://www.ncbi.nlm.nih.gov/
BLAST/ (WebLink 3.2). We discuss 
various options for using the 
Basic Local Alignment Search 
Tool (BLAST) in Chapter 4.

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
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an alignment (see Box 3.3). In the pairwise alignments shown in Figure 3.5a, beta globin 
is on top (on the line labeled “query”) and myoglobin is below (on the subject line). An 
intermediate row indicates the presence of identical amino acids in the alignment. For 
example, note that near the beginning of the alignment the residues WGKV are identical 
between the two proteins. We can count the total number of identical residues; in this 
case, the two proteins share 25% identity (37 of 145 aligned residues). Identity is the 
extent to which two amino acid (or nucleotide) sequences are invariant. Note that this par-
ticular alignment is called local because only a subset of the two proteins is aligned: the 
first and last few amino acid residues of each protein are not displayed. A global pairwise 
alignment includes all residues of both sequences.

Another aspect of this pairwise alignment is that some of the aligned residues are 
similar but not identical; they are related to each other because they share similar bio-
chemical properties. Similar pairs of residues are structurally or functionally related. For 
example, on the first row of the alignment we can find threonine and serine (T and S 
connected by a + sign in Fig. 3.5a); nearby we can see a leucine and a valine residue that 
are aligned. These are conservative substitutions. Amino acids with similar properties 
include the basic amino acids (K, R, H), acidic amino acids (D, E), hydroxylated amino 
acids (S, T), and hydrophobic amino acids (W, F, Y, L, I, V, M, A). Later in this chapter we 
will see how scores are assigned to aligned amino acid residues. In the pairwise alignment 

We discuss global and local 
alignments in the section 
“Alighment Algorithms: Global 
and Local”.

1

2

3

4

FIgure 3.4 The BLAST tools at the NCBI website allow the comparison of two DNA or protein 
sequences. Here the program is set to BLASTP for the comparison of two proteins (arrow 2). Human 
beta globin (NP_000509) is input in the FASTA format (arrow 1), while human myoglobin (NP_005359) 
is input as an accession number (arrow 3). Click BLAST to start the search (arrow 4), and note the option 
at bottom left to view and adjust the algorithm parameters. 

Source: BLAST, NCBI.
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of a segment of HBB and myoglobin, you can see that each pair of residues is assigned a 
score that is relatively high for matches and often negative for mismatches.

The percent similarity of two protein sequences is the sum of both identical and sim-
ilar matches. In Figure 3.5a, there are 57 aligned amino acid residues which are similar. In 
general, it is more useful to consider the identity shared by two protein sequences rather 
than the similarity, because the similarity measure may be based upon a variety of defini-
tions of how related (similar) two amino acid residues are to each other.

In summary, pairwise alignment is the process of lining up two sequences to achieve 
maximal levels of identity (and maximal levels of conservation in the case of amino 
acid alignments). The purpose of a pairwise alignment is to assess the degree of sim-
ilarity and the possibility of homology between two molecules. For example, we may 
say that two proteins share 25% amino acid identity and 39% similarity. If the amount 
of sequence identity is sufficient, then the two sequences are probably homologous. It is 
never correct to say that two proteins share a certain percent homology, because they are 
either homologous or not. Similarly, it is not appropriate to describe two sequences as 
“highly homologous;” instead, it can be said that they share a high degree of similiarity. 

(a)

(b)
 Score = 18.1 bits (35),  Expect = 0.015, Method: Composition-based stats.
 Identities = 11/24 (45%), Positives = 12/24 (50%), Gaps = 2/24 (8%)

Query  12  VTALWGKVNVD--EVGGEALGRLL  33
           V  +WGKV  D    G E L RL 
Sbjct  11  VLNVWGKVEADIPGHGQEVLIRLF  34

match      4  11 5   6    6 5 4 5    sum of matches: +60 (round up to +61)
                6 4              4
mismatch   -1 1    0   -2 -2  -4  0  sum of mismatches: -13
            -2      0   -3   0   
gap open             -11             sum of gap penalties: -13
gap extend            -2
                                     total raw score: 61 - 13 - 13 = 35

 Score = 43.9 bits (102),  Expect = 1e-09, Method: Composition-based stats.
 Identities = 37/145 (25%), Positives = 57/145 (39%), Gaps = 2/145 (1%)

Query  4    LTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV  61
            L+  E   V  +WGKV  D    G E L RL   +P T   F+ F  L + D +  +  +
Sbjct  3    LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDL  62

Query  62   KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGK  121
            K HG  VL A    L    + +     L++ H  K  +  +    +   ++ VL      
Sbjct  63   KKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISECIIQVLQSKHPG  122

Query  122  EFTPPVQAAYQKVVAGVANALAHKY  146
            +F    Q A  K +      +A  Y
Sbjct  123  DFGADAQGAMNKALELFRKDMASNY  147

▼▼

FIgure 3.5 Pairwise alignment of human beta globin (the “query”) and myoglobin (the “subject”). 
(a) The alignment from the search shown in Figure 3.4. Note that this alignment is local (i.e., the entire 
lengths of each protein are not compared), and there are many positions of identity between the two 
sequences (indicated with amino acids intervening between the query and subject lines; see rows with 
arrows). The alignment contains an internal gap (indicated by two dashes). (b) Illustration of how raw 
scores are calculated, using the result of a separate search with just amino acids 12–33 of HBB (cor-
responding to the region with green shaded letters between the arrowheads in (a). The raw score is 35, 
rounded up to 36; this represents the sum of the match scores (from a BLOSUM62 matrix in this case), 
the mismatch scores, the gap opening penalty (set to −11 for this search), and the gap extension penalty 
(set to −1). Raw scores are subsequently converted to bit scores.
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Box 3.2 structures And one- And tHree-letter ABBrevIAtIons of 20 common 
AmIno AcIds

Alanine
(Ala, A
7.8%)

Valine
(Val, V
6.6%)

Leucine
(Leu, L
9.1%)

Isoleucine
(Ile, I
5.3%)

Proline
(Pro, P
5.2%)

Methionine
(Met, M
2.2%)

Phenylalanine
(Phe, F
3.9%)

Tryptophan
(Trp, W
1.4%)

Glycine
(Gly, G
7.2%)

Serine
(Ser, S
6.8%)

Threonine
(Thr, T
5.9%)

Cysteine
(Cys, C
2.8%)

Tyrosine
(Tyr, Y
3.2%)

Asparagine
(Asn, N
4.3%)

Glutamine
(Gln, Q
4.3%) Aspartic acid

(Asp, D
5.3%)

Glutamic acid
(Glu, E
6.3%)

Histidine
(His, H
2.3%)

Lysine
(Lys, K
5.9%)

Arginine
(Arg, R
5.1%)

Positively charged amino acids

Negatively charged amino acids

Uncharged polar amino acids

Nonpolar (hydrophobic) amino acids

CH

3

HN3
+

C

O

H

C

O
-

3 CH

CHCH

CH

CH

CHCH

CH

CH

CH

CH

CH

CH CH

S3

HN C

O

H

C

O
-

CH

CH CH

CH CH

NH

2

3 3 3

2

2

3

3

2

22
2

2

2
2

CH2

OH

CH

CH

CH

2

2

CH2

2

HN3
+

CH

CH

2
CH2

2

HN

C

NH2

NH2
+

CH
NH

2

NH
+

CH2

C

O
-

OH

CH2

C

O
-

OH

CH2

H CH2

OH

CH2

SH

HC

CH3

OH

CH2

C

OH2N

CH2

C

OH2N

CH2

It is very helpful to memorize these abbreviations and to become familiar with the physical properties of the amino acids. The percent-
ages refer to the relative abundance of each amino acid in proteins.
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Box 3.3 AlgorItHms And ProgrAms
An algorithm is a procedure that is structured in a computer program (Sedgewick, 1988). For example, there are many algorithms used 
for pairwise alignment. A computer program is a set of instructions that uses an algorithm (or multiple algorithms) to solve a task. For 
example, the BLAST program (Chapters 3–5) uses a set of algorithms to perform sequence alignments. Other programs that we will 
introduce in Chapter 7 use algorithms to generate phylogenetic trees.

Computer programs are essential to solve a variety of bioinformatics problems because millions of operations may need to be 
performed. The algorithm used by a program provides the means by which the operations of the program are automated. Throughout 
this book, note how many hundreds of programs have been developed using many hundreds of different algorithms. Each program and 
algorithm is designed to solve a specific task. An algorithm that is useful to compare one protein sequence to another may not work in 
a comparison of one sequence to a database of 10 million protein sequences.

Why might an algorithm that is useful for comparing two sequences be less useful to compare millions of sequences? Some prob-
lems are so inherently complex that an exhaustive analysis would require a computer with enormous memory or the problem would take 
an unacceptably long time to complete. A heuristic algorithm is one that makes approximations of the best solution without exhaustively 
considering every possible outcome. The 13 proteins in Figure 3.2 can be arranged in a tree over a billion distinct ways (see Chapter 7); 
finding the optimal tree is a problem that a heuristic algorithm can solve in a second.

Box 3.4 dAyHoff’s ProteIn suPerfAmIlIes
Dayhoff (1978, p. 3) studied 34 protein “superfamilies” grouped into 71 phylogenetic trees. These proteins ranged from some that are 
very well conserved (e.g., histones and glutamate dehydrogenase; see Fig. 3.10) to others that have a high rate of mutation acceptance 
(e.g., immunoglobulin (Ig) chains and kappa casein; see Fig. 3.11). Protein families were aligned; then they counted how often any one 
amino acid in the alignment was replaced by another. Here is a partial list of the proteins they studied, including the rates of mutation 
acceptance. For a more detailed list, see table 7.1. There is a range of almost 400‐fold between the families that evolve fastest and 
slowest, but within a given family the rate of evolution (measured in PAMs per unit time) varies only two‐ to three‐fold between species. 
Used with permission.

Protein PAMs Per 100 Million yeArs

Immunoglobulin (Ig) kappa chain C region 37

Kappa casein 33

Epidermal growth factor 26

Serum albumin 19

Hemoglobin alpha chain 12

Myoglobin 8.9

Nerve growth factor 8.5

Trypsin 5.9

Insulin 4.4

Cytochrome c 2.2

Glutamate dehydrogenase 0.9

Histone H3 0.14

Histone H4 0.10

See the section “The Statistical Significance of Pairwise Alignments” for further discus-
sion, including the use of expect values to assess whether an alignment of two sequences 
is likely to have occurred by chance (Chapter 4). Such analyses provide evidence to assess 
the hypothesis that two proteins are homologous. Ultimately, the strongest evidence to 
determine whether two proteins are homologous comes from structural studies in combi-
nation with evolutionary analyses.

Two proteins could have similar 
structures due to convergent 
evolution. Molecular evolutionary 
studies are essential (based on 
sequence analyses) to assess 
this possibility.
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gaps

Pairwise alignment is useful as a way to identify mutations that have occurred during 
evolution and have caused divergence of the sequences of the two proteins we are study-
ing. The most common mutations are substitutions, insertions, and deletions. In protein 
sequences, substitutions occur when a mutation results in the codon for one amino acid 
being changed into that for another. This results in the alignment of two nonidentical 
amino acids, such as serine and threonine. Insertions and deletions occur when residues 
are added or removed and are typically represented by dashes that are added to one or the 
other sequence. Insertions or deletions (even those just one character long) are referred to 
as gaps in the alignment.

In our alignment of human beta globin and myoglobin there is one gap (Fig. 3.5a, 
between the arrowheads). Gaps can occur at the ends of the proteins or in the middle. 
Note that one of the effects of adding gaps is to make the overall length of each alignment 
exactly the same. The addition of gaps can help to create an alignment that models evolu-
tionary changes that have occurred.

In a typical scoring scheme there are two gap penalties called affine gap costs. One 
is a score −a for creating a gap (−11 in the example of Fig. 3.5b). A second penalty is –b 
for each residue that a gap extends. If a gap extends for k residues it is assigned a penalty 
of −(a + bk). For a gap of length 1, the score is −(a + b).

pairwise alignment, homology, and evolution of Life

If two proteins are homologous, they share a common ancestor. Generally, we observe the 
sequence of proteins (and genes) from organisms that are extant. We can compare myo-
globins from species such as human, horse, and chicken, and see that the sequences are 
homologous (Fig. 3.2). This implies that an ancestral organism had a myoglobin gene and 
lived sometime before the divergences of the lineages that gave rise to human and chicken 
∼310 MYA (see Chapter 19). Descendants of that ancestral organism include many ver-
tebrate species. The study of homologous protein (or DNA) sequences by pairwise align-
ment involves an investigation of the evolutionary history of that protein (or gene).

For a brief overview of the time scale of life on Earth, see Figure 3.6 (refer to Chapter 15 
for a more detailed discussion). The divergence of different species is established through 
the use of many sources of data, especially the fossil record. Fossils of bacteria have been 
discovered in rocks 3.5 billion years old or even older (Schopf, 2002). Fossils of methane‐
producing archaea, representative of a second domain of life, are found in rocks over 3 
billion years old. The other main domain of life, the eukaryotes, emerged at a similar time. 
In the case of globins, in addition to the vertebrate proteins represented in Figure 3.2 there 

For a description of affine gap 
penalties at NCBI see  http://
www.ncbi.nlm.nih.gov/blast/
html/sub_matrix.html (WebLink 
3.3).

It is possible to infer the 
sequence of the common 
ancestor (see Chapter 7).

Origin
of earth

Origin 
of life

Eukaryotes/
bacteria

Plants/
animals

Invertebrates/
vertebrates

Billions of years ago (BYA)

4 3 2 1

FIgure 3.6 Overview of the history of life on Earth. See Chapters 15 and 19 for details. Gene/pro-
tein sequences are analyzed in the context of evolution. Which organisms have orthologous genes? When 
did these organisms evolve? How related are human and bacterial globins?

http://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.html
http://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.html
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are plant globins that must have shared a common ancestor with the metazoan (animal) 
globins some 1.5 billion years ago. There are also many bacterial and archaeal globins, 
suggesting that the globin family arose earlier than two billion years ago.

scorIng mAtrIces
When two proteins are aligned, what scores should they be assigned? For the alignment 
of beta globin and myoglobin in Figure 3.5a there were specific scores for matches and 
mismatches; how were they derived? Margaret Dayhoff (1966, 1978) provided a model of 
the rules by which evolutionary change occurs in proteins. We now examine the Dayhoff 
model in seven steps (following the article from Dayhoff, 1978). This provides the basis 
of a quantitative scoring system for pairwise alignments between any proteins, whether 
they are closely or distantly related. We then describe the BLOSUM matrices of Steven 
Henikoff and Jorja G. Henikoff. Most database searching methods such as BLAST and 
HMMER (Chapters 4 and 5) depend in some form upon the evolutionary insights of the 
Dayhoff model.

Dayhoff Model Step 1 (of 7): accepted point Mutations

Dayhoff and colleagues considered the problem of how to assign scores to aligned amino 
acid residues. Their approach was to catalog hundreds of proteins and compare the 
sequences of closely related proteins in many families. They considered the question 
of which specific amino acid substitutions are observed to occur when two homologous 
protein sequences are aligned. They defined an accepted point mutation as a replacement 
of one amino acid in a protein by another residue that has been accepted by natural selec-
tion. Accepted point mutation is abbreviated PAM (which is easier to pronounce than 
APM). An amino acid change that is accepted by natural selection occurs when: (1) a 
gene undergoes a DNA mutation such that it encodes a different amino acid; and (2) the 
entire species adopts that change as the predominant form of the protein.

Which point mutations are accepted in protein evolution? Intuitively, conservative 
replacements such as serine for threonine would be most readily accepted. In order to 
determine all possible changes, Dayhoff and colleagues examined 1572 changes in 71 
groups of closely related proteins (Box 3.4). Their definition of “accepted” mutations was 
therefore based on empirically observed amino acid substitutions. Their approach involved 
a phylogenetic analysis: rather than comparing two amino acid residues directly, they com-
pared them to the inferred common ancestor of those sequences (Fig. 3.7; Box 3.5).

The empirical results of observed substitutions are shown in Figure 3.8, which 
describes the frequency with which any amino acid pairs i, j are aligned. Inspection of 
this table reveals which substitutions are unlikely to occur (for example, cysteine and 
tryptophan have noticeably few substitutions), while others such as asparagine and serine 
tolerate replacements quite commonly. Today, we could generate a table like this with 
vastly more data (refer to Fig. 2.3 and the explosive growth of DNA sequence reposito-
ries). Several groups have produced updated versions of the PAM matrices (Gonnet et al., 
1992; Jones et al., 1992). Nonetheless, the findings from 1978 are essentially correct. The 
largest inaccuracies in Figure 3.8 occur for pairs of rarely substituted residues such as cys 
and asp, for which zero substitutions were observed in the 1978 dataset (35 of 190 total 
possible exchanges were never observed).

Dayhoff Model Step 2 (of 7): Frequency of amino acids

To model the probability that one aligned amino acid in a protein changes to another, we 
need to know the frequencies of occurrence of each amino acid. table 3.1 shows the fre-
quency with which each amino acid is found (  fi).

The Dayhoff (1978) reference 
is to the Atlas of Protein 
Sequence and Structure, a book 
with 25 chapters (and various 
co‐authors) describing protein 
families. The 1966 version of the 
Atlas described the sequences 
of just several dozen proteins 
(cytochromes c, other respiratory 
proteins, globins, some 
enzymes such as lysozyme and 
ribonucleases, virus coat proteins, 
peptide hormones, kinins, and 
fibrinopeptides). The 1978 edition 
included about 800 protein 
sequences.

Dayhoff et al. focused on proteins 
sharing 85% or more identity; they 
could therefore construct their 
alignments with a high degree of 
confidence. In the section “Global 
Sequence Alignment: Algorithm of 
Needleman and Wunsch” below, 
we will see how the Needleman 
and Wunsch algorithm (1970) 
permits the optimal alignment of 
protein sequences.

Look up a recent estimate of 
the frequency of occurrence of 
each amino acid at the SwissProt 
website  http://www.expasy.
ch/sprot/relnotes/relstat.
html (WebLink 3.4). From the 
UniProtKB/Swiss‐Prot protein 
knowledgebase (release 51.7), 
the amino acid composition of 
all proteins is shown in Web 
Document 3.3 (  http://www.
bioinfbook.org/chapter3).

http://www.expasy.ch/sprot/relnotes/relstat.html
http://www.bioinfbook.org/chapter3
http://www.bioinfbook.org/chapter3
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Dayhoff Model Step 3 (of 7): relative Mutability of amino acids

Dayhoff et al. calculated the relative mutabilities of the amino acids (table 3.2). This 
simply describes how often each amino acid is likely to change over a short evolutionary 
period. (We note that the evolutionary period in question is short because this analysis 
involves protein sequences that are closely related to each other.) To calculate relative 
mutability, they divided the number of times each amino acid was observed to mutate (mi) 
by the overall frequency of occurrence of that amino acid (fi).

Why are some amino acids more mutable than others? The less mutable residues 
probably have important structural or functional roles in proteins, such that the con-
sequence of replacing them with any other residue could be harmful to the organism. 

beta globin     MVHLTPEEKSAVTALWGKV
delta globin    MVHLTPEEKTAVNALWGKV
alpha 1 globin  MV.LSPADKTNVKAAWGKV
myoglobin       .MGLSDGEWQLVLNVWGKV
5               MVHLSPEEKTAVNALWGKV
6               MVHLTPEEKTAVNALWGKV                     

5
6

myoglobin (NP_000539)

alpha 1 globin (NP_000549)

delta globin (NP_000510)

beta globin (NP_000509) 1

2

3

4

(a)

(b)

FIgure  3.7 Dayhoff’s approach to determining amino acid substitutions. (a) Partial multiple 
sequence alignment of human alpha 1 globin, beta globin, delta globin, and myoglobin. Four columns 
in which alpha 1 globin and myoglobin have different amino acid residues are indicated in red. For 
example, A is aligned with G (arrow). (b) Phylogenetic tree that shows the four extant sequences (labeled 
1–4) as well as two internal nodes that represent the ancestral sequences (labeled 5 and 6). The inferred 
ancestral sequences were identified by maximum parsimony analysis using the software PAUP (Chapter 
7), and are displayed in (a). From this anaysis it is apparent that at each of the columns labeled in red, 
there was no direct interchange of two amino acids between alpha 1 globin and myoglobin. Instead, an 
ancestral residue diverged. For example, the arrow in (a) indicates an ancestral glutamate that evolved 
to become alanine or glycine, but it would not be correct to suggest that alanine had been converted 
directly to glycine.

Box 3.5 A PHylogenetIc APProAcH to AlIgnIng AmIno AcIds
Dayhoff and colleagues did not compare the probability of one residue mutating directly into another. Instead, they constructed phy-
logenetic trees using parsimony analysis (see Chapter 7). They then described the probability that two aligned residues derived from a 
common ancestral residue. With this approach, they could minimize the confounding effects of multiple substitutions occurring in an 
aligned pair of residues. As an example, consider an alignment of the four human proteins alpha 1 globin, beta globin, delta globin, and 
myoglobin. A direct comparison of alpha 1 globin would suggest several amino acid replacements such as ala↔gly, asn↔leu, lys↔leu, 
and ala↔val (Fig. 3.7a). However, a phylogenetic analysis of these four proteins results in the estimation of internal nodes that represent 
ancestral sequences. In Figure 3.7b the external nodes (corresponding to the four existing proteins) are labeled, as are internal nodes 
5 and 6 that correspond to inferred ancestral sequences. In the four cases that are highlighted in Figure 3.7a, the ancestral sequences 
suggest that a glu residue changed to ala and gly in alpha 1 globin and myoglobin, but ala and gly never directly interchanged (Fig. 3.7a, 
arrow). The Dayhoff approach was therefore more accurate by taking an evolutionary perspective.

In a further effort to avoid the complicating factor of multiple substitutions occurring in alignments of protein families, Dayhoff 
et al. also focused on using multiple sequence alignments of closely related proteins. For example, their analysis of globins considered 
the alpha globins and beta globins separately.
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(We will see in Chapter 21 that many human diseases, from cystic fibrosis to the 
autism‐related Rett syndrome to hemoglobinopathies, can be caused by a single amino 
acid substitution in a protein.) Conversely, the most mutable amino acids – asparagine, 
serine, aspartic acid, and glutamic acid – have functions in proteins that are easily 
assumed by other residues. The most common substitutions seen in Figure 3.8 are glu-
tamic acid for aspartic acid (both are acidic), serine for alanine, serine for threonine 
(both are hydroxylated), and isoleucine for valine (both are hydrophobic and of a 
similar size).

tabLe 3.1 Normalized frequencies of amino acid. these values sum to 1. If the 20 
amino acids were equally represented in proteins, these values would all be 0.05 (i.e., 
5%); instead, amino acids vary in their frequency of occurrence. 

Gly 0.089 Arg 0.041

Ala 0.087 Asn 0.040

Leu 0.085 Phe 0.040

Lys 0.081 Gln 0.038

Ser 0.070 Ile 0.037

Val 0.065 His 0.034

Thr 0.058 Cys 0.033

Pro 0.051 Tyr 0.030

Glu 0.050 Met 0.015

Asp 0.047 Trp 0.010

Source: Dayhoff (1972). Reproduced with permission from National Biomedical Research Foundation.

A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

H
His

I
Ile

L
Leu

K
Lys

M
Met

F
Phe

P
Pro

S
Ser

T
Thr

W
Trp

Y
Tyr

V
Val

A
R 30

N 109 17

D 154 0 532

C 33 10 0 0

Q 93 120 50 76 0

E 266 0 94 831 0 422

G 579 10 156 162 10 30 112

H 21 103 226 43 10 243 23 10

I 66 30 36 13 17 8 35 0 3

L 95 17 37 0 y 75 15 17 40 253

K 57 477 322 85 0 147 104 60 23 43 39

M 29 17 0 0 0 20 7 7 0 57 207 90

F 20 7 7 0 0 0 0 17 20 90 167 0 17

P 345 67 27 10 10 93 40 49 50 7 43 43 4 7

S 772 137 432 98 117 47 86 450 26 20 32 168 20 40 269

T 590 20 169 57 10 37 31 50 14 129 52 200 28 10 73 696

W 0 27 3 0 0 0 0 0 3 0 13 0 0 10 0 17 0

Y 20 3 36 0 30 0 10 0 40 13 23 10 0 260 0 22 23 6

V 365 20 13 17 33 27 37 97 30 661 303 17 77 10 50 43 186 0 17

A
Ala

R
Arg

N
Asn

D
Asp

C
Cys

Q
Gln

E
Glu

G
Gly

H
His

I
Ile

L
Leu

K
Lys

M
Met

F
Phe

P
Pro

S
Ser

T
Thr

W
Trp

Y
Tyr

V
Val

FIgure 3.8 Numbers of accepted point mutations, multiplied by 10, in 1572 cases of amino acid substitutions from closely related protein 
sequences. Amino acids are presented alphabetically according to the three‐letter code. Notice that some substitutions (green shaded boxes) 
are very commonly accepted (such as V and I or S and T). Other amino acids, such as C and W, are rarely substituted by any other residue 
(orange shaded boxes). 

Source: Dayhoff (1972). Reproduced with permission from National Biomedical Research Foundation.
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The substitutions that occur in proteins can also be understood with reference to the 
genetic code (Box 3.6). Observe how common amino acid substitutions tend to require 
only a single‐nucleotide change. For example, aspartic acid is encoded by GAU or GAC, 
and changing the third position to either A or G causes the codon to encode a glutamic 
acid. Also note that four of the five least mutable amino acids (tryptophan, cysteine, phe-
nylalanine, and tyrosine) are specified by only one or two codons. A mutation of any of 
the three bases of the W codon is guaranteed to change that amino acid. The low muta-
bility of this amino acid suggests that substitutions are not tolerated by natural selection. 
Of the eight least mutable amino acids (table 3.2), only one (leucine) is specified by six 
codons. Dayhoff et al. also noted that a fairly large number (20%) of the interchanges 
observed in Figure 3.8 required two nucleotide changes. In other cases such as gly and trp, 
only a single‐nucleotide change would be required for the substitution; this was never 
empirically observed however, presumably because such a change has been rejected by 
natural selection.

Dayhoff Model Step 4 (of 7): Mutation probability Matrix for the 
evolutionary Distance of 1 paM

Dayhoff and colleagues next used the data on accepted mutations (Fig. 3.8) and the prob-
abilities of occurrence of each amino acid to generate a mutation probability matrix M 
(Fig. 3.9). Each element of the matrix Mij shows the probability that an original amino 
acid j (see the columns) will be replaced by another amino acid i (see the rows) over a 
defined evolutionary interval. In the case of Figure 3.9 the interval is one PAM, which 
is defined as the unit of evolutionary divergence in which 1% of the amino acids have 
been changed between the two protein sequences. Note that the evolutionary interval of 
this PAM matrix is defined in terms of percent amino acid divergence and not in units of 
years. 1% divergence of protein sequence may occur over vastly different time frames 
for protein families that undergo substitutions at different rates (see Fig. 7.5 in which we 
introduce the molecular clock).

Examination of Figure 3.9 reveals several important features. The highest scores are 
distributed in a diagonal from top left to bottom right. The values in each column sum to 
100%. The value 98.7 at the top left indicates that, when the original sequence consists 
of an alanine, there is a 98.7% likelihood that the replacement amino acid will also be an 
alanine over an evolutionary distance of one PAM. There is a 0.3% chance that it will be 
changed to serine. The most mutable amino acid (from table 3.2), asparagine, has only a 

tabLe 3.2 relative mutabilities of amino acids. the value of alanine is arbitrarily set 
to 100. 

Asn 134 His 66

Ser 120 Arg 65

Asp 106 Lys 56

Glu 102 Pro 56

Ala 100 Gly 49

Thr 97 Tyr 41

Ile 96 Phe 41

Met 94 Leu 40

Gln 93 Cys 20

Val 74 Trp 18

Source: Dayhoff (1972). Reproduced with permission from National Biomedical Research Foundation. 
Dayhoff (1972). Reproduced with permission from National Biomedical Research Foundation.
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Box 3.6. tHe stAndArd genetIc code
In this table, the 64 possible codons are depicted along with the frequency of codon utilization and the single‐letter code of the amino 
acid that is specified. There are four bases (A, C, G, U) and three bases per codon, so there are 43 = 64 codons.

GTT Val 111
GTC Val 146
GTA Val 72
GTG Val 288

GCT Ala 185
GCC Ala 282
GCA Ala 160
GCG Ala 74

GAT Asp 230
GAC Asp 262
GAA Glu 301
GAG Glu 404

GGT Gly 112  
GGC Gly 230
GGA Gly 168
GGG Gly 160

T

C

A

G

T C A G

T
C
A
G

ATT Ile 165 
ATC Ile 218
ATA Ile 71
ATG Met 221

ACT Thr 131 
ACC Thr 192
ACA Thr 150
ACG Thr 63

AAT Asn 174
AAC Asn199
AAA Lys 248
AAG Lys 331

AGT Ser 121 
AGC Ser 191
AGA Arg 113
AGG Arg 110

CTT Leu 127
CTC Leu 187 
CTA Leu 69
CTG Leu 392

CCT Pro 175 
CCC Pro 197
CCA Pro 170
CCG Pro 69

CGT Arg  47
CGC Arg 107
CGA Arg 63
CGG Arg 115

CAT His 104 
CAC His 147
CAA Gln 121
CAG Gln 343

TTT Phe 171
TTC Phe 203
TTA Leu 73
TTG Leu 125

TCT Ser 147
TCC Ser  172
TCA Ser 118
TCG Ser 45

TAT Tyr 124
TAC Tyr 158
TAA Ter 0
TAG Ter 0

TGT Cys 99
TGC Cys 119
TGA Ter  0
TGG Trp 122  

T
C
A
G

T
C
A
G

T
C
A
G

Second nucleotide

Fi
rs

t n
uc

le
ot

id
e

Th
ird

 n
uc

le
ot

id
e

 
Adapted from the International Human Genome Sequencing Consortium (2001), figure 34. Used with permission.

Several features of the genetic code should be noted. Amino acids may be specified by one codon (M, W), two codons (C, D, E, F, 
H, K, N, Q, Y), three codons (I), four codons (A, G, P, T, V), or six codons (L, R, S). UGA is rarely read as a selenocysteine (abbreviated 
sec, and the assigned single-letter abbreviation is U).

For each block of four codons that are grouped together, one is often used dramatically less frequently. For example, for F, L, I, M, 
and V (i.e., codons with a U in the middle, occupying the first column of the genetic code), adenine is used relatively infrequently in the 
third‐codon position. For codons with a cytosine in the middle position, guanine is strongly under‐represented in the third position.

Also note that in many cases mutations cause a conservative change (or no change at all) in the amino acid. Consider threonine 
(ACX). Any mutation in the third position causes no change in the specified amino acid, because of “wobble.” If the first nucleotide of 
any threonine codon is mutated from A to U, the conservative replacement to a serine occurs. If the second nucleotide C is mutated to 
a G, a serine replacement occurs. Similar patterns of conservative substitution can be seen along the entire first column of the genetic 
code, where all of the residues are hydrophobic, and also for the charged residues D, E and K, R.

Codon usage varies between organisms and between genes within organisms. Note also that while this is the standard genetic code, 

some organisms use alternate genetic codes. A group of two dozen alternate genetic codes are listed at the NCBI Taxonomy website,  

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ (WebLink 3.20). As an example of a nonstandard code, vertebrate mito-
chondrial genomes use AGA and AGG to specify termination (rather than arg in the standard code), ATA to specify met (rather than ile), 
and TGA to specify trp (rather then termination).

98.22% chance of remaining unchanged; the least mutable amino acid, tryptophan, has a 
99.76% chance of remaining the same.

The nondiagonal elements of this matrix have the values:

 M
m A

Aij
j ij

iji∑
=

λ
 (3.1)

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
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where Mij refers to the probability that an original amino acid j will be replaced by an 
amino acid from row i. Aij is an element of the accepted point mutation matrix of Figure 3.8, 
such as the value corresponding to the original alanine being substituted by an arginine. 
λ is a proportionality constant (discussed below) and mj is the mutability of the jth amino 
acid (from table 3.2). We can further consider the diagonal elements of Figure 3.9 which 
have the values:

 M m1jj jλ= −  (3.2)

where Mjj is the probability that original amino acid j will remain j without undergoing 
a substitution to another amino acid. Let’s understand these two equations by inspecting 
the first column of the mutation probability matrix in which the original amino acid is 
alanine. The total probability (the sum of all elements) is 1 or, considering the elements 
as percentages, the sum of the column is 100%. It is intuitively reasonable that the proba-
bility of observing a change to the amino acid – equivalent to the sum of all the elements 
other than alanine remaining itself, Mjj – is proportional to the mutability of alanine.

For each original amino acid, it is easy to observe the amino acids that are most likely 
to replace it if a change should occur. These data are very relevant to pairwise sequence 
alignment because they will form the basis of a scoring system (described below in Day-
hoff Model Steps 5–7) in which reasonable amino acid substitutions in an alignment are 
rewarded while unlikely substitutions are penalized.

Almost all molecular sequence data are obtained from extant organisms. We can infer 
ancestral sequences, as described in Box 3.5 and Chapter 7. In general however, for an 
aligned pair of residues i, j we do not know which mutated into the other. Dayhoff and 
colleagues used the assumption that accepted amino acid mutations are undirected, that 
is, they are equally likely in either direction. In the PAM1 matrix, the close relationship 
of the proteins makes it unlikely that the ancestral residue is entirely different from both 
of the observed, aligned residues.

Dayhoff Model Step 5 (of 7): paM250 and Other paM Matrices

The PAM1 matrix was based upon the alignment of closely related protein sequences, 
having an average of 1% change. To ensure that the multiple alignments were valid, 

Original amino acid 
  A 

Ala 
R

Arg 
N

Asn 
D

Asp 
C

Cys 
Q

Gln 
E

Glu
G

Gly 
H

His 
I

Ile 
L

Leu 
K

Lys 
M

Met 
F

Phe
P

Pro
S

Ser 
T

Thr 
W
Trp 

Y
Tyr 

V
Val 
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A 98.7 0.0 0.1 0.1 0.0 0.1 0.2 0.2 0.0 0.1 0.0 0.0 0.1 0.0 0.2 0.4 0.3 0.0 0.0 0.2 
R 0.0 99.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 
N 0.0 0.0 98.2 0.4 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 
D 0.1 0.0 0.4 98.6 0.0 0.1 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
C 0.0 0.0 0.0 0.0 99.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 
Q 0.0 0.1 0.0 0.1 0.0 98.8 0.3 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
E 0.1 0.0 0.1 0.6 0.0 0.4 98.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
G 0.2 0.0 0.1 0.1 0.0 0.0 0.1 99.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 
H 0.0 0.1 0.2 0.0 0.0 0.2 0.0 0.0 99.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
I 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.7 0.1 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.0 0.3 
L 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 99.5 0.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.2 
K 0.0 0.4 0.3 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 99.3 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.0 
M 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 98.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 99.5 0.0 0.0 0.0 0.0 0.3 0.0 
P 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 99.3 0.1 0.0 0.0 0.0 0.0 
S 0.3 0.1 0.3 0.1 0.1 0.0 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.2 98.4 0.4 0.1 0.0 0.0 
T 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.3 98.7 0.0 0.0 0.1 
W 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0 
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 99.5 0.0 
V 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 99.0 

FIgure 3.9 The PAM1 mutation probability matrix. The original amino acid j is arranged in columns (across the top), while the replace-
ment amino acid i is arranged in rows. Dayhoff et al. multiplied values by 10,000 (offering added precision) while here we multiply by 100 so 
that, for example, the first cell’s value of 98.7 corresponds to 98.7% occurrence of ala remaining ala over this evolutionary interval. 

Source: Dayhoff (1972). Reproduced with permission from National Biomedical Research Foundation.
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proteins within a family were at least 85% identical. We are often interested in exploring 
the relationships of proteins that share far less than 99% amino acid identity. We can 
accomplish this by constructing probability matrices for proteins that share any degree 
of amino acid identity. Consider closely related proteins, such as the glyceraldehyde‐3‐
phosphate dehydrogenase (GAPDH) proteins shown in Figure 3.10. A mutation from one 
residue to another is a relatively rare event, and a scoring system used to align two such 
closely related proteins should reflect this. (In the PAM1 mutation probability matrix of 
Fig. 3.9, some substutions such as tryptophan to threonine are so rare that they were never 
observed in Dayhoff’s dataset.)

Orthologous kappa caseins from various species provide an example of a less well‐
conserved family (Fig. 3.11). Some columns of residues in this alignment are perfectly 
conserved among the selected species but most are not, and many gaps need to be intro-
duced. Several positions at which four or even five different residues occur in an aligned 
column are indicated.

Here, substitutions are likely to be very common. PAM matrices such as PAM100 
or PAM250 were generated to reflect the kinds of amino acid substitutions that occur in 
distantly related proteins.

How are PAM matrices other than PAM1 derived? The proportionality constant λ 
of Equations (3.1) and (3.2) applies to all columns of the mutation probability matrix 
of Figure 3.9. In that matrix, λ is chosen to correspond to an evolutionary distance of 
1 PAM. As we make λ larger, we model a greater evolutionary distance. We could for 
example make a PAM2, PAM3, or PAM4 matrix by multiplying λ. This approach will 
fail for greater evolutionary distances (such as PAM250, in which 250 changes occur in 
two aligned sequences of length 100); the problem is that adjusting λ does not account for 
multiple substitutions. Dayhoff et al. instead used matrix multiplication: they multiplied 
the PAM1 matrix by itself, up to hundreds of times, to obtain other PAM matrices (see Box 
3.7), therefore extrapolating from the PAM1 matrix. Today this approach is considered 
valid, although it depends on the accuracy of the PAM1 matrix to avoid propagating errors.

Databases such as Pfam 
(Chapter 6) summarize the 
phylogenetic distribution of gene/
protein families across the tree 
of life.

The GAPDH sequences used to 
generate Figure 3.10 and the 
kappa casein sequences used to 
generate Figure 3.11 are shown 
in Web Documents 3.4 and 3.5 
at  http://www.bioinfbook.org/
chapter3.

FIgure 3.10 Multiple sequence alignment of a portion of the glyceraldehyde 3‐phosphate dehy-
drogenase (GAPDH) protein from 13 organisms: Homo sapiens (human), Pan troglodytes (chimpan-
zee), Canis lupus (dog), Mus musculus (mouse), Rattus norvegicus (rat; three variants), Gallus gallus 
(chicken), Drosophila melanogaster (fruit fly), Anopheles gambiae (mosquito), Caenorhabditis ele-
gans (worm), Schizosaccharomyces pombe (fission yeast), Saccharomyces cerevisiae (baker’s yeast), 
Kluyveromyces lactis (a fungus), and Oryza sativa (rice). Columns in the alignment having even a single 
amino acid change are indicated with arrowheads. The accession numbers are given in the figure. The 
alignment was created by searching HomoloGene at NCBI with the term gapdh.

http://www.bioinfbook.org/chapter3
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 PAM0 A R N D C Q E G
A 100 0 0 0 0 0 0 0
R 0 100 0 0 0 0 0 0
N 0 0 100 0 0 0 0 0
D 0 0 0 100 0 0 0 0
C 0 0 0 0 100 0 0 0
Q 0 0 0 0 0 100 0 0
E 0 0 0 0 0 0 100 0
G 0 0 0 0 0 0 0 100

PAM A R N D C Q E G
A 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7
R 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1
N 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
D 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7
C 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
Q 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
E 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
G 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9

FIgure  3.12 Portion of the matrices for a zero PAM value (PAM0; upper panel) or for an 
infinite PAM∞ value (lower panel). At PAM∞ (i.e., if the PAM1 matrix is multiplied by itself an 
infinite number of times), all the entries in each row converge on the normalized frequency of the 
replacement amino acid (see table 3.1). A PAM2000 matrix has similar values that tend to con-
verge on these same limits. In a PAM2000 matrix, the proteins being compared are at an extreme 
of unrelatedness. In constrast, at PAM0 no mutations are tolerated and the residues of the proteins 
are perfectly conserved.

FIgure 3.11 Multiple sequence alignment of seven kappa caseins, representing a protein fam-
ily that is relatively poorly conserved. Only a portion of the entire alignment is shown. Note that just 
eight columns of residues are perfectly conserved (indicated with asterisks), and gaps of varying 
length form part of the alignment. In several columns, there are four different aligned amino acids 
(arrowheads); in two instances there are five different residues (double arrowheads). The sequences 
were aligned with MUSCLE 3.6 (see Chapter 6) and were human (NP_005203), equine (Equus 
caballus; NP_001075353), pig (Sus scrofa NP_001004026), ovine (Ovis aries NP_001009378), 
rabbit (Oryctolagus cuniculus P33618), bovine (Bos taurus NP_776719) and mouse (Mus musculus 
NP_031812).

To make sense of what different PAM matrices mean, consider the extreme cases. 
When PAM equals zero, the matrix is a unit diagonal (Fig. 3.12, upper panel) because no 
amino acids have changed. PAM can be extremely large (e.g., PAM greater than 2000, or 
the matrix can even be multiplied by itself an infinite number of times). In the resulting 
PAM∞ matrix there is an equal likelihood of any amino acid being present and all the 
values consist of rows of probabilities that approximate the background probability for 
the frequency occurrence of each amino acid (Fig. 3.12, lower panel). We described these 
background frequencies in table 3.1.
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The PAM250 matrix is of particular interest (Fig. 3.13). It is produced when the 
PAM1 matrix is multiplied by itself 250 times, and it is one of the common matrices 
used for BLAST searches of databases (Chapter 4). This matrix applies to an evolu-
tionary distance where proteins share about 20% amino acid identity. Compare this 
matrix to the PAM1 mutation probability matrix (Fig. 3.9), and note that much of the 
information content is lost. The diagonal from top left to bottom right tends to con-
tain higher values than elsewhere in the matrix, but not in the dramatic fashion of the 
PAM1 matrix. As an example of how to read the PAM250 matrix, if the original amino 
acid is an alanine there is just a 13% chance that the second sequence will also have 

Box 3.7 mAtrIx multIPlIcAtIon
A matrix is an orderly array of numbers. An example of a matrix with rows i and columns j is:

1 2 4

2 0 3

4 3 6

−
−



















In a symmetric matrix, such as the one above, aij = aji. This means that all the corresponding nondiagonal elements are equal. Matrices 
may be added, subtracted, or manipulated in a variety of ways. Two matrices can be multipled together providing that the number of 
columns in the first matrix M1 equals the number of rows in the second matrix M2.

We can view PAM matrices in R. Try working with a PAM1 matrix. Since it is not readily available in R packages or at the NCBI 
ftp site, we provide the text file pam1.txt at Web Document 3.10 (http://bioinfbook.org). Import it into RStudio, look at its properties, 
and view its first five rows and columns:

Next, multiply the PAM1 mutation probability matrix by itself 250 times, creating the data frame called pam250, obtaining a 
PAM250 matrix.

> dim(pam1) # this shows the dimensions of the matrix
[1] 20 20
> length(pam1) # this displays the length
[1] 20
> str(pam1) # this displays the structure of pam1; just the first several 
# lines are shown here
'data.frame':  20 obs. of 20 variables:
$ A: num 0.9867 0.0001 0.0004 0.0006 0.0001 ...
$ R: num 0.0002 0.9913 0.0001 0 0.0001 ...
...
> pam1 # this shows the full matrix (not shown here)
> pam1[1:5,1:5] # this displays the first five rows and columns
 A R N D C
1 0.9867 0.0002 0.0009 0.0010 0.0003
2 0.0001 0.9913 0.0001 0.0000 0.0001
3 0.0004 0.0001 0.9822 0.0036 0.0000
4 0.0006 0.0000 0.0042 0.9859 0.0000
5 0.0001 0.0001 0.0000 0.0000 0.9973

> pam250 <- pam1^250 # we multiply the PAM1 matrix by itself 250 times
> pam250[1:5,1:5] # we view the first five rows and columns
 A R N D C
[1,] 0.03517888 0.0000000 0.00000000 0.00000000 0.0000000
[2,] 0.00000000 0.1125321 0.00000000 0.00000000 0.0000000
[3,] 0.00000000 0.0000000 0.01121973 0.00000000 0.0000000
[4,] 0.00000000 0.0000000 0.00000000 0.02872213 0.0000000
[5,] 0.00000000 0.0000000 0.00000000 0.00000000 0.5086918

http://bioinfbook.org
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an alanine. In fact, there is a nearly equal probability (12%) that the alanine will have 
been replaced by a glycine. For the least mutable amino acids, tryptophan and cyste-
ine, there is more than a 50% probability that those residues will remain unchanged at 
this evolutionary distance.

Dayhoff Model Step 6 (of 7): From a Mutation probability Matrix to a 
relatedness Odds Matrix

Dayhoff et al. defined a relatedness odds matix. For the elements Mij of any given muta-
tion probability matrix, what is the probability that amino acid j will change to i in a 
homologous sequence?

 R
M

f
.ij

ij

i

=  (3.3)

Equation (3.3) describes an odds ratio (Box 3.8). For the numerator, Dayhoff et al. 
considered an entire spectrum of models for evolutionary change in determining target 
frequencies. For the denominator, the normalized frequency fi is the probability of amino 
acid residue i occurring in the second sequence by chance.

For the relatedness odds matrix, a value for Rij of 1 means that the substitution (e.g., 
alanine replaced by asparagine) occurs as often as can be expected by chance. Values 
greater than 1 indicate that the alignment of two residues occurs more often than expected 
by chance (e.g., a conservative substitution of serine for threonine). Values less than 1 
suggest that the alignment is not favored. For a comparison of two proteins, it is necessary 
to determine the values for Rij at each aligned position and then multiply the resulting 
probabilities to achieve an overall score for an alignment.
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A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9 

R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2 

N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3 

D 5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3 

C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2 

Q 3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3 

E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3 

G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7 

H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2 

I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9 

L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13 

K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5 

M 1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2 

F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3 

P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4 

S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6 

T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6 

W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0 

Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2 

V 7 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 7 2 4 17

FIgure  3.13 The PAM250 mutation probability matrix. At this evolutionary distance, only one 
in five amino acid residues remains unchanged from an original amino acid sequence (columns) to a 
replacement amino acid (rows). Note that the scale has changed relative to Figure 3.11, and the columns 
sum to 100. 

Source: Dayhoff (1972). Reproduced with permission from National Biomedical Research Foundation.
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Dayhoff Model Step 7 (of 7): Log-Odds Scoring Matrix

The logarithmic form of the relatedness odds matrix is called a log‐odds matrix. The 
log‐odds form is given by:

 s
M

f
10 log .ij

ij

i
10= ×







 (3.4)

The cells in a log‐odds matrix consist of scores (sij) for aligning any two residues 
(including an amino acid with itself) along the length of a pairwise alignment. Mij (also 
written as qij) is the observed frequency of substitution for each pair of amino acids. The 
values for qij, also called the “target frequencies,” are derived from a mutation probabil-
ity matrix such as those shown in Figures 3.9 (for PAM1) and 3.13 (for PAM250). These 
values consist of positive numbers that sum to 1. The background frequency fi refers to 
the independent, background probability of replacement amino acid i occurring in this 
position.

The log‐odds matrix for PAM250 is shown in Figure 3.14. The values have been 
rounded off to the nearest integer. Using the logarithm here is convenient because it 
allows us to sum the scores of the aligned residues when we perform an overall alignment 
of two sequences. (If we did not take the logarithm we would need to multiply the ratios 
at all the aligned positions, and this is computationally more cumbersome.)

Try using Equation (3.4) to make sure you understand how the mutation probability 
matrix (Fig. 3.13) is converted into the log‐odds scoring matrix (Fig. 3.14). As an example, 
to determine the score assigned to a substitution from cysteine to leucine, the PAM250 
mutation probability matrix value is 0.02 (Fig. 3.13) and the normalized frequency of 
leucine is 0.085 (table 3.1). We therefore have:

 s 10 log
0.02

0.085
6.3.(cysteine, leucine) 10= × 



 = −  (3.5)

Note that this log-odds scoring matrix is symmetric, in contrast to the mutation proba-
bility matrix in Figure 3.13. In a comparison of two sequences it does not matter which 
is given first. As another example, an original lysine replaced by an arginine (frequency 
4.1%) has a mutation probability matrix score of 0.09, and employing Equation (3.4) 
yields a log-odds score of 3.4 (matching the score of 3 in Fig. 3.14). The values in the 
matrix are rounded off.

Box 3.8. stAtIstIcAl concePt: tHe odds rAtIo
Dayhoff et al. (1972) developed their scoring matrix by using odds ratios. The mutation probability matrix has elements Mij that give the 
probability that amino acid j changes to amino acid i in a given evolutionary interval. The normalized frequency fi gives the probability 
that amino acid i will occur at that given amino acid position by chance. The relatedness odds matrix in Equation (3.3) may also be 
expressed Rij = Mij/fi, where Rij is the relatedness odds ratio.

Equation (3.3) may also be written:

Probability of an authentic alignment
P(aligned authentic)

P(aligned random)
.=

The right side of this equation can be read: “the probability of an alignment given that it is authentic (i.e., the substitution of amino acid j 
with amino acid i) divided by the probability that the alignment occurs given that it happened by chance.” An odds ratio can be any positive 
ratio. The probability that an event will occur is the fraction of times it is expected to be observed over many trials; probabilities have values 
ranging from 0 to 1. Odds and probability are closely related concepts. A probability of 0 corresponds to an odds of 0; a probability of 0.5 
corresponds to an odds of 1.0; a probability of 0.75 corresponds to odds of 75:25 or 3. Odds and probabilities may be converted as follows:

odds
probability

1 probability
and probability

odds

1 odds
.=

−
=

+
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What do the scores in the PAM250 matrix signify? A score of +17 for tryptophan 
matching tryptophan indicates that this correspondence is 50 times more frequent than the 
chance alignment of this residue in a pairwise alignment. From Equation (3.4), let si,j = +17 
and let the probability of replacement qij/pi = x. Then +17 = 10 log10 x; + 1.7 = log10 x; and 
101.7 = x = 50.

A score of −10 indicates that the correspondence of two amino acids in an alignment 
that accurately represents homology (evolutionary descent) is one‐tenth as frequent as the 
chance alignment of these amino acids. A score of zero is neutral. A score of +2 indicates 
that the amino acid replacement occurs 1.6 times as frequently as expected by chance (+2 
= 10 log10 x; x = 100.2 = 1.6).

The highest values in this particular log‐odds scoring matrix (Fig. 3.14) are for trypto-
phan (17 for an identity) and cysteine (12), while the most severe penalties are associated 
with substitutions for those two residues. When two sequences are aligned and a score 
is given, that score is simply the sum of the scores for all the aligned residues across the 
alignment.

The “target frequencies” qij are estimated in reference to a particular amount of evo-
lutionary change. For example, in a comparison of human beta globin versus the closely 
related chimpanzee beta globin, the likelihood of any particular residue matching another 
in a pairwise alignment is extremely high; in a comparison of human beta globin and a 
bacterial globin, the likelihood of a match is low. If in a particular comparison of closely 
related proteins a serine were aligned to a threonine 5% of the time, then that target fre-
quency qS,T would be 0.05. If in a different comparison of differently related proteins ser-
ine were aligned to threonine more often, say 40% of the time, then that target frequency 
qS,T would be 0.4.

It is easy to see how different PAM matrices score amino acid substitutions by com-
paring the PAM250 matrix (Fig. 3.14) with a PAM10 matrix (Fig. 3.15). In the PAM10 
matrix, identical amino acid residue pairs tend to produce a higher score than in the 
PAM250 matrix; for example, a match of alanine to alanine scores 7 versus 2, respectively. 

A 2
R 62-
N 200
D 421-0
C 215-4-4-2-
Q 45-2110
E 0 -1 1 3 -5 2 4  
G 1 -3 0 1 -3 -1 0 5  
H -1 2 2 1 -3 3 1 -2 6  
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5  
L -2 -3 -3 -4 -6 -2 -3 -4 -2 -2 6  
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5 
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6
F -3 -4 -3 -6 -4 -5 -5 -5 -2 1 2 -5 0 9
P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 2
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4
 A R N D C Q E G H I L K M F P S T W Y V 

FIgure 3.14 Log‐odds matrix for PAM250. High PAM values (e.g., PAM250) are useful for align-
ing very divergent sequences. A variety of algorithms for pairwise alignment, multiple sequence align-
ment, and database searching (e.g., BLAST) allow you to select an assortment of PAM matrices such as 
PAM250, PAM70, and PAM30. Adapted from NCBI, ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/.

ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/
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The penalties for mismatches are greater in the PAM10 matrix; for example, a mutation of 
aspartate to arginine scores –17 (PAM10) versus –1 (PAM250). PAM10 even has negative 
scores for substitutions (such as glutamate to asparagine: –5) that are scored positively in 
the PAM250 matrix (+1).

practical usefulness of paM Matrices in pairwise alignment

We can demonstrate the usefulness of PAM matrices by performing a series of global 
pairwise alignments of both closely related proteins and distantly related proteins. For the 
closely related proteins we will use human beta globin (NP_000509.1) and beta globin 
from the chimpanzee Pan troglodytes (XP_508242.1); these proteins share 100% amino 
acid identity. The bit scores proceed in a fairly linear, decreasing fashion from about 590 
bits using the PAM10 matrix to 200 bits using the PAM250 matrix and 100 bits using the 
PAM500 matrix (Fig. 3.16, black line). In this pairwise alignment there are no mismatches 
or gaps, and the high bit scores associated with low PAM matrices (such as PAM10) are 
accounted for by the higher relative entropy (defined in “Percent Identity and Relative 
Entropy”). The PAM10 matrix is therefore appropriate for comparisons of closely related 
proteins. Next consider pairwise alignments of two relatively divergent proteins, human 
beta globin and alpha globin (NP_000549.1; Fig. 3.16, red line). The PAM70 matrix yields 
the highest score. Lower PAM matrices (e.g., PAM10 to PAM60) produce lower bit scores 
because the sequences share only 42% amino acid identity, and mismatches are assigned 
large negative scores. We conclude that different scoring matrices vary in their sensitiv-
ity to protein sequences (or DNA sequences) of varying relatedness. When comparing 
two sequences, it may be necessary to repeat the search using several different scoring 
matrices. Alignment programs cannot be preset to choose the right matrix for each pair 
of sequences. Instead, they begin with the most broadly useful scoring matrix such as 
BLOSUM62, which we describe in the following section.

Important alternative to paM: bLOSuM Scoring Matrices

In addition to the PAM matrices, another very common set of scoring matrices is the 
blocks substitution matrix (BLOSUM) series. Henikoff and Henikoff (1992, 1996) used 

A 7
R -10 9
N -7 -9 9
D -6 -17 -1 8
C -10 -11 -17 -21 10
Q -7 -4 -7 -6 -20 9
E -5 -15 -5 0 -20 -1 8
G -4 -13 -6 -6 -13 -10 -7 7
H -11 -4 -2 -7 -10 -2 -9 -13 10
I -8 -8 -8 -11 -9 -11 -8 -17 -13 9
L -9 -12 -10 -19 -21 -8 -13 -14 -9 -4 7
K -10 -2 -4 -8 -20 -6 -7 -10 -10 -9 -11 7
M -8 -7 -15 -17 -20 -7 -10 -12 -17 -3 -2 -4 12
F -12 -12 -12 -21 -19 -19 -20 -12 -9 -5 -5 -20 -7 9
P -4 -7 -9 -12 -11 -6 -9 -10 -7 -12 -10 -10 -11 -13 8
S -3 -6 -2 -7 -6 -8 -7 -4 -9 -10 -12 -7 -8 -9 -4 7
T -3 -10 -5 -8 -11 -9 -9 -10 -11 -5 -10 -6 -7 -12 -7 -2 8
W -2 -5 -11 -21 -22 -19 -23 -21 -10 -20 -9 -18 -19 -7 -20 -8 -19 13
Y -11 -14 -7 -17 -7 -18 -11 -20 -6 -9 -10 -12 -17 -1 -20 -10 -9 -8 10
V -5 -11 -12 -11 -9 -10 -10 -9 -9 -1 -5 -13 -4 -12 -9 -10 -6 -22 -10 8

A R N D C Q E G H I L K M F P S T W Y V

FIgure 3.15 Log‐odds matrix for PAM10. Low PAM values such as this are useful for aligning very closely related sequences. Compare 
this with the PAM250 matrix (Fig. 3.14) and note that there are larger positive scores for identical matches in this PAM10 matrix and larger 
penalties for mismatches. Adapted from NCBI, ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/.

ftp://ftp.ncbi.nlm.nih.gov/blast/matrices/
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the BLOCKS database, which consisted of over 500 groups of local multiple alignments 
(blocks) of distantly related protein sequences. The Henikoffs therefore focused on con-
served regions (blocks) of proteins that are distantly related to each other. The BLOSUM 
scoring scheme employs a log‐odds ratio using the base 2 logarithm:

  (3.6)S
q

p
2 log .ij

ij

ij
2= ×











Equation (3.6) resembles Equation (3.4) in its format. Karlin and Altschul (1990) and 
Altschul (1991) have shown that substitution matrices can be decribed in general in a 
log‐odds form as follows:
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  (3.7)

where Sij refers to the score of amino acid i aligning with j and qij are the positive target 
frequencies; these sum to 1. λ is a positive parameter that provides a scale for the matrix. 
We will again encounter λ when we describe the basic statistical measure of a BLAST 
result (Chapter 4, Equation (4.5)).

The BLOSUM62 matrix is the default scoring matrix for the BLAST protein search 
programs at NCBI. It merges all proteins in an alignment that has 62% amino acid iden-
tity or greater into one sequence. If a block of aligned globin orthologs includes several 
that have 62, 80, and 95% amino acid identity, these would all be weighted (grouped) as 
one sequence. Substitution frequencies for the BLOSUM62 matrix are weighted more 
heavily by blocks of protein sequences having less than 62% identity. (This matrix is 
therefore useful for scoring proteins that share less than 62% identity.) The BLOSUM62 
matrix is shown in Fig. 3.17.

Note that the denominator in 
Equations (3.6) and (3.7) includes 
pi pj, reflecting the background 
probabilities of the two aligned 
amino acids. This is given by 
Henikoff and Henikoff (1992) and 
Karlin and Altschul (1990) and 
others (reviewed by Altschul et 
al., 2005).

The PAM matrix is given as 10 
times the log base 10 of the odds 
ratio. The BLOSUM matrix is 
given as 2 times the log base 2 of 
the odds ratio. BLOSUM scores 
are therefore not quite as large 
as they would be if given on 
the same scale as PAM scores. 
Practically, this difference in 
scales is not important because 
alignment scores are typically 
converted from raw scores to 
normalized bit scores (Chapter 4).
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FIgure 3.16 Global pairwise alignment scores using a series of PAM matrices. Two closely related 
globins (human and chimpanzee beta globin; black line) were aligned using a series of PAM matrices (x 
axis) and the bit scores were measured (y axis). For two distantly related globins (human alpha versus 
beta globin; red line) the bit scores are smaller for low PAM matrices (such as PAM1 to PAM20) because 
mismatches are severely penalized.
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Henikoff and Henikoff (1992) tested the ability of a series of BLOSUM and PAM 
matrices to detect proteins in BLAST searches of databases. They found that BLOSUM62 
performed slightly better than BLOSUM60 or BLOSUM70 and dramatically better than 
PAM matrices at identifying various proteins. Their matrices were especially useful for 
identifying weakly scoring alignments. BLOSUM50 and BLOSUM90 are other com-
monly used scoring matrices in BLAST searches. (For an alignment of two proteins shar-
ing about 50% identity, try using the BLOSUM50 matrix. The FASTA family of sequence 
comparison programs use BLOSUM50 as a default.)

The relationships of the PAM and BLOSUM matrices are depicted in Figure 3.18. 
To summarize, BLOSUM and PAM matrices both use log‐odds values in their scor-
ing systems. In each case, when performing a pairwise sequence alignment (or when 
searching a query sequence against a database), specify the exact matrix to use based on 
the suspected degree of identity between the query and its matches. PAM matrices are 
based on data from the alignment of closely related protein families, and they involve 
the assumption that substitution probabilities for highly related proteins (e.g., PAM40) 
can be extrapolated to probabilities for distantly related proteins (e.g., PAM250). In 
contrast, the BLOSUM matrices are based on empirical observations of more distantly 
related protein alignments. Note that a PAM30 matrix, which is available as an option 
on standard BLASTP searches at NCBI (Chapter 4), may be useful for identifying 
significant conservation between two closely related proteins. However a BLOSUM 
matrix with a high value (such as the BLOSUM80 matrix, available from the NCBI 
BLASTP site) is not necessarily suitable for scoring closely related sequences. This is 
because the BLOSUM80 matrix is adapted to regions of sequences that share up to 80% 
identity, but beyond that limited region two proteins may share dramatically less amino 
acid identity (Pearson and Wood, 2001).

A 4
R -1 5
N -2 0 6
D -2 -2 1 6
C 0 -3 -3 -3 9
Q -1 1 0 0 -3 5
E -1 0 0 2 -4 2 5
G 0 -2 0 -1 -3 -2 -2 6
H -2 0 1 -1 -3 0 0 -2 8
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 
K -1 2 0 -1 -1 1 1 -2 -1 -3 -2 5 
M -1 -2 -2 -3 -1 0 -2 -3 -2 1 2 -1 5
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4
 A R N D C Q E G H I L K M F P S T W Y V 

FIgure 3.17 The BLOSUM62 scoring matrix of Henikoff and Henikoff (1992). This matrix merges 
all proteins in an alignment that have 62% amino acid identity or greater into one sequence. BLOSUM62 
performs better than alternative BLOSUM matrices or a variety of PAM matrices at detecting distant 
relationships between proteins. It is therefore the default scoring matrix for most database search pro-
grams such as BLAST (Chapter 4). 

Source: Henikoff & Henikoff (1992). Reproduced with permission from S. Henikoff.
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pairwise alignment and Limits of Detection: the “twilight Zone”

When we compare two protein sequences, how many mutations can occur between them 
before their differences make them unrecognizable? When we compared glyceralde-
hyde 3‐phosphate dehydrogenase proteins, it was easy to see their relationship (Fig. 3.10). 
However, when we compared human beta globin and myoglobin, the relationship was 
much less obvious (Fig. 3.5). Intuitively, at some point two homologous proteins are too 
divergent for their alignment to be recognized as significant.

The best way to determine the detection limits of pairwise alignments is through sta-
tistical tests that assess the likelihood of finding a match by chance. These are described 
in “The Statistical Significance of Pairwise Alignments” below and in Chapter 4. In par-
ticular we will focus on the expect (E) value. It can also be helpful to compare the percent 
identity (and percent divergence) of two sequences versus their evolutionary distance. 
Consider two protein sequences, each 100 amino acids in length, in which one sequence 
is fixed and various numbers of mutations are introduced into the other sequence. A plot 
of the two diverging sequences has the form of a negative exponential (Fig. 3.19) (Dayhoff, 
1978; Doolittle, 1987). If the two sequences have 100% amino acid identity, they have 
zero changes per 100 residues. If they share 50% amino acid identity, they have sustained 
an average of 80 changes per 100 residues. One might have expected 50 changes per 
100 residues in the case of two proteins that share 50% amino acid identity. However, 
any position can be subject to multiple hits. Percent identity is therefore not an exact 
indicator of the number of mutations that have occurred across a protein sequence. When 
a protein sustains about 250 hits per 100 aligned amino acids (as characterized by the 
PAM250 matrix), it may have about 20% identity with the original protein and can still 
be recognizable as significantly related. If a protein sustains 360 changes per 100 resi-
dues (PAM360), it evolves to a point at which the two proteins share about 15% amino 
acid identity and are no longer recognizable as significantly related in a direct pairwise 
comparison.

The PAM250 matrix assumes the occurrence of 250 point mutations per 100 amino 
acids. As shown in Figure 3.19, this corresponds to the “twilight zone.” At this level of 
divergence, it is usually difficult to assess whether the two proteins are homologous. Other 
techniques, including multiple sequence alignment (Chapter 6) and structural predictions 
(Chapter 13), are often very useful to assess homology in these cases. PAM matrices are 
available from PAM1 to PAM250 or higher, and a specific number of observed amino 
acid differences per 100 residues is associated with each PAM matrix (table 3.3; Fig. 3.19). 
Consider the case of the human alpha globin compared to myoglobin. These proteins are 
approximately 150 amino acid residues in length, and they may have undergone over 

A hit is a change in an amino 
acid residue that occurs by 
mutation. We discuss mutations 
(including multiple hits at a 
nucleotide position) in Chapter 
7 (see Fig. 7.15). We discuss 
mutations associated with 
human disease in Chapter 21.

The plot in Figure 3.19 reaches 
an asymptote below about 
15% amino acid identity. This 
asymptote would reach about 
5% (or the average background 
frequency of the amino acids) 
if no gaps were allowed in 
the comparison between the 
proteins.

PAM30

Less divergent More divergent

Human versus 
chimpanzee beta globin

Human versus 
bacterial globins

PAM250

BLOSUM90 BLOSUM45BLOSUM62

PAM120

FIgure 3.18 Summary of PAM and BLOSUM matrices. High‐value BLOSUM matrices and low‐
value PAM matrices are best suited to study well‐conserved proteins such as mouse and rat beta globin. 
BLOSUM matrices with low numbers (e.g., BLOSUM45) or high PAM numbers are best suited to detect 
distantly related proteins. Remember that in a BLOSUM45 matrix all members of a protein family with 
greater than 45% amino acid identity are grouped together, allowing the matrix to focus on proteins with 
less than 45% identity.
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Evolutionary distance (PAMs)
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FIgure 3.19 Two randomly diverging protein sequences change in a negatively exponential fashion. 
This plot shows the observed number of amino acid identities per 100 residues of two sequences (y axis) 
versus the number of changes that must have occurred (the evolutionary distance in PAM units). The 
twilight zone (Doolittle, 1987) refers to the evolutionary distance corresponding to about 20% identity 
between two proteins. Proteins with this degree of amino acid sequence identity may be homologous, but 
such homology is difficult to detect. Data from Dayhoff (1978; see table 3.3).

tabLe 3.3 relationship between observed number of amino acid 
differences per 100 residues of two aligned protein sequences and 
evolutionary difference. the number of changes that must have 
occurred, in paM units. 

Observed differences  

in 100 residues

Evolutionary distance  

in PAMs

1 1.0

5 5.1

10 10.7

15 16.6

20 23.1

25 30.2

30 38.0

35 47

40 56

45 67

50 80

55 94

60 112

65 133

70 159

75 195

80 246

Source: Dayhoff (1972). Reproduced with permission from National Biomedical 
Research Foundation.
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300 amino acid substitutions since their divergence (Dayhoff et al., 1972, p. 19). Suppose 
there are 345 changes per 150 amino acids (this corresponds to 230 changes per 100 
amino acids). An additional 100 changes would result in only 10 more observable differ-
ences (Dayhoff et al., 1972.

AlIgnment AlgorItHms: gloBAl And locAl
Our discussion so far has focused on matrices that allow us to score an alignment between 
two proteins. This involves the generation of scores for identical matches, mismatches, 
and gaps. We also need an appropriate algorithm to perform the alignment. When two 
proteins are aligned, there is an enormous number of possible alignments.

There are two main types of alignment: global and local. We explore these 
approaches next. A global alignment, such as the method of Needleman and Wunsch 
(1970), contains the entire sequence of each protein or DNA molecule. A local align-
ment, such as the method of Smith and Waterman (1981), focuses on the regions of 
greatest similarity between two sequences. We saw a local alignment of human beta 
globin and myoglobin in Figure 3.5 above. For many purposes, a local alignment is pre-
ferred, because only a portion of two proteins aligns. (We study the modular nature of 
proteins in Chapter 12.) Most database search algorithms, such as BLAST (Chapter 4), 
use local alignments.

Each of these methods is guaranteed to find one or more optimal solutions to the 
alignment of two protein or DNA sequences. We then describe two rapid‐search algo-
rithms, BLAST and FASTA. BLAST represents a simplified form of local alignment that 
is popular because the algorithm is very fast and easily accessible.

global Sequence alignment: algorithm of Needleman and Wunsch

One of the first and most important algorithms for aligning two protein sequences was 
described by Needleman and Wunsch (1970). This algorithm is important because it 
produces an optimal alignment of protein or DNA sequences, even allowing the intro-
duction of gaps. The result is optimal, but not all possible alignments need to be eval-
uated. An exhaustive pairwise comparison would be too computationally expensive to 
perform.

We can describe the Needleman–Wunsch approach to global sequence alignment in 
three steps: (1) setting up a matrix; (2) scoring the matrix; and (3) identifying the optimal 
alignment.

Step 1: Setting Up a Matrix
First, we compare two sequences in a two‐dimensional matrix (Fig. 3.20). The first 
sequence, of length m, is listed horizontally along the x axis so that its amino acid residues 
correspond to the columns. The second sequence, of length n, is listed vertically along the 
y axis, with its amino acid residues corresponding to rows.

We will describe rules for tracing a diagonal path through this matrix in the follow-
ing section; the path describes the alignment of the two sequences. A perfect alignment 
between two identical sequences would simply be represented by a diagonal line extend-
ing from the top left to the bottom right (Fig. 3.20a, b). Any mismatches between two 
sequences would still be represented on this diagonal path (Fig. 3.20c). However, the score 
that is assigned might be adjusted according to some scoring system. In the example of 
Figure 3.20c, the mismatch of V and M residues might be assigned a score lower than the 
perfect match of M and M shown in Figure 3.20b.

Gaps are represented in this matrix using horizontal or vertical paths, as shown in 
Figure 3.20a, d, e. Any gap in the top sequence is represented as a vertical line (Fig. 3.20a, d), 

There are about nn22 / π
possible global alignments 
between two sequences of 
length n (Durbin et al., 2000; 
Ewins and Grant, 2001). For 
two sequences of length 1000, 
there are about 10600 possible 
alignments. For two proteins 
of length 200 amino acid 
residues, the number of possible 
alignments is over 6 × 1058.

The Needleman and Wunsch 
approach is an example of a 
dynamic programming algorithm. 
It is called “dynamic” because 
the alignment is created on a 
residue‐by‐residue basis in a 
search for the optimal alignment. 
The word “programming” refers 
to the use of a set of rules to 
determine the alignment.

This algorithm is also sometimes 
called the Needleman–Wunsch–
Sellers algorithm. Sellers (1974) 
provided a related alignment 
algorithm (one that focuses on 
minimizing differences, rather 
than on maximizing similarities). 
Smith et al. (1981) showed 
that the Needleman–Wunsch 
and Sellers approaches are 
mathematically equivalent.
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while any gap in the bottom sequence is drawn as a horizontal line (Fig. 3.20a, e). These 
gaps can be of any length. Gaps can be internal or terminal.

Step 2: Scoring the Matrix
The goal of this algorithm is to identify an optimal alignment. We set up two matrices: 
an amino acid identity matrix and then a scoring matrix. We create a matrix of dimen-
sions m + 1 by n + 1 (for the first and second sequences on the x‐ and y‐axes respectively; 
Fig. 3.21a). Gap penalties (here having a value of –2 for each gap position) are placed 
along the first row and column. This will allow us to introduce a terminal gap of any 
length. We fill in positions of identity (Fig. 3.21a, gray‐filled cells); this is called an identity 
matrix. For two identical sequences this would include a series of gray‐filled cells along 
the diagonal.

Next, we define a scoring system (Fig. 3.21b). Our goal in finding an optimal align-
ment is to determine the path through the matrix that maximizes the score. This entails 
finding a path through as many positions of identity as possible while introducing as few 
gaps as possible. There are four possible occurrences at each position i, j (i.e., in each cell 
in the matrix; Fig. 3.21b):

 1. two residues may be perfectly matched (i.e., identical); in this example the score is +1;
 2. they may be mismatched; here we assign a score of –2;

Note that in linear algebra an 
identity matrix is a special kind 
of number matrix that has the 
number 1 from top left to bottom 
right. For sequence alignments, 
the amino acid identity matrix is 
simply a matrix showing all the 
positions of shared amino acid 
identity between two sequences, 
as shown in Fig. 3.20b.
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FIgure  3.20 Pairwise alignment of two amino acid sequences using a dynamic programming 
algorithm of Needleman and Wunsch (1970) for global alignment. (a) Two sequences can be assigned 
a diagonal path through the matrix and, when necessary, the path can deviate horizontally or vertically, 
reflecting gaps that are introduced into the alignment. (b) Two identical sequences form a path on 
the matrix that fits a diagonal line. (c) If there is a mismatch (or multiple mismatches), the path still 
follows a diagonal, although a scoring system may penalize the presence of mismatches. If the align-
ment includes a gap in (d) the first sequence or (e) the second sequence, the path includes a vertical 
or horizontal line. 
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FIgure 3.21 Pairwise alignment of two amino acid sequences using the dynamic programming 
algorithm of Needleman and Wunsch (1970) for global alignment. (a) For sequences of length m and 
n we form a matrix of dimensions m + 1 by n + 1 and add gap penalties in the first row and column. 
Each gap position receives a score of −2. The cells having identity are shaded gray. (b) The scoring 
system in this example is +1 for a match, −2 for a mismatch, and −2 for a gap penalty. In each cell, the 
score is assigned using the recursive algorithm that identifies the highest score from three calculations. 
(c) In each cell F(i, j) we calculate the scores derived from following a path from the upper left cell 
(we add the score of that cell + the score of F(i, j)), the cell to the left (including a gap penalty), and the 
cell directly above (again including a gap penalty). (d) To calculate the score in the cell of the second 
row and column, we take the maximum of the three scores +1, −4, −4. This best score (+1) follows the 
path of the red arrow, and we maintain the information of the best path, resulting in each cell’s score 
in order to later reconstruct the pairwise alignment. (e) To calculate the score in the second row, third 
column we again take the maximum of the three scores −4, −1, −4. The best score follows from the left 
cell (red arrow). (f) We proceed to fill in scores across the first row of the matrix. (g) The completed 
matrix includes the overall score of the optimal alignment (−4; see cell at bottom right, corresponding 
to the carboxy terminus of each protein). Red arrows indicate the path(s) by which the highest score 
for each cell was obtained.



PAIrWISe SeqUeNCe ALIgNMeNT 99

 3. a gap may be introduced from the first sequence, for which we assign a score 
of −2; or

 4. a gap may be introduced from the second sequence, also resulting in −2.

The Needleman and Wunsch algorithm provides a score corresponding to each of 
these possible outcomes for each position of the aligned sequences. The algorithm also 
specifies a set of rules describing how we can move through the matrix.

Consider the cell at the lower right‐hand corner of Figure 3.21c. There are several rules 
for deciding the optimal score:

 • First, both i and j must increase. We therefore evaluate scores from three positions 
(top, left, upper left), moving towards a given cell F(i, j). It would not make sense 
to be able to violate the linear arrangement of amino acids (or nucleotides) in a 
sequence.

 • It is acceptable for a gap to extend an arbitrary number of positions; a scoring system 
may include separate gap creation and gap extension penalties.

 • The particular score that is assigned may come from a scoring matrix such as BLO-
SUM62.

As we begin to align the two sequences in our example we fill in a cell with the value 
+1 because of the alignment of two F residues (Fig. 3.21d). The alternative options of 
introducing a gap in either sequence would necessitate a gap penalty and a poorer score. 
We indicate the preferred (highest‐scoring) path with a red arrow throughout Figure 3.21. 
We proceed to the next cell to the right, selecting the score of −1 (coming from the left, 
consisting of +1 (from the previous cell) −2 (for introducing a gap) = −1) as better than 
the alternative scores of −4 and −6 (Fig. 3.21e). This process of analyzing possible scores 
for each cell continues across each row (Fig. 3.21f) until the entire matrix is filled in 
(Fig. 3.21g).

Step 3: Identifying the Optimal Alignment
After the matrix is filled, the alignment is determined by a trace‐back procedure. Begin 
with the cell at the lower right of the matrix (carboxy termini of the proteins or 3’ end 
of the nucleic acid sequences). In our example, this has a score of −4 and corresponds to 
an alignment of two glutamate residues. For this and every cell we can determine from 
which of the three adjacent cells the best score was derived. This procedure is outlined 
in Figure 3.22a, in which red arrows indicate the paths from which the best scores were 
obtained for each cell. We therefore define a path (see pink‐shaded cells) that will corre-
spond to the actual alignment. In Figure 3.22b, we show just the arrows indicating from 
which cell each best score was derived. This is a different way of defining the optimal path 
of the pairwise alignment. We build that alignment, including gaps in either sequence, 
proceeding from the carboxy to the amino terminus. The final alignment (Fig. 3.22c) is 
guaranteed to be optimal, given this scoring system. There may be multiple alignments 
that share an optimal score, although this rarely occurs when scoring matrices such as 
BLOSUM62 are implemented.

A variety of programs implement global alignment algorithms (see Web Resources 
at the end of this chapter). An example is the Needle program from EMBOSS, which can 
be accessed via Galaxy (Box 3.9). Two bacterial globin family sequences are entered: one 
from Streptomyces avermitilis MA‐4680 (NP_824492.1, 260 amino acids); and another 
from Mycobacterium tuberculosis CDC1551 (NP_337032.1, 134 amino acids). Penalties 
are selected for gap creation and extension, and each sequence is pasted into an input box 
in the FASTA format. The resulting global alignment includes descriptions of the percent 
identity and similarity shared by the two proteins, the length of the alignment, and the 
number of gaps introduced (Fig. 3.23a).

The Needle program for global 
pairwise alignment is part of the 
EMBOSS package available online 
at the European Bioinformatics 
Institute (  http://www.ebi.ac.uk/
emboss/align/, WebLink 3.5) or at 
Galaxy (  http://usegalaxy.org, 
WebLink 3.6). It is further described 
at the EMBOSS website under 
applications (  http://emboss 
.sourceforge.net/, WebLink 3.7). 
The E. coli and S. cerevisiae 
proteins are available in the FASTA 
format, as well as globally and 
locally aligned in Web Document 
3.6 (  http://www.bioinfbook.org/
chapter3).

http://www.ebi.ac.uk/emboss/align/
http://www.ebi.ac.uk/emboss/align/
http://usegalaxy.org
http://emboss.sourceforge.net/
http://emboss.sourceforge.net/
http://www.bioinfbook.org/chapter3
http://www.bioinfbook.org/chapter3
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FIgure 3.22 Global pairwise alignment of two amino acid sequences using a dynamic program-
ming algorithm: scoring the matrix and using the trace‐back procedure to obtain the alignments. (a) The 
alignment of Figure 3.21(g) is shown. The cells highlighted in pink represent the source of the optimal 
scores. (b) In an equivalent representation, arrows point back to the source of each cell’s optimal score. 
(c) This trace‐back allows us to determine the sequence of the optimal alignment. Vertical or horizontal 
arrows correspond to the positions of gap insertions, while diagonal lines correspond to exact matches 
(or mismatches). Note that the final score (–4) equals the sum of matches (6 × 1 = 6), mismatches (none 
in this example), and gaps (5 × –2 = –10).

Box 3.9 emBoss
EMBOSS (European Molecular Biology Open Software Suite) is a collection of freely available programs for DNA, RNA, or protein 
sequence analysis (Rice et al., 2000). There are over 200 available programs in three dozen categories. The home page of EMBOSS 

(  http://emboss.sourceforge.net/, WebLink 3.21) describes the various packages. A variety of web servers offer EMBOSS, including 

Galaxy. You can also visit sites such as  http://emboss.bioinformatics.nl/ (WebLink 3.22) and  http://www.bioinformatics2.wsu.edu/
emboss/ (WebLink 3.23).

To perform pairwise sequence alignment using EMBOSS at Galaxy, try the following steps:

 1. Visit Galaxy at  https://main.g2.bx.psu.edu/ (WebLink 3.24) and sign in.
2. On the left sidebar (Tools menu) select Get Data and choose UCSC Main. From the human genome (hg19) select the RefGenes 

table, enter hbb for the position (upon clicking “lookup” the coordinates chr11:5246696‐5248301 are added), set the output format 
to “sequence” and check the box to send to Galaxy. When you click “Get output” select protein and submit.

3. Repeat step (2) to import the HBA2 protein. For both proteins in Galaxy, use Edit Attributes (the pencil icon in the history panel) to 
rename the sequences hbb and hba2.

4. In the tools panel choose EMBOSS, and scroll to find the water tool for Smith–Waterman local alignment. Alternatively, enter “water” 
into the Tools search box. Select the two proteins, use default settings, and click Execute. The pairwise alignment is returned.

Once you have entered one or more sequences into Galaxy, explore some of the >100 other EMBOSS tools!

The Needleman–Wunsch algorithm is an example of dynamic programming (Sedge-
wick, 1988). This means that an optimal path (i.e., an optimal alignment) is detected by 
incrementally extending optimal subpaths, that is, by making a series of decisions at each 
step of the alignment as to which pair of residues corresponds to the best score. The over-
all goal is to find the path moving along the diagonal of the matrix that lets us obtain the 
maximal score. This path specifies the optimal alignment.

http://emboss.sourceforge.net/
http://emboss.bioinformatics.nl/
http://www.bioinformatics2.wsu.edu/emboss/
https://main.g2.bx.psu.edu/
http://www.bioinformatics2.wsu.edu/emboss/
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Local Sequence alignment: Smith and Waterman algorithm

The local alignment algorithm of Smith and Waterman (1981) is the most rigorous method 
by which subsets of two protein or DNA sequences can be aligned. Local alignment is 
extremely useful in a variety of applications such as database searching in which we may 
wish to align domains of proteins (but not the entire sequences). A local sequence align-
ment algorithm resembles that for global alignment in that two proteins are arranged in a 
matrix and an optimal path along a diagonal is sought. However, there is no penalty for 
starting the alignment at some internal position, and the alignment does not necessarily 
extend to the ends of the two sequences.

For the Smith–Waterman algorithm a matrix is constructed with an extra row along 
the top and an extra column on the left side. For sequences of lengths m and n, the matrix 
has dimensions m + 1 and n + 1. The rules for defining the value at each position of the 
matrix differ slightly from those used in the Needleman–Wunsch algorithm. The score in 

NP_824492.1        1 MCGDMTVHTVEYIRYRIPEQQSAEFLAAYTRAAAQLAAAPQCVDYELARC     50
                                                                       
NP_337032.1        1                                                         0

NP_824492.1       51 EEDFEHFVLRITWTSTEDHIEGFRKSELFPDFLAEIRPYISSIEEMRHYK    100
                                                                       
NP_337032.1        1                                                         0

NP_824492.1      101 PTTVRGTGAAVPTLYAWAGGAEAFARLTEVFYEKVLKDDVLAPVFEGMAP    150
                        :.|......:.|...|||:.|..:...||.:|.:|:||..|:    |
NP_337032.1        1    MEGMDQMPKSFYDAVGGAKTFDAIVSRFYAQVAEDEVLRRVY----P     43

NP_824492.1      151 EH-----AAHVALWLGEVFGGPAAYSETQGGHGHMVAKHLGKNITEVQRR    195
                     |.     ...:.::|.:.:|||..||| |.||..:..:|....|:.::|.
NP_337032.1       44 EDDLAGAEERLRMFLEQYWGGPRTYSE-QRGHPRLRMRHAPFRISLIERD     92

NP_824492.1      196 RWVNLLQDAADDAGLPT-DAEFRSAFLAYAEWGTRLAVYFSGPDAVPPAE    244
                     .|:..:..|.......| |.|.|...|.|.|......|  :.|.      
NP_337032.1       93 AWLRCMHTAVASIDSETLDDEHRRELLDYLEMAAHSLV--NSPF          134

NP_824492.1      245 QPVPQWSWGAMPPYQP    260
                                     
NP_337032.1      135                     134

NP_824492.1      113 TLYAWAGGAEAFARLTEVFYEKVLKDDVLAPVFEGMAPEH-----AAHVA    157
                     :.|...|||:.|..:...||.:|.:|:||..|:    ||.     ...:.
NP_337032.1       10 SFYDAVGGAKTFDAIVSRFYAQVAEDEVLRRVY----PEDDLAGAEERLR     55

NP_824492.1      158 LWLGEVFGGPAAYSETQGGHGHMVAKHLGKNITEVQRRRWVNLLQDAADD    207
                     ::|.:.:|||..||| |.||..:..:|....|:.::|..|:..:..|...
NP_337032.1       56 MFLEQYWGGPRTYSE-QRGHPRLRMRHAPFRISLIERDAWLRCMHTAVAS    104

NP_824492.1      208 AGLPT-DAEFRSAFLAYAE    225
                     ....| |.|.|...|.|.|
NP_337032.1      105 IDSETLDDEHRRELLDYLE    123

(a)

(b)

▼

▼ ▼

FIgure  3.23 (a) Global pairwise alignment of bacterial proteins containing globin domains 
from Streptomyces avermitilis MA‐4680 (NP_824492) and Mycobacterium tuberculosis CDC1551 
(NP_337032). The scoring matrix was BLOSUM62. The aligned proteins share 14.7% identity (39/266 
aligned residues), 22.6% similarity (60.266), and 51.9% gaps (138/266). (b) A local pairwise alignment 
of these two sequences lacks the unpaired amino‐ and carboxy‐terminal extensions and shows 30% 
identity (35/115 aligned residues). The alignment in (b) corresponds to the shaded region of (a). The 
arrowheads in (a) indicate aligned residues that were not seen in the local alignment. In performing 
local alignments (as is done in BLAST, Chapter 4) some authentically aligned regions may therefore 
be missed.
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each cell is selected as the maximum of the preceding diagonal or the score obtained from 
the introduction of a gap. However, the score cannot be negative: a rule introduced by the 
Smith–Waterman algorithm is that, if all other score options produce a negative value, 
then a zero must be inserted in the cell. The score S(i,j) is given as the maximum of four 
possible values (Fig. 3.24):

 1. The score from the cell at position i – 1, j – 1, that is, the score diagonally up to the 
left. To this score, add the new score at position s[i, j], which consists of either a 
match or a mismatch.

 2. S(i, j – 1) (i.e., the score one cell to the left) minus a gap penalty.
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(a)

(b)
sequence 1   GCC-UCG
sequence 2   GCCAUUG

(c)
sequence 1   CA-GCC-UCGCUUAG
sequence 2   AAUGCCAUUGACG-G

FIgure 3.24 Local sequence alignment method of Smith and Waterman (1981). (a) In this exam-
ple, the matrix is formed from two RNA sequences (CAGCCUCGCUUAG and AAUGCCAUUGACGG). 
While this is not an identity matrix (such as that shown in Fig. 3.21a), positions of nucleotide 
identity are shaded gray (or shaded pink in the region of local alignment). They scoring system 
here is +1 for a match, minus one‐third for a mismatch, and a gap penalty of the difference between 
a match and a mismatch (−1.3 for a gap of length one). The matrix is scored based on finding the 
maximum of four possible non‐negative values. The highest value in the matrix (3.3) corresponds 
to the beginning of the optimal local alignment, and the aligned residues (green font) extend up 
and to the left until a value of zero is reached. (b) The local alignment derived from this matrix is 
shown. Note that this alignment includes identities, a mismatch, and a gap. (c) A global alignment 
of the two sequences is shown for comparison to the local alignment. Note that it encompasses the 
entirety of both sequences. 

Source: Adapted from Smith and Waterman (1981). Reproduced with permissions from Elsevier.
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 3. S(i –1, j) (i.e., the score immediately above the new cell) minus a gap penalty.
 4. The number zero.

This condition ensures that there are no negative values in the matrix. In contrast, negative 
numbers commonly occur in global alignments because of gap or mismatch penalties 
(note the log‐odds matrices in this chapter).

An example of the use of a local alignment algorithm to align two nucleic acid 
sequences adapted from Smith and Waterman (1981) is shown in Figure 3.24. The 
topmost row and the leftmost column of the matrix are filled with zeros. The maxi-
mal alignment can begin and end anywhere in the matrix (within reason; the linear 
order of the two amino acid sequences cannot be violated). The procedure is to iden-
tify the highest value in the matrix (this value is 3.3 in Fig. 3.24a). This represents the 
end (3’ end for nucleic acids, or carboxy‐terminal portion proteins) of the alignment. 
This position is not necessarily at the lower right corner as it must be for a global 
alignment. The trace‐back procedure begins with this highest‐value position and 
proceeds diagonally up to the left until a cell is reached with a value of zero. This 
defines the start of the alignment, and it is not necessarily at the extreme top left of 
the matrix.

An example of a local alignment of two proteins using the Smith–Waterman algo-
rithm is shown in Figure 3.23b. Compare this with the global alignment of Figure 3.23a 
and note that the aligned region is shorter for the local alignment, while the percent iden-
tity and similarity are higher. Note also that the local alignment ignores several identi-
cally matching residues (Fig. 3.23a, arrowheads). Since database searches such as BLAST 
(Chapter 4) rely on local alignments, there may be conserved regions that are not reported 
as aligned, depending on the chosen search parameters.

rapid, heuristic Versions of Smith–Waterman: FaSta and bLaSt

While the Smith–Waterman algorithm is guaranteed to find the optimal alignment(s) 
between two sequences, it suffers from the fact that it is relatively slow. For pairwise 
alignment, speed is usually not a problem. When a pairwise alignment algorithm is 
applied to the problem of comparing one sequence (a “query”) to an entire database 
however, the speed of the algorithm becomes a significant issue and may vary by orders 
of magnitude.

Most algorithms have a parameter N that refers to the number of data items to be 
processed (see Sedgewick, 1988). This parameter can greatly affect the time required for 
the algorithm to perform a task. If the running time is proportional to N, then doubling 
N doubles the running time. If the running time is quadratic (N2), then for N = 1000 the 
running time is one million. For both the Needleman–Wunsch and the Smith–Waterman 
algorithms, both the computer space and the time required to align two sequences is 
proportional to at least the length of the two query sequences multiplied by each other 
(m × n). For the search of a database of size N, this is m × N.

Another useful descriptor is O‐notation (called “big‐Oh notation”) which provides an 
approximation of the upper bounds of the running time of an algorithm. The Needleman–
Wunsch algorithm requires O(mn) steps, while the Smith–Waterman algorithm requires 
O(m2n) steps. Subsequently, Gotoh (1982) and Myers and Miller (1988) improved the 
algorithms so they require less time and space.

Two popular local alignment algorithms have been developed that provide rapid 
alternatives to Smith–Waterman: FASTA (Pearson and Lipman, 1988) and BLAST (Basic 
Local Alignment Search Tool; Altschul et al., 1990). Each of these algorithms requires 
less time to perform an alignment. The time saving occurs because FASTA and BLAST 
restrict the search by scanning a database for likely matches before performing more 

The modified alignment algorithms 
introduced by Gotoh (1982) and 
Myers and Miller (1988) require 
only O(nm) time and occupy O(n) 
in space. Instead of committing 
the entire matrix to memory, the 
algorithms ignore scores below 
a threshold in order to focus on 
the maximum scores that are 
achieved during the search.

FASTA stands for FAST‐All, 
referring to its ability to perform 
a fast alignment of all sequences 
(i.e., proteins or nucleotides).
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rigorous alignments. These are heuristic algorithms (Box 3.3) that sacrifice some sensi-
tivity in exchange for speed; in contrast to Smith–Waterman, they are not guaranteed to 
find optimal alignments.

The FASTA search algorithm introduced by Pearson and Lipman (1988) proceeds in 
four steps.

 1. A lookup table is generated consisting of short stretches of amino acids or nucleo-
tides from a database. The size of these stretches is determined from the ktup param-
eter. If ktup = 3 for a protein search, then the query sequence is examined in blocks 
of three amino acids against matches of three amino acids found in the lookup table. 
The FASTA program identifies the 10 highest scoring segments that align for a given 
ktup.

 2. These 10 aligned regions are rescored, allowing for conservative replacements, using 
a scoring matrix such as PAM250.

 3. High‐scoring regions are joined together if they are part of the same proteins.
 4. FASTA then performs a global (Needleman–Wunsch) or local (Smith–Waterman) 

alignment on the highest scoring sequences, thus optimizing the alignments of the 
query sequence with the best database matches.

Dynamic programming is therefore applied to the database search in a limited fash-
ion, allowing FASTA to return its results very rapidly because it evaluates only a portion 
of the potential alignments.

basic Local alignment Search tool (bLaSt)

BLAST was introduced as a local alignment search tool that identifies alignments between 
a query sequence and a database without the introduction of gaps (Altschul et al., 1990). 
The version of BLAST that is available today allows gaps in the alignment. We provided 
an example of an alignment of two proteins (Figs 3.4 and 3.5) and introduce BLAST in 
more detail in Chapter 4, where we describe its heuristic algorithm.

pairwise alignment with Dotplots

In addition to displaying a pairwise alignment, the BLAST output includes a dotplot (or 
dot matrix), which is a graphical method for comparing two sequences. One protein or 
nucleic acid sequence is placed along the x axis and the other is placed along the y axis. 
Positions of identity are scored with a dot. A region of identity between two sequences 
results in the formation of a diagonal line. This is illustrated for an alignment of human 
cytoglobin with itself as part of the BLAST output (Fig. 3.25a). We also illustrate a dotplot 
using the web‐based Dotlet program of Junier and Pagni (2000; Web Document 3.7). 
Dotlet features an adjustable sliding window size, a zoom feature, a variety of scoring 
matrices, and a histogram window to adjust the pixel intensities in order to manually 
optimize the signal‐to‐noise ratio.

We can further illustrate the usefulness of dotplots by examining an unusual hemo-
globin protein of 2148 amino acids from the snail Biomphalaria glabrata. It consists of 13 
globin repeats (Lieb et al., 2006). When we compare it to human cytoglobin (190 amino 
acids) with a default BLOSUM62 matrix, the BLAST output shows cytoglobin (x axis) 
matching the snail protein 12 times (y axis) (Fig. 3.25b); one repeat is missed. By chang-
ing the scoring matrix to BLOSUM45 we can now see all 13 snail hemoglobin repeats 
(Fig. 3.25c). The gap at the start of the dotplot (Fig. 3.25c, position 1 to the first red arrow-
head on x axis) is evident in the pairwise alignment of that region (Fig. 3.25d): the first 128 
amino acids of the snail protein are unrelated and therefore not aligned with cytoglobin. 
Using Dotlet, all 13 globin repeats are evident in a comparison of the snail protein with 
itself or with cytoglobin (Web Document 3.7).

The parameter ktup refers to 
multiples such as duplicate, 
triplicate, or quadruplicate (for  
k = 2, k = 3, k = 4). The ktup values 
are usually 3–6 for nucleotide 
sequences and 1–2 for amino acid 
sequences. A small ktup value 
yields a more sensitive search but 
requires more time to complete.

William Pearson of the University 
of Virginia provides FASTA 
online. Visit  http://fasta 
.bioch.virginia.edu/fasta_www2/
fasta_list2.shtml (WebLink 3.8). 
Another place to try FASTA is 
at the European Bioinformatics 
Institute website,  http://www 
.ebi.ac.uk/fasta33/ (WebLink 3.9).

Dotlet is a web‐based diagonal 
plot tool available from the Swiss 
Institute of Bioinformatics (  http://
myhits.isb‐sib.ch/cgi‐bin/dotlet, 
WebLink 3.10). It was written by 
Marco Pagni and Thomas Junier. 
The website provides examples 
of the use of Dotlet to visualize 
repeated domains, conserved 
domains, exons and introns, 
terminators, frameshifts, and low‐
complexity regions.

The accession number of the 
snail globin is CAJ44466.1,while 
the accession of human 
cytoglobin is NP_599030.1.

http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
http://www.ebi.ac.uk/fasta33/
http://myhits.isb%E2%80%90sib.ch/cgi%E2%80%90bin/dotlet
http://myhits.isb%E2%80%90sib.ch/cgi%E2%80%90bin/dotlet
http://www.ebi.ac.uk/fasta33/
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FIgure 3.25 Dot matrix plots in the output of the NCBI BLASTP program permit visualization of matching domains in pairwise 
protein alignments. The program is used as described in Figure 3.4. (a) For a comparison of human cytoglobin (NP_599030.1, length 
190 amino acids) with itself, the output includes a dotplot shown with sequences 1 and 2 (both cytoglobin) on the x and y axes, and the 
data points showing amino acid identities appear as a diagonal line. (b) For a comparison of cytoglobin with a globin from the snail 
Biomphalaria glabrata (accession CAJ44466.1, length 2148 amino acids), the cytoglobin sequence (x axis) matches 12 times with 
internal globin repeats in the snail protein. This search uses the default BLOSUM62 scoring matrix. (c) Changing the scoring matrix 
to PAM250 enables all 13 globin repeats of the snail protein to be aligned with cytoglobin. (d) A pairwise alignment of the sequences 
shows that the snail globin repeats align with residues 18–154 of cytoglobin. This is reflected in the dotplots, where the portion on the x 
axis corresponding to cytoglobin residues 1–17 and 155–190 (see red arrowheads in (c)) do not align to the snail sequence. The BLASTP 
output produces a set of all the pairwise alignments of which the first is shown here. 

Source: BLASTP, NCBI. 
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tHe stAtIstIcAl sIgnIfIcAnce of  
PAIrwIse AlIgnments
How can we decide whether the alignment of two sequences is statistically significant? 
We address this question for local alignments and then for global alignments.

Consider two proteins that share limited amino acid identity (e.g., 20–25%). Align-
ment algorithms report the score of a pairwise alignment or the score of the best align-
ments of a query sequence against an entire database of sequences (Chapter 4). We need 
statistical tests to decide whether the matches are true positives (i.e., whether the two 
aligned proteins are genuinely homologous) or whether they are false positives (i.e., 
whether they have been aligned by the algorithm by chance; Fig. 3.26). For the alignments 
that are not reported by an algorithm, for instance because the score falls below some 
threshold, we would like to evaluate whether the sequences are true negatives (i.e., gen-
uinely unrelated) or whether they are false negatives, that is, homologous sequences that 
receive a score suggesting that they are not homologous.

A main goal of alignment algorithms is therefore to maximize the sensitivity and 
specificity of sequence alignments (Fig. 3.26). Sensitivity is the number of true positives 
divided by the sum of true positive and false negative results. This is a measure of the 
ability of an algorithm to correctly identify genuinely related sequences. Specificity is 
the number of true negative results divided by the sum of true negative and false positive 
results. This describes the sequence alignments that are not homologous.

Statistical Significance of global alignments

When we align two proteins, such as human beta globin and myoglobin, we obtain a 
score. We can use hypothesis testing to assess whether that score is likely to have occurred 
by chance. To do this, we first state a null hypothesis (H0) that the two sequences are not 
related. According to this hypothesis, the score S of beta globin and myoglobin represents 
a chance occurrence. We then state an alternative hypothesis (H1) that they are indeed 

True negative
(TN)

Information based on a “gold standard” (e.g. 3D structure)

sequences are 
homologous

sequences are 
not homologous

alignment result:
sequences reported 

as related

alignment result: 
sequences reported 

as not related 
(or, sequences 

not reported)

True positives
(TP)

False positives
(FP) All positives

All negativesFalse negative
(FN)

FIgure  3.26 Sequences alignments, whether pairwise (this chapter) or from a database search 
(Chapter 4), can be classified as true or false and positives or negatives. Statistical analyses of align-
ments provide the main method of evaluating whether an alignment represents a true positive, that is, 
an alignment of homologous sequences. Ideally, an alignment algorithm can maximize both sensitivity 
and specificity.

We encounter dotplots in 
Chapter 16 when we compare 
viral genome sequences to each 
other. We also see a dotplot in 
Chapter 18 (on fungi). Protein 
sequences from Saccharomyces 
cerevisiae chromosomes were 
systematically BLASTP searched 
against each other. The resulting 
dotplot (Fig. 18.10) showed 
many diagonal lines, indicating 
homologous regions. This provided 
evidence that, surprisingly, the 
entire yeast genome duplicated 
over 100 million years ago.
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related. We choose a significance value α, often set to 0.05, as a threshold for defining sta-
tistical significance. One approach to determining whether our score occurred by chance 
is to compare it to the scores of beta globin or myoglobin relative to a large number of 
other proteins (or DNA sequences) known to be not homologous. Another approach is 
to compare the query to a set of randomly generated sequences. A third approach is to 
randomly scramble the sequence of one of the two query proteins (e.g., myoglobin) and 
obtain a score relative to beta globin; by repeating this process 100 times, we can obtain 
the sample mean (x) and sample standard deviation (s) of the scores for the randomly 
shuffled myoglobin relative to beta globin. We can express the authentic score in terms of 
how many standard deviations above the mean it is. A Z score (Box 3.10) is calculated as:

Z
x

s

µ= −
  (3.8)

where x is the score of two aligned sequences, μ is the mean score of many sequence 
comparisons using a scrambled sequence, and s is the standard deviation of those mea-
surements obtained with random sequences. We can do the shuffle test using an algorithm 
such as PRSS. This calculates the score of a global pairwise alignment, and also performs 
comparisons of one protein to a randomized (jumbled) version of the other.

If the scores are normally distributed, then the Z statistic can be converted to a prob-
ability value. If Z = 3, then we can refer to a table in a standard statistics resource to see 

Box 3.10 stAtIstIcAl concePts: Z-scores
The familiar bell‐shaped curve is a Gaussian distribution or normal distribution. The x axis corresponds to some measured values, such as 
the alignment score of beta globin versus 100 randomly shuffled versions of myoglobin. The y axis corresponds to the probability density 
(when considering measurements of an exhaustive set of shuffled myoglobins) or to the number of trials (when considering a number of 
shuffled myoglobins). The mean value is obtained simply by adding all the scores and dividing by the number of pairwise alignments; it is 
apparent at the center of a Gaussian distribution. For a set of data points x1, x2, x3, … xn the mean x is the sum divided by n, or:
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The sample variance s2 describes the spread of the data points from the mean. It is related to the squares of the distances of the data 
points from the mean, and it is given by:
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The sample standard deviation s is the square root of the variance, so its units match those of the data points. It is defined:
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Note that s is the sample standard deviation (rather than the population standard deviation, σ) and s2 is the sample variance. Popu-
lation variance refers to the average of the square of the deviations of each value from the mean, while the sample variance includes an 
adjustment from number of measurements N; m is the sample mean (rather than the population mean, μ). Z‐scores (also called standard-
ized scores) describe the distance from the mean per standard deviation:

Z
x x

s
.i

i= −

If you compare beta globin to myoglobin, you can get a score (such as 43.9 as shown in Fig. 3.5a) based on some scoring system. Ran-
domly scramble the sequence of myoglobin 1000 times (maintaining the length and composition of the myoglobin), and measure the 
1000 scores of beta globin to these scrambled sequences. You can obtain a mean and standard deviation of the comparison to shuffled 
sequences. For more information on statistical concepts, see Motulsky (1995) and Cumming et al. (2007).

PRSS, written by William Pearson, 
is available online at  http://
fasta.bioch.virginia.edu/fasta_
www2/fasta_www.cgi?rm=shuffle 
(WebLink 3.11). For an example of 
PRSS output for a comparison of 
human beta globin and myoglobin, 
see Web Document 3.8 at  http://
www.bioinfbook.org/chapter3.

http://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=shuffle
http://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=shuffle
http://www.bioinfbook.org/chapter3
http://www.bioinfbook.org/chapter3
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that 99.73% of the population (i.e., of the scores) are within three standard deviations of 
the mean, and the fraction of scores that are greater than three standard deviations beyond 
the mean is only 0.13%. We can expect to see this particular score by chance about 1 time 
in 750 (i.e., 0.13% of the time). The problem in adopting this approach is that if the dis-
tribution of scores deviates from a Gaussian distribution the estimated significance level 
will be wrong. For global (but not local) pairwise alignments, the distribution is generally 
not Gaussian; there is therefore not a strong statistical basis for assigning significance 
values to pairwise alignments. What can we conclude from a Z score? If 100 alignments 
of shuffled proteins all have a score less than the authentic score of two aligned proteins, 
this indicates that the probability (p) that this occurred by chance is less than 0.01. (We 
can therefore reject the null hypothesis that the two protein sequences are not signifi-
cantly related.) However, because of the concerns about the applicability of the Z score to 
sequence scores, conclusions about statistical significance should be made with caution.

Another consideration involves the problem of multiple comparisons. If we com-
pare a query such as beta globin to one million proteins in a database, we have a million 
opportunities to find a high‐scoring match between the query and some database entry. 
In such cases it is appropriate to adjust the significance level α, that is, the probability at 
which the null hypothesis is rejected, to a more stringent level. One approach, called a 
Bonferroni correction, is to divide α (nominally p < 0.05) by the number of trials (106) to 
set a new threshold for defining statistical significance of level of 0.05/106, or 5 × 10−8. 
The equivalent of a Bonferroni correction is applied to the probability value calculation of 
BLAST statistics (see Chapter 4), and we also encounter multiple comparison corrections 
in microarray data analysis (see Chapter 11).

Statistical Significance of Local alignments

Most database search programs such as BLAST (Chapter 4) depend on local alignments. 
Additionally, many pairwise alignment programs compare two sequences using local 
alignment.

percent Identity and relative entropy

One approach to deciding whether two sequences are significantly related from an evolu-
tionary point of view is to consider their percent identity. It is very useful to consider the 
percent identity that two proteins share in order to obtain a sense of their degree of relat-
edness. As an example, a global pairwise alignment of odorant‐binding protein from rat 
and cow reveals only 30% identity, although both are functionally able to bind odorants 
with similar affinities (Pevsner et al., 1985). The rat protein shares just 26% identity to its 
closest human ortholog. From a statistical perspective the inspection of percent identities 
has limited usefulness in the “twilight zone;” it does not provide a rigorous set of rules for 
inferring homology and it is associated with false positive or false negative results. A high 
degree of identity over a short region might sometimes not be evolutionarily significant, 
and conversely a low percent identity could reflect homology. Percent amino acid identity 
alone is not sufficient to demonstrate (or rule out) homology.

Still, it may be useful to consider percent identity. Some researchers have suggested 
that if two proteins share 25% or more amino acid identity over a span of 150 or more 
amino acids, they are probably significantly related (Brenner et al., 1998). If we consider 
an alignment of just 70 amino acids, it is popular to consider the two sequences “signifi-
cantly related” if they share 25% amino acid identity. However, Brenner et al. (1998) have 
shown that this may be erroneous, partly because the enormous size of today’s molecular 
sequence databases increases the likelihood that such alignments occur by chance. For an 
alignment of 70 amino acid residues, 40% amino acid identity is a reasonable threshold 
to estimate that two proteins are homologous (Brenner et al., 1998). If two proteins share 

For local pairwise alignments, 
the best approach to defining 
statistical significance is to 
estimate an expect value  
(E value) which is closely related 
to a probability value (p value). 
In contrast to the situation 
with global alignment, for local 
alignment there is a thorough 
understanding of the distribution 
of scores. An E value describes 
the number of matches having 
a particular score (or better) 
that are expected to occur 
by chance. For example, if a 
pairwise alignment of a beta 
globin and a myoglobin has some 
score with an associated E value 
of 10−3, that particular score (or 
better) can be expected one 
time in one thousand by chance. 
This is the approach taken by 
the BLAST family of programs; 
we discuss E values in detail in 
Chapter 4.

The accession numbers of rat 
and bovine odorant‐binding 
proteins are NP_620258.1 and 
P07435.2; the human protein 
closest to rat has accession 
EAW50553.1. The alignments of 
these proteins are shown in Web 
Document 3.9 at  http://www 
.bioinfbook.org/chapter3.

http://www.bioinfbook.org/chapter3
http://www.bioinfbook.org/chapter3
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about 20–25% identity over a reasonably long stretch (e.g., 70–100 amino acid residues), 
they are in the “twilight zone” (Fig. 3.19) and it is more difficult to be sure. Two proteins 
that are completely unrelated often share about 10–20% identity when aligned. This is 
especially true because the insertion of gaps can greatly improve the alignment of any 
two sequences.

Altschul (1991) evaluated alignment scores from an information theory perspective. 
Target frequencies vary as a function of evolutionary distance. Recall that an alignment of 
alanine with threonine is assigned a different score in a PAM10 matrix (–3; see Fig. 3.15) 
than in a PAM250 matrix (+1; see Fig. 3.14). The relative entropy (H) of the target and 
background distributions measures the information that is available per aligned amino 
acid position that, on average, distinguishes a true alignment from a chance alignment 
(Box 3.11). For a PAM10 matrix, the value of H is 3.43 bits. Assuming that 30 bits of 
information are sufficient to distinguish a true rather than a chance alignment in a data-
base search, an alignment of at least 9 residues is needed using a PAM10 matrix (Fig. 3.27). 
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FIgure 3.27 Relative entropy (H) as a function of PAM distance. For PAM matrices with low value 
(e.g., PAM10), the relative entropy in bits is high and the minimum length required to detect a signifi-
cantly aligned pair of sequences is short (e.g., about 10 amino acids). Using a PAM10 matrix, two very 
closely related proteins can therefore be detected as homologous even if only a relatively short region 
of amino acid residues is compared. For PAM250 and other PAM matrices with high values, the relative 
entropy (or information content in the sequence) is low, and it is necessary to have a longer region of 
amino acids (e.g., 80 residues) aligned in order to detect significant relationships between two proteins. 
Adapted from Altschul (1991).

Box 3.11 relAtIve entroPy
Altschul (1991) estimated that about 30 bits of information are required to distinguish an authentic alignment from a chance alignment 
of two proteins of average size (given that one protein is used against a database of a particular size). For each substitution matrix with its 
unique target frequencies qij and background distributions pi pj, it is possible to derive the relative entropy H as follows (Altschul, 1991):

H q s q
q

p p
logi, j

i, j
i, j i, j

i, j

ij

i j
2∑ ∑= =

where H corresponds to the information content of the target and background distributions associated with a particular scoring matrix 
(units nats). As shown in Figure 3.27, for higher H values it is easier to distinguish the target from background frequencies. This anal-
ysis is consistent with the analysis of the diagonals for the PAM1 and PAM250 mutation probability matrices (Figs 3.9 and 3.13) in 
which there is far less signal apparent in the PAM250 matrix.
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For a PAM250 matrix however, the relative entropy is 0.36 and an alignment of at least 83 
residues are needed to distinguish authentic alignments.

We see in Chapter 5 that scoring matrices (“profiles”) can be customized to a sequence 
alignment, greatly increasing the sensitivity of a search. We also see in Chapters 5 and 6 
that multiple sequence alignments can offer far greater sensitivity than pairwise sequence 
alignment.

PersPectIve
The pairwise alignment of DNA or protein sequences is one of the most fundamental 
operations of bioinformatics. Pairwise alignment allows the relationship between any two 
sequences to be determined, and the degree of relatedness that is observed helps in the 
forming of a hypothesis about whether they are homologous (descended from a common 
evolutionary ancestor). Almost all of the topics in the rest of this book are heavily depen-
dent upon sequence alignment. In Chapter 4, we introduce the searching of large DNA 
and/or protein databases with a query sequence. Database searching typically involves an 
extremely large series of local pairwise alignments, with results returned as a rank order 
beginning with most related sequences.

tabLe 3.4 global pairwise alignment algorithms.

Program Site URL

BLAST NCBI   http://www.ncbi.nlm.nih.gov/
BLAST/

Needle EMBOSS package 
(global pairwise alignment)

EBI   http://www.ebi.ac.uk/Tools/
emboss/

Water EMBOSS package  
(local pairwise alignment)

EBI   http://www.ebi.ac.uk/emboss/
align/

Pairwise Two Sequence Alignment Tool 
(global and local options)

  http://informagen.com/
Applets/Pairwise/

Stretcher Institut Pasteur; global 
alignment

  http://bioweb2.pasteur.fr/
docs/EMBOSS/ stretcher.html

tabLe 3.5 Local pairwise alignment algorithms.

Resource Description URL

BLAST At NCBI http://www.ncbi.nlm.nih.gov/BLAST/

est2genome EMBOSS program from the Institut 
Pasteur; aligns expressed sequence tags 
to genomic DNA

http://bioweb.pasteur.fr/docs/EMBOSS/
est2genome.html

LALIGN Finds multiple matching subsegments in 
two sequences

http://www.ch.embnet.org/software/
LALIGN_form.html

Pairwise Two sequence alignment tool (global and 
local options)

http://informagen.com/Applets/
Pairwise/

PRSS From the University of Virginia (Bill 
Pearson)

http://fasta.bioch.virginia.edu/fasta_
www2/fasta_www.cgi?rm=shuffle

SIM Alignment tool for protein sequences 
from ExPASy

http://web.expasy.org/sim/

SSEARCH At the Protein Information Resource http://pir.georgetown.edu/pirwww/
search/pairwise.shtml

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ebi.ac.uk/Tools/emboss/
http://www.ebi.ac.uk/emboss/align/
http://informagen.com/Applets/Pairwise/
http://bioweb2.pasteur.fr/docs/EMBOSS/ stretcher.html
http://www.ncbi.nlm.nih.gov/BLAST/
http://bioweb.pasteur.fr/docs/EMBOSS/est2genome.html
http://www.ch.embnet.org/software/LALIGN_form.html
http://informagen.com/Applets/Pairwise/
http://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi?rm=shuffle
http://web.expasy.org/sim/
http://pir.georgetown.edu/pirwww/search/pairwise.shtml
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The algorithms used to perform pairwise alignment were developed in the 1970s, 
beginning with the global alignment procedure of Needleman and Wunsch (1970). Day-
hoff (1978) introduced PAM scoring matrices that permit the comparison and evaluation 
of distantly related molecular sequences. Scoring matrices are an integral part of all pair-
wise (or multiple) sequence alignments, and the choice of a scoring matrix can strongly 
influence the outcome of a comparison. By the 1980s, local alignment algorithms were 
introduced (see the work of Sellers, 1974; Smith and Waterman, 1981; Smith et al., 1981). 
Practically, pairwise alignment is performed today with a limited group of software pack-
ages, most of which are freely available.

The sensitivity and specificity of the available pairwise sequence alignment algorithms 
continue to be assessed. Recent areas in which pairwise alignment has been further 
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FIgure  3.28 Substitution frequencies of globins (adapted from Zuckerkandl and Pauling, 1965,  
p. 118). Amino acids are presented alphabetically according to the three‐letter abbreviations. The rows 
correspond to an original amino acid in an alignment of several dozen hemoglobin and myoglobin pro-
tein sequences from human, other primates, horse, cattle, pig, lamprey, and carp. Numbers represent the 
percentages of residue sites at which a given substitution occurs. For example, a glycine substitution 
was observed to occur in 33% of all the alanine sites. Substitutions that were never observed to occur 
are indicated by squares colored red. Rarely occurring substitutions (percentages <20%) are indicated 
by empty white squares (numerical values are not given). “Very conservative” substitutions (percentages 
≥40%) are in boxes shaded gray. For example, in 89% of the sites containing a methionine, leucine was 
also observed to be present. Identities are indicated by black solid squares. Values in parentheses indi-
cate a very small available sample size, suggesting that conclusions about those data should be made 
cautiously. 

Source: Zuckerkandl and Pauling (1965).
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developed include methods of masking low‐complexity sequences (to be discussed in 
Chapter 4) and theoretical models for penalizing gaps in alignments.

PItfAlls
The optional parameters that accompany a pairwise alignment algorithm can greatly influ-
ence the results. A comparison of the homologs human RBP4 and bovine β‐lactoglobulin 
using BLAST 2 Sequences results in no match detected if the default parameters are used.

Any two sequences can be aligned, even if they are unrelated. In some cases, two 
proteins that share even greater than 30% amino acid identity over a stretch of 100 amino 
acids are not homologous (evolutionarily related). It is always important to assess the 
biological significance of a sequence alignment. This may involve searching for evidence 
for a common cellular function, a common overall structure or, if possible, a similar 
three‐dimensional structure.

Consider two aligned proteins, each of length 100 amino acids. When they share 
50% amino acid identity, then on average 80 changes have occurred. I have found that 
this concept confuses many students. The explanation is that the observed number of 
changes (50 differences per 100 aligned residues) does not reflect the multiple substitu-
tions that have occurred. For example, the proteins might be a mouse and human globin. 
About 90 million years ago a species of furry little creatures separated into two groups, 
eventually leading to speciation and the emergence of primate and rodent lineages. At one 
position the protein might have had an alanine in the common ancestor that mutated to a 
threonine and then to an asparagine in the rodent lineage. Two changes occurred at that 
particular position over a period of millions of years, although we observe only one. We 
further explore this concept in Chapter 7 on phylogeny and evolution.

When two proteins share 20% amino acid identity (and are in the “twilight zone”) 
they have 80 observed differences. However, Dayhoff (1978) estimated that 250 changes 
(on average) had occurred. The PAM250 matrix was therefore considered useful for 
detecting distantly related proteins.

AdvIce for students
Begin using the BLAST website at NCBI to compare two sequences. Choose two closely 
related proteins and two that are very distantly related; what are the effects of changing 
scoring matrices or other parameters? For each topic we discussed, try to gain practi-
cal experience. For example, select members of a protein family that are locally aligned 
because they share a region of homology, and perform global alignment as well. Can 
you change the local alignment search parameters to include larger or smaller aligned 
regions? Also try different alignment tools, from various websites to R or Python. In 
Chapter 4 we introduce BLAST+ for performing any BLAST search on the command 
line, and you can also use BLAST+ for pairwise alignment.

weB resources
Pairwise sequence alignment can be performed using software packages that imple-
ment global or local alignment algorithms. In all cases, two protein or two nucleic acid 
sequences are directly compared.

Many websites offer web‐based pairwise local alignment algorithms based upon 
global alignment (table 3.4) or local alignment (table 3.5). These sites include EBI and 
NCBI, the Baylor College of Medicine (BCM) launcher, the SIM program at ExPASy, 
and SSEARCH at the Protein Information Resource (PIR) at Georgetown University. 
Computer lab problem (3.4) introduces pairwise alignment in R.

Joshua Lederberg helped 
Zuckerkandl and Pauling 
(1965) make the matrix of 
Figure 3.28. They used an 
IBM 7090 computer, one of the 
first commercial computers 
based on transistor technology. 
The computer cost about US$3 
million. Its memory consisted 
of 32,768 binary words or about 
131,000 bytes. To read about 
Lederberg’s Nobel Prize from 
1958, see  http://nobelprize 
.org/nobel_prizes/medicine/
laureates/1958/ (WebLink 3.12).

http://nobelprize.org/nobel_prizes/medicine/laureates/1958/
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Discussion Questions
[3-1] If you want to compare any two 
proteins, is there any one “correct” scor-
ing matrix to choose? Is there any way 
to know which scoring matrix is best to 
try?

[3-2] Many protein (or DNA) sequences have separate 
domains. (We discuss domains in Chapter 12.) Consider 
a protein that has one domain that evolves rapidly and a 
second domain that evolves slowly. In performing a pair-
wise alignment with another protein (or DNA) sequence, 
would you use two separate alignments with scoring matri-
ces such as PAM40 and PAM250 or would you select one 
“intermediate” matrix? Why?

[3-3] Years before Margaret Dayhoff and colleagues pub-
lished a protein atlas with scoring matrices, Emile Zucker-
kandl and Linus Pauling (1965) produced a scoring matrix 
for several dozen available globin sequences (Fig. 3.28). 
The rows (y axis) of this figure show the original globin 
amino acid, and the columns show substitutions that were 
observed to occur. Numerical values are entered in cells for 
which the substitutions occur in at least 20% of the sites. 
Note that, for cells shaded red, these amino acid substitu-
tions were never observed; for cells shaded gray the amino 
acid substitutions were defined as very conservative. How 
do the data in this matrix compare to those described by 
Dayhoff and colleagues? Which substitutions occur most 
rarely, and which most frequently? How would you go 
about filling in this table today?

[3-4] The first five computer lab problems (below) guide 
you to perform pairwise alignment using five different meth-
ods. If you want to align two protein or DNA sequences, 
how can you decide which tool(s) are most appropriate? In 
other words, what are some of the strengths and limitations 
of these various methods?

[3-5] The PAM1 matrix (Fig. 3.9) is nonreciprocal: the 
probability of changing an amino acid such as alanine 
to arginine is not equal to the probability of changing an 
arginine to an alanine. Why? Log‐odds matrices such as 
PAM10 (Figure 3.15) are reciprocal.

prObLeMS/COMputer Lab
For problems (3.1)–(3.3) and (3.5) we perform pair-
wise alignments of globins using complementary 
approaches.
[3-1] Obtain the human HBA and HBB protein 
sequences. Perform pairwise alignment at the NCBI 
BLAST website. Then use a comparison tool from the 
EBI website. Vary the scoring matrix (e.g., try different 

> getwd() # Get (show) the working directory 
# Use setwd() to change it to any location
> source("http://bioconductor.org/biocLite.R")
> biocLite("Biostrings")
> library(Biostrings) 
# Install the Biostrings library
> data(BLOSUM50) 
# load the data for the BLOSUM50 matrix
> BLOSUM50[1:4,1:4]
# view the first four rows and
# columns of this matrix
> nw <- pairwiseAlignment(AAString("PAWHEAE"), 
AAString("HEAGAWGHEE"), substitutionMatrix = 

PAM and BLOSUM matrices) and record the effects on 
the score, the number of gaps, the percent identity, and 
the length of the aligned region. For the NCBI BLASTP 
program note that the output of a pairwise alignment 
includes a dot matrix view.

[3-2] Perform pairwise alignment at the UCSC website. 
(1) Go to  http://genome.ucsc.edu (WebLink 3.13). follow 
the link to the genome browser, select the human genome 
hg19 build, and enter a query of hbb. This should direct you 
to chr11:5,246,696–5,248,301 (a region of 1606 base pairs 
encompassing the beta globin gene, HBB. (2) Click the box 
to set the view to default tracks. (3) Under “Comparative 
Genomics” select Placental Chain/Net and set the display 
to full. By clicking the Placental Chain/Net header you can 
view a series of options. Set Chains to full view and Nets to 
full view. Set the species to horse (deselect other species). 
Click submit. (4) The display now shows human/horse 
chained alignments and and alignment nets.

[3-3] Perform pairwise alignment using EMBOSS tools 
via Galaxy and UCSC. In this exercise we perform global 
alignment with the EMBOSS package needle and local 
alignment with the EMBOSS package water. Both of 
these are available at the Galaxy public web server (along 
with over 100 other EMBOSS tools). Box 3.9 introduces 
EMBOSS and explains how to import beta globin (HBB) 
and alpha globin (HBA2) proteins from the UCSC Table 
Browser using Galaxy, and to then align them. This his-
tory is saved at  https://main.g2.bx.psu.edu/u/pevsner/h/
pairwise‐alignment‐via‐ucsc‐and‐emboss (WebLink 3.14). 
Note that Galaxy is a web‐based platform for using hun-
dreds of bioinformatics tools, including next‐generation 
sequence data analysis software. To use it visit  http://use-
galaxy.org then go to the public server. Be sure to create a 
username and log in. This will allow you to continue your 
work over time and at different work stations.

[3-4] View scoring matrices and perform pairwise align-
ment using R. In this exercise we begin by installing the 
Biostrings package. Instructions for installing R and 
RStudio are given in Chapter 2.

http://genome.ucsc.edu
https://main.g2.bx.psu.edu/u/pevsner/h/pairwise%E2%80%90alignment%E2%80%90via%E2%80%90ucsc%E2%80%90and%E2%80%90emboss
http://use-galaxy.org
http://use-galaxy.org
http://bioconductor.org/biocLite.R
https://main.g2.bx.psu.edu/u/pevsner/h/pairwise%E2%80%90alignment%E2%80%90via%E2%80%90ucsc%E2%80%90and%E2%80%90emboss
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[3-5] Perform pairwise alignment using Python, a freely 
available programming language. When implemented 
with Biopython it offers a broad range of computational 
tools (Cock et al., 2009). You will need to install three 
programs: (1) Python; (2) Numpy (a package for scientific 
computing with Python); and (3) Biopython (this provides 
particular bioinformatics applications within the Python 
framework). The downloads can be obtained from  http://
www.python.org (WebLink 3.15),  http://www.numpy.
org/ (WebLink 3.16), and  http://biopython.org (WebLink 
3.17).If you are working on a PC launch a user‐friendly 
interface called IDLE (Python’s Integrated DeveLopment 
Environment). From a Mac, open a terminal window and 
type python to see the command prompt (>>>).n For infor-
mation on installing Biopython, and for a “cookbook” with 
many basic bioinformatics applications including pairwise 
alignment, visit  http://biopython.org/DIST/docs/tutorial/ 
Tutorial.html (WebLink 3.18). Try the following commands; 
my comments follow a hash (#) and are in green text.

Self-test Quiz
[3-1]  Match the following amino acids 

with their single-letter codes:
Asparagine Q

Glutamine W

Tryptophan Y

Tyrosine N

Phenylalanine F

[3-2] Orthologs are defined as:

(a) Homologous sequences in different species that share 
an ancestral gene.

(b) Homologous sequences that share little amino acid 
identity but share great structural similarity.

(c) Homologous sequences in the same species that arose 
through gene duplication.

BLOSUM50, gapOpening = 0, gapExtension = -8)  
# create object  
# nw aligning two amino acid strings with the  
# specified matrix and gap penalties
> nw # view the result.
# Try repeating this alignment with
# different gap penalties and scoring matrices.
# Biostrings includes 10 matrices (PAM30 PAM40, 
# PAM70, PAM120, PAM250, BLOSUM45, BLOSUM50, 
# BLOSUM62, BLOSUM80, and BLOSUM100).
> compareStrings(nwdemo) # view the alignment

$ python # launch python from a terminal
Python 2.7.5 (default, Mar  9 2014, 22:15:05)
Type "copyright", "credits" or "license()" for 
more information.
>>> from Bio import pairwise2
>>> from Bio.SubsMat import MatrixInfo as 
matlist
>>> matrix = matlist.blosum62
# specify the scoring matrix
>>> help(matlist)

# This shows a list of available matrices
>>> gap_open = -10 # set the affine gap penal-
ties
>>> gap_extend = -1
>>> hbb = "VTALWGKVNVDEVGGEALGRLL"  
# This is part of beta globin from Fig. 3.5b
>>> mb = “VLNVWGKVEADIPGHGQEVLIRLF”
# This is part of myoglobin from Fig. 3.5b
>>> alns = pairwise2.align.globalds(hbb, mb, ma-
trix, gap_open, gap_extend)
>>> top_aln = alns[0]
>>> aln_hbb, aln_mb, score, begin, end = top_aln
>>> print aln_hbb+’\n’+aln_mb
# the ‘\n’ command inserts a line break
VTALWGKVNVDEVGG--EALGRLL

VLNVWGKVEADIPGHGQEVLIRLF

 We have used the pairwise2 module from Python. It is 
capable of both global and local pairwise alignments. 
Compare the result to Fig. 3.5b and note that the gap place-
ment differs. Try raising the gap extend penalty from −0.5 
to −2. What happens to the alignment? Documentation is 
available for the pairwise2 Python module (http://biopy-
thon.org/DIST/docs/api/Bio.pairwise2-module.html).
[3-6] Using the amino acid explorer tool from NCBI. 
(1) Visit  http://www.ncbi.nlm.nih.gov/Class/Structure/aa/
aa_explorer.cgi (WebLink 3.19). (2) Select the Biochemical 
Properties table. Which amino acid is most abundant? (Is it 
leucine, at 9.94%?). Use this table to test yourself and make 
sure you know the one‐ and three‐letter abbreviations for all 
20 amino acids, as well as their structures. (3) Is tyrosine a 
hydrophobic amino acid? To decide, use the Common Substi-
tutions table. Explore valine (a hydrophobic residue), sort the 
results by hydrophobicity, and see where tyrosine is located. 
You can also explore the Structure and Chemistry table.

[3-7] Many tools are available to manipulate sequences. 
Visit the Sequence Manipulation Suite (  http://www.bio-
informatics.org/sms2/index.html) (Weblink 3.20) to access 
a large number of tools. (Compare its tools to those in 
EMBOSS) What is the reverse complement of the sequence 
GGAATTCC?

http://www.python.org
http://www.python.org
http://www.numpy.org/
http://biopython.org
http://biopython.org/DIST/docs/tutorial/Tutorial.html
http://biopy-thon.org/DIST/docs/api/Bio.pairwise2-module.html
http://biopy-thon.org/DIST/docs/api/Bio.pairwise2-module.html
http://www.ncbi.nlm.nih.gov/Class/Structure/aa/aa_explorer.cgi
http://www.bio-informatics.org/sms2/index.html
http://www.bio-informatics.org/sms2/index.html
http://www.numpy.org/
http://biopython.org/DIST/docs/tutorial/Tutorial.html
http://www.ncbi.nlm.nih.gov/Class/Structure/aa/aa_explorer.cgi
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(d) Homologous sequences in the same species which 
have similar and often redundant functions.

[3-3] Which of the following amino acids is least mutable 
according to the PAM scoring matrix?

(a) alanine;

(b) glutamine;

(c) methionine; or

(d) cysteine.

[3-4] The PAM250 matrix is defined as having an evo-
lutionary divergence in which what percentage of amino 
acids between two homologous sequences have changed 
over time?

(a) 1%;

(b) 20%;

(c) 80%; or

(d) 250%.

[3-5] Which of the following sentences best describes the 
difference between a global alignment and a local align-
ment between two sequences?

(a) Global alignment is usually used for DNA sequences, 
while local alignment is usually used for protein 
sequences.

(b) Global alignment has gaps, while local alignment does 
not have gaps.

(c) Global alignment finds the global maximum, while 
local alignment finds the local maximum.

(d) Global alignment aligns the whole sequence, while 
local alignment finds the best subsequence that 
aligns.

[3-6] You have two distantly related proteins. Which 
BLOSUM or PAM matrix is best suited to compare them?

(a) BLOSUM45 or PAM250;

(b) BLOSUM45 or PAM1;

(c) BLOSUM80 or PAM250; or

(d) BLOSUM80 or PAM1.

[3-7] How does the BLOSUM scoring matrix differ most 
notably from the PAM scoring matrix?

(a) It is best used for aligning very closely related pro-
teins.

(b) It is based on global multiple alignments from closely 
related proteins.

(c) It is based on local multiple alignments from distantly 
related proteins.

(d) It combines local and global alignment information.

[3-8] True or false: Two proteins that share 30% amino 
acid identity are 30% homologous.

[3-9] A global alignment algorithm (such as the Needle-
man–Wunsch algorithm) is guaranteed to find an optimal 
alignment. Such an algorithm:

(a) Puts the two proteins being compared into a matrix 
and finds the optimal score by exhaustively searching 
every possible combination of alignments.

(b) Puts the two proteins being compared into a matrix and 
finds the optimal score by iterative recursions.

(c) Puts the two proteins being compared into a matrix 
and finds the optimal alignment by finding optimal 
subpaths that define the best alignment(s).

(d) Can be used for proteins but not for DNA sequences.

 [3-10] In a database search or in a pairwise alignment, 
sensitivity is defined as:

(a) The ability of a search algorithm to find true positives 
(i.e., homologous sequences) and to avoid false posi-
tives (i.e., unrelated sequences having high similarity 
scores).

(b) The ability of a search algorithm to find true posi-
tives (i.e., homologous sequences) and to avoid false 
positives (i.e., homologous sequences that are not 
reported).

(c) The ability of a search algorithm to find true positives 
(i.e., homologous sequences) and to avoid false nega-
tives (i.e., unrelated sequences having high similarity 
scores).

(d) The ability of a search algorithm to find true posi-
tives (i.e., homologous sequences) and to avoid false 
negatives (i.e., homologous sequences that are not 
reported).

suggested reAdIng
We introduced this chapter with the concept of homology, an often misused term. A one‐
page article by Reeck et al. (1987) provides authoritative, standard definitions of the 
terms homology and similarity. Other discussions of homology in relation to phylogeny 
are provided by Tautz (1998) and Pearson (2013). The William Pearson article provides 
an excellent introduction to sequence alignment (including E values, which we describe 
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in Chapter 4). His earlier article (Pearson, 1996) provides descriptions of the statistics of 
similarity scores, sensitivity and selectivity, and search programs such as Smith–Water-
man and FASTA.

For studies of pairwise sequence alignment algorithms, an important historical start-
ing point is the 1978 book by Margaret O. Dayhoff and colleagues (Dayhoff, 1978). Most 
of this book consists of an atlas of protein sequences with accompanying phylogenetic 
reconstructions. Chapter 22 of the Atlas of Protein Sequence and Structure introduces the 
concept of accepted point mutations, while chapter 23 describes various PAM matrices. 
Russell F. Doolittle (1981) also wrote a clear, thoughtful overview of sequence alignment. 
By the early 1990s, when far more protein sequence data were available, Steven and Jorja 
Henikoff (1992) described the BLOSUM matrices. This article provides an excellent 
technical introduction to the use of scoring matrices, usefully contrasting the performance 
of PAM and BLOSUM matrices. Later (in Chapters 4 and 5) we will use these matrices 
extensively in database searching.

The algorithms originally describing global alignment are presented technically by 
Needleman and Wunsch (1970) and later local alignment algorithms were introduced by 
Smith and Waterman (1981) and Smith et al. (1981). The problem of both sensitivity (the 
ability to identify distantly related sequences) and selectivity (the avoidance of unrelated 
sequences) of pairwise alignments was addressed by Pearson and Lipman in a 1988 paper 
introducing the FASTA program.

Marco Pagni and C. Victor Jongeneel (2001) of the Swiss Institute of Bioinformatics 
provide an excellent overview of sequence‐scoring statistics. This includes a discussion 
of BLAST scoring statistics that is relevant to Chapters 4 and 5.

Finally, Steven Brenner, Cyrus Chothia, and Tim Hubbard (1998) have compared 
several pairwise sequence methods. This article is highly recommended as a way to learn 
how different algorithms can be assessed (we will see similar approaches for multiple 
sequence alignment in Chapter 6, for example). Reading this paper can help to show why 
statistical scores are more effective than other search parameters such as raw scores or 
percent identity in interpreting pairwise alignment results. For a more recent overview of 
sequence alignment, see Stormo (2009).
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Chapter 4 describes the principal  database 
search tool, BLAST. While BLAST was first 
described by Altschul et al. in 1990, the 
statistical interpretation of the scores 
obtained from a BLAST search are based 
on mathematical models developed in 
the 1950s. In many instances, the distribu-
tion of values in a population assumes a 
normal (Gaussian) distribution, as shown 
in this figure (see curve labeled “normal”). 
However, for a wide variety of natural 
phenomena the distribution of extreme 
values is not normal. Such is the case for 
database searches in which you search 
with a protein or DNA sequence of  interest 
(the query) against a large database, as 
described in this chapter. The maximum 
scores fit an extreme value distribution 
(EVD) rather than a normal distribution.

In 1958 Emil Gumbel described the 
statistical basis of the EVD in his book 
Statistics of Extremes. This figure  (Gumbel, 
1958, p. 180) shows the EVD. Note that 
for the curve marked “largest” the tail 
is skewed to the right. Also, as shown in 
the table, for a normal distribution values 
that are up to three standard deviations 
above the mean occupy 99.865% of the 
area under the curve; for the EVD, values 
up to three standard deviations occupy 
only 98.810%. In other words, the EVD is 
characterized by a larger area under the 
curve at the extreme right portion of the 
plot. We see how this analysis applied to 

BLAST search results allows you to assess whether a query sequence is significantly 
related to a match in the database.

Source: Gumbel (1958).
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The central idea of the BLAST algorithm is to confine attention to segment pairs that 
contain a word pair of length w with a score of at least T.

—Stephen Altschul et al. (1990)

BLAST was the first program to assign rigorous statistics to useful scores of local sequence 
alignments. Before then people had derived many different scoring systems, and it wasn’t 
clear why any should have a particular advantage. I had made a conjecture that every 
scoring system that people proposed using was implicitly a log‐odds scoring system with 
particular ‘target frequencies’, and that the best scoring system would be one where the 
target frequencies were those you observed in accurate alignments of real proteins. It was 
the mathematician Sam Karlin who proved this conjecture and derived the formula for 
calculating the statistics of the scores [E‐values] output by BLAST. This was the gravy to 
the algorithmic innovations of David Lipman, Gene Myers, Webb Miller and Warren Gish 
that yielded BLAST’s unprecedented combination of sensitivity and speed.

—Stephen Altschul, quoted in Altschul et al. (2013)

Basic Local Alignment 
Search Tool (BLAST) 

C h a p t e r

4

LEArNING oBjECTIVES

Upon completing this chapter you should be able to:

 • perform BLAST searches at the NCBI website;
 • understand how to vary optional BLAST search parameters;
 • explain the three phases of a BLAST search (compile, scan/extend, trace‐back);
 • define the mathematical relationship between expect values and scores; and
 • outline strategies for BLAST searching.

IntroductIon
Basic Local Alignment Search Tool (BLAST®) is the main NCBI tool for comparing a 
protein or DNA sequence to other sequences in various databases (Altschul et al., 1990, 
1997). BLAST searching is one of the fundamental ways of learning about a protein or 
gene: the search reveals what related sequences are present in the same organism and 
other organisms. The NCBI website includes several excellent resources for learning 
about BLAST.

In Chapter 3, we described how to perform a pairwise sequence alignment between 
two protein or nucleotide sequences. BLAST searching allows the user to select one 
sequence (termed the query) and perform pairwise sequence alignments between the 

NCBI resources include a 
tutorial and a course that can be 
accessed through the main  
BLAST page (  http://blast.ncbi 
.nlm.nih.gov/, WebLink 4.1 at  
http://bioinfbook.org).

http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://bioinfbook.org
http://www.wiley.com/go/pevsnerbioinformatics
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query and an entire database (termed the target). Typically, this means that tens of millions 
of sequences are evaluated in a BLAST search (involving about 50 billion nucleotides in 
the case of a search against a default DNA database), and only the most closely related 
matches are returned. The Needleman–Wunsch (1970) global alignment algorithm is not 
used for database searches because we are usually more interested in identifying locally 
matching regions such as protein domains. The Smith–Waterman (1981) local alignment 
algorithm finds optimal pairwise alignments, but we cannot use it for database searches 
generally because it is too computationally intensive. BLAST offers a local alignment 
strategy having both speed and sensitivity, as described in this chapter. It also offers con-
venient accessibility on the World Wide Web or as a command‐line tool.

BLAST is a family of programs that allows you to input a query sequence and com-
pare it to DNA or protein sequences in a database. A DNA sequence can be converted into 
six potential proteins (see “Step 2: Selecting a BLAST Program”), and the BLAST algo-
rithms include strategies to compare protein sequences to dynamically translated DNA 
databases or vice versa. The programs produce high‐scoring segment pairs (HSPs) that 
represent local alignments between your query and database sequences. BLAST search-
ing has a wide variety of uses:

 • Determining what orthologs and paralogs are known for a particular protein or 
nucleic acid sequence. Besides alpha and beta globin and myoglobin, what other 
globins are known? When a new bacterial genome is sequenced and several thousand 
proteins are identified, how many of these proteins are paralogous? How many of the 
predicted genes have no significantly related matches in GenBank?

 • Determining what proteins or genes are present in a particular organism. Are there 
any globins in plants? Are there any reverse transcriptase genes (such as HIV‐1 Pol 
gene) in fish? In some cases searching for remote homlogs requires the use of special-
ized BLAST‐like approaches; we describe some of these in Chapter 5.

 • Determining the identity of a DNA or protein sequence. For example, you may per-
form an RNAseq experiment (Chapter 11) and learn that a particular RNA sequence 
is dramatically regulated under the experimental conditions that you are using. This 
sequence may be searched against a protein database to learn what proteins are most 
related to the protein encoded by your nucleotide sequence.

 • Discovering new genes. For example, a BLAST search of genomic DNA may 
reveal that the DNA encodes a protein that has not been described before. In this 
chapter, we show how BLAST searching can be used to find novel, previously 
uncharacterized genes.

 • Determining what variants have been described for a particular gene or protein. For 
example, many viruses are extremely mutable; what HIV‐1 Pol variants are known?

 • Investigating expressed sequence tags (ESTs) that may exhibit alternative splicing. 
There is an EST database that can be explored by BLAST searching. Indeed, there are 
dozens of specialized databases that can be searched. For example, specialized data-
bases consist of sequences from a specific organism, a tissue type, a chromosome, a type 
of DNA (such as untranslated regions), or a functional class of nucleic acids or proteins.

 • Exploring amino acid residues that are important in the function and/or structure of a 
protein. The results of a BLAST search can be multiply aligned (Chapter 6) to reveal 
conserved residues such as cysteines that are likely to have important biological roles.

There are four components to performing any web‐based BLAST search:

 1. Selecting a sequence of interest and pasting, typing, or uploading it into the BLAST 
input box.

 2. Selecting a BLAST program (most commonly BLASTP, BLASTN, BLASTX, 
TBLASTX, or TBLASTN).

Visit the BLAST site at  http://
blast.ncbi.nlm.nih.gov/ (WebLink 
4.1), or go the main page of NCBI 
(  http://www.ncbi.nlm.nih.gov, 
WebLink 4.2) then select BLAST.

http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov
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 3. Selecting a database to search. A common choice is the nonredundant (nr) database, 
but there are many other databases.

 4. Selecting optional parameters, both for the search and for the format of the output. 
These options include choosing a substitution matrix, filtering of low‐complexity 
sequences, and restricting the search to a particular set of organisms.

As we describe the steps of BLAST searching, we begin with a specific example. 
Select the link “Standard protein‐protein BLAST [blastp].” You will see a box to 
enter the query sequence; enter the sequence of human beta globin (NP_000509.1) 
then click the “BLAST” button (Fig. 4.1). The result lists the proteins that are most 
closely related to beta globin. We now describe the practical aspects of BLAST 
searching in detail.

As of February 2015, you can 
search a database of ∼25 million 
protein sequences (and over  
8 billion amino acid residues) 
within several seconds. For a  
DNA search, the default 
nonredundant database currently 
has ∼30 million sequences and 
∼88 billion letters. Note that if 
you search with a query such as 
NP_000509 without specifying a 
version number then, by default, 
the most recent version will  
be used.

1
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3

4

5

FIGUre 4.1 Main page for a BLASTP search at NCBI. The sequence can be input as an accession 
number, GI identifier, or FASTA‐formatted sequence as shown here (arrow 1). The database must be 
selected (arrow 2) if the default setting is not selected (as here, in which the database is set to RefSeq 
proteins); the choice is highlighted in yellow. The search can be restricted to a particular organism or 
taxonomic group, and Entrez queries can be used to further focus the search (arrow 3); here we limit 
the search to entries including the author Max Perutz. We discuss the BLASTP algorithm in this chapter 
(arrow 4), and PSI‐BLAST, PHI‐BLAST, and DELTA‐BLAST in Chapter 5. Many of the search param-
eters can be modified (arrow 5). 

Source: BLASTP, NCBI.
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BLASt SeArch StepS

Step 1: Specifying Sequence of Interest

A BLAST search begins with the selection of a DNA or protein sequence. There are two 
main forms of data input: (1) cutting and pasting DNA or protein sequence (e.g., in the 
FASTA format); and (2) using an accession number (e.g., a RefSeq or GenBank Identi-
fication (GI) number). A sequence in FASTA format begins with a single‐line descrip-
tion followed by lines of sequence data. The description line is distinguished from the 
sequence data by a greater than (“>”) symbol in the first line. It is recommended that all 
lines of text be shorter than 80 characters in length. An example of a sequence in FASTA 
format was shown in Figure 2.9.

It is often convenient to input the accession number to a BLAST search. Note that the 
BLAST programs can recognize and ignore numbers that appear in the midst of the letters 
of your input sequence. The BLAST search also allows you to select a subset of an entire 
query sequence, such as a region or domain of interest.

Step 2: Selecting BLaSt program

The NCBI BLAST family of programs includes five main programs, as summarized in 
Figure 4.2.

The FASTA format is further 
described at  http://www.ncbi 
.nlm.nih.gov/BLAST/blastcgihelp 
.shtml (WebLink 4.3). Do not 
confuse the FASTA format with 
the FASTA program, which we 
described briefly in Chapter 3.  
For BLAST searches, your 
query can be in uppercase 
or lowercase, with or without 
intervening spaces or numbers. 
If the query is DNA, BLAST 
algorithms will search both 
strands.

Program  Query  Number of database searches Database

       
BLASTP  protein       protein

Use BLASTP to compare a protein query to a database of proteins.

BLASTN  DNA       DNA

Use BLASTN to compare both strands of a DNA query against a DNA database.

BLASTX  DNA       protein

BLASTX translates a DNA sequence into six protein sequences using all six possible 
reading frames, and then compares each of these proteins to a protein database.

TBLASTN  protein       DNA

TBLASTN is used to translate every DNA sequence in a database into six potential proteins,
and then to compare your protein query against each of those translated proteins.

TBLASTX  DNA       DNA 

TBLASTX is the most computationally intensive BLAST algorithm. It translates DNA from both a
query and a database into six potential proteins, then performs 36 protein-protein database
searches.

1

1

6

6

36

FIGUre 4.2 Overview of the five main BLAST algorithms. Note that the suffix P refers to protein 
(as in BLASTP), N refers to nucleotide, and X refers to a DNA query that is dynamically translated 
into six protein sequences. The prefix T refers to “translating,” in which a DNA database is dynamically 
translated into six proteins. 

http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml
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 1. The BLASTP program compares an amino acid query sequence against a protein 
sequence database. Note that for this type of search there are optional parameters (see 
below) that are specifically relevant to protein searches, such as the choice of various 
PAM and BLOSUM scoring matrices.

 2. The BLASTN program is used to compare a nucleotide query sequence against a 
nucleotide sequence database.

Three additional BLAST algorithms rely on the fundamental relationship of DNA 
to protein. Any DNA sequence can be transcribed and translated into six potential read-
ing frames (three on the top strand and three on the bottom strand; Fig. 4.3). For BLAST 
searching, the query DNA sequence may be translated into potential proteins, an entire 
DNA database may be translated, or both. In all three cases, these algorithms perform 
protein–protein alignments.

 3. The program BLASTX compares a nucleotide query sequence translated in all read-
ing frames against a protein sequence database. If you have a DNA sequence and you 
want to know what protein (if any) it encodes, you can perform a BLASTX search. 
This automatically translates the DNA into six potential proteins (see Figs. 4.2 and 4.3). 
The BLASTX program then compares each of the six translated protein sequences to 
all the members of a protein database.

 4. The program TBLASTN compares a protein query sequence against a nucleotide 
sequence database dynamically translated in all reading frames. One might use 
this program to ask whether a DNA database encodes a protein that matches your 
protein query of interest. Does a query with beta globin yield any matches in a 
database of genomic DNA from the genome‐sequencing project of a particular 
organism?

UniGene uses BLASTX to compare 
each nucleotide sequence in its 
database to all known proteins 
from organisms with sequenced 
genomes. The E value cutoff 
(discussed in “BLAST Algorithm: 
Local Alignment Search Statistics 
and E Value” below) is 10−6. See 

 http://www.ncbi.nlm.nih.gov/
UniGene/help.cgi?item=protest 
(WebLink 4.4).

1

2

3

FIGUre 4.3 DNA can potentially encode six different proteins. To demonstrate this, we view the 
NCBI Nucleotide entry for HBB and select the “graphics” view; The two strands of DNA sequence 
are shown (arrow 1). In this zoomed view, only a portion of the HBB sequence is displayed. From the 
top strand, three potential proteins are encoded (frames +1, +2, +3) with the corresponding amino acids 
indicated in gray using the single‐letter amino acid abbreviations. In this case, frame +3 corresponds to 
the frame used for translation (arrow 2). Note that frames +1 and +2 as well as frame –3 include stop 
codons (asterisks shaded red). The lower portion of the display includes the amino acid sequence of the 
corresponding protein (arrow 3) as well as the corresponding nucleotides (matching frame +3); features 
indicated with black shading represent a site that may be acetylated or glycosylated and a globin domain. 

Source: NCBI Nucleotide.

http://www.ncbi.nlm.nih.gov/UniGene/help.cgi?item=protest
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 5. The program TBLASTX compares the six‐frame translations of a nucleotide query 
sequence against the six‐frame translations of a nucleotide sequence database. The 
TBLASTX program is computationally intensive. Consider a situation in which you 
have a DNA sequence with no obvious database matches and you want to know if 
it encodes a protein with distant, statistically significant database matches in a data-
base of expressed sequence tags. A BLASTX search would be more sensitive than 
BLASTN, and therefore useful to reveal genes that encode proteins homologous to 
your query.

Step 3: Selecting a Database

The databases that are available for BLAST searching are listed on each BLAST page. 
For protein database searches (BLASTP and BLASTX), the default option is the nonre-
dundant (nr) database. This consists of the combined protein records from GenBank, the 
Protein Data Bank (PDB), SwissProt, PIR, and PRF (see Chapter 2 for descriptions of 
these resources). Another option is to search only Refeq proteins. table 4.1 summarizes 
the available protein databases for BLAST searching at NCBI, including the approximate 
number of sequences available in each database.

For DNA database searches (BLASTN, TBLASTN, TBLASTX) the default option 
is to search the nucleotide nr/nt database. This includes nucleotide sequences from Gen-
Bank, EMBL, DDBJ, PDB, and RefSeq. However, the nr database does not have records 
from the EST, sequence tagged site (STS), whole‐genome sequence (WGS), genome sur-
vey sequence (GSS), transcriptome shotgut assembly (TSA), patents, or high‐throughput 
genomic sequence (HTGS) databases. Other commonly used options include the human 
(or mouse) genomic plus transcript database or the EST database.

The nr databases are derived by merging several main protein or DNA databases. 
These databases often contain identical sequences. Generally only one of these sequences 
is retained by the nr database, along with multiple accession numbers. (Even if two 
sequences in the nr database appear to be identical, they should at least have some subtle 
difference.) The nr databases are often the preferred sites for searching the majority of 
available sequences.

A summary of all the nucleotide sequence databases that can be searched by standard 
BLAST searching at NCBI is provided in table 4.2.

We discuss expressed sequence 
tags (ESTs) in Chapter 10. 
TBLASTX can help you identify 
frameshifts in ESTs, since all 
reading frames are compared.

taBLe 4.1 protein sequence databases that can be searched by BLaSt searching 
at NCBI. pDB, protein Data Bank. # indicates approximate number of sequences in 
database. adapted from BLaSt, NCBI,  http://blast.ncbi.nlm.nih.gov/.

Database Title # sequences

nr All nonredundant GenBank CDS translations + PDB 
+ SwissProt + PIR + PRF excluding environmental 
samples from WGS projects

65 million

Reference proteins NCBI protein reference sequences 50 million

UniProtKB/SwissProt Nonredundant UniProtKB/SwissProt sequences 450,000

Patented protein sequences Protein sequences derived from the Patent division 
of GenBank

1.3 million

Protein Data Bank PDB protein database 77,000

Metagenomic proteins Proteins from WGS metagenomic projects (env_nr) 6.5 million

Transcriptome Transcriptome Shotgun Assembly (TSA) sequences 770,000

http://blast.ncbi.nlm.nih.gov/
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taBLe 4.2 Nucleotide sequence databases that can be searched using BLaSt at 
NCBI. # indicates approximate number of sequences in database. adapted from BLaSt, 
NCBI,  http://blast.ncbi.nlm.nih.gov/.

Database Title # sequences

Human Genomic + Transcript Homo sapiens NCBI Annotation Release 
104 RNAs; Homo sapiens all assemblies

55,000

Mouse Genomic + Transcript Mus musculus NCBI Annotation RNAs; 
Mus musculus all assemblies

N/A

nr/nt All GenBank+EMBL+DDBJ+PDB+RefSeq 
sequences, but excludes EST, STS, GSS, 
WGS, TSA, patent sequences as well as 
phase 0, 1, and 2 HTGS sequences

25 million

refseq_rna NCBI transcript reference sequences 3.5 million

refseq_genomic NCBI genomic reference sequences 2.7 million

NCBI Genomes NCBI chromosome sequences 28,000

Expressed sequence tags (EST) Database of GenBank+EMBL+DDBJ 
sequences from EST Divisions

75 million

Genomic survey sequences (gss) Genome survey sequence, includes 
single‐pass genomic data, exon‐trapped 
sequences, and Alu PCR sequences

36 million

High‐throughput genomic 
sequences (HTGS)

Unfinished high‐throughput genomic 
sequences; sequences: phases 0,1 and 2

153,000

Patent sequences Nucleotide sequences derived from the 
Patent division of GenBank

21 million

Protein Data Bank PDB nucleotide database 8000

alu Human Alu repeat elements 325

Sequence tagged sites (STS) Database of GenBank+EMBL+DDBJ 
sequences from STS Divisions

1.3 million

Whole‐genome shotgun (wgs) Whole‐genome‐shotgun contigs 116 million

Transcriptome Shotgun 
Assembly (TSA)

Transcriptome shotgun assembly (TSA) 
sequences

15 million

16S ribosomal RNA sequences 
(Bacteria and Archaea)

16S ribosomal RNA sequences (bacteria 
and archaea)

7500

Step 4a: Selecting Optional Search parameters

We initially focus our attention on a standard protein–protein BLAST search. In addition 
to deciding on which sequence to input and which database to search, there are many 
optional parameters that you can adjust (see Figs. 4.1 and 4.4).

 1. Query. In addition to a choice of formats (accession number, GI identifier, or FASTA 
format), you can select a range of amino acid or nucleotide residues to search.

 2. Limit by Entrez Query. Any NCBI BLAST search can be limited using any terms 
that are used in an Entrez search. Enter the term “perutz mf[Author]” and  perform 
a BLASTP search using beta globin as a query (Fig. 4.1, arrow 3). Instead of 
 obtaining hundreds of hits, the matches are to entries that refer to Nobel  laureate 
Max Perutz. BLAST searches can also be restricted by organism. Some popu-
lar groups are Archaea, Metazoa (multicellular animals), Bacteria, Vertebrata, 
Eukaryota, Mammalia, Embryophyta (higher plants), Rodentia, Fungi, and 
 Primates. BLAST searches can be restricted to any genus and species or other 
taxonomic grouping.

http://blast.ncbi.nlm.nih.gov/
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We illustrate some effects of applying optional features of BLASTP by using human insu-
lin (NP_000198.1) as a query; this is a preprotein (a peptide that is processed, as depicted 
in Fig. 7.3) of 110 amino acid residues. We restrict the output to RefSeq proteins from 
Drosophila melanogaster (type this into the Organism search box, or enter txid:7227). 
The BLAST web form listing various options is shown in Figure 4.4.

 3. Max target sequences. You can select fewer or more than the default value of 100.
 4. Short queries. If you select this option, the expect value and word size are automati-

cally adjusted.
 5. Expect threshold. The expect value E is the number of different alignments with 

scores equal to or greater than some score S that are expected to occur in a database 
search by chance. Look at the best match in Figure 4.5a (a match between human 
insulin and insulin‐like peptide 3 from Drosophila). The score is 31.6 bits, and the 
E value is 0.05. This indicates that, based on the particular search parameters used 
(including the size of the database and the choice of the scoring matrix), a score 
of 31.6 bits or better is expected to occur by chance 1 in 20 times. A reasonable 
general guideline is that database matches having E values of ≤0.05 are statistically 
 significant.

The default setting for the expect value is 10 for BLASTN, BLASTP, BLASTX, and 
TBLASTN. At this E value, 10 hits with scores equal to or better than the alignment score 
S are expected to occur by chance. (This assumes that you search the database using a 
random query with similar length to your actual query.) By changing the expect option to 
a lower number (such as 0.01), fewer database hits are returned; fewer chance matches are 
reported. Increasing E returns more hits. Consider a very short protein or nucleotide query 
(e.g., 10 amino acids). There is no opportunity for that query to accumulate a large score 

If you want to restrict your 
BLAST search to a particular 
organism (or group of 
organisms), use the box labeled 
“organism” and type at least 
part of the name to access a 
dynamic pull‐down menu. You 
can also access a specific 
taxonomy identifier. To do this, 
try beginning at the home page 
of NCBI and selecting Taxonomy 
Browser from the top bar (or visit 

 http://www.ncbi.nlm.nih.gov/
Taxonomy/taxonomyhome.html/, 
WebLink 4.5). Select from the list 
of commonly studied organisms 
or perform a query in the 
taxonomy page. You can find the 
appropriate taxonomy identifier 
(txid) for any organism in this 
way. Examples include txid10090 
for mouse, txid9606 for human, 
and txid33090 for Viridiplantae 
(the plant kingdom).

The expect value is 
sometimes also referred to 
as the expectation value. We 
discuss practical examples of 
interpreting E values later in this 
chapter. Note that E values much 
higher than 0.05 may represent 
biologically relevant, homologous 
matches, as discussed below.
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FIGUre 4.4 Optional BLASTP parameters. Numbered arrows refer to discussion in the text. 

Source: BLASTP, NCBI.

http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/


BASIC LoCAL ALIGNmENT SEArCH TooL (BLAST)  129

and, since the score is inversely related to the expect value (see Equation (4.5) below), the 
E value cannot be very small. Indeed, an E value of 50 or 100 might occur for a database 
match of considerable biological interest. When you select the optional parameter “short 
queries” in BLASTP, the E value is therefore set to 200,000 or E = 1000 in BLASTN. We 
describe the E value in more detail in a discussion of BLAST search statistics (see section 
“BLAST Algorithm: Local Alignment Search Statistics and E Value” below), including a 
comparison of searches with varying E values.

 6. Word size. For protein searches, a window size of 3 (default) or 2 may be set. When a 
query is used to search a database, the BLAST algorithm first divides the query into a 
series of smaller sequences (words) of a particular length (word size). For BLASTP, 
a larger word size yields a more accurate search. For any word size, matches made 
to each word are then extended to produce the BLAST output. In practice, the word 
size can remain at 3 and should be reduced to 2 only when your query is a very short 

FIGUre 4.5 Pairwise alignments from BLASTP searches illustrating the effects of changing compo-
sitional matrices and filtering options. Human insulin (NP_000198.1) was used as a query in a BLASTP 
search restricted to RefSeq proteins in Drosophila. (a) Default settings show a match to a Drosophila 
insulin protein with a score of 31.6 bits and an E value of 0.05. Results are shown using (b) no compo-
sitional adjustments and (c) composition based statistics. The expect values for these three searches are 
indicated (red boxes).

(a) Default: conditional compositional score matrix adjustment

(b) No adjustment (by default, �lter low complexity regions)

(c) Composition-based statistics
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peptide (i.e., a short string of amino acids). Changing the size from 3 to 2 has no 
effect on the alignment (or the scores) of human insulin with its nematode homolog.

For nucleotide searches, the default word size is 11 and can be raised (word size 15) or 
reduced (word size 7). Lowering the word size yields a more accurate but slower search. 
Raising the word size is applied in MegaBLAST and discontiguous MegaBLAST (see 
Chapter 5), two alternate programs at NCBI that perform nucleotide searches. For Mega-
BLAST the default word size is 28, and can be set as high as 256. Very long word sizes 
match relatively infrequently, encouraging a much faster search. This is useful for speed 
when searching with long queries (e.g., many thousands of nucleotides) for nearly exact 
matches in a database.

 7. Max matches in a query range. Matches to one region of interest can be obscured by 
frequent matches to a different region of a protein. This feature offers a solution in 
which redundant database hits are discarded (Berman et al., 2000).

 8. Matrix. Eight amino acid substitution matrices are available for BLASTP protein–
protein searches: PAM30, PAM70, and PAM250; BLOSUM45, BLOSUM50, BLO-
SUM62 (default), BLOSUM80, and BLOSUM90. Some alternative BLAST servers 
(discussed in Chapter 5 on advanced BLAST searching) offer many more choices 
for substitution matrices. It is sometimes advisable to try a BLAST search using sev-
eral different scoring matrices. For example, as described in Chapter 3 PAM40 and 
PAM250 matrices (Fig. 3.16) have entirely distinct properties as scoring matrices for 
sequences sharing varying degrees of similarity. For very short queries (e.g., 15 or 
fewer amino acid residues), a PAM30 matrix is recommended (and is automatically 
invoked at the NCBI BLASTP site).

For BLASTN, the default scoring system is +2 for a match and –3 for a mismatch. A 
variety of other scoring schemes are available, including the default +1, –1 for Megablast 
(Chapter 5). For each scoring system, the BLAST family offers appropriate gap opening 
and extension penalties.

 9. Gap costs. A gap is a space introduced into an alignment to compensate for insertions 
and deletions in one sequence relative to another (Chapter 3). Since a single muta-
tional event may cause the insertion or deletion of more than one residue, the pres-
ence of a gap is frequently ascribed more significance than the length of the gap. The 
gap introduction is therefore penalized heavily, whereas a lesser penalty is ascribed 
to each subsequent residue in the gap. To prevent the accumulation of too many gaps 
in an alignment, introduction of a gap causes the deduction of a fixed amount (the 
gap score) from the alignment score. Extension of the gap to encompass additional 
nucleotides or amino acid is also penalized in the scoring of an alignment.

Gap scores are typically calculated as the sum of G, the gap‐opening penalty, and L, the 
gap extension penalty. For a gap of length n, the gap cost would be G + Ln. The choice of 
gap costs is typically 10–15 for G and 1–2 for L. These are called affine gap penalties, in 
which the penalty for introducing a gap is far greater than the penalty for extending one.

 10. Compositional adjustments. The “conditional compositional score matrix adjust-
ment,” which is selected as default, generally improves the calculation of the E 
value statistic (see section “BLAST Algorithm: Local Alignment Search Statistics 
and E Value” below). Some proteins (whether queries or database matches) have 
nonstandard compositions such as having hydrophobic or cysteine‐rich regions. 
For some organisms, the entire genome has a very high guanine plus cytosine 
(GC) or adenine plus thymine (AT) content. For example, the entire genome of 
the malaria parasite Plasmodium falciparum is 80.6% AT, biasing its proteins 
towards having amino acids encoded by AT‐rich codons. A standard matrix such 

MegaBLAST (Chapter 5) uses 
non‐affine gap penalties, that 
is, there is no cost for opening 
a gap. We further discuss the 
problem of gaps in multiple 
sequence alignments in  
Chapter 6.
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as  BLOSUM62 is not appropriate for the comparison of two proteins with non-
standard composition, and the target frequencies qij (see Equation (3.7)) need to 
be adjusted in the context of new background frequencies pi pj (Yu et al., 2003; 
Yu and Altschul, 2005). In performing a BLASTP search, a default option is to 
use composition‐based statistics. This implements a slightly different scoring sys-
tem for each database sequence in which all scores are scaled by an analytically 
determined constant (Schäffer et al., 2001). It is applicable to any BLAST protein 
search including the position‐specific scoring matrix of PSI‐BLAST or  DELTA‐
BLAST (Chapter 5).

Compositional adjustments generally increase the accuracy of BLAST searches consid-
erably (Schäffer et al., 2001; Altschul et al., 2005). The improvement can be quantified 
using receiver operating characteristic (ROC) curves that plot the number of true positives 
(based on an independent criterion such as expert manual curation) versus false posi-
tives (Gribskov and Robinson, 1996). In addition to using composition‐based statistics, a 
conditional compositional score matrix adjustment can be applied to BLASTP searches. 
This can reduce false positive search results in specialized circumstances such as subjects 
matching queries of very different lengths (Altschul et al., 2005). In that case the longer 
sequence may have a substantially different composition than the shorter.

In the example of our insulin search versus Drosophila, removing compositional 
adjustments lowers the E value from 0.05 to 0.009 (Fig. 4.5b). Invoking a composition‐
based statistics option improves the E value by 500‐fold to 1×10−4 (Fig. 4.5c). The magni-
tude of these effects depends on the composition of the particular query you choose and, 
for some searches, it is helpful to try a series of compositional adjustments. Note that 
both of the altered settings (Fig. 4.5b, c) had minimal effects on the lengths of the aligned 
regions or the gaps.

 11. Filters. Filtering masks portions of the query sequence that have low complexity 
(or highly biased compositions; Wootton and Federhen, 1996). Low‐complexity 
sequences are defined as having commonly found stretches of amino acids (or nucle-
otides) with limited information content. Examples are dinucleotide repeats (e.g., the 
repeating nucleotides CACACACA…), Alu sequences, or regions of a protein that 
are extremely rich in one or two amino acids. Stretches of hydrophobic amino acid 
residues that form a transmembrane domain are very common, and a database search 
with such sequences results in many database matches that are statistically significant 
but biologically irrelevant. Other motifs that are masked by filtering include acidic‐, 
basic‐, and proline‐rich regions.

The BLASTP and BLASTN programs offer several main options. Note that filtering is 
applied to the query sequence, and not to the entire database. One approach is to fil-
ter low‐complexity regions. For protein sequence queries, the SEG program is used; for 
nucleic acid sequences, the DUST program is employed. Another approach is to filter 
repeats (for BLASTN only). This is useful to avoid matching a query with Alu repeats or 
other repetitive DNA to spurious database entries.

 12. Masking. The “mask for lookup table only” option masks the matching of words 
above threshold to database hits. This avoids matches to low‐complexity sequences 
or repeats. BLAST extensions then occur without masking (so hits can be extended 
even if they contain low‐complexity sequence). The “mask lower case letters” option 
allows you to enter a query in the FASTA format using upper case characters for 
the search but filtering those residues you choose to filter by entering them in lower 
case. These particular options have little effects on our insulin search of Drosophila 
proteins. For some queries (including those having transmembrane spans that can 
potentially match thousands of database entries) the results can be dramatic.

For examples of proteins that are 
highly hydrophobic, very  
cysteine‐rich, or adenine and 
thymine (AT)‐rich sequences  
from P. falciparum, see Web 
Documents 4.1, 4.2, and 4.3 at 

 http://www.bioinfbook.org/
chapter4. We discuss  
P. falciparum in Chapter 19; it is 
responsible for up to 1 million 
deaths a year.

We explore repetitive DNA 
sequences in Chapter 8. Web 
Document 4.4 (at  http://
www.bioinfbook.org/chapter4) 
offers over a dozen spectacular 
examples of repetitive DNA and 
protein sequences.

http://www.bioinfbook.org/chapter4
http://www.bioinfbook.org/chapter4
http://www.bioinfbook.org/chapter4
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Step 4b: Selecting Formatting parameters

There are many options for formatting the output of a BLAST search (Boratyn et al., 
2013). These are illustrated by performing a protein–protein BLASTP search with human 
beta globin (NP_000509.1) as a query and restricting the search to RefSeq proteins from 
the mouse (Mus musculus). The results of the search occur in several main parts. At the 
top (Fig. 4.6), details of the search are provided including the type of BLAST search, a 
description of the query and the database, and a taxonomy link to the results organized 
by species. By clicking “Search Summary,” details of the search such as the word size, 
expect value threshold, scoring matrix, and choice of composition‐based statistics can 
be viewed (Fig. 4.7).

The middle portion of a typical BLAST output provides a graphic summary of the 
results (Fig. 4.8). This includes conserved domains followed by a color‐coded summary, 
with the length of the query sequence represented across the x axis. Each bar drawn below 
the map represents a database protein (or nucleic acid) sequence that matches the query 
sequence. The position of each bar relative to the linear map of the query allows the user 
to see the extent to which the database matches align with a single or multiple regions of 
the query. The most similar hits are shown at the top in red. Hatched areas (when present) 
correspond to the nonsimilar sequence between two or more distinct regions of similarity 
found within the same database entry.

The alignments are next described in a table (Fig. 4.9). The description lines are 
sorted by increasing E value; the most signficant alignments (lowest E values) are 
therefore at the top. The table includes columns listing the description (name and spe-
cies), score, E value, percent identity, and accession number. If the user checks boxes 
at the left of each row, those entries are selected for further analyses such as a distance 
tree or multiple alignment. An example is shown in Figure 4.10. Following a search of 
human beta globin against arthropod (insect) RefSeq proteins, the top eight hits were 
checked and sent to a multiple alignment. Here various links are shown (e.g., to Map 
Viewer, Gene, and UniGene) and the multiple alignment is displayed. A tree can also 
be produced (not shown).

The lower portion of a BLAST search output consists of a series of pairwise sequence 
alignments, such as those in Figure 4.5. Here, the pairwise match between the query (input 
sequence) and the subject (i.e., the particular database match that is aligned to the query) 
can be inspected. Four scoring measures are provided: the bit score, the expect score, the 
percent identity, and the positives (percent similarity).

1

2

3
4

5 6

FIGUre 4.6 Top portion of a BLAST output describes the search that was performed including the 
query (arrow 1), the query length (arrow 2), the database that was searched (arrow 3), and the program that 
was employed (BLASTP 2.2.28 in this case; arrow 4). At the bottom, additional links include a search sum-
mary showing details of the search statistics (arrow 5) and taxonomy reports of the results (arrow 6).

Source: BLAST, NCBI.
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1

2

3

4

FIGUre 4.7 BLAST search summary. The upper portion shows the search parameters (e.g., the pro-
gram that was used, the expect value (arrow 1), the scoring matrix (arrow 2), any filters that were applied, 
the threshold (arrow 3)). The middle portion describes the database; in this example it includes about 
6.9 billion amino acid residues (arrow 4), and the output has been restricted to txid10090 (i.e., mouse). 
The bottom portion shows Karlin–Altschul statistics including lambda, K, and H. 

Source: BLAST, NCBI.

Without reperforming an entire BLAST search, the output can be reformatted to 
provide a range of different output options. The number of descriptions and of align-
ments can be modified. There are several options for visualizing the aligned sequences 
(including a multiple sequence alignment). This is an especially useful way to identify 
specific amino acid residues that are conserved (or divergent) within a protein or DNA 
family. For nucleotide searches (e.g., BLASTN), by selecting the CDS (coding sequence) 
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feature the pairwise alignments also show the positions of the corresponding protein 
(when that information is available). For example, a search of human beta globin DNA 
(NM_000518.4) against human RefSeq nucleotide sequences includes a match to epsilon 
1 globin (NM_005330.3). That alignment includes information about the corresponding 
proteins (Fig. 4.11).

FIGUre 4.8 The graphic summary of BLAST results includes a display of conserved domains (here 
showing a match to the globin protein family), then a color‐coded distribution of hits. Here the x axis cor-
responds to the length of the query (147 amino acid residues for beta globin), with each database match 
characterized by a color‐coded score (e.g., five matches shaded green have scores of 50–80) and lengths 
(one of the five green database hits includes an aligned region that extends fully to the carboxy‐terminus 
of the HBB query, while the other four do not). This graphic can be useful to summarize the regions in 
which database matches align to the query.

Source: BLAST, NCBI.

FIGUre 4.9 A typical BLASTP output includes a list of database sequences that match the query. 
Links are provided to that database entry (e.g., an NCBI Protein entry) and to the pairwise alignment to 
the query. The bit score and E value for each alignment are also provided. Note that the best matches at 
the top of the list have large bit scores and small E values.

Source: BLASTP, NCBI.
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Stand-alone BLaSt

The web‐based BLAST programs at the NCBI website are extremely popular. As an alter-
native, you can also download BLAST+, a set of command‐line executables for local use 
(Camacho et al., 2009). You might do this in order to search custom databases, to perform 
bulk searches (i.e., using very large numbers of queries), implement complex search strat-
egies using custom scripts, or to use your own computer cluster for improved performance.

Instructions for downloading BLAST+ are available at the NCBI BLAST website and 
in an NCBI help manual. You can install various files and directories including a binary 
(bin) directory filled with various executables. Copy these executable programs (such 
as those called blastp and blastn) to your home directory bin folder (e.g., from 
the BLAST directory type $ cp * ˜/bin where $ indicates a UNIX or Mac terminal 
command‐line prompt, cp is the copy utility, and * indicates all files in that directory will 
be copied). This will allow you to execute the copied programs from any location.

From the BLAST homepage  
(  http://blast.ncbi.nlm.nih.gov/, 
WebLink 4.1), click the “Help” tab 
then follow the link to “Download 
BLAST Software and Databases.” 
For an NCBI online book on 
BLAST+ visit  http://www.ncbi 
.nlm.nih.gov/books/NBK1762/ 
(WebLink 4.6).

FIGUre 4.10 The lower part of a BLASTP search (or other BLAST family search) consists of a series of pairwise sequence alignments 
such as those shown in Figure 4.5. Using the reformat option, the results can be displayed as a multiple sequence alignment as shown here 
for a group of globins. Other output format options are available, allowing the user to inspect regions of similarity as well as divergent regions 
within protein families.

Source: BLASTP, NCBI.

http://blast.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/books/NBK1762/
http://www.ncbi.nlm.nih.gov/books/NBK1762/
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To demonstrate BLAST+ we search human beta globin protein against a protein 
database, working on the Linux operating system (which is closely similar to the Mac 
terminal). Our three tasks are: (1) to obtain a protein database, (2) obtain a query protein, 
and (3) perform the search.

 1. Let’s choose the RefSeq protein database. One approach is to navigate to the Down-
load section of NCBI main page (or BLAST page) to find the link. You can then use 
a utility such as wget to download the database. As a different, preferred approach 
we will use a Perl script (called update_blastdb.pl and included with your 
BLAST+ installation) to download a database. We make a new directory (I’ve called 

FIGUre 4.11 For BLASTN searches, the coding sequence (CDS) option in the reformat page allows the amino acid sequence of the 
coding regions of the query and the subject (i.e., the database match) to be displayed. Here, human beta globin DNA (NM_000518) was 
used as a query, and a match to the closely related epsilon 1 globin is shown.The corresponding protein sequences are provided, including 
mismatches in purple. 

Source: BLASTN, NCBI.
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There were too many rows of information to view conveniently on a typical computer 
monitor, so we use the pipe (|) to send the output of –showall to the less utility. 
This shows us one page of the output at a time. (For information about less or any 
other utility, enter $ man less and view the manual.) The choices include the 
refseq_protein database that we will use, as well as dozens of other databases.

it database), then navigate into it to perform our download. Note that the # sign 
refers to comments I add to the commands.

You can reach an FTP site  
for BLAST databases from  

 http://www.ncbi.nlm.nih.gov/
guide/data‐software/ (WebLink 
4.7), or go directly to  ftp://
ftp.ncbi.nlm.nih.gov/blast/db/ 
(WebLink 4.8). These databases 
are formatted  
for BLAST searches.

$ mkdir database # this creates a new directory
$ cd database/ # we navigate into that directory
# Enter the following, without arguments, to see a help document.
$ update_blastdb.pl 
# Next get a list of all available databases
$ update_blastdb.pl --showall
$ update_blastdb.pl --showall | less

$ update_blastdb.pl refseq_protein

$ tar -zxvf refseq_protein.00.tar.gz

The result is that the requested database is downloaded in the form of a series 
of ∼600 GB files having extensions tar.gz, indicating they are compressed. We 
unpack (i.e., decompress) them using the tar utility (-x is to extract from the 
archive to the disk, -v is verbose output, -z filters the archive through gzip, and 
-f uses an archive file). This extracts the files to the current directory.

The downloaded database files 
include md5 checksums. These 
are useful to confirm that the 
downloads are complete.

This unpacked database has a variety of file extensions. However, we simply use the 
-db refseq_protein argument.

 2. The query we will use is the human beta globin RefSeq protein (NP_000509). As one 
approach you could find the protein sequence on the NCBI (or other) website, copy it, 
and paste it into a text editor (such as vim or nano in Linux). We instead use EDirect 
(introduced in Chapter 2). We output the protein sequence in the FASTA format in a 
file we call hbb.txt.

$ esearch -db protein -query “NP_000509” | efetch -format fasta > hbb.
txt
$ cat hbb.txt # cat is the concatenate utility that we use to print the 
# file
>gi|4504349|ref|NP_000509.1| hemoglobin subunit beta [Homo sapiens]
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH

$ blastp --h # Get help
$ blastp -query hbb.txt -db ./database/refseq_protein -out mysearch1
# Note that we use ./ to specify the directory location of the  
# executable which is within the executable directory

 3. Now we can perform a search. We first invoke the help document to see the usage of 
the program.

When the search completes, we can view the results:

$ less mysearch1

The output resembles the text portion of a web‐based BLASTP search (there is a 
list of sequences producing significant alignments with identifiers, bit scores and E 
values as well as a set of pairwise alignments).

http://www.ncbi.nlm.nih.gov/guide/data%E2%80%90software/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
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At this point re‐visit blastp --h to explore the many command‐line options that 
are available. For example, this database currently has a size of 27,715,879 sequences 
and 9,753,871,274 total letters. The best match is the alignment of the query to itself with 
score 301 bits and an E value of 2 × 10−102. You can change dozens of parameters such as 
the E value threshold, word size, gap open and extend penalties, and scoring matrix. You 
can also change the formatting (including the option to produce an HTML output). Set the 
database size to be about 1000 times smaller than the default database size.

What result would you expect for a search of a database that is 1000 times smaller? Any 
findings would likely be more significant because they are found among a much smaller 
pool of possible matches. Indeed, the best result has an expect value of 2 × 10−105, 
which is 1000 times smaller than in our first search. This is explained mathematically by 
Equation (4.5) where we made the right‐hand side of the equation 1000 times smaller, 
explaining why the E value on the left side was similarly reduced.

BLASt ALgorIthm uSeS LocAL ALIgnment  
SeArch StrAtegy
The BLAST search identifies the matches in a database to an input query sequence. Global 
similarity algorithms optimize the overall alignment of two sequences. These algorithms, 
including the GAP program (Chapter 3), are best suited for finding matches consisting of 
long stretches of low similarity. In contrast, local similarity algorithms such as BLAST 
identify relatively short alignments. Local alignment is a useful approach to database 
searching because many query sequences have domains, active sites, or other motifs that 
have local but not global regions of similarity to other proteins. Databases typically also 
have fragments of DNA and protein sequences that can be locally aligned to a query.

BLaSt algorithm parts: List, Scan, extend

The BLAST search algorithm finds a match between a query and a database sequence and 
then extends the match in either direction (Altschul et al., 1990, 1997). The search results 
consist of both highly related sequences from the database as well as marginally related 
sequences, along with a scoring scheme to describe the degree of relatedness between the 
query and each database hit. The BLASTP algorithm can be described in three phases 
(Camacho et al., 2009; Fig. 4.12):

 1. For protein searches, BLAST compiles a preliminary list of pairwise alignments 
called word pairs.

 2. The algorithm scans a database for word pairs that meet some threshold score T. 
When this occurs, such hits are extended using ungapped and gapped alignments. 
BLAST extends the word pairs to find those that surpass a cutoff score S, at which 
point those hits will be reported to the user. Scores are calculated from scoring matri-
ces (such as BLOSUM62) along with gap penalties.

 3. A trace‐back procedure is performed in which the locations of insertions, deletions 
and mismatches are assigned.

In the first phase, the BLASTP algorithm compiles a list of “words” of a fixed length 
w that are derived from the query sequence. A threshold value T is established for the 
score of aligned words. Those words either at or above the threshold are collected and 
used to identify database matches; those words below threshold are not further pursued. 
For protein searches the word size typically has a default value of 3. Since there are 

$ blastp -query hbb.txt -db ./database/refseq_protein -dbsize 9750000 -out 
mysearch2
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FIGUre 4.12 Schematic of the original BLAST algorithm. In the setup phase a query sequence (such 
as human beta globin) is analyzed with a given word size (e.g., w = 3), and a list of words is compiled 
having a threshold score (e.g., T = 11). Several possible words derived from the query sequence are listed 
in the figure (from LWG to IWC); in a BLAST search there are 8000 words compiled for w =3. For a 
given word, such as the portion of the query sequence consisting of LWG, a list of words is compiled 
with scores greater than or equal to some threshold T (e.g., 12). In this example, 15 words are shown 
along with their scores from a BLOSUM62 matrix; 10 of these are above the threshold, and 5 are below. 
In phase 2, a database is scanned to find entries that match the compiled word list. Ungapped and gapped 
extensions are performed, although (to increase efficiency) positions are not saved. The database hits 
are extended in both directions to obtain high‐scoring segment pairs (HSPs). If a HSP score exceeds a 
particular cutoff score S, it is reported in the BLAST output. In phase 3, a trace‐back is performed and 
locations of insertions and deletions are recorded. Note that in this particular example the word pair that 
triggers the extension step is not an exact match (see boxed residues LWG aligned to AWG). The main 
idea of the threshold T for protein searches is to also allow both exact and related but nonexact word hits 
to trigger an extension. For nucleotide BLASTN searches, exact matches are required rather than words 
above a threshold.

Phase 1: Setup: compile a list of words (w=3) above threshold T

• Query sequence: human beta globin NP_000509.1 (includes ...VTALWGKVNVD...). 
 This sequence is read; low complexity or other filtering is applied; a “lookup” table is built.

• Words derived from query sequence (HBB):       

• Generate a list of words matching query 
  (both above and below T). Consider LWG
  in the query and the scores (derived from a
 BLOSUM62 matrix) for various words.

• Generate similar lists of words spanning
the query (e.g. words for WGW, GWG, WGK...).

      

           

VTA TAL ALW LWG WGK GKV KVN VNV NVD

LWG  4+11+6=21
IWG  2+11+6=19
MWG  2+11+6=19
VWG  1+11+6=18
FWG  0+11+6=17
AWG  0+11+6=17
LWS  4+11+0=15
LWN  4+11+0=15
LWA  4+11+0=15
LYG  4+ 2+6=12
LFG  4+ 1+6=11
FWS  0+11+0=11
AWS -1+11+0=10
CWS -1+11+0=10
IWC  2+11-3=10 

     LTPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV HBB
     L+P +K+ V A WGKV  +  E G EAL R+ + +P T+ +F  F      D   G+ +V
     LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF------DLSHGSAQV HBA

Phase 2:  Scanning and extensions
• Select all the words above threshold T (LWG, IWG, MWG, VWG, FWG, AWG, LWS, LWN, LWA, LYG)
• Scan the database for entries (“hits”) that match the compiled list 
• Create a hash table index with the locations of all the hits for each word
• Perform gap free extensions
• Perform gapped extensions

examples of
words >=
threshold 12

word pair from
first phases of search 

“hits” alpha globin,
triggers extension

extensionextension

examples of
words below
threshold

threshold

Phase 3: Traceback
• Calculate locations of insertions, deletions, and matches (for alignments saved in Phase 2)
• Apply composition-based statistics (for BLASTP, TBLASTN)
• Generate gapped alignment
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20 amino acids, there are 203 = 8000 possible words. The word size parameter can be 
modified by the BLAST user, as described above (see option 3). The threshold score T 
can be lowered to identify more initial pairwise alignments. This will increase the time 
required to perform the search and may increase the sensitivity.

For BLASTN, the first phase is slightly different. Threshold scores are not used in 
association with words. Instead, the algorithm demands exact word matches. The default 
word size is 11 (and can be adjusted by the user to values of 7 or 15). Lowering the word 
length effectively achieves the same aim as lowering the threshold score. Specifying a 
smaller word size induces a slower, more accurate search.

In the second phase, after compiling a list of word pairs at or above threshold T, the 
BLAST algorithm scans a database for hits. This requires BLAST to search an index of 
the database to find entries that correspond to words on the compiled list. In the original 
implementation of BLAST, one hit was sufficient. In the current versions of BLAST, the 
algorithm seeks two separate word pairs (i.e., two nonoverlapping hits) within a certain 
distance A from each other. It then generates an ungapped extension of these hits (Altschul 
et al., 1997). The two‐hit approach greatly speeds up the time required to do a BLAST 
search. Compared to the one‐hit approach, the two‐hit method generates on average about 
three times as many hits, but the algorithm then needs to perform only one‐seventh as many 
extensions (Altschul et al., 1997). BLAST extends hits to find alignments called high‐scor-
ing segment pairs (HSPs). For sufficiently high‐scoring alignments, a gapped extension is 
triggered. The extension process is terminated when a score falls below a cutoff.

In the third phase, a trace‐back is performed in which the locations of insertions, 
deletions, and matches are assigned. Composition‐based statistics are applied.

In summary, the main strategy of the BLAST algorithm is to compare a protein or 
DNA query sequence to each database entry and to form pairwise alignments (HSPs). As 
a heuristic algorithm, BLAST is designed to offer both speed and sensitivity. When the 
threshold parameter is raised, the speed of the search is increased but fewer hits are reg-
istered; distantly related database matches may be missed. When the threshold parameter 
is lowered, the search proceeds far more slowly but many more word hits are evaluated 
as sensitivity is increased.

We can demonstrate the effect of different threshold levels on a BLASTP search by 
changing the f parameter from its default value (11) to a range of other values. The results 
are dramatic (Fig. 4.13). With the default threshold value of 11, there are about 47 million 
hits to the database and 1.8 million extensions. When the threshold is lowered to just 3, 

In the BLAST papers by Steven 
Altschul, David Lipman, and 
colleagues, the threshold 
parameter is denoted T (Altschul 
et al., 1990, 1997). In the 
command‐line BLAST+ program 
(described below), the threshold 
parameter is controlled by  
the -threshold option. You 
can see the threshold in the 
output of a web‐based BLAST 
search (Fig. 4.7, arrow 3).

For the parameter A, the default 
value is 0 (for BLASTN and 
megablast) and 40 (for other 
programs such as BLASTP). This 
is shown in the Window Size 
entry of Figure 4.7.
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FIGUre 4.13 The effect of varying the threshold (x axis) on the number of database hits (black line) 
and extensions (red line). BLASTP searches were performed using human beta globin as a query.
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there are about 1.9 billion hits to the database and 582 million extensions. This occurs 
because many additional words have scores above T. With the threshold raised to 15 or 
higher, there are only about 6 million hits and 50,000 extensions. The final results of 
the search are not dramatically different with the default value compared to the lowered 
or raised threshold values, as the number of gapped HSPs is comparable. With the high 
threshold some matches were missed, although the reported matches are more likely to 
be true positives; with the lower threshold values there were somewhat more successful 
extensions. This supports the conclusion that a lower threshold parameter yields a more 
accurate search, though a slower one. This trade‐off between sensitivity and speed is cen-
tral to the BLAST algorithm. Practically, for most users of BLAST the default threshold 
parameters are always appropriate.

BLaSt algorithm: Local alignment Search Statistics and E Value

We care about the statistical significance of a BLAST search because we want some quan-
titative measure of whether the alignments represent significant matches or whether they 
would be expected to occur by chance. For local alignments (including BLAST searches), 
rigorous statistical tests have been developed (Altschul et al., 1990, 1994, 1997; Altschul 
and Gish, 1996; Pagni and Jongeneel, 2001).

We have described how local, ungapped alignments between two protein sequences are 
analyzed as HSPs. Using a substitution matrix, specific probabilities are assigned for each 
aligned pair of residues and a score is obtained for the overall alignment. For the comparison 
of a query sequence to a database of random sequences of uniform length, the scores can be 
plotted and shown to have the shape of an extreme value distribution (see Fig. 4.14, where it is 
compared to the normal distribution). The normal or Gaussian distribution forms the familiar, 
symmetric bell‐shaped curve. The extreme value distribution is skewed to the right, with a 
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FIGUre 4.14 Normal distribution (solid line) is compared to the extreme value distribution (dotted 
line). Comparing a query sequence to a set of uniform‐length random sequences usually generates scores 
that fit an extreme‐value distribution (rather than a normal distribution). The area under each curve is 
1. For the normal distribution, the mean (μ) is centered at zero, and the probability Z of obtaining some 
score x is given in terms of units of standard deviation (σ) from x to the mean: Z = (x − μ)/σ. In contrast 
to the normal distribution, the extreme value distribution is asymmetric with a skew to the right. It is 
fit to the equation f(x) = (e−x)(e−e–x). The shape of the extreme value distribution is determined by the 
characteristic value u and the decay constant λ (u = 0; λ = 1).
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tail that decays in x (rather than x2, which describes the decay of the normal distribution). The 
properties of this distribution are central to our understanding of BLAST statistics because 
they allow us to evaluate the likelihood that the highest scores from a search (i.e., the values at 
the right‐hand tail of the distribution) occurred by chance.

From the equations defining the extreme value distribution (Box 4.1, Equations 
(4.1)–(4.4)) we can derive a formula that describes the likelihood that a particular BLAST 
score occurs by chance. The expected number of HSPs having some score S (or better) by 
chance alone is defined:

 E K mne S= λ−  (4.5)

where E refers to the expect value, which is the number of different alignments with 
scores equivalent to or better than S that are expected to occur by chance in a database 
search. This provides an estimate of the number of false positive results from a BLAST 
search. From Equation (4.5) we see that the E value depends on the score and on λ, which 
is a parameter that scales the scoring system. E also depends on the length of the query 
sequence and the length of the database. The parameter K is a scaling factor for the search 
space. The parameters K and λ are described by Karlin and Altschul (1990), and are often 
referred to as Karlin–Altschul statistics.

Note several important properties of Equation (4.5):

 • The value of E decreases exponentially with increasing S. The score S reflects the 
similarity of each pairwise comparison and is partly based upon the scoring matrix 
selected. Higher S values correspond to better alignments and lower E values.  

Because of the rapid tailing of 
the normal distribution in x2, 
if we tried to use the normal 
distribution to describe the 
significance of a BLAST search 
result (e.g., by estimating how 
many standard deviations above 
the mean a search result occurs) 
we would tend to overestimate 
the significance of the alignment.

Equation (4.5) is described online 
in the document “The Statistics 
of Sequence Similarity Scores,” 
available in the help section of 
the NCBI BLAST site (  http://
www.ncbi.nlm.nih.gov/BLAST/
tutorial/Altschul‐1.html,  
WebLink 4.9).

Box 4.1. the extreme VALue dIStrIButIon

The shape of the extreme value distribution shown in Figure 4.14 is described by two parameters: the characteristic value μ and the 
decay constant λ. The extreme value distribution is sometimes called the Gumbel distribution, after the person who described it in 1958. 
The application of the extreme value distribution to BLAST searching has been reviewed by Altschul et al. (1994), Altschul and Gish 
(1996), and Pagni and Jongeneel (2001). For two random sequences m and n, the cumulative distribution function of scores S is defined:

  P S x e( ) exp( ).x u( )< = − λ− −  (4.1)

 (Note that the characteristic value u relates to the maximum of the distribution, although it is not the mean μ.) To use this equation, we 
need to know (or estimate) the values of the parameters u and λ. For ungapped alignments, the parameter u is dependent on the lengths 
of the sequences being compared and is defined:

  u
Kmnln

λ
=  (4.2)

 where m and n refer to the lengths of the sequences being compared and K is a constant. Combining Equations (4.1) and (4.2), the 
probability of observing a score equal to or greater than x by chance is given by:

  P S x kmne( ) 1 exp( ).x≥ = − − λ−  (4.3)

 Our goal is to understand the likelihood that a BLAST search of an entire database produces a result by chance alone. The number of 
ungapped alignments with a score of at least x is described by the parameter Kmn e−λx. In the context of a database search, m and n refer 
to the length (in residues) of the query sequence and the length of the entire database, respectively. The product m n defines the size of 
the search space. The search space represents all the sites at which a query sequence can be aligned to any sequence in the database. 
Because the ends of a sequence are not as likely to participate in an average‐sized alignment, the BLAST algorithm calculates the effec-
tive search space in which the average length of an alignment L is subtracted from m and n (Altschul and Gish, 1996):

  m L n LEffective Search Space ( )( ).= − −  (4.4))

 As described above (“Stand-Alone BLAST”), you can adjust the effective search space using BLAST+.

http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul%E2%80%901.html
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul%E2%80%901.html
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul%E2%80%901.html
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As E approaches zero, the probability that the alignment occurred by chance 
approaches zero. We relate the E value to probability (P) values below.

 • The expected score for aligning a random pair of amino acids must be negative. 
Otherwise, very long alignments of two sequences could accumulate large positive 
scores and appear to be significantly related when they are not.

 • The size of the database that is searched – as well as the size of the query – influences 
the likelihood that particular alignments will occur by chance. Consider a BLAST 
result with an E value of 1. This value indicates that, in a database of this particular 
size, one match with a given score (or better) is expected to occur by chance. If the 
database were twice as big, there would be twice the likelihood of finding a score 
equal to or greater than S by chance.

 • The theory underlying Equation (4.5) was developed for ungapped alignments. 
For  these, BLAST calculates values for λ, K, and H (entropy; see Fig. 3.27). 
 Equation (4.5) can be successfully applied to gapped local alignments as well (such 
as the results of a BLAST search). For gapped alignments however, λ, K and H  cannot 
be  calculated analytically, but instead are estimated by simulation and looked up in a 
table of  precomputed values.

Making Sense of raw Scores with Bit Scores

A typical BLAST output reports E values, raw scores, and bit scores. Raw scores are cal-
culated from the substitution matrix and gap penalty parameters that are chosen. The bit 
score S′ is calculated from the raw score by normalizing with the statistical variables that 
define a given scoring system. Bit scores from different alignments, even those employing 
different scoring matrices in separate BLAST searches, can therefore be compared. A 
raw score from a BLAST search must be normalized to parameters such as the size of the 
database being queried. The raw score is related to the bit score by:

 S
S Kln

ln2

λ
′ =

−
 (4.6)

where S′ is the bit score, which has a standard set of units. The E value corresponding to 
a given bit score is defined:

 E mn 2 S= × − ′  (4.7)

Why are bit scores useful? First, raw scores are unitless and have little meaning 
alone. Bit scores account for the scoring system that was used and describe the informa-
tion content inherent in a pairwise alignment. They therefore allow scores to be compared 
between different database searches, even if different scoring matrices are employed. 
Second, bit scores can tell you the E value if you know the size of the search space, m × n. 
(The BLAST algorithms use the effective search space size, described above.)

BLaSt algorithm: relation Between E and p Values

The p value is the probability of a chance alignment occurring with the score in question 
or better. It is calculated by relating the observed alignment score S to the expected dis-
tribution of HSP scores from comparisons of random sequences of the same length and 
composition as the query to the database. The most highly significant p values are those 
close to zero. The p and E values are different ways of representing the significance of the 
alignment. The probability of finding an HSP with a given E value is

 p e1 E= − −  (4.8)
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table 4.3 lists several p values corresponding to E values. While BLAST reports E val-
ues rather than p values, the two measures are nearly identical, especially for very small 
values associated with strong database matches. An advantage of using E values is that it 
is easier to think about E values of 5 versus 10 rather than 0.99326205 versus 0.99995460.

A p value below 0.05 is traditionally used to define statistical significance (i.e., to reject 
the null hypothesis that your query sequence is not related to any database sequence). If 
the null hypothesis is true, then 5% of all random alignments will result in an apparently 
significant score. An E value of 0.05 or less may therefore be considered significant.

It is also possible to approach E values with conservative corrections. We discussed 
probability (p) values in Chapter 3, and we return to the topic in Chapter 11 when we dis-
cuss microarray data analysis. The significance level α is typically set to 0.05, such that 
a p value of 0.05 suggests that some observation (e.g., the score of a protein query to a 
match in a database) is likely to have occurred by chance 1 time in 20. The null hypothesis 
is that your query is not homologous to the database match, and the alternate hypothesis 
is that they are homologous. If the p value is sufficiently small (e.g., p < 0.05), we can 
reject the null hypothesis. When you search a database that has one million proteins, 
there are many opportunities for your query to find matches. Five percent of 1 million 
proteins is 50,000 proteins, and we might expect to obtain that many matches (with p = 
0.05) by chance. A related issue arises in microarray data analysis when we compare two 
conditions (e.g., normal versus diseased sample) and measure the RNA transcript levels 
of 20,000 genes: 1000 transcripts (i.e., 5%) may be differentially expressed by chance.

This situation involves multiple comparisons: you are not hypothesizing that your 
query will match one particular database entry, you are interested in knowing if it matches 
any entries. A solution is to correct for multiple comparisons by adjusting the α level. 
A very conservative way to do this (called the Bonferroni correction) is to divide α by 
the number of measurements (e.g., divide α by the size of the database). In the case of 
BLAST searches this is automatically done as shown in Equation (4.5), because the 
E value is divided by the effective search space.

Beyond this multiple comparison correction inherent in BLAST, some researchers 
consider it appropriate to adjust the significance level α for search results from 0.05 to 
some even lower value. In analyses of completed microbial genomes, BLAST or FASTA 
search E values were reported as significant if they were below 10−4 (Ferretti et al., 2001) 
or below 10−5 (Ermolaeva et al., 2001; Colbourne et al., 2011; Huang et al., 2013). In 
the public consortium analysis of the human genome, Smith–Waterman alignments were 
reported with an E value threshold of 10−3 and TBLASTN searches used a threshold of 
10−6 (International Human Genome Sequencing Consortium, 2001). You can choose how 
conservatively to interpret BLAST results.

Some BLAST servers use p 
values in the output.

taBLe 4.3 relationship of E to p values in BLaSt using 
equation (4.8). Small E values (0.05 or less) correspond 
closely to the p values.

E p

10 0.99995460

5 0.99326205

2 0.86466472

1 0.63212056

0.1 0.09516258

0.05 0.04877058

0.001 0.00099950

0.0001 0.0001000
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BLASt SeArch StrAtegIeS
General Concepts

BLAST searching is a tool to explore databases of protein and DNA sequence. We have 
introduced the procedure: it is essential that you define the question you want answered, 
the DNA or protein sequence you want to input, the database you want to search, and the 
algorithm you want to use. We now address some basic principles regarding strategies for 
BLAST searching (Altschul et al., 1994). We illustrate these issues with globin, lipocalin 
and HIV‐1 Pol searches. Key issues include how to evaluate the statistical significance 
of BLAST search results, and how to modify the optional parameters of the BLAST 
programs when your search yields too little or too much information. An overview of 
the types of searches that can be performed with RBP4 DNA (NM_006744.3) or protein 
(NP_006735.2) sequence is depicted in Figure 4.15.

RBP4 (DNA or protein,
from any species)

BLASTP

BLASTP:  What other proteins are related to RBP4 protein?
BLASTN:  Is the 3' untranslated region of human RBP4 DNA homologous to 
       the 3' untranslated region of RBP paralogs or orthologs?
BLASTX:  What known protein is a lipocalin EST most related to?
TBLASTX:  Does human RBP4 DNA match a protein predicted to be encoded 
       from a gene in a DNA library such as bacterial ESTs?
TBLASTN:  Is there an RBP4 ortholog represented in a genomic DNA database?

BLASTN BLASTX TBLASTX TBLASTN

Starting point:
a molecular 

sequence

Search
strategies

Goals:
Results that can
be obtained by 

BLAST searching

Modifiable
search

paramaters

Sample 
questions

Find other proteins (or genes) that are clearly related to RBP4
Find other proteins that are distantly related to my favorite protein
Discover a novel gene homologous to my input
Find domains in my favorite protein that are present in other proteins
Visualize the relationship of my protein family in a multiple sequence 
 alignment (Chapter 6) or a phylogenetic tree (Chapter 7)

Restrict the search
to one species

(e.g. human) or one 
group (e.g. bacteria)

Change the scoring
matrices to discover

very distant homologs
(e.g. PAM250, 
BLOSUM45)

Change the gap penalties 
to help find homologs or

short regions of the 
protein that are present 

in other proteins

FIGUre 4.15 Overview of BLAST searching strategies. There are many hundreds of questions that 
can be addressed with BLAST searching, from characterizing the genome of an organism to evaluating 
the sequence variation in a single gene.
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principles of BLaSt Searching

How to Evaluate the Significance of Results
When you perform a BLAST search, which database matches are authentic? To answer 
this question, we first define a true positive as a database match that is homologous 
to the query sequence (descended from a common ancestor). Homology is inferred 
based on sequence similarity, with support from statistical evaluation of the search 
results. The error rate of database search algorithms is reduced by using statistical 
scores such as expect values rather than relying on percentage identity (or percent 
similarity) (Gotoh, 1996; Brenner, 1998; Park et al., 1998). We therefore focus on 
inspection of E values.

The problem of assigning homology between genes or proteins is not solved by 
sequence analysis alone: it is also necessary to apply biological criteria to support the 
inference of homology. BLAST results can be implemented with evaluations of protein 
structure and function. The sequences of genuinely related proteins can diverge greatly, 
even while these proteins retain a related three‐dimensional structure. We therefore expect 
that database searches (and pairwise protein alignments) result in a number of false neg-
ative matches. Many members of the lipocalin family, such as RBP4 and odorant‐binding 
protein (OBP), share very limited sequence identity, although their three‐dimensional 
structures are closely related and their functions as carriers of hydrophobic ligands are 
thought to be the same.

Consider a BLASTP search of the RefSeq database restricted to human entries using 
human RBP4 protein as a query. There are 6 entries in this case (Fig. 4.16a,b). The best 
E value score (1 × 10−150) is RBP4 itself. Subsequent matches have significant E values  
(1 × 10−9, 5 × 10−4, 0.034) but then two entries have nonsignificant values. The align-
ment to complement component 8 gamma (NP_000597) has a nonsignificant E value of 
0.18, and that protein shares only 25% amino acid identity with RBP over a span of 114 
amino acid residues (including three gap regions in the alignment; Fig. 4.16c). It might be 
concluded that these two proteins are not homologous; in this case they are, however. In 
deciding whether two proteins (or DNA sequences) are homologous, several questions 
can be asked:

 • Is the expect value significant? In this particular case it is not, because the proteins are 
distantly related. Search techniques such as DELTA‐BLAST or HMMER (based on 
hidden Markov models), introduced in Chapter 5, can typically assign higher scores 
and lower E values to distant matches.

 • Are the two proteins approximately the same size? It is not at all required that homol-
ogous proteins have similar sizes, and it is possible for two proteins to share only a 
limited domain in common. Indeed, local alignments search tools such as BLAST 
are specialized to find limited regions of overlap. However, it is also important to 
develop a biological intuition about the likelihood that two proteins are homologous. 
A 1000‐amino‐acid protein with transmembrane domains is relatively unlikely to be 
homologous to RBP, and the vast majority of lipocalins are approximately 200 amino 
acids in length (20–25 kilodaltons).

 • Do the proteins share a common motif or signature? In this case, both RBP4 and 
complement component 8 gamma have a glycine‐X‐tryptophan (GXW; X signifies 
any residue, as indicated in the boxed region of Fig. 4.16c) signature that is character-
istic of the lipocalin superfamily.

 • Are the proteins part of a reasonable multiple sequence alignment? Note that you can 
create a multiple sequence alignment of selected BLAST results, as indicated in the 
results table (Fig. 4.16b).

 • Do the proteins share a similar biological function? Like all lipocalins, both proteins 
are small, hydrophilic, abundant, secreted molecules.

The accession of the human 
RBP4 protein is NP_006735.2.  
The DELTA‐BLAST program 
(Chapter 5) generates a score of 
over 52 bits, an aligned region of 
182 amino acid residues, and an 
E value of 2 × 10−8 for the same 
match of RBP4 to complement 
component 8 gamma.
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FIGUre 4.16 Results of a BLASTP nr search using human RBP as a query, restricting the output to human RefSeq proteins. (a) The 
graphical overview shows that there are 6 hits, only one of which (RBP4 itself) has a high score (bar shaded red) extending across the length 
of the query. (b) The BLASTP output includes a list of alignments. Inspection of the E values suggests that, in addition to RBP itself, several 
authentic paralogs may have been identified by this search. Is complement component 8 gamma (C8G), having an alignment E value of 0.18, 
likely to be homologous to RBP? (c) Pairwise alignment of RBP4 and C8G, provided as part of the BLASTP output, includes 25% amino 
acid identity and alignment of a GXW motif (red rectangle) that is consistently conserved among lipocalin carrier proteins such as RBP4. 

Source: BLASTP, NCBI.

(a) Graphical overview

(b) List of alignments

(c) Pairwise alignment of RBP4 and C8G
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 • Do the proteins share a similar three‐dimensional structure? Although there is great 
diversity in lipocalin sequences, they share a remarkably well‐conserved structure. 
This structure, a cup‐like calyx, allows them to transport hydrophobic ligands across 
an aqueous compartment (see Chapter 13).

 • Is the genomic context informative? The human complement component gamma 
gene has a similar number and length of exons as other lipocalins (Kaufman and 
Sodetz, 1994). It is mapped to chromosome 9q34.3, immediately adjacent to another 
lipocalin gene (LCN12) in the vicinity of 10 other other lipocalin genes on 9q34. This 
information suggests that the BLASTP match is biologically significant, even if the 
E value is not statistically significant.

 • If a BLAST search results in a marginal match to another protein, perform a 
new BLAST search using that distantly related protein as a query. A BLASTP 
nr search using complement component 8 gamma (C8G) as a query results in 
the  identification of several proteins (complex‐forming glycoprotein HC and  
α‐1‐microglobulin/bikunin) that are also detected by RBP4 (Fig. 4.17a,b). 
This  finding increases our confidence that RBP4 and complement component 
8  gamma are in fact homologous members of a protein superfamily. If the 
BLASTP search using complement component 8 gamma had shown that protein 
to be part of another characterized family, this would have suggested that it is not 
related to RBP4.

We can see examples of matches to nonhomologous proteins in our search using 
complement component C8 gamma as a query. One match is to a protein (tenascin‐X 
isoform 1) that is 4242 amino acids in length, and does not include the GXW motif  
(Fig. 4.17c). Another match is to a neuroblastoma‐amplified sequence that has 44% amino 
acid identity to the query but only over a span of 41 residues. We can perform a BLASTP 
query with this neuroblastoma‐amplified sequence to see that it is a member of a Sec39 
superfamily with no annotated relationship to lipocalins.

Historically, early database searches yielded results that were entirely unexpected. In 
1984, the β‐adrenergic receptor was found to be homologous to rhodopsin (Dixon et al., 
1986). This was surprising because of the apparent differences between these receptors 
in terms of function and localization: rhodopsin is a retina‐specific receptor for light, and 

An accession number for the 
three‐dimensional structure 
of human complement protein 
C8γ is 1IW2, while for RBP4 an 
accession is 1RBP. We discuss 
Protein Data Bank accession 
numbers (such as these) in 
Chapter 13.

We define motifs and signatures 
in Chapter 12 and trees in 
Chapter 7.

FIGUre 4.17 Results of a BLASTP search against human proteins via the nonredundant database, 
using human complement component 8 gamma (C8G) as a query. (a) The graphical overview shows 
8 matches, including the query to itself (red bar) and several alignments with low scores (black bars) 
spanning just short stretches of amino acids. (b) The list of alignments includes RBP4 and other 
 members of the lipocalin family. This “reciprocal” search supports the hypothesis that C8G, identified 
in a previous RBP4 search, is an authentic homolog. Here three database matches are not homologous 
(arrows). The E values are unconvincingly high, and the proteins are members of protein families 
other than lipocalins (as can be confirmed by separate BLAST searches). (c) Inspection of pairwise 
alignments between C8G and two putative nonhomologous proteins shows that these proteins are far 
larger than typical lipocalins (4242 and 2371 amino acid residues). The tenascin X isoform 1 does 
not overlap the highly conserved GXW motif. The neuroblastoma‐amplified sequence does match the 
GXW motif, but the region of overlap extends to only 41 residues. These results highlight the need to 
inspect each pairwise alignment from a BLAST search. The E value provides a statistical argument 
for evaluating possible homology, but it should be complemented by knowledge of the biological 
properties of the sequences. Here RBP4, C8G, and other lipocalins are soluble, hydrophilic, abundant 
proteins that probably share similar functions as carrier proteins; they also share similar three‐dimen-
sional structures (see Chapter 13).

Source: BLASTP, NCBI.
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(a) Graphical overview

(b) List of alignments

Not homologous

Not homologous

Not homologous

(c) Pairwise alignments with nonhomologous proteins
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the adrenergic receptors were known to bind epinephrine (adrenalin) and norepinephrine, 
stimulating a signal transduction cascade that results in cyclic adenosine monophosphate 
(cAMP) production. Alignment of the protein sequences revealed that they share simi-
lar structural features (seven predicted transmembrane domains). It is now appreciated 
that rhodopsin and the β‐adrenergic receptor are prototypic members of a superfamily 
of receptors that bind ligands, initiating a second messenger cascade. Another surprising 
finding was that some viral genes that are involved in transforming mammalian cells are 
actually derived from the host species. The human epidermal growth factor  receptor 
was sequenced and found to be homologous to an avian retroviral oncogene, v‐erb‐B 
(Downward et al., 1984). There are many more examples of database searches that 
revealed unexpected relationships. In many other cases, the reported relationships 
represented false positive results. The false positive error rate will yield occasional 
matches that are not authentic, and comparison of the three‐dimensional structures of 
the potential homologs can be used as a criterion for deciding whether two proteins are 
in fact homologous.

How to Handle Too Many Results
A common situation that is encountered in BLAST searching is that too many results 
are returned. There are many strategies available to limit the number of results but, 
to make the appropriate choices, you must focus on the question you are trying to 
answer.

 • Select a “refseq” database and all the hits that are returned will have RefSeq acces-
sion numbers. This will often eliminate redundant database matches.

 • Limit the database returns by organism, when applicable. One convenient 
approach is to select the taxonomy identifier (txid) of interest. This may eliminate 
extraneous information. If you use the options feature of the BLAST server to 
limit a search by organism, the same size search is performed; in contrast, if you 
choose an organism‐specific database, this may increase the speed of the search. 
(We present some organism‐specific BLAST servers in Chapter 5.) You can use 
the “exclude” feature (Fig. 4.1) to ignore matches from an organism or group of 
interest.

 • Use just a portion of the query sequence, when appropriate. A search of a  multidomain 
protein can be performed with just the isolated domain sequence. If you are studying 
HIV‐1 Pol, you may be interested in the entire protein or in a specific portion such as 
the reverse transcriptase domain.

 • Adjust the scoring matrix to make it more appropriate to the degree of similarity 
between your query and the database matches.

 • Adjust the expect value; lowering E reduces the number of database matches that are 
returned.

How to Handle Too Few Results
Many genes and proteins have no significant database matches or have very few. As new 
microbial and viral genomes are sequenced, half the predicted proteins may have no 
matches to any other proteins (Chapters 16 and 17). Some strategies to increase the num-
ber of database matches from BLAST searching are obvious: remove Entrez limits, raise 
the expect values, and try scoring matrices with higher PAM or lower BLOSUM values. 
A large variety of additional databases can also be searched. Within the NCBI website, 
all available databases (e.g., HTGS and GSS) can be searched. Many genome‐sequencing 
centers for a variety of organisms maintain separate databases that can be searched by 
BLAST. These are described in Chapter 5 (advanced BLAST searching). Additionally, 
there are many database‐searching algorithms that are more sensitive than BLAST. 

Go to NCBI Gene and enter 
“rhodopsin,” restricting the 
organism to human. There are 
>700 entries, mostly consisting 
of members of this family of 
receptors thought to have seven 
transmembrane spans. We learn 
how to explore protein families in 
Chapter 12.
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These include position‐specific scoring matrices (PSSMs) and hidden Markov models 
(HMMs), and are also described in Chapter 5.

BLaSt Searching with Multidomain protein: hIV-1 pol

The Gag‐Pol protein of HIV‐1 (NP_057849.4) has 1435 amino acid residues and includes 
separate protease, reverse transcriptase, and integrase domains; it is therefore an example 
of a multidomain protein. Figure 4.18 previews the kinds of searches we can perform with 
a viral protein such as this one.

What happens upon BLASTP searching the nonredundant protein database with 
this protein? We input the RefSeq accession number (NP_057849) and click submit. The 
program reports that putative conserved domains have been detected, and a  schematic 
of the protein indicates the location of each domain (Fig. 4.19a). Clicking on any of these 
domains links to the NCBI Conserved Domain Database as well as to the Pfam and 
SMART databases (see Chapters 6 and 12). Continuing with the BLAST search, we 
see that there are many hits, all with extremely low expect values, and all correspond to 
HIV matches from various isolates. Reformatting the output to “query‐anchored with 
dots for identities” is one way to view the dramatic conservation of these viral proteins   
(Fig. 4.19b). This view also highlights particular amino acid substitutions that are empir-
ically observed, such as five arginine residue positions that are perfectly  conserved, 
one arginine that is substituted with lysine in a half dozen instances, and one argi-
nine that is rarely substituted by glutamine (Fig. 4.19b, arrows). Such  position‐specific 
 differences in substitution frequencies reflect selective evolutionary pressures and are 
the basis of PSI‐BLAST and DELTA‐BLAST approaches (Chapter 5).

These highly conserved HIV‐1 variants of Gag‐Pol obscure our ability to evaluate 
non‐HIV‐1 matches. We can repeat the BLASTP search, setting the database to RefSeq 
proteins. Now Gag‐Pol orthologs are evident across a variety of virus species.  Clicking 
Taxonomy Reports from the main BLASTP search result page shows that, surprisingly, 

FIGUre 4.18 Overview of BLAST searches beginning with HIV‐1 Pol protein. A series of BLAST 
searches can often be performed to pursue questions about a particular gene, protein, or organism. The 
number of database matches returned by a BLAST search can vary from none to thousands and depends 
on the nature of the query, the database, and the search parameters.

Query various databases 
with HIV-1 pol protein
(NP_057849)

BLASTP nr (all proteins)

BLASTP nr (Bacterial proteins)

BLASTP nr (human proteins)

TBLASTN human EST database
hundreds of significant hits

TBLASTX viral genomeshuman, simian,
ovine viruses

detect many HIV pol variants

detect several dozen partial matches

analyze one human EST

TBLASTN nr (Bacterial genomes)

many significant hits

detect additional bacterial matches
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there are even some homologs in the wild boar Sus scrofa, the rust‐red flour beetle 
 Tribiolium castaneum, and a group of fungi (Fig. 4.20).

To learn more about the distribution of Pol proteins throughout the tree of life, we may 
further ask what bacterial proteins are related to the viral HIV‐1 Pol polyprotein. Repeat 
the BLASTP search with NP_057849 as the query, but limit the search to “Bacteria” 
(txid2[Organism]). Here, the graphical overview of BLAST search results is extremely 
helpful to show that two domains of viral Pol have the majority of matches to known 
 bacterial sequences, corresponding to amino acids 500–800, 1000–1150, and 1200–1300 
of Pol (Fig. 4.21). Comparison of this output to the domain architecture of HIV‐1 Pol 
(Fig. 4.19a) suggests that in particular the ribonuclease H and integrase core domains of 
HIV‐1 match many dozens of bacterial proteins. You can inspect pairwise alignments to 
confirm that the viral and bacterial proteins are homologous, often sharing about 30% 
amino acid identity over spans of over 150 amino acids.

Let us now turn our attention to human proteins that may be homologous to HIV‐1 
Pol. The BLASTP search is identical to our search of bacteria, except that we restrict the 
organism to Homo sapiens nonredundant proteins. Interestingly, there are many human 
matches (Fig. 4.22a), and a number of these span the majority of the viral protein. These 
human proteins have been annotated as gag‐ropvirus‐pol‐env proteins, polymerases, 
endogenous retrovirus proteins, reverse transcriptases, and cellular nucleic acid‐binding 
proteins.

Are these human genes expressed? If so, they should produce RNA transcripts that 
may be characterized as ESTs from cDNA libraries. Perform a search of human ESTs 
with the viral Pol protein; it is necessary to use the translating BLAST website with 
the TBLASTN algorithm, and the database must be set to EST while the organism is 
restricted to human. There are hundreds of human transcripts, actively transcribed, that 
are predicted to encode proteins homologous to viral Pol (Fig. 4.22b). These correspond 
to three regions of HIV‐1 Gag‐Pol. In Chapter 10, we see how to evaluate these human 
ESTs to determine where in the body they are expressed and when during development 
they are expressed.

Could the human ESTs that are homologous to HIV‐1 Pol be even more closely 
related to other viral Pol genes? To answer this question, select a human EST that 
we found to be related to HIV‐1 Pol (from Fig. 4.22b; we will choose accession 
BX509809.1 because it has the lowest E value, 5 × 10−29). Perform a TBLASTX search 
using this EST’s accession as an input and restrict the database to refseq_genomic and 

FIGUre 4.19 A BLASTP search with HIV‐1 viral Pol (NP_057849). (a) Graphical overview shows 
conserved domains in the protein. These blocks are clickable and link to the Conserved Domain  Database 
at NCBI (Chapters  5 and 6). The links are to protein domains (Gag_p17, Gag_p24) and abbreviations 
include rvp, retroviral aspartyl protease; rvt, reverse transcriptase (RNA‐dependent DNA polymerase); 
rnaseH, ribonuclease H; rve, integrase core domain. The red horizontal bars indicate many close matches 
to viral proteins. (b) The BLAST alignment options include formats such as query‐anchored, in which 
dots correspond to residues in database entries that match the query. This view highlights the  occasional 
sequence differences in viral proteins. Arrows indicate arginine (R) positions in the query that are 
 perfectly conserved, or that are sometimes substituted with lysine (K) or glutamine (Q). 

Source: BLASTP, NCBI.
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Query      1     MGARASVLSGGELDRWEKIRLRPGGKKKYKLKHIVWASRELERFAVNPGLLETSEGCRQI  60
NP_057849  1     ............................................................  60
P0C6F2     1     ...........K................................................  60
P03366     1     ............................................................  60
P03367     1     ............................................................  60
P04587     1     ............................................................  60
AAD03191   1     ...........................Q.R..............................  60
P35963     1     .........A....K............Q.R................D.............  60
P12497     1     ..............K............Q................................  60
P20875     1     .............................R......................S.......  60
AAD03200   1     .................R.....R.....Q..............S...............  60
P20892     1     ..............K..............Q...............I..............  60
Q73368     1     ................................................S...........  60
BAB85751   1     ...........Q...............M................................  60
AFB39387   1     ...........Q...............R.........................A......  60
P03369     1     ..............K.............................................  60
P05959     1     ...........K..K........R...R....................S....A......  60
AAG30116   1     ......I.......K..............R...L........Q..I.......A......  60
AAD03217   1     ......I......................Q..............................  60

(a) Graphical overview

(b) List of alignments (query-anchored with dots for identities)

R R R R RR,QR,K
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  Human immunodeficiency virus 1 [viruses] taxid 11676
 ref|NP_057849.4| Gag-Pol [Human immunodeficiency virus 1]        2971  0.0
 ref|NP_789740.1| Pol [Human immunodeficiency virus 1]            2052  0.0
 ref|NP_705927.1| reverse transcriptase [Human immunodefici...    1149  0.0
 ref|YP_001856242.1| reverse transcriptase [Human immunodef...    1149  0.0
 ref|NP_789739.1| reverse transcriptase p51 subunit [Human ...     912  0.0
 ref|NP_057850.1| Pr55(Gag) [Human immunodeficiency virus 1]       908  0.0
 ref|NP_705928.1| integrase [Human immunodeficiency virus 1]       602  0.0
 ref|YP_001856243.1| integrase [Human immunodeficiency viru...     602  0.0
 ref|NP_579880.1| capsid [Human immunodeficiency virus 1]          481  4e-156
 ref|NP_579876.2| matrix [Human immunodeficiency virus 1]          271  7e-81
 ref|NP_705926.1| retropepsin [Human immunodeficiency virus 1]     204  2e-57
 ref|YP_001856241.1| retropepsin [Human immunodeficiency vi...     204  2e-57
 ref|NP_579881.1| nucleocapsid [Human immunodeficiency viru...     130  5e-32
 ref|NP_787043.1| Gag-Pol Transframe peptide [Human immunod...     119  4e-28

  Simian immunodeficiency virus [viruses] taxid 11723
 ref|NP_687035.1| Gag-Pol [Simian immunodeficiency virus]         1687  0.0
 ref|NP_054369.1| gag protein [Simian immunodeficiency virus]      502  1e-159

  Human immunodeficiency virus 2 [viruses] taxid 11709
 ref|NP_663784.1| gag-pol fusion polyprotein [Human immunod...    1675  0.0
 ref|NP_056837.1| gag polyprotein [Human immunodeficiency v...     523  3e-167

  Simian immunodeficiency virus SIV-mnd 2 [viruses] taxid 159122
 ref|NP_758887.1| pol protein [Simian immunodeficiency viru...    1377  0.0
 ref|NP_758886.1| gag protein [Simian immunodeficiency viru...     486  2e-153

  Feline immunodeficiency virus [viruses] taxid 11673
 ref|NP_040973.1| pol polyprotein [Feline immunodeficiency ...     489  2e-148
 ref|NP_040972.1| gag protein [Feline immunodeficiency virus]      158  8e-38

  Equine infectious anemia virus [viruses] taxid 11665
 ref|NP_056902.1| pol polyprotein [Equine infectious anemia...     424  1e-123
 ref|NP_056901.1| gag protein [Equine infectious anemia virus]     154  2e-36

///

  Candida albicans SC5314 [ascomycetes] taxid 237561
 ref|XP_888860.1| hypothetical protein CaO19_6468 [Candida ...      90  2e-15
 ref|XP_721310.1| hypothetical protein CaO19.6468 [Candida ...      86  1e-14

  Sus scrofa (wild boar, ...) [even-toed ungulates] taxid 9823
 ref|XP_003482346.1| PREDICTED: hypothetical protein LOC100...      90  2e-15

  Tribolium castaneum (rust-red flour beetle) [beetles] taxid 7070
 ref|XP_001815322.1| PREDICTED: similar to orf [Tribolium c...      89  5e-15
 ref|XP_001808495.1| PREDICTED: similar to orf [Tribolium c...      88  8e-15

  Candida dubliniensis CD36 [ascomycetes] taxid 573826
 ref|XP_002421195.1| retrovirus-related Pol polyprotein fro...      88  6e-15

  Moniliophthora perniciosa FA553 [basidiomycetes] taxid 554373
 ref|XP_002387985.1| hypothetical protein MPER_13056 [Monil...      88  7e-15

FIGUre 4.20 The taxonomy report for a BLASTP search shows an overview of which species have 
proteins matching the HIV‐1 query. Most matches are viral, but others include rabbit, fungal, pig, and 
insect sequences. The /// symbols indicate a series of other matches (not shown). 

Source: BLASTP, NCBI.

the organism of the search to viruses. At the present time, this search results in the 
identification of viruses having signficiant but limited relatedness to our query (e.g., 
koala retrovirus, banana streak virus). We initially performed a BLAST search with an 
HIV query and have used a further series of BLAST searches to gain insight into the 
biology of HIV‐1 Pol.
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FIGUre 4.21 Result of a BLASTP search with HIV‐1 Pol as a query, restricting the output to bac-
teria. The graphical output of the BLAST search allows identification of the domains within HIV‐1 that 
have bacterial matches. The length of overlap and the number of bacterial sequences are also evident. 

Source: BLASTP, NCBI.

bacterial matches to HIV-1
ribonuclease H domain

bacterial matches to HIV-1 
retropepsin,  reverse

transcriptase domains

bacterial matches to HIV-1 
integrase core domain

uSIng BLASt For gene dIScoVery: FInd-A-gene
A common problem in biology is finding a new gene. Traditionally, genes and proteins 
were identified using the techniques of molecular biology and biochemistry. Complemen-
tary DNAs were cloned from libraries, or proteins were purified then sequenced based 
upon some biochemical criteria such as enzymatic activity. Such experimental biology 
approaches will always remain essential. Bioinformatics approaches can also be useful to 
provide evidence for the existence of new genes. For our purposes a “new” gene refers to 
the discovery of some DNA sequence in a database that is not annotated (described). You 
may want to find new genes for many reasons:

 • You want to study a globin or lipocalin that no one has characterized before, perhaps 
in a specific organism of interest such as a plant or archaeon.

 • You are interested in the lipocalins, and you see that one has been described in the 
tears of hamsters. Could there be a new, undiscovered gene that encodes a lipocalin 
protein expressed in human tears? (At present, there is one!)

 • You want to know if viruses have globins or lipocalins. If so, this might give you 
insight into the evolution of these families of carrier proteins.

 • You study diseases in which sugars are not processed properly and, as part of this 
research, you study sugar transport in cell lines from some organism. You know 
that glucose transporters have been characterized by biochemical assays (e.g., sugar 
uptake). You also know that there is a family of glucose transporter genes (and pro-
teins) that have been deposited in GenBank. You cloned all the known transporters, 
expressed them in cells, and found that none of the recombinant proteins transports 
your sugar. You hypothesize that there must be at least one more transporter that has 
not yet been described. Is there a way to search the database to find genes encoding 
novel transporters?
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FIGUre  4.22 (a) Graphical output of a BLASTP search using HIV‐1 Pol protein to search for 
matches against human proteins. Note that some human hits have very high scores. (b) Are human 
 transcripts expressed that encode proteins homologous to HIV‐1 Pol protein? The results of a TBLASTN 
search with viral Pol protein against a human EST database are shown. Many human genes are actively 
transcribed to generate transcripts predicted to make proteins homologous to HIV‐1 Pol. 

Source: BLASTP, NCBI.

(a) BLASTP search of HIV-1 pol against human non-redundant protein database

(b) TBLASTN search of HIV-1 pol against human expressed sequence tags

A general strategy to solve any of these problems is presented in Figure 4.23. I have 
called this the “find‐a‐gene” project and have used it as a teaching exercise since the year 
2000. All of the hundreds of students who attempted it completed it successfully. Each 
student summarizes the results in a word document. The steps are as follows.

 1. Choose the name of a favorite protein you are interested in. Include the species and 
the accession number. As an example (below), we will select human beta globin and 
search for a novel globin gene.

The “find‐a‐gene project” is 
summarized at Web Document 
4.5. The beta globin “find‐a‐gene 
project” described here is 
available as Web Document 4.6 
(  http://www.bioinfbook.org/
chapter4).

http://www.bioinfbook.org/chapter4
http://www.bioinfbook.org/chapter4
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 2. Perform a TBLASTN search against a DNA database consisting of genomic DNA or 
expressed sequence tags (ESTs). The BLAST server can be at NCBI or elsewhere. 
Include the output of that BLAST search in your document.

On the BLAST results, clearly indicate a match that represents a protein sequence, 
encoded from some DNA sequence, that is homologous to your query protein. It is 
important to be able to inspect the pairwise alignment you have selected, including 
the E value and score. In general, this step is the most difficult for students because it 
requires you to have a “feel” for how to interpret BLAST results. You need to distinguish 
between a perfect match to your query (i.e., a sequence that is not “novel”), a near match 
(something that might be “novel”, depending on the results of step (4) below), and a 
nonhomologous result.

As an example of finding a “novel” globin, use beta globin (NP_000509) as a query 
and perform a TBLASTN search of ESTs restricted to nematodes. We introduce ESTs 
in Chapter 10; they are short fragments of DNA (typically up to 800 base pairs) corre-
sponding to genes that have been expressed in a particular organism in some region and at 
some time of development. For example, libraries of ESTs are available from human fetal 
liver or adult mouse brain. By restricting the output to nematode ESTs, we find a match 
with a significant E value (Fig. 4.24a; accession JK511422.1, a 559 base pair clone from 
Anguillicola crassus). This nematode EST encodes a protein that shares 47% amino acid 
identity with human beta globin, with a convincing E value of 6 × 10−44. Is this nematode 
protein “novel” in the sense that it has never been annotated as a globin? Follow the link 
to the nematode accession, choose BLAST, and perform a BLASTX search against the 
nonredundant (NR) database. The best match is not to any nematode protein, confirming 

If appropriate, change the font to 
Courier size 10 so that the results 
are displayed neatly. You can also 
screen capture a BLAST output. 
It is not necessary to print out all 
of the BLAST results if there are 
many pages.

Start with the sequence
of a known protein

TBLASTN
Search a DNA database (e.g. HTGS, 
dbEST, or genomic sequence 
from a speci�c organism)

Inspect the output

Find matches...
[1] to DNA encoding known 
     proteins (not novel)
[2] to DNA encoding related 
     proteins (novel!)
[3] to false positives

BLASTX or
BLASTP nr

Search your DNA or protein
against a protein database (nr)
to con�rm you have
identi�ed a novel gene

FIGUre 4.23 How to discover a novel gene by BLAST searching. Begin with the sequence of a 
known protein such as human beta globin. Perform a TBLASTN search of a DNA database. It is unlikely 
that there are many “novel” genes in the well‐characterized genomes of organisms such as human, yeast, 
or E. coli. It may therefore be helpful to search databases of organisms that are poorly characterized or 
not fully annotated. The TBLASTN search may result in two types of significant matches: (1) matches of 
your query to known proteins that are already annotated; and (2) homologous proteins that have not yet 
been annotated (“novel” genes and corresponding novel proteins). (3) The DNA sequence corresponding 
to the putative novel gene may be searched using the BLASTX algorithm against the nonredundant (nr) 
database. This may confirm that the DNA does indeed encode a protein that has no perfect match to any 
described protein.
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that this is indeed novel, but instead it is to a globin from the European eel (Fig. 4.24b), 
confirming that this is a globin homolog.

 3. Gather information about this “novel” protein. At a minimum, identify the protein 
sequence of the “novel” protein as displayed in the BLAST results from step (2). In 
some cases, you will be able to perform further BLAST searches to obtain even more 
sequence of your novel gene.

Propose a name for the novel protein (e.g., “Anguillicola globin”), and report 
the species from which it derives. It is very unlikely (but still possible) that you will 
find a novel gene from an organism such as S. cerevisiae, human, or mouse, because 
those genomes have already been thoroughly annotated. It is more likely that you will 
discover a new gene in a genome that is currently being sequenced, such as bacteria 
or mosses or protozoa.

 4. Demonstrate that this gene, and its corresponding protein, are novel. For the pur-
poses of this project, “novel” is defined as follows. Use the DNA sequence of 
the EST and perform a BLASTX query against the nonredundant (nr) database 

(a) Result of TBLASTN against nematode ESTs using human beta globin as a query

(b) BLASTX result with a nematode EST showing its closest known protein match is in a vertebrate

FIGUre 4.24 The find‐a‐gene project was demonstrated using human beta globin (NP_000509) as 
a query and searching a database of expressed sequence tags (ESTs) restricted to nematodes. (a) The 
matches included one to an EST from Anguillicola crassus (GenBank accession JK511422.1). (b) Using 
this accession as a query, a BLASTX nr search revealed matches to known beta globins. The best match, 
shown here, was to a vertebrate globin. However, since there was not a match to an A. crassus globin, 
this suggests that the find‐a‐gene project resulted in the identification of a DNA sequence that encodes 
a previously undescribed nematode globin. This novel globin can then be characterized in terms of its 
full‐length sequence, homologs, evolution, structure, and function. 

Source: NCBI.
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as described above. As an alternative strategy, take the encoded protein sequence 
(step (3)), and use it as a query in a BLASTP search of the nonredundant (nr) 
database at NCBI.

 • If there is a match with 100% amino acid identity to a protein in the database from 
the same species, then your protein is NOT novel (even if the match is to a protein 
with a name such as “unknown”). Someone has already found and annotated this 
sequence, and assigned it an accession number.

 • If the best match is to a protein with less than 100% identity to your query, then it 
is likely that your protein is novel and you have succeeded.

 • If there is a match with 100% identity but to a different species than the one you 
started with, then you have succeeded in finding a novel gene.

 • If there are no database matches to the original query from step (1), this indicates 
that you have found a DNA/protein that is not homologous to the original query. 
You should start over.

There are several further steps for this project, involving themes we will cover 
in later chapters.

 5. Generate a multiple sequence alignment with your novel protein, your original query 
protein, and a group of other members of this family. A typical number of proteins 
to use in a multiple sequence alignment is a minimum of 5 or 10 and a reasonable 
maximum is 30. We describe multiple sequence alignment in Chapter 6.

 6. Create a phylogenetic tree using an method such as neighbor‐joining, maximum par-
simony, maximum likelihood, or Bayesian inference (see Chapter 7). Bootstrapping 
and tree rooting are optional. Use any program such as MEGA, Phylip, or MrBayes.

 7. Predict the secondary and tertiary structure of your novel protein (see Chapter 13), 
and compare it to that of a known structure.

 8. Determine whether this gene is under positive or negative evolutionary selection (see 
Chapter 7).

 9. Discuss the significance of your novel gene. What have you learned about this gene/
protein family?

The main benefits of the find‐a‐gene project as a teaching tool are: (1) it requires that 
you know when and how to use the main family of BLAST programs (e.g., TBLASTN, 
BLASTX); (2) it allows you to become familiar with a variety of searchable databases 
(e.g., EST, genomic DNA, and nonredundant); and (3) it requires you to interpret differ-
ent kinds of BLAST output. For many initial TBLASTN searches with a protein query of 
interest, it is easy to find “novel” genes; for some cases it is not easy to find new genes, 
perhaps because relevant homologs do not exist or because the appropriate database is not 
searched. Begin again with a different protein query.

perSpectIVe
BLAST searching has emerged as an indispensable tool to analyze the relation of a 
DNA or protein sequence to millions or even trillions of sequences in public databases. 
All database search tools confront the issues of sensitivity (i.e., the ability to minimize 
false negative results), selectivity (i.e., the ability to minimize false positive results), 
and time. As the size of the public databases has grown exponentially in recent years, 
the BLAST tools have evolved to provide a rapid, reliable way to screen the databases. 
For protein searches we have focused on BLASTP. However, for most biologists per-
forming even routine searches with a protein query, the DELTA‐BLAST or HMMER 
programs described in Chapter 5 are strongly preferred. This is because of their more 
optimally constructed scoring matrices.
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pItFALLS
There are several common pitfalls to avoid in BLAST searching. The most common error 
among novice BLAST users is to search protein or DNA sequences against the wrong 
database. It is also important to understand the basic BLAST algorithms. These concepts 
are summarized in Figure 4.2.

An important issue in BLAST searching is deciding whether an alignment is signifi-
cant. Each potential BLAST match should be compared to the query sequence to evaluate 
whether it is reasonable from both a statistical and a biological point of view. It is more 
likely that two proteins are homologous if they share similar domain architecture (i.e., 
motifs or domains; Chapter 12) or other common features.

AdVIce For StudentS
BLAST searches are quick and easy. Practice doing many, many searches. Explore all 
the optional parameters and read the NCBI or other documentation to learn what they do.

If you have not used Linux before, find a Linux machine and install BLAST+. (Mac O/S 
and Windows machines also work.) Its installation is very well documented. Become com-
fortable downloading a database (it’s easy with the Perl script described above, although it 
is possible to use the wget command in Linux or to perform downloads on a PC or Mac). 
Use EDirect (as described above) to obtain your query or set of queries in the FASTA for-
mat (you can also use an editor such as nano or vim). Then perform a series of searches 
on the command line. Once you can use one program in Linux, it becomes much easier to 
access many other programs. If you have questions, try searching Biostars (  http://www.
biostars.org) for related questions and answers; if needed, post your own question.

WeB reSourceS
The main website for BLAST searching is that of the National Center for Biotechnol-
ogy Information (  http://blast.ncbi.nlm.nih.gov/). Within this site are links to the main 
programs (BLASTN, BLASTP, BLASTX, TBLASTN, and TBLASTX). There are other 
specialized BLAST programs at NCBI that are discussed in Chapter 5.

An important web resource is the set of BLAST tutorials, courses, and references 
available at the NCBI BLAST site. A practical BLAST tutorial is offered at  http://www.
ncbi.nlm.nih.gov/books/NBK1734/ (WebLink 4.10).

Discussion Questions
[4-1] Why doesn’t anyone offer “Basic 
Global Alignment Search Tool” (BGAST) 
to complement BLAST? Would BGAST 
be a useful tool? What computational dif-

ficulties might there be in setting it up? (Note that some 
tools do combine global and local search strategies. We 
describe HMMER software in Chapter 5, and another 
example is USEARCH from Robert Edgar at http://www.
drive5.com.)

[4-2] Should you consider a significant expect value to be 
1, 0.05, or 10−5? Does this depend on the particular search 
you are doing?

[4-3] Why is it that database programs such as BLAST 
must make a trade‐off between sensitivity and selectivity? 
How does the BLASTP algorithm address this issue?

prOBLeMS/COMpUter LaB
[4-1] In this problem we explore the effect of a short protein 
query on the BLASTP parameters. Perform a BLASTP search 
at NCBI using the following query of just 12 amino acids: 
PNLHGLFGRKTG. By default, the parameters are adjusted 
for short queries. Inspect the output. What is the E value cut-
off? What is the word size? What is the scoring matrix? How 
do these settings compare to the default parameters?

http://www.biostars.org
http://www.biostars.org
http://blast.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/books/NBK1734/
http://www.drive5.com
http://www.ncbi.nlm.nih.gov/books/NBK1734/
http://www.drive5.com
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[4-2] Protein searches are usually more informative than 
DNA searches. Perform a BLASTP search using RBP4 
(NP_006735), restricting the output to Arthropoda (insects). 
Next, carry out a BLASTN search using the RBP4 nucleo-
tide sequence (NM_006744). For this query, select only the 
nucleotides corresponding to the coding region of the DNA. 
(To do this visit the NCBI Nucleotide page, follow the link 
to the coding sequence (CDS), then choose the FASTA for-
mat.) Which search is more informative? How many data-
base matches have an E value less than 1.0 in each search?

[4.3] This problem introduces batch queries. It is possi-
ble to search many queries simultaneously, either using 
the web‐based BLAST (as in this problem) or via locally 
installed BLAST+. Mosses are plants of the phylum Bryo-
phyta, including the non‐seed plant Physcomitrella patens 
that had its genome sequenced (Rensing et al., 2008). Do 
mosses have any globin proteins and, if so, which human 
globin(s) are they most closely related to? (1) First obtain 
the accession numbers of all human globins. There are sev-
eral approaches to doing this, including BLASTP using 
beta globin and neuroglobin as queries. Other approaches 
involve DELTA‐BLAST (Chapter 5) or Pfam (Chapter 
6). These accession numbers are provided in Web Docu-
ment 4.7. (2) Perform a BLASTP search using all acces-
sion numbers as queries, entering them into the query 
box. Restrict the output to RefSeq proteins of the mosses.  
(3) Results for each query are shown (one at a time) via a 
pull‐down menu. Currently there are significant, although 
distant, matches of all human globins to moss proteins 
except for hemoglobin subunit mu. (See for example 
the match between human epsilon globin and predicted 
moss protein XP_001786089.1 with an E value of 0.01. 
A BLASTP search with that moss protein confirms it is 
related to many annotated plant globins.) Notably, only one 

human protein (neuroglobin, NP_001030585.1) has very 
strong matches to moss proteins such as P. patens predicted 
protein XP_001764902.1 (E value 2 × 10−10, 27% identity 
across a span of 138 amino acid residues).

[4.4] Use the BLAST+ suite to run BLASTP on the com-
mand line. Start with default settings, then change the effec-
tive database size for your search making it 1000 times smaller 
then 1000 times larger. What are the E values? Explore dif-
ferent output formats by using the help function; for example, 
use -outfmt 2 for a multiple alignment format.

[4.5] BLAST+ is useful for performing batch queries. Create 
a text file named 3proteins.txt having three  protein sequences: 
human beta globin, bovine  odorant‐binding  protein, and cyto-
chrome b from the malaria parasite  Plasmodium falciparum. 
(These are available at Web  Document 4.8.) Search them with 
BLASTP against the RefSeq protein database. The output file 
includes the results of three separate BLASTP searches.

[4.6] For the search you just performed in problem (4.5), 
what happens if you use a scoring matrix that is more suited 
to finding distantly related proteins?

[4.7] Is the Pol protein of HIV‐1 more closely related to 
the Pol protein of HIV‐2 or to the Pol protein of simian 
immunodeficiency virus (SIV)? Use the BLASTP  program 
to decide. Hint: try the Entrez command “NOT hiv‐1 
[organism]” to focus the search away from HIV‐1 matches.

[4.8] “The Iceman” is a man who lived 5300 years ago and 
whose body was recovered from the Italian Alps in 1991. 
Some fungal material was recovered from his clothing and 
sequenced. To what modern species is the fungal DNA 
most related?

[4.9] You perform a BLAST search and a result has an 
E value of about 1 × 10−4. What does this E value mean? 
Name some parameters on which an E value depends.

 
Self-test Quiz
[4-1] You have a reasonably short, typical, 
double‐stranded DNA sequence. Basically, 
how many proteins can it potentially encode?

(a) 1;

(b) 2;

(c) 3; or

(d) 6.

[4-2] You have a DNA sequence. You want to know which 
protein in the main protein database (“nr,” the nonredundant 
database) is most similar to some protein encoded by your 
DNA. Which program should you use?

(a) BLASTN;

(b) BLASTP;

(c) BLASTX;

(d) TBLASTN; or

(e) TBLASTX.
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[4-3] Which output from a BLAST search provides an 
estimate of the number of false positives from a BLAST 
search?

(a) E value;

(b) bit score;

(c) percent identity; or

(d) percent positives.

[4-4] Match up the following BLAST search programs 
with their correct descriptions:

BLASTP (a) Nucleotide query against a nucle-
otide sequence database

BLASTN (b) Protein query against a translated 
nucleotide sequence database

BLASTX (c) Translated nucleotide query against 
a protein database

TBLASTN (d) Protein query against a protein 
database

TBLASTX (e) Translated nucleotide query 
against a translated nucleotide 
database

[4-5] Changing which of the following BLAST parame-
ters would tend to yield fewer search results?

(a) turning off the low‐complexity filter;

(b) changing the expect value from 1 to 10;

(c) raising the threshold value; or

(d) changing the scoring matrix from PAM30 to PAM70.

[4-6] You can limit a BLAST search using any Entrez term. 
For example, you can limit the results to those  containing 
a researcher’s name.

(a) true; or

(b) false.

[4-7] An extreme value distribution:

(a) describes the distribution of scores from a query 
against a database;

(b) has a larger total area than a normal distribution;

(c) is symmetric; or

(d) has a shape that is described by two constants: μ (the 
mean) and λ (a decay constant).

[4-8] As the E value of a BLAST search becomes smaller:

(a) the value K also becomes smaller;

(b) the score tends to be larger;

(c) the probability p tends to be larger; or

(d) the extreme value distribution becomes less 
skewed.

[4.9] The BLAST algorithm compiles a list of “words” 
typically of three amino acids (for a protein search). Words 
at or above a threshold value T are defined as:

(a) “hits,” and are used to scan a database for exact 
matches that may then be extended;

(b) “hits,” and are used to scan a database for exact or 
partial matches that may then be extended;

(c) “hits,” and are aligned to each other; or

(d) “hits,” and are reported as raw scores.

[4-10]  Normalized BLAST scores (also called bit 
scores):

(a) are unitless;

(b) are not related to the scoring matrix that is used;

(c) can be compared between different BLAST searches, 
even if different scoring matrices are used; or

(d) can be compared between different BLAST 
searches, but only if the same scoring matrices are 
used.

SuggeSted reAdIng
BLAST searching was introduced in a classic paper by Stephen Altschul and colleagues 
(1990). This paper describes the theoretical basis for BLAST searching and describes 
basic issues of BLAST performance, including sensitivity (accuracy) and speed. Funda-
mental modifications to the original BLAST algorithm were later introduced, including 
the introduction of gapped BLAST (Altschul et al., 1997). This paper includes a discus-
sion of specialized position‐specific scoring matrices that we consider in Chapter 5.

Ian Korf, Mark Yandell, and Joseph Bedell (2003) have written an excellent book 
called BLAST. A useful older description of database searching is the article entitled 
“Effective protein sequence comparison” by William Pearson (1996). Altschul et al. 
(1994) provide a highly recommended article, “Issues in searching molecular sequence 
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databases.” Marco Pagni and C. Victor Jongeneel (2001) of the Swiss Institute of Bio-
informatics provide a technical overview of sequence alignment statistics. This article 
includes sections on the extreme value distribution, the use of random sequences, local 
alignment with and without gaps, and BLAST statistics. See also a review of alignment 
statistics was written by Stephen Altschul and Warren Gish (1996).

NCBI offers online books including “BLAST® Help” at  http://www.ncbi.nlm.nih.
gov/books/NBK1762/ (WebLink 4.6). “The Statistics of Sequence Similarity Scores” 
from the help section of the NCBI BLAST site provides an excellent resource (  http://
www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul‐1.html, WebLink 4.9).
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Gerardus Johannes Mulder and other 
biochemists in the 1830s and 1840s 
hypothesized that all proteins had the 
same composition of carbon, hydrogen, 
nitrogen, oxygen, phosphorus, and sul-
fur. Simon (1846, vol. 2, p. 505) summa-
rized the composition of known proteins 
including fibrin, casein, crystalline, and 
pepsin. He noted that the composition 
of globulin (i.e., hemoglobin) was not yet 
known. 

Source: Simon, transl. Day (1846).
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For many queries, the PSI‐BLAST extension can greatly increase sensitivity to weak but 
biologically relevant sequence relationships. PSI‐BLAST retains the ability to report 
accurate statistics, per iteration runs in times not much greater than gapped BLAST, and 
can be used both iteratively and fully automatically. These developments should enhance 
significantly the utility of database search methods to the molecular biologist.

— Altschul et al. (1997)

Instead of finding seeds by searching a data structure derived from the query [as in 
BLAST], one could instead find seeds by searching a data structure derived from the 
database.

— Morgulis et al. (2008) on BLAT, SSAHA, and MegaBLAST

We describe a block‐sorting, lossless data compression algorithm… The algorithm works 
by applying a reversible transformation to a block of input text. The transformation does 
not itself compress the data, but reorders it to make it easy to compress with simple algo-
rithms such as move‐to‐front coding.

— Burrows and Wheeler (1994)

Advanced Database 
Searching 

C h a p t e r 

5

LeArninG obJectiveS

After completing this chapter you should be able to:
 ■ define a position-specific scoring matrix (PSSM);
 ■ explain how position-specific iterated bLASt (PSi-bLASt) and DeLtA-bLASt greatly improve 

the sensitivity of bLASt protein searches;
 ■ describe profile hidden Markov models (HMMs) and explain their advantages over bLASt for 

database searching;
 ■ explain how spaced seed strategies improve the sensitivity of DnA searches; and
 ■ describe how millions of next-generation sequencing reads are aligned to a reference genome.

IntroductIon
In Chapters 3 and 4 we introduced pairwise alignments and BLAST. BLAST search-
ing allows a database to be searched for proteins or genes. BLAST searches can 
be very versatile, and in this chapter we cover several advanced database‐searching 
techniques.

http://www.wiley.com/go/pevsnerbioinformatics
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Let us introduce three problems for which the five main NCBI BLAST programs are 
not sufficient.

 1. We know that myoglobin is homologous to alpha globin and beta globin; all are ver-
tebrate members of a globin superfamily. We have seen in Figure 3.1 that myoglobin 
shares a very similar three‐dimensional structure with alpha and beta globin. How-
ever, if you use beta globin (NP_000509.1) as a query and perform a BLASTP search 
(restricting the output to human and setting the database to nr (nonredundant) or Ref-
Seq), myoglobin does not appear in the results. Fortunately there are programs such 
as DELTA‐BLAST and HMMER that can easily find such homologous but distantly 
related proteins.

 2. Suppose we want to compare long query sequences (e.g., 20,000 base pairs or more) 
against a database. We might also want to perform a pairwise alignment between two 
long sequences, such as human chromosome 20 (62 million base pairs long) versus 
mouse chromosome 2. We need an algorithm that is faster than BLASTN, and we 
need to explore both global and local strategies. For this problem we can expect some 
regions of the alignment to have regions of high conservation, but other regions will 
have diverged substantially. Finding solutions to such searching and alignment prob-
lems becomes more critical with the recent availability of thousands of completed 
genome sequences.

 3. A typical next‐generation sequencing experiment generates hundreds of millions of 
short reads (100–400 base pairs) that must be aligned to a single reference genome 
(e.g., the ∼3 billion base pairs of a human genome reference). It would take BLASTN 
literally weeks to accomplish this alignment problem, but fast aligners can accom-
plish this in minutes or hours.

This chapter begins with a brief overview of the kinds of specialized BLAST 
resources that are available to help solve many kinds of research questions. We then intro-
duce PSI‐BLAST, DELTA‐BLAST and hidden Markov models as tools to find distantly 
related proteins. We then consider BLAST‐like tools for the alignment of genomic DNA.

SpecIalIzed BlaSt SIteS
So far, we have used BLAST resources from the NCBI website (Chapters 3 and 4). Other 
related programs are available, including organism‐specific BLAST sites, BLAST sites 
that allow searches of specific molecules, and specialized database search algorithms.

Organism-Specific BLaSt Sites

We have seen that for standard BLAST searches at the NCBI website the output can be 
restricted to a particular organism. BLAST searches focused on dozens of prominent 
organisms can also be performed through the NCBI Map Viewer site.

Many databases include molecular sequence data from a specific organism, and these 
often offer organism‐specific BLAST servers. In some cases the data include unfinished 
sequences that have not yet been deposited in GenBank. If you have a protein or DNA 
sequence with no apparent matches in standard NCBI BLAST searches, then searching 
these specialized databases can provide a more exhaustive search. Also, as described in 
the section on “Specialized BLAST‐Related Algorithms”, some of these databases also 
present unique output formats and/or search algorithms.

Ensembl BLAST
Project Ensembl is a joint effort of the Wellcome Trust Sanger Institute (WTSI) and the 
European Bioinformatics Institute (EBI). The Ensembl website provides a comprehensive 
resource for studying the human genome and other genomes (see Chapters 15 and 19–20). 

Using human myoglobin 
(NP_005359) as a query in a 
BLASTP result against human 
RefSeq proteins, beta globin 
does not appear.

Web Document 5.1 at  http://
www.bioinfbook.org/chapter5 
lists organism‐specific BLAST 
servers.

Access the Map Viewer from the 
home page of NCBI or  http://
www.ncbi.nlm.nih.gov/mapview/ 
(WebLink 5.1). It currently offers 
about 150 separate organism‐
specific BLAST sites.

http://www.ncbi.nlm.nih.gov/mapview/
http://www.ncbi.nlm.nih.gov/mapview/
http://www.bioinfbook.org/chapter5
http://www.bioinfbook.org/chapter5
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The Ensembl BLAST server allows the user to search the Ensembl database. As an exam-
ple, paste in the FASTA‐formatted amino acid sequence of human beta globin (accession 
NP_000509) and perform a TBLASTN search. The output also consists of a graphical 
output showing the location of the database matches by chromosome (Fig. 5.1). This con-
veniently shows the chromosomal location of the best hits, including chromosome 11 for 
beta globin. An alignment summary is provided (Fig. 5.2) with an emphasis on genomic 
loci. Reasonably high‐scoring matches to chromosome 16 can be seen, corresponding to 

The Wellcome Trust Sanger 
Institute website is  http://www 
.sanger.ac.uk/ (WebLink 5.2). The 
EBI is at  http://www.ebi.ac.uk/ 
(WebLink 5.3). Ensembl’s human 
BLAST server is at  http://www 
.ensembl.org/Homo_sapiens/
blastview (WebLink 5.4), and 
Ensembl BLAST servers for mouse 
and other organisms can also be 
found through  http://www 
.ensembl.org/ (WebLink 5.5).

Figure 5.1 Output of a TBLASTN search of the Ensembl human database using human beta globin 
as a query. The results are presented in a graphical format by chromosome, showing the best match to 
the short arm of chromosome 11 (red box and arrowhead). Weaker matches to paralogs on other chro-
mosomes are also evident (orange arrowheads). 

Source: Ensembl Release 76; Flicek et al. (2014). Reproduced with permission from Ensembl.

Figure 5.2 The Ensembl BLAST server provides an output summary with scores, E values, and 
links to pairwise alignments (A), the query sequence (S), the genome (matching) sequence (G), and an 
Ensembl ContigView (C).

Source: Ensembl Release 76; Flicek et al. (2014). Reproduced with permission from Ensembl.

http://www.sanger.ac.uk/
http://www.ebi.ac.uk/
http://www.ensembl.org/Homo_sapiens/blastview
http://www.ensembl.org/
http://www.sanger.ac.uk/
http://www.ensembl.org/Homo_sapiens/blastview
http://www.ensembl.org/
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alpha globin. The output links include pairwise alignments between the query and each 
match, and a link to the ContigView. That is the genome browser consisting of assorted 
graphics and dozens of fields of information (e.g., an ideogram of the chromosome band, 
a view of neighboring genes, protein and DNA database links, polymorphisms, mouse 
homologies, and expression data).

Wellcome Trust Sanger Institute
The WTSI has a major role in genome sequencing. Its website offers BLAST searches 
specific to over 100 organisms. There are also BLAST servers for the Vertebrate Genome 
Annotation (VEGA) project that focuses on high‐quality manual annotation of selected 
vertebrate genomes (currently human, chimpanzee, mouse, rat, dog, pig, zebrafish, and 
others; Wilming et al., 2008).

Specialized BLaSt-related algorithms

We have focused on the standard BLAST algorithms at NCBI, but many other algorithms 
are available.

WU BLAST 2.0
Developed by Warren Gish at Washington University, WU BLAST 2.0 is related to the 
traditional NCBI BLAST algorithms; both were developed from the original NCBI 
BLAST algorithms that did not permit gapped alignments. WU BLAST 2.0 may pro-
vide faster speed and increased sensitivity, and includes a variety of options such as a 
full Smith–Waterman alignment on some pairwise alignments of database matches. The 
command‐line version of WU BLAST 2.0 offers dozens of options, comparable in scope 
to the client BLAST+ at NCBI (Chapter 4).

European Bioinformatics Institute (EBI)
The EBI website provides access to BLAST and other related database search tools 
(table 5.1):

 • BLAST tools include WU BLAST 2.0 as well as NCBI BLAST and PSI‐BLAST.
 • FASTA (FAST‐All), like BLAST, is a heuristic algorithm for searching DNA or 
protein databases. A set of global and local alignment tools are available, including 
an implementation of the Smith–Waterman algorithm with SSEARCH. While the 
run time is relatively slow, this provides a more sensitive algorithm than BLAST or 
FASTA.

 • A search of the European Nucleotide Archive is available, allowing you to find 
matches to a sequence of interest from next‐generation sequence data. Currently, a 
query with beta globin quickly searches a database of ∼1 terabase pairs.

Specialized NCBI BLAST Sites
The main BLAST site at NCBI offers access to specialized searches of immunoglobulins, 
vectors, single‐nucleotide polymorphisms (SNPs; see Chapter 8), or the trace archives of 
raw genomic sequence (see Chapter 15). For example, IgBLAST reports the three germ-
line V genes, two D, and two J genes that show the closest match to the query sequence 
(Ye et al., 2013).

BLAST of Next‐Generation Sequence Data
In Chapter 9 we introduce next‐generation sequencing (NGS) and the Sequence Read 
Archive (SRA) that stores NGS data. You can perform web‐based BLAST searching 
of NGS reads. From the home page of NCBI, enter the search term NA12878; this 
is the identifier for the well‐studied genome (using many sequencing technologies) 

The WTSI BLAST resources are 
available at  http://www 
.sanger.ac.uk/resources/
software/blast/ (WebLink 
5.6). The VEGA homepage is 

 http://vega.sanger.ac.uk/ 
(WebLink 5.7).

WU BLAST 2.0, called AB‐BLAST, 
is licensed by Advanced 
Biocomputing, LLC at  

 http://www.advbiocomp.com/ 
(WebLink 5.8).

EBI tools are available at 
 http://www.ebi.ac.uk/Tools/

sss/ (WebLink 5.9).

http://www.sanger.ac.uk/resources/software/blast/
http://vega.sanger.ac.uk/
http://www.advbiocomp.com/
http://www.ebi.ac.uk/Tools/sss/
http://www.sanger.ac.uk/resources/software/blast/
http://www.ebi.ac.uk/Tools/sss/


ADvAnceD DAtAbASe SeArcHinG  171

of an individual. Follow the link to SRA where there are currently >400 entries. 
In the results list, check one or more boxes (e.g., select the result “High‐coverage 
whole‐exome sequencing of CEPH/UTAH female individual (HapMap: NA12878)”), 
then select the link “Send to” and “BLAST.” A standard BLAST interface page 
appears, and you can search that set of NGS reads using a query of interest such as 
NM_000518.4 for beta globin.

FIndIng dIStantly related proteInS: poSItIon-
SpecIFIc Iterated BlaSt (pSI-BlaSt) and delta-BlaSt
Many homologous proteins share only limited sequence identity. Such proteins may 
adopt the same three‐dimensional structures (based on methods such as X‐ray crys-
tallography), but in pairwise alignments they may have no apparent similarity. We 
have seen that scoring matrices are sensitive to protein matches at various evolutionary 
distances. For example, we compared the PAM250 to the PAM10 log‐odds matrices 
(Figs 3.14 and 3.15) and saw that the PAM250 matrix provides a superior scoring sys-
tem for the detection of distantly related proteins. In performing a database search with 
BLAST, we can adjust the scoring matrix to try to detect distantly related proteins. Even 
so, many proteins in a database are too distantly related to a query to be detected using a 
standard BLASTP search. In many other cases, protein matches are detected but are so 
distant that the inference of homology is unclear. We saw that a BLASTP search using 
RBP4 as a query returned a statistically questionable match (E = 0.18) to an authentic 
homolog, complement component 8 gamma (Fig. 4.16). We would like an algorithm that 
can assign statistical significance to distantly related proteins that are true positives, 
while minimizing the numbers of both false positive results (e.g., reporting two proteins 
as related when they are not) and false negative results (e.g., failing to report that two 
proteins are significantly related).

taBLe 5.1 Sequence similarity searching tools at eBi. p, protein; N, nucleotide; g, 
genomes; WgS, whole-genome shotgun. 

Category Tool Query Description

FASTA FASTA P, N, G, WGS Fast, heuristic, local alignment searching

SSEARCH P, N, G, WGS Optimal (not heuristic‐based) local alignment 
search tool (uses Smith–Waterman)

PSI‐SEARCH P Combines SSEARCH with PSI‐BLAST profile 
construction to detect distant relationships

GGSEARCH P, N Optimal global alignment using 
Needleman–Wunsch algorithm

GLSEARCH P, N Optimal alignment using (global in the 
query, local in the database sequence).

FASTM/S/F P, N, Proteomes Analyzes short peptide queries

BLAST NCBI BLAST P, N, Vectors Fast, heuristic, local alignment

WU‐BLAST P, N Higher‐sensitivity alternative to NCBI BLAST

PSI‐BLAST P Position‐specific iterated BLAST to detect 
distant relationships

ENA Sequence 
Search

N Fast search of European Nucleotide Archive

Source: http://www.ebi.ac.uk/Tools/sss/. Accessed April 2015.

http://www.ebi.ac.uk/Tools/sss/
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Position‐specific iterated BLAST (abbreviated PSI‐BLAST or ψ‐BLAST) is a spe-
cialized kind of BLAST search that is often more sensitive than a regular BLAST search 
(Altschul et al., 1997; Zhang et al., 1998; Schäffer et al., 2001). The purpose of using 
PSI‐BLAST is to look deeper into the database to find distantly related proteins that 
match your protein of interest. In many cases, when a complete genome is sequenced 
and the predicted proteins are analyzed to search for homologs, PSI‐BLAST has been the 
algorithm of choice.

PSI‐BLAST is performed in five steps:

 1. A normal BLASTP search uses a scoring matrix (such as BLOSUM62, the default 
scoring matrix) to perform pairwise alignments of your query sequence (such as RBP) 
against the database. PSI‐BLAST also begins with a protein query that is searched 
against a database at the NCBI website.

 2. PSI‐BLAST constructs a multiple sequence alignment from an initial BLASTP‐like 
search using composition‐based statistics (Schäffer et al., 2001). It then creates a 
specialized, individualized search matrix (also called a profile) based on that multiple 
alignment.

 3. This position‐specific scoring matrix (PSSM) is then used as a query to search the 
database again. (Your original query is not used.)

 4. PSI‐BLAST estimates the statistical significance of the database matches, essentially 
using the parameters we described for gapped alignments.

 5. The search process is continued iteratively, typically about five times. At each step 
a new profile is used as the query. You must decide how many iterations to per-
form; simply click on “Run PSI‐BLAST Iteration.” You can stop the search process at 
any point, for example, whenever few new results are returned or when the program 
reports convergence because no new results are found.

When we view a multiple sequence alignment of proteins, we can generally see col-
umn positions in which a given residue has its own specific patterns of substitution. We 
highlighted an example in Figure 4.19 showing how arginine residues in an alignment are 
in some positions perfectly conserved, and in other positions they may be substituted with 
other residues. This kind of information is captured by a PSSM.

For a query of length L, PSI‐BLAST generates a PSSM of dimension L × 20. The 
rows of each matrix have a length L equal to the query sequence. Redundant sequences 
(having at least 94% amino acid identity in a pairwise alignment of any two sequences 
in the matrix) are eliminated. This ensures that a group of very closely related sequences 
will not overly bias the construction of the PSSM. The same gap scores are applied as in 
BLASTP, rather than implementing position‐specific gap scores. A unique scoring matrix 
(profile) is derived from the multiple sequence alignment (Box 5.1). For each iteration of 
PSI‐BLAST, a separate scoring matrix is created.

What does a PSSM look like? The NCBI Education site offers a PSSM viewing 
tool. The result for an alignment of human beta globin to a family of globin proteins 
is shown in Figure 5.3. The consensus sequence is arranged in a column (see arrow; 
the first 20 residue positions of the PSSM are numbered in the column labeled P). The 
query sequence (beta globin protein) is next given in a column (see arrow), followed 
by 20 columns for the amino acids. The numeric values are scores assigned to the res-
idues at each position of the PSSM. Consider alanine (column indicated by arrow 1). 
In our query, alanine occurs two times and is assigned scores of +2 and +3. In the con-
sensus alanine occurs three times (at positions 3, 7, and 16) where it is assigned scores 
of +3, +3, and +1. The fact that the score assigned to an alanine match varies according 
to position exemplifies the main feature of the PSSM. Where the score is +3 alanine 
tends to occur frequently for many proteins in this family; where the score is only +1 
alanine is less well conserved (and our beta globin query protein has a valine here). 

You can access PSI‐BLAST via 
the protein BLAST page at  

 http://www.ncbi.nlm.nih 
.gov/BLAST (WebLink 5.10) and 
at other servers such as EBI  
(  http://www.ebi.ac.uk/Tools/
sss/psiblast/, WebLink 5.11) and 
the Pasteur Institute (  http://
mobyle.pasteur.fr/cgi‐bin/
portal.py?#forms::psiblast, 
WebLink 5.12).

We have seen a multiple 
sequence alignment from a 
BLAST output in Figure 4.10, 
and examine this topic further in 
Chapter 6.

PSSM is sometimes pronounced 
“possum.”

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ebi.ac.uk/Tools/sss/psiblast/
http://www.ebi.ac.uk/Tools/sss/psiblast/
http://mobyle.pasteur.fr/cgi%E2%80%90bin/portal.py?#forms::psiblast
http://mobyle.pasteur.fr/cgi%E2%80%90bin/portal.py?#forms::psiblast
http://mobyle.pasteur.fr/cgi%E2%80%90bin/portal.py?#forms::psiblast
http://www.ncbi.nlm.nih.gov/BLAST
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Box 5.1 pSI-BlaSt target FrequencIeS

Scores are derived for each specific column position in the form log(qi / pi), where qi is the estimated probability of residue i being 
found in that column position and pi is the background probability for that residue (Altschul et al., 1997). The key problem is to estimate 
the target frequencies qi. This is accomplished in two steps using a method of pseudocounts (Tatusov et al., 1994). First, pseudocount 
frequencies gi are obtained for each column position as follows:

 g
f

p
qi

j

jj
ij∑=  (5.1)

where fj are the observed frequencies, pj are the background frequencies, and qij are the target frequencies implicit in the substitution 
matrix (as described in Equations (3.4), (3.7)). Next, the target frequencies qi (corresponding to the likelihood of observing residue i 
in the position of a column) are defined:

 q
f g

i
i iα β

α β
= +

+
 (5.2)

where α and β are relative weights assigned to the observed frequencies fi and the pseudocount residue frequencies gi. Having estimated 
the target frequencies, it is now possible to assign a score for a given aligned column as ln(qi / pi) / λ. Altschul et al. (2009) further 
showed that more highly conserved column positions require fewer pseudocounts, a correction that improves retrieval accuracy.

Figure 5.3 Matrix view of a position‐specific scoring matrix (PSSM). The NCBI PSSM visualization 
tool was queried for pfam00042 (corresponding to the Conserved Domain Database globin protein family), 
and the accession number for human beta globin protein (NP_000509) was entered as a specific protein 
to align to the PSSM. The matrix view option was selected. The rows are numbered by position (column 
header P, showing up to the 20th position) for the consensus sequence (column header C) and this particular 
query. The columns include the 20 amino acids (labled from A to E). Arrows 1–2 indicate amino acids that 
are assigned dramatically different scores depending on their positions in the protein (see text for details). 
The right side of the figure shows that for two glycine residues the sum of the scores is far more negative for 
one (at position 20) than the other (at position 10), reflecting the greater conservation of glycine at position 
20. At position 10 the score for matching a glycine is only +2, while at position 20 the score is +7. 

Source: PSSM Viewer, NCBI.

1

query

Σ G = –64

Σ G = –37

2consensus
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taBLe 5.2 pSi-BLaSt produces dramatically more hits with significant E values than 
BLaStp. human beta globin (Np_000509) was used as a query in a pSi-BLaSt search 
of the refSeq database restricted to fungi (txid:4751; February 2015). results of 
iterations 5–10 (not shown) resembled those of iterations 3–4.

Iteration Hits with E ≤ 0.005 Hits with E > 0.005

1 9 (hbb fungi) 54

2 182 22

3 206 41

4 207 24

For glycine (arrow 2) the assigned score is +2 (see consensus position 10) or +7 (con-
sensus position 20). This difference is enormous. Looking across the row at position 
10, the sum of scores assigned to all 20 possible amino acids is −37 (negative scores 
indicate that alignment of a glycine with any other residue occur less frequently than 
expected by chance). Next looking across the row at position 20, the sum of scores is 
−64, showing that the occurrence of glycine is heavily favored and the penalties for 
not selecting a glycine are severe. Similar patterns occur for other amino acids. These 
examples illustrate one of the main advantages of PSI‐BLAST: the PSSM reflects a 
more customized estimate of the probabilities with which amino acid substitutions 
occur at all positions.

We can illustrate the dramatic results of the PSI‐BLAST process as follows. Go 
to the protein BLAST page at NCBI, enter the protein accession number of human 
beta globin (NP_000509), and select the PSI‐BLAST option and the RefSeq database 
restricted to fungi. Using the default parameters, there are over 60 hits (table 5.2). Nine 
of these have significant E values lower than the inclusion threshold (set as a default at 
E = 0.005). By inspection these are called hypothetical proteins (from various fungal 
species), so it is not clear from their names alone whether they are globins. There are 
also dozens of database matches that are worse than the inclusion threshold: these do 
not have significant E values. Some of these distantly related matches (such as flavo-
hemoproteins and an Aspergillus protein called “bacterial hemoglobin”) are authen-
tic globins, based on criteria such as having similar three‐dimensional structures and 
related biological functions as carrier proteins. Other proteins on this list appear to be 
true negatives.

Through this initial step, the PSI‐BLAST search is performed in a manner nearly 
identical to a standard BLASTP search, using some amino acid substitution matrix such 
as BLOSUM62. However, upon selecting all of the hits better than threshold, the pro-
gram creates a multiple sequence alignment from the initial database matches. By ana-
lyzing this alignment, the PSI‐BLAST program then creates a PSSM. The original query 
sequence serves as a template for this profile.

The unique profile that PSI‐BLAST identifies is next used to perform an iterative 
search. Click the box “run PSI‐BLAST iteration 2.” The search is repeated using the 
customized profile, and new proteins are often added to the alignment. This is seen 
in the second iteration as the number of database hits better than the threshold rises 
from 9 to 182 (table 5.2). In subsequent iterations, the number of database hits better 
than the threshold rises slightly to 206. By inspection, all of these are authentic mem-
bers of the globin family. The search can be halted once such a plateau is reached, or 
the iteration process continued until the program reports that convergence has been 
reached. This indicates that no more database matches are found, and the PSI‐BLAST 
search is ended.

For the NCBI PSSM viewer visit 
 http://www.ncbi.nlm.nih.gov/

Class/Structure/pssm/pssm_
viewer.cgi (WebLink 5.13).

You can adjust the inclusion 
threshold. Try E values of 0.5 or 
0.00005 to see what happens to 
your search results. If you set the 
E value too low, you will only see 
very closely related homologs. If 
you set E too high, you will often 
find false positive matches.

http://www.ncbi.nlm.nih.gov/Class/Structure/pssm/pssm_viewer.cgi
http://www.ncbi.nlm.nih.gov/Class/Structure/pssm/pssm_viewer.cgi
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What did this search achieve? After a series of position‐specific iterations, over 200 
additional database matches were identified. Many distantly related proteins are now 
shown in the alignment. We can understand how the sensitivity of the search increased 
by examining the pairwise alignment of the query (HBB) with the best match, a hypo-
thetical protein from Candida albicans. In the first PSI‐BLAST iteration, the bit score 
was 43.5, the expect value was 4e‐04 (i.e., 4 × 10−4), and there were 24 identities and 3 
gaps across an alignment of 87 residues (Fig. 5.4a). After the second iteration the score 
rose to 136 bits, the E value dropped (to 10−36), and the length of the alignment increased 
(to 110 residues), although the number of gaps increased with this longer alignment 
(Fig. 5.4b). In the third PSI‐BLAST iteration the E value for this pairwise alignment 
was 2 × 10−33 (Fig. 5.4c). (The E value did not reduce further, probably because of the 
particular nature of the adjusted PSSM which likely favored the inclusion of other 
fungal globins.) Relative to the first iteration the E value was dramatically lower as a 
result of using a scoring matrix specially constructed for this family of proteins. Note 

Figure 5.4 PSI‐BLAST search detects distantly related proteins using progressive iterations with 
a PSSM. (a) A search with human beta globin as a query (NP_000509.1) detects a fungal globin that is 
annotated as a hypothetical protein (XP_711954.1) in the first iteration. (b) As the search progresses to 
the second iteration, the length of the alignment increases, the bit score becomes higher, and the expect 
value decreases. (c) By the third iteration, the match to human protein spans two regions: 146 and  
29 residues. In the fourth iteration (not shown) these are pieced together into a single alignment spanning 
146 residues (with 19% amino acid identity). 

Source: BLAST, NCBI.

(a) PSI-BLAST iteration 1 match (human beta globin versus a C. albicans globin)

(b) PSI-BLAST iteration 2 (human beta globin versus a C. albicans globin)

(c) PSI-BLAST iteration 3 (human beta globin versus a C. albicans globin)

The Candida albicans protein has 
accession XP_711954.1.



AnAlyzing DnA, RnA, AnD PRotein SequenceS176

that the PSSM allowed the amino terminal residues of the human query to align with 
the Candida globin only in the third iteration (Fig. 5.4c, bottom). By the fourth iteration 
these two regions are stitched together, resulting in aligned span of 146 residues with 
only 6 gaps.

We can visualize the PSI‐BLAST process by imagining each globin protein in the 
database as a point in space (Fig. 5.5). An initial BLASTP search with beta globin, not 
restricted to any taxonomic group, detects other globin orthologs (e.g., chicken, fish) and 
paralogs (e.g., alpha globins). The PSSM of PSI‐BLAST facilitates the detection of many 

Figure 5.5 PSI‐BLAST algorithm increases the sensitivity of a database search by detecting 
homologous matches with relatively low sequence identity. In this figure, each dot represents a single 
globin protein. There are four related families of globins (globins, bacterial‐like globins, protoglobins, 
and phycobilisomes; see Chapter 12). The ellipse represents the globins (such as alpha and beta glo-
bins, myoglobins, and leghemoglobins). All these proteins are homologous by virtue of their member-
ship in the same family. A standard BLASTP search with human beta globin returns matches that are 
relatively close to the query in sequence identity, and the result (represented by the circle on the left) 
may include additional matches to proteins such as alpha globins. However, many other homologous 
proteins such as leghemoglobins are not detected. The fundamental limitation in standard BLAST 
search sensitivity is the reliance on standard PAM and BLOSUM scoring matrices. In a PSI‐BLAST 
search, a PSSM generates a scoring system that is specific to the group of matches detected using the 
initial query sequence. While the initial iteration of a PSI‐BLAST search results in the same number 
of database matches as a standard BLAST search, subsequent PSI‐BLAST iterations (represented by 
the dashed oval) using a customized matrix extend the results to allow the detection of more distantly 
related homologs.

myoglobins

alpha
globins

All globins 
(four main groups: globins, bacterial-like globins, protoglobins, phycobilisomes)

beta globins
human hbb

rabbit hbb

chicken hbb

fish hbb
frog hbb

Results of a later iteration
of PSI-BLAST include many
additional globins (such 
as leghemoglobins) that 
were not detected initially.
All bind heme and transport
ligands such as oxygen.

leghemoglobins

nematode 
globins

extracellular
hemoglobins

Results of an initial iteration
of PSI-BLAST (or BLASTP)
include beta globin and 
some other globins.
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other globins. Fewer than a dozen fungal globins are detected by a BLASTP search using 
HBB as a query, but hundreds are found by PSI‐BLAST.

The number of iterations that a PSI‐BLAST search performs relates to the number 
of hits (sequences) in the database that running the program reports. After each PSI‐
BLAST iteration, the results that are returned describe which sequences match the input 
PSSM.

pSi-BLaSt errors: problem of Corruption

The main source of error in PSI‐BLAST searches is the spurious amplification of 
sequences that are unrelated to the query. This problem most often arises when the 
query (or the profile generated after PSI‐BLAST iterations) contains regions with 
highly biased amino acid composition. Once the program finds even one new protein 
hit having an E value even slightly above the inclusion threshold, that new hit will be 
incorporated into the next profile and will reappear in the next PSI‐BLAST iteration. 
If the hit is to a protein that is not homologous to the original query sequence, then 
the PSSM has been corrupted. We can define corruption as occurring when, after five 
iterations of PSI‐BLAST, the PSSM produces at least one false positive alignment of 
E < 10−4.

There are three main approaches to stopping corruption of PSI‐BLAST queries.

 1. Apply a filtering algorithm that removes biased amino acid regions. These “low‐
entropy” regions include stretches of amino acids that are highly basic, acidic, or 
rich in a residue such as proline. The NCBI PSI‐BLAST site employs the SEG pro-
gram for this purpose, applying the filtering algorithm to database sequences that are 
detected by the query.

 2. Adjust the expect level from its default value (e.g., E = 0.005) to a lower value  
(e.g., E = 0.0001). This may suppress the appearance of false positives, although it 
could also interfere with the detection of true positives.

 3. Visually inspect each PSI‐BLAST iteration. Each protein listed in the PSI‐BLAST 
output has a checkbox; select and remove suspicious ones. As an example, your 
query protein may have a generic coiled‐coil domain, and this may cause other pro-
teins sharing this motif (such as myosin) to score better than the inclusion threshold 
even though they are not homologous.

reverse position-Specific BLaSt

Reverse position‐specific BLAST (RPS‐BLAST) is used to search a single protein query 
against a large database of predefined PSSMs. The purpose is to identify conserved pro-
tein domains in the query. RPS‐BLAST searches are implemented in the Conserved 
Domain Database (CDD) at NCBI (Marchler‐Bauer et al., 2013). A typical result, based 
on using human beta globin as a query, shows the globin family (Fig. 5.6). Annotations are 
by CDD and by the protein family database PFAM which we will describe in Chapter 6. 
CDD includes manually curated PSSMs that include information from three‐dimensional 
structures (Chapter 13).

Domain enhanced Lookup time accelerated BLaSt (DeLta-BLaSt)

Now that we have introduced PSI‐BLAST and RPS‐BLAST, we can describe the most 
sensitive and accurate protein search tool at NCBI: DELTA‐BLAST (Boratyn et al., 
2012). Each tool uses a single protein as a query. PSI‐BLAST automatically creates mul-
tiple sequence alignments and then generates PSSMs in an iterative manner. DELTA‐
BLAST begins with an RPS‐BLAST search against a library of pre‐computed PSSMs, 

This definition of corruption is 
adapted from Schäffer et al. 
(2001).

SEG was described by Wootton 
and Federhen (1996).

CDD is available at  http://www 
.ncbi.nlm.nih.gov/cdd (WebLink 
5.14) or through the main BLAST 
page (  http://blast.ncbi.nlm.nih 
.gov/, WebLink 5.15). Currently 
there are over 50,000 alignment 
models (PSSMs) in the CDD 
database (v3.10). We discuss 
protein domains in Chapter 12.

http://www.ncbi.nlm.nih.gov/cdd
http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/cdd
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then uses a resulting PSSM to search a protein database. There are important advantages 
to DELTA‐BLAST:

 • It yields larger, more complete PSSMs than PSI‐BLAST. This is because it relies on 
the strength of the well‐curated CDD database.

 • It is more sensitive than BLASTP and PSI‐BLAST, including searches of distantly 
related proteins.

 • It is fast. While DELTA‐BLAST was designed to allow multiple iterations, its perfor-
mance surprisingly declines with more than one iteration. (Boratyn et al. suggest that 
this may sometimes occur because a PSSM loses sensitivity when applied to overly 
divergent members of a protein family.)

 • It produces better‐quality alignments than BLASTP.

As an example of DELTA‐BLAST performance, first use beta globin (NP_000509.1) 
as a query in a BLASTP search of human RefSeq proteins. The result includes 
10 hemoglobin proteins having low E values. Repeat the search using DELTA‐BLAST 
and the same proteins are identified as well as two more divergent globins (neuroglobin 
and myoglobin). The search is therefore complete.

As another example, search plant RefSeq proteins using beta globin as a query. Cur-
rently there is only one significant match (leghemoglobin from the barrel medic Medi-
cago truncatula, a eudicot; E value 0.024). Repeat the search with DELTA‐BLAST and 
there are 58 significant plant matches (E values ranging from 1 × 10−25 to 5 × 10−6).

In sum, DELTA‐BLAST vastly outperforms BLASTP. In the minority of cases in 
which a protein query matches no PSSMs from CDD, the DELTA‐BLAST result simply 
resembles that of a typical BLASTP search. In addition to the web‐based version, the 
stand‐alone BLAST+ package includes the program deltablast.

Figure 5.6 Reverse position‐specific BLAST is used to search a query (here human beta globin) against a collection of predefined posi-
tion‐specific scoring matrices. The result includes an E value, a pairwise alignment of the query to the consensus PSSM, and a description of 
the family of proteins in the PSSM. This BLAST tool is available at NCBI as part of the Conserved Domain Database. 

Source: PSSM Viewer, NCBI.
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assessing performance of pSi-BLaSt and DeLta-BLaSt

To assess the performance of PSI‐BLAST and DELTA‐BLAST, it is useful to search 
databases containing structural information such as structural classification of proteins 
(SCOP) or ASTRAL. These databases included distantly related proteins that are known 
to be homologous (and that adopt similar three‐dimensional structures even if particular 
protein pairs share very limited percent amino acid identity). The homologous relation-
ships in these databases constitute a “gold standard” of true positive results and also allow 
the number of false positive results to be assessed. This information can be plotted to 
generate receiver operating characteristic (ROC) scores (Gribskov and Robinson, 1996). 
Such ROC curves were reported for PSI‐BLAST by Schäffer et al. (2001) and Park et 
al. (1998) and for DELTA‐BLAST by Boratyn et al. (2012). The sensitivity of DELTA‐
BLAST was superior to PSI‐BLAST, BLASTP, and several other programs: at a given 
number of false positives (e.g., 1 per query), DELTA‐BLAST identified about three times 
as many homologs as BLASTP.

pattern-hit initiated BLaSt (phi-BLaSt)

Sometimes a protein you are interested in contains a pattern or “signature” of amino 
acid residues that help define that protein as part of a family. For example, a signature 
might be an active site of an enzyme, a string of amino acid residues that define a 
structural or functional domain of a protein family, or even a characteristic signature of 
unknown function (such as the three amino acids GXW that are almost always present 
in the lipocalin family, where X refers to any residue). Pattern‐hit initiated BLAST 
(PHI‐BLAST) is a specialized BLAST program that allows you to search with a query 
and to find database matches that both match a pattern and are significantly related to 
the query (Zhang et al., 1998). PHI‐BLAST may be preferable to simply searching a 
database with a short query corresponding to a pattern, because such a search could 
result in the detection of many random matches or proteins that are unrelated to your 
query protein. While DELTA‐BLAST is highly sensitive, it will not report information 
about user‐selected patterns.

Consider a BLASTP search of bacterial sequences using human RBP4 as a query 
(NP_006735), restricted to the refseq database. The result (at the time of writing in Febru-
ary 2015) is that there are seven database matches having small E values (<0.05). We know 
that there are many more bacterial lipocalins distantly related to human RBP4 (this could 
be confirmed using DELTA‐BLAST). Select the three best‐scoring bacterial lipocalin 
protein sequences and align them with human RBP4 (Fig. 5.7a). This alignment shows us 
which amino acid residues are actually shared between RBP4 and the bacterial proteins. 
Focusing on the three conserved residues NFD, as well as the GXW motif that is shared 
between almost all lipocalins, we can try to define a pattern (or signature) of amino acids 
that is shared by RBP4, the three bacterial lipocalins, and possibly many other bacterial 
lipocalins. The purpose of defining a signature is to customize a PSI‐BLAST algorithm to 
search for proteins containing that signature.

How is the signature or pattern defined? We do not expect the signature to be exactly 
identical between all bacterial lipocalins, and so we want to include freedom for ambigu-
ity. We can define any pattern we want; as an example we examine the multiple alignment 
in Figure 5.7a and create the pattern NDFX(5)GXW[YF]. X(5) indicates that five positions 
can assume any amino acid residue; [YF] indicates that either a tyrosine or phenylalanine 
is accepted at the last position of the string. Note that the pattern you choose must not 
occur too commonly; the algorithm only allows patterns that are expected to occur less 
frequently than once every 5000 database residues. In general, it is acceptable to choose 
any pattern with four completely specified residues or three residues with average back-
ground frequencies of ≤5.8% (Zhang et al., 1998).

SCOP (Chapter 13) is available at 
 http://scop.mrc‐lmb.cam 

.ac.uk/scop/ (WebLink 5.16). It 
was developed by Cyrus Chothia 
and colleagues. Park et al. (1998) 
used the PDBD40‐J database, 
which contains proteins of known 
structure with ≤40% amino acid 
identity. DELTA‐BLAST was 
tested against several databases 
including ASTRAL. The current 
version of SCOP+ASTRAL (1.75B) 
includes over 4000 protein 
families, ~2000 superfamilies and 
~1200 folds. See  http://scop 
.berkeley.edu/ (WebLink 5.17) and 
Chapter 13.

PHI‐BLAST is launched from the 
NCBI BLASTP web page.

Look at the alignment in 
Figure 5.7a and then try to create 
and test your own pattern. The 
syntax for a PHI‐BLAST pattern is 
derived from the Prosite dictionary 
(Chapter 12) and is described at  

 http://www.ncbi.nlm.nih.gov/
blast/html/PHIsyntax.html (WebLink 
5.18). A detailed example of using 
PHI‐BLAST is provided in Web 
Document 5.2 at  http://www 
.bioinfbook.org/chapter5.

http://scop.mrc%E2%80%90lmb.cam.ac.uk/scop/
http://scop.berkeley.edu/
http://www.ncbi.nlm.nih.gov/blast/html/PHIsyntax.html
http://www.bioinfbook.org/chapter5
http://www.ncbi.nlm.nih.gov/blast/html/PHIsyntax.html
http://www.bioinfbook.org/chapter5
http://scop.mrc%E2%80%90lmb.cam.ac.uk/scop/
http://scop.berkeley.edu/
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We use PHI‐BLAST and enter the “PHI pattern” NFDX(5)GXW[YF] (Fig. 5.7b). The 
BLAST search output is restricted to a subset of the database consisting of proteins that 
contain that specified pattern. The result of this search is 28 database matches consisting 
of bacterial lipocalins having E values less than 0.05. The pairwise alignment output of 
the PHI‐BLAST search has the identical format to the PSI‐BLAST output, except that 
information about where both the query and each database sequence match the PHI pat-
tern is shown by a series of asterisks (Fig. 5.7c). The ensuing PSI‐BLAST iteration, which 
no longer uses the PHI pattern but instead uses a search‐specific PSSM, will successfully 
identify a large family of bacterial lipocalins.

Figure 5.7 Choosing a pattern and performing a PHI-BLAST search. (a) Human RBP4 (accession 
NP_006735) was used as a query in a BLASTP search against bacterial sequences, then multiply aligned 
with three bacterial lipocalins (accessions WP_010388720.1 from gammaproteobacterium Pseudoal-
teromonas undina, WP_008992866 from the flavobacterium Galbibacter, and deltaproteobacterium 
Geobacter YP_003021234).The purpose of evaluating these four protein sequences together is to try to 
identify a short, sequential pattern of amino acid residues that consistently occurs in a protein family. 
This pattern is then included in a new PHI‐BLAST search to increase its sensitivity and specificity. The 
alignment was performed using MUSCLE (Chapter 6), and a portion of the alignment is shown. The 
invariant GXW motif that is typical of lipocalins is evident (within the boxed region). A PHI pattern can 
be selected that includes these residues and several more. As an example, we select the pattern NFDX(5)
GXW[YF] in which, following NFD, any five residues are allowed, then the next three positions are 
GXW, and the final position contains either Y or its closely related residue F. The user can select any 
pattern by trial and error. (b) A PHI‐BLAST search is selected from the NCBI protein blast page, and the 
PHI pattern is entered. (c) The database will then be searched. All database matches include the selected 
pattern, indicated by asterisks. In some cases the use of a PHI pattern returns results not found with other 
search tools. 

Source: BLAST, NCBI.

(a) Multiple aligment of human RBP4 and three bacterial homologs

MUSCLE (3.8) multiple sequence alignment

NP_006735.2     -MKWVWALLLLAALGSGRAERDCRVSSFRVK--ENFDKARFSGTWYAMAKK
WP_010388720.1  ---MKLAFKTALFITAMFLLSACTSAPEGITPVKNFDLEKYQGKWYEIARL
WP_008992866.1  MKAKNKILIAACAIGLGALLNSCASIPKNAKAVKNFDIDRYLGTWYEIARF
YP_003021245.1  -MKKLSLLLSLLFTG-------CVGIPENVKPVDNFDVHRYLGKWYEIARL
                       :              *   .   .  .***  .: *.** :*.  

NFDX(5)GXW[YF]

(b) PHI pattern

(c)  Example of a PHI-BLAST result (asterisks match PHI pattern)
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The PHI‐BLAST algorithm employs a statistical analysis based on identifying align-
ment A0 spanned by the input pattern and regions A1 and A2 to either side of the pattern, 
which are scored by gapped extensions. Scores S0, S1, and S2 corresponding to these 
regions are calculated, and PHI‐BLAST scores are ranked by the score S´ = S1 + S2 (ignor-
ing S0). The alignment statistics are closely related to those used for BLASTP searches 
(Zhang et al., 1998).

proFIle SearcheS: hIdden Markov ModelS
DELTA‐BLAST employs scoring matrices that are customized because of their position‐
specific nature in a manner that is dependent on the particular input sequence(s). DELTA‐
BLAST is therefore more sensitive at detecting significantly related aligned residues 
than PAM or BLOSUM matrices. PSSMs are examples of profiles, a concept introduced 
by Gribskov and others (Gribskov et al., 1987, 1990). Profile hidden Markov models 
(HMMs) are even more versatile than PSSMs to generate a position‐specific scoring sys-
tem useful for the detection of remote sequence similarities (Baldi et al., 1994; Eddy, 
1998, 2004; Krogh, 1998; Birney, 2001; Schuster‐Böckler and Bateman, 2007; Yoon, 
2009). HMMs have been widely used in a variety of signal detection problems ranging 
from speech detection to sonar. Within the field of bioinformatics they have been used for 
applications as diverse as sequence alignment, prediction of protein structure, prediction 
of transmembrane regions in proteins, analysis of chromosomal copy number changes, 
and gene‐finding algorithms.

The main strength of a profile HMM is that it is a probabilistic model. This means that 
it assesses the likelihood of matches, mismatches, insertions, and deletions (i.e., gaps) at a 
given position of an alignment. By developing a stastistical model that is based on known 
sequences, we can use a profile HMM to describe the likelihood that a particular sequence 
(even one that was previously unknown) matches the model. In contrast, DELTA‐BLAST 
does not specify a full probabilistic model.

A profile HMM can convert a multiple sequence alignment into a position‐specific 
scoring system. A common application of profile HMMs is the query of a single protein 
sequence of interest against a database of profile HMMs. Another application is to use a 
profile HMM as the query in a database search. PFAM and SMART (Chapters 6 and 12) 
are examples of prominent databases that are based on HMMs.

A Markov chain is a data structure that consists of a computational model with a start 
state, a finite, discrete set of possible states, and transition functions that describe how to 
move from one state to the next. This type of computational model is also called a finite‐
state machine. A basic feature of Markov chains is that the process occupies one state at 
any given unit of time, and remains in that state or moves to another allowable state. Con-
sider an nucleotide alignment of human and mouse beta globin, beginning with the start 
codons, focusing on a position at which a T (in human) is aligned with a C (in mouse) 
(Fig. 5.8a). A Markov model displays the transition probabilities for any nucleotide (A, C, 
G, T) changing to any other (Fig. 5.8b). Each circle containing a nucleotide represents a 
state. There are 16 arrows indicating the probabilities of making a transition to another 
state. These 16 probabilities can be summarized in a tabular transition matrix (Fig. 5.8c). 
This resembles the mutation probability matrix for amino acids that were developed by 
Dayhoff and colleagues (Chapter 3).

In the case of a hidden Markov model (HMM), we cannot observe the states directly. 
However, we do have observations from which we can infer the hidden states. In the case 
of molecular sequences, the observed states are the positions of amino acids (or nucle-
otides) in a multiple sequence alignment. The hidden states are the match states, insert 
states, and delete states. Together, such states define a model for the sequence of that 
protein or nucleotide family.

Markov chains were introduced 
by Andrei Andreyevich 
Markov (1856–1922), a Russian 
mathematician. HMMs were 
introduced into the field of 
bioinformatics by Gary Churchill 
(1989) and Anders Krogh, David 
Haussler and colleagues  
(Krogh et al., 1994).
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An HMM therefore consists of a series of defined states. Consider the five amino 
acid residues taken from an alignment of five globin proteins (Fig. 5.9a). An HMM can 
be calculated by estimating the probability of occurrence of each amino acid in the five 
positions (Fig. 5.9b). In this sense, the HMM approach resembles the position‐specific 
scoring matrix calculation of PSI‐BLAST. From the HMM probabilities, a score can be 
derived for the occurrence of any specific pattern of a related query, such as HARTV 
(Fig. 5.9c). The HMM is a model that can be described in terms of “states” at each position 
of a sequence (Fig. 5.9d).

A profile HMM is constructed from an initial multiple sequence alignment to define 
a set of probabilities. The structure of a profile HMM is shown in Figure 5.10a (Krogh et 
al., 1994; Krogh, 1998). Along the bottom row is a series of main states (from “begin” to 
m1–m5, then “end”). These states might correspond to residues of an amino acid sequence 
such as HAEKL. The second row consists of insert states (Fig. 5.10, diamond‐shaped objects 
labeled i1–i5). These states model variable regions in the alignment, allowing sequences to 
be inserted as necessary. The third row (at the top) consists of circles called delete states, 
which correspond to gaps. They provide a path to skip a column (or columns) in the multiple 
sequence alignment. The emissions lead to the observed sequences in the alignment.

The sequence of an HMM is defined by a series of states that are influenced by two 
main parameters: the transition probability and the emission probability. The transition 

Figure 5.8 A hidden Markov model describes the transition probabilities for the alignment of nucle-
otides (shown here) or amino acids. For proteins this is conceptually related to the position‐specific scor-
ing matrix used by PSI‐BLAST. (a) Human beta globin protein (NP_000509.1) and corresponding DNA 
(NM_000518.1) are aligned to mouse hemoglobin, beta adult major chain (Hbb‐b1) (NP_001265090.1 
and NM_001278161.1). A transition is indicated in the red rectangle. (b) The four nucleotides GATC 
(in circles) are represented as states with 16 arrows showing potential state changes (nucleotide sub-
stitutions). The observed alignment includes a substitution of T–>C (a transition represented by a red 
arrow). (c) The probabilities of each of the 16 changes is displayed as a transition matrix. Adapted from 
Schuster‐Böckler and Bateman (2007) with permission from John Wiley & Sons.

(a)

(b)

(c)

                          M  V  H  L  T  P  E  E  K  S  A  V 
Query: hbb (human)       ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTT
                         |||||||| ||||||  ||  |||||| |||| || 
Sbjct: hbb (mouse)       ATGGTGCACCTGACTGATGCTGAGAAGGCTGCTGTC
                          M  V  H  L  T  D  A  E  K  A  A  V 
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probability describes the path followed along the hidden state sequence of the Markov 
chain (Fig. 5.10a, solid arrows). Each state also has a “symbol emission” probability 
distribution for matching a particular amino acid residue. The symbol sequence of an 
HMM is an observed sequence that resembles a consensus for the multiple sequence 
alignment. Note that profile HMMs, unlike PSI‐BLAST, include probabilities associated 
with insertions and deletions. The HMM is called a “hidden” model because it consists 
of both observed symbols (such as the amino acid residues in a sequence modeled by the 
HMM) and a hidden state sequence which is inferred probabilistically from the observed 
sequence.

HMMs can also be applied to pairwise alignments (Fig. 5.10b). In addition to begin-
ning and end states, there is a match state M with emission probability xi, yj for emitting 
an aligned pair of residues i, j. State I has the emission probability pi for emitting a sym-
bol i aligned to a gap; state J corresponds to residue j aligned to a gap. The gaps may be 
extended with probability ε. The alignment is modeled through a process of choosing 
sequential states from beginning to end according to the highest transition probabilities, 
with aligned residues added according to the emission probabilities.

Figure 5.9 An alignment of five globins is shown. The five proteins are a nonsymbiotic plant hemo-
globin from rice (Oryza sativa) (Protein Data Bank accession 1D8U), human neuroglobin (1OJ6A), 
human beta globin (2hhbB), leghemoglobin from the soybean Glycine max (1FSL), and human myo-
globin (2MM1). (b) The probability of each residue occurring in each aligned column of residues is 
calculated. (c) From these probabilities, a score is derived for any query such as HARTV. Note that the 
actual score will also account for gaps and other parameters. Also note that this is a position‐specific 
scoring scheme; for example, there is a different probability of the amino acid residue lysine occurring in 
position 3 versus 4. (d) The probabilities associated with each position of the alignment can be displayed 
in boxes representing states.

1D8U       HAMSV
1OJ6A      HIRKV
2hhbB      HGKKV
1FSL       HAEKL
2MM1       HGATV

(a)

(b)

(c)

(d)

                                      position
Probability 1        2        3        4        5
p(H)                    1.0   
p(A)                              0.4
p(I)                                0.2
p(G)                              0.4
p(M)                                        0.2
p(R)                                         0.2
p(K)                                         0.2
p(E)                                         0.2
p(A)                                         0.2
p(S) 0.2
p(K) 0.6
p(T)                                                   0.2
p(V)                                                             0.8
p(L)                                                              0.2

p(HARTV) = (1.0)(0.4)(0.2)(0.2)(0.8) = 0.0128
Log odds score = ln(1.0) + ln(0.4) + ln(0.2) + ln(0.2) + ln(0.8) = –4.357

H:1.0
A:0.4
I:0.2
G:0.4

M:0.2
R:0.2
K:0.2
E:0.2
A:0.2

S:0.2
K:0.6
T:0.2

V:0.8
L:0.2
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hMMer Software: Command-Line and Web-Based

Profile HMMs are important because they provide a powerful way to search databases 
for distantly related homologs; HMM methods therefore complement the BLAST search 
tools. Profile HMMs can define a protein or gene family, and databases of profile HMMs 
are searchable. Practically, HMMs can be created using the HMMER program (available 
for Windows, MacOS/X or Linux platforms; for the example below we use Linux and fol-

HMMER software comes 
with detailed tutorials and 
documentation to help you run 
these commands yourself.

begin m1 m2 m3 m4 m5 end
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Figure 5.10 The structure of a hidden Markov model. (a) The HMM consists of a series of states 
associated with probabilities. The “main states” are shown in boxes along the bottom (from begin to end, 
with m1–m5 in between). These main states model the columns of a multiple sequence alignment, and 
the probability distribution is the frequency of amino acids (see Fig. 5.9d). The “insert states” are in dia-
mond‐shaped objects and represent insertions. For example, in a multiple sequence alignment some of 
the proteins might have an inserted region of amino acids, and these would be modeled by insert states. 
The “deletion states” (d1–d5) represent gaps in the alignment. Adapted from Krogh et al. (1994) with 
permission from Elsevier. (b) Pair hidden Markov model (Pair‐HMM) for the alignment of sequences 
X and Y having residues xi and yj. State M corresponds to the alignment between two amino acids; this 
state emits two letters. State I corresponds to a position in which a residue xi is aligned to a gap, while 
state J corresponds to an alignment of yj to a gap. The logarithm of the emission probability function 
P(xi, yj) at state M corresponds to a substitution scoring matrix. The transition penalties δ and ε define 
the transition probabilities.
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The hmmbuild function creates an HMM (called globins4.hmm) using as input a 
set of four multiply aligned globin proteins. We can search this HMM against a database. 
We first find a suitable database, in this case human RefSeq proteins in the FASTA format.

Visit  ftp://ftp.ncbi.nlm.nih.gov/
refseq/H_sapiens/mRNA_Prot/ 
(WebLink 5.19) to find a database 
of human proteins in the FASTA 
format (suffix .faa). The suffix 
.gz indicates that the file is 
compressed; the gunzip 
command decompresses it. 
You can reach this and other 
databases through the home 
page of NCBI (search for 
downloads). When you find the 
database of interest, copy the 
link location (right‐click on a 
Windows machine) then use the 
wget program to download the 
database to your Linux machine. 
Access it from Windows through 
software such as PuTTY.

low an example in the User’s Guide). You can build a profile HMM with the hmmbuild 
program, which reads a multiple sequence alignment as input.

$ ./hmmbuild –h # provides brief help documentation
$ ./hmmbuild globins4.hmm ../tutorial/globins4.sto

$ wget ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/human.protein 
.faa.gz
$ gunzip human.protein.faa.gz
$ wc -l human.protein.faa
302761 human.protein.faa

$ ./hmmsearch globins4.hmm human.protein.faa > globins4.out

We therefore find a database online at a resource such as NCBI, Ensembl, or UCSC. 
We download it with wget, and decompress it with gunzip. We can check how large 
it is with ls −lh, inspect its contents with programs such as less or head, and count 
how many rows it has with wc −l (this file has 302,761 lines).

Next we search the HMM against the database.

We use the hmmsearch function, specifying the HMM and the database, and 
send the results to a file called globins4.out. A portion of the result is shown in 
Figure 5.11. This search strategy successfully finds all human globins (and no other 
proteins). As an exercise at the end of this chapter, we can experiment with building 
different HMMs and searching different databases. For example, building an HMM 
from a group of very diverse globin proteins will be more effective when we search 
for bacterial globins.

By default, for each model that is built the resulting profile HMM is global with 
respect to the HMM and local with respect to the sequences it matches in a database 
search. The HMM model does not invoke Needleman–Wunsch (global) and Smith–
Waterman (local) algorithms separately, but rather uses a model that has the proper-
ties of both (and has sometimes been called “glocal”). You can adjust the sensitivity 
of a HMMER search by building an HMM that is, for example, local with respect to 
both the sequence and the HMM, focusing on local alignments rather than on com-
plete domains.

The hmmcalibrate program matches a set of 5000 random sequences to the 
profile HMM, fits the scores to an extreme value distribution (Chapter 4), and cal-
culates the parameters that are necessary to estimate the statistical significance of 
database matches. The profile HMM can then be used to search a database using the 
hmmsearch program.

Sean Eddy and colleagues have introduced two major improvements to HMMER3 
software. First, its speed is now comparable to BLAST due to a series of innovations 
including a “multiple segment Viterbi” heuristic (Eddy, 2011). This is an ungapped ver-
sion of the algorithm using a profile that produces ungapped alignments. This profile is 
comparable to that shown in Figure 5.10a without insertion and deletion states (all match–
match transition probabilities are set to 1.0). This heuristic resembles that of BLAST. 
Second, a HMMER web server has been introduced, offering search speeds comparable 
to BLAST (Finn et al., 2011). Figure 5.12 shows an example of a web‐based HMMER 
search for beta globin matches.

HMMER is available at  http://
hmmer.janelia.org/ (WebLink 
5.20). It was written by Sean 
Eddy. The program is designed 
to run on UNIX, Windows, or 
MacOS platforms. We discuss 
how to create multiple sequence 
alignments (used as an input to 
HMMER) in Chapter 6.

A HMMER web server is available 
at  http://hmmer.janelia.org 
(WebLink 5.21).
You can also use hmmalign 
software at the Pasteur Institute  
(  http://mobyle.pasteur.fr/cgi‐
bin/portal.py?#forms::hmmalign, 
WebLink 5.22).

ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/
ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/human.protein
http://hmmer.janelia.org/
http://hmmer.janelia.org/
http://hmmer.janelia.org
http://mobyle.pasteur.fr/cgi%E2%80%90bin/portal.py?#forms::hmmalign
http://mobyle.pasteur.fr/cgi%E2%80%90bin/portal.py?#forms::hmmalign
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BlaSt-lIke alIgnMent toolS to Search genoMIc 
dna rapIdly
As genomic DNA databases grow in size, it becomes increasingly common to search 
them using protein queries or long DNA sequences from the same or other species. This 
is a specialized problem.

 1. The genomic DNA includes both exons (regions corresponding to the coding 
sequence) and introns (intervening, noncoding regions of genes). Ideally, an align-
ment tool should find the exons in genomic DNA.

 2. Genomic DNA often has sequencing errors that should be taken into account.
 3. We may want to compare genomic DNA between closely related organisms such as 

mouse and rat or distantly related organisms, for example fish and tomato. In any 
comparison, genomic changes may have occurred such as deletions, duplications, 
inversions, or translocations. Algorithms should solve problems such as the align-
ment of 10 million base pairs (Mb) containing a 1 Mb inversion.

 4. Algorithms are needed to find small differences between DNA sequences, such as 
single‐nucleotide polymorphisms (SNPs; Chapter 8).

Several BLAST‐like algorithms have been written to address these needs. The algo-
rithms are available in programs that are useful for pairwise alignments and/or searches 

We discuss exons and introns 
in Chapters 8 (on the eukaryotic 
chromosome) and 10 (on gene 
expression).

Figure 5.11 The HMMER program can be used to create a profile HMM using a multiple sequence alignment as input. The program was 
obtained from  http://hmmer.janelia.org/ and downloaded on a Linux server. Four vertebrate globin proteins were multiply aligned, and the 
hmmbuild program was used to build a profile HMM. The output of a HMMER search against all human RefSeq proteins includes all known 
globins. Results may vary when the same database is searched with different HMMs or when other databases are searched. 

Source: Howard Hughes Medical Institute. Reproduced with permission from HHMI.

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.1b1 (May 2013); http://hmmer.org/
# Copyright (C) 2013 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  globins4.hmm
# target sequence database:        /mnt/reference/human.protein.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       globins4  [M=149]
Scores for complete sequences (score includes all domains):
   --- full sequence ---   
    E-value  score  bias    Sequence                        Description
    ------- ------ -----    --------                        -----------
    3.3e-64  216.6   0.0    ref|NP_000509.1|     hemoglobin subunit beta [Homo sa
      7e-61  205.8   0.0    ref|NP_000510.1|     hemoglobin subunit delta [Homo s
    2.3e-60  204.2   1.3    ref|NP_000508.1|     hemoglobin subunit alpha [Homo s
    2.3e-60  204.2   1.3    ref|NP_000549.1|     hemoglobin subunit alpha [Homo s
    6.2e-60  202.8   0.3    ref|NP_976311.1|     myoglobin [Homo sapiens]
    6.2e-60  202.8   0.3    ref|NP_976312.1|     myoglobin [Homo sapiens]
    6.2e-60  202.8   0.3    ref|NP_005359.1|     myoglobin [Homo sapiens]
    4.8e-55  186.9   0.0    ref|NP_000175.1|     hemoglobin subunit gamma-2 [Homo
    1.4e-54  185.4   0.4    ref|NP_005321.1|     hemoglobin subunit epsilon [Homo
    2.1e-54  184.8   0.1    ref|NP_000550.2|     hemoglobin subunit gamma-1 [Homo
    4.9e-48  164.2   0.2    ref|NP_005323.1|     hemoglobin subunit zeta [Homo sa
    1.7e-40  139.7   0.1    ref|NP_005322.1|     hemoglobin subunit theta-1 [Homo
    1.8e-39  136.4   0.2    ref|NP_599030.1|     cytoglobin [Homo sapiens]
      5e-35  121.9   0.3    ref|NP_001003938.1|  hemoglobin subunit mu [Homo sapi
      3e-08   35.0   0.0    ref|NP_067080.1|     neuroglobin [Homo sapiens]
  ------ inclusion threshold ------
       0.14   13.4   0.0    ref|NP_001371.1|     dedicator of cytokinesis protein
       0.25   12.6   0.8    ref|NP_006737.2|     sex comb on midleg-like protein
       0.28   12.4   0.8    ref|NP_001032629.1|  sex comb on midleg-like protein

http://hmmer.org/
http://hmmer.janelia.org/
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of entire databases with a query. We illustrate several of these programs using a query of 
50,000 base pairs from human chromosome 11p (the short arm of chromosome 11). This 
region contains five globin genes (HBE1, HBD, HBB, HBG2, and HBG1 corresponding 
to ε, δ, β, γ  2, and γ 1 globins) and a beta globin pseudogene (HBBP1). A convenient way 
to view this region of 50,000 base pairs is to visit the UCSC Genome Browser.

Benchmarking to assess genomic alignment performance

Throughout this book we describe benchmark datasets that allow the specificity and 
sensitivity of a method to be assessed. We discussed this for PSI‐BLAST and DELTA‐
BLAST in the earlier sections of this chapter. For the multiple sequence alignment of 
proteins (Chapter 6), several databases contain information on the trusted members of 
homologous protein families based on their three‐dimensional structures as rigorously 
determined by X‐ray crystallography. In finding genes in genomic DNA (Chapter 8), 
we describe the EGASP project that provides a “gold standard” for assessing gene 

The UCSC Genome Browser is 
available at  http://genome.
ucsc.edu (WebLink 5.23). Set 
the genome to human (GRCh37 
build), and enter chr11:5,245,001–
5,295,000 to specify the genomic 
position spanning these 50 kb. 
For some software such as BLAT 
(see below), the query cannot be 
longer than 25,000 base pairs; files 
with both 50 kilobase pairs (kb) 
and 25 kb queries are available in 
Web Documents 5.3 and 5.4.

Figure 5.12 The HMMER program is available online. Human beta globin protein sequence 
(NP_000509) was submitted to the server. The output includes descriptions of significant matches and 
several tools showing the phylogenetic distribution of hits. 

Source: Howard Hughes Medical Institute, 2013. Reproduced with permission from HHMI.

(a) HMMER web output

(b) HMMER phylogenetic output

http://genome.ucsc.edu
http://genome.ucsc.edu
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prediction software. In the case of tools for the alignment of genomic DNA, often 
including large regions of noncoding DNA, there are no experimentally derived data-
bases of correct alignments of large genomic regions. Nonetheless, in each case sen-
sitivity and specificity are evaluated. For example, Schwartz et al. (2003) compared 
human to mouse genomic DNA using BLASTZ, finding that about 39% of the human 
and mouse genomes could be aligned. Then they reversed the mouse sequence (without 
complementing it), obtaining a mouse test set with the same size and compositional 
complexity as the real mouse sequences; only 0.164% of the human sequence now 
aligned to this reversed set.

A benchmark dataset for noncoding genomic DNA can be created using a strat-
egy of computational simulations rather using experimentally obtained standards. 
Pollard et al. (2004a) examined noncoding DNA in the fruit fly Drosophila melanogaster 
(a well‐characterized genome that lacks many of the ancestral repeats and lineage‐specific 
transposition events found in vertebrates), assembling a group of 10 kilobase frag-
ments. They used the random model of sequence evolution (ROSE) software package 
(Stoye et al., 1998) to create a set of simulated sequences having a variety of insertions, 
deletions, point substitutions, and interspersed blocks of constrained sequences, that is, 
variations in evolutionary rate estimated across a range of species divergence times. They 
then tested the ability of eight pairwise genomic alignment tools including BLASTZ 
(Pollard et al., 2004b). They concluded that global alignment tools (such as LAGAN) 
have the highest overall sensitivity, while local alignment tools (such as BLASTZ) more 
accurately align variable regions.

patternhunter: Nonconsecutive Seeds Boost Sensitivity

BLASTN uses a short seed, typically consisting of a word size of 11 consecutive nucle-
otides. Exact matches are identified in a DNA database and then extended into longer 
alignments (Chapter 4). PatternHunter (Ma et al., 2002) achieves improvements in both 
speed and sensitivity by creatively using nonconsecutive letters as seeds. If we denote 1 
for a match and 0 for a mismatch, the BLASTN word (w = 11) has a form 11111111111 
(Fig. 5.13a). No mismatches are tolerated. For PatternHunter, the pattern of its seed is 
110100110010101111 (Fig. 5.13b). There are still 11 matches, but they are distributed 
over a range of 18 nucleotide positions. A query may align with a database entry having 
in its sequence a mismatch corresponding to a 0 position (or any of the seven 0 positions). 
In this case, the mismatch is ignored and an extension can still occur. The reason for the 
improved sensitivity of a nonconsecutive mismatch becomes clear if we consider a partic-
ular region of length 64 nucleotides having 70% identity, as described by Ma et al. (2002). 
For BLASTN the probability of having at least one hit is 0.30, while for the nonconsec-
utive seed model the probability is 0.466. This is illustrated in Figure 5.13c which shows 
greater sensitivity for a given amount similarity. Within some region of 64 nucleotides, 
the consecutive seed model is disrupted for a mismatch across a group of adjacent seeds 
which all share a group of 1s. For the nonconsecutive seed model, the seed matches occur 
at different positions, helping to increase sensitivity. This occurs because fewer bases are 
shared between neighboring seed matches, making the matches more independent than 
for a consecutive seed strategy.

The innovative approach to seed models introduced by Ma et al. (2002) has been 
adopted by other homology search algorithms including BLASTZ and MegaBLAST, dis-
cussed in the following sections.

BLaStZ

BLASTZ was developed to align human and mouse genomic DNA sequences based on 
modifications of the gapped BLAST program (Schwartz et al., 2003). It is useful for 

BLASTZ is now called LASTZ 
by its authors, although various 
publications and websites 
continue to use either name.

The Pollard et al. data are 
available at  http://rana.lbl 
.gov/AlignmentBenchmarking/
data.html (WebLink 5.24). ROSE is 
available at  http://bibiserv 
.techfak.uni‐bielefeld.de/rose/ 
(WebLink 5.25).

Other implementations of 
PatternHunter use slightly 
different models such as 
111010010100110111. 
PatternHunter software is 
commercially available at 

 http://www.bioinfor.com 
(WebLink 5.26).

http://rana.lbl.gov/AlignmentBenchmarking/data.html
http://bibiserv.techfak.uni%E2%80%90bielefeld.de/rose/
http://www.bioinfor.com
http://rana.lbl.gov/AlignmentBenchmarking/data.html
http://bibiserv.techfak.uni%E2%80%90bielefeld.de/rose/
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comparing long genomic sequences from a variety of organisms. As for gapped BLAST, 
it searches for short near‐exact matches, extends them without allowing gaps, and then 
performs further extensions using dynamic programming. BLASTZ functions as follows 
(Schwartz et al., 2003):

 1. Lineage‐specific interspersed repeats (further described in Chapter 8) are removed 
from both sequences. To improve its execution speed, when one region of the human 
genome aligns to multiple regions of the mouse genome, that human segment is 
dynamically masked. This was helpful in processing regions of the mouse genome 
that have a large number of highly related genes (e.g., zinc finger genes or olfactory 
receptor genes).

 2. Matches are identified using a word size of 12 (either identically matching or allow-
ing one transition), and are extended without allowing gaps. When the score exceeds 

Figure 5.13 Nonconsecutive seeds in PatternHunter improve its sensitivity in database searches. 
(a) In a typical BLASTN search with a word size of 11, the matching nucleotides occur consecutively 
and may be represented with a series of 1s. An example of a seed from a database query is shown; if the 
database target has a single‐nucleotide substitution, there is no perfect match and an extension does not 
occur. (b) The Ma et al. (2002) approach uses nonconsecutive letters as seeds. The values 1 correspond 
to matches, while the 0 positions are ignored. For some nucleotide mismatches, as shown here, the seed 
nonetheless matches successfully and extension occurs. (c) A plot of similarity versus sensitivity for the 
consecutive model with 10 letters (blue line), 11 letters (black dotted line), or the spaced model having 
11 matches (red line). The sensitivity is higher over a range of similarities for the nonconsecutive seed 
approach. Adapted from Ma et al. (2002), with permission from Oxford University Press on behalf of 
the International Society for Computational Biology.
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some threshold, extensions are repeated with gaps allowed. Following the innovation 
introduced in PatternHunter, BLASTZ uses a seed of 12 matches in 19 consecutive 
positions having the string 1110100110010101111.

 3. Step (2) is repeated for regions adjacent to successful alignments using a lower (more 
sensitive) word size, such as 7.

BLASTZ was used to align the mouse genome (2.5 billion base pairs or gigab-
ases (Gb)) with the human genome (2.8 Gb of sequence; Schwartz et al., 2003). To 
accomplish this, the human genome was divided into ∼3000 segments of about 1 
megabase (1 Mb) each, while the mouse genome was divided into ∼100 segments of 
30 Mb. BLASTZ alignments between a variety of species are represented as tracks 
on the UCSC Genome Browser. For the 50,000 base pairs containing the human HBB 
region, examples of the features which can be viewed are (Fig. 5.14): (1) the chromo-
some band (11p15.4); (2) the genes in the region (HBB, HBD, HBG1, HBE1); (3) a 

Transitions are substitutions 
between the purines (the 
nucleotides A↔G) and between 
the pyrimidines (C↔T). 
Transversions are substitutions 
between purines and pyrimidines 
(A↔C, A↔T, G↔C, or G↔T). 
Transitions occur more 
commonly than transversions 
(see Chapter 7).

We return to this aligned region 
in Chapter 6 to view its multiple 
sequence alignment.

Figure 5.14 Precomputed alignments of genomic sequence, aligned by BLASTZ, can be visualized using the UCSC Genome Browser. The 
genome browser is set to the GRCh37/hg19 assembly of the human genome, and 50,000 base pairs on chromosome 11p are displayed. The tracks 
include the following: (1) base pair positions; (2) the chromosome band (11p15.4); (3) RefSeq genes in this region (there are six); (4) vertebrate 
Multiz alignment and conservation (precomputed BLASTZ results showing an overall conservation score as well as alignments from human to 
a subset of 46 available genomes including rhesus monkey, mouse, dog, elephant, opossum, chicken, frog, and zebrafish); (5) chicken chained 
alignments, showing BLASTZ alignment results to chicken; and (6) alignment nets showing a summary of the highest‐scoring alignments between 
genomic DNA from humans and other species (zebrafish, chicken, opposum) using BLASTZ. Note that the UCSC Genome Browser annotation 
tracks can be interactively added or removed, and information can be displayed in a more or less compressed form. Here it is evident that the most 
highly conserved segments in this 50 kilobase pair region correspond to the globin genes, while intergenic regions tend to be less well conserved. 

Source: http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
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vertebrate conservation track, showing in particular high‐scoring regions of conser-
vation across multiple species at the location of the globin genes (and in some non-
coding regions, having regulatory functions); (4) chicken chains, showing the regions 
aligned well by BLASTZ; and (5) nets for zebrafish (clade Teleostei), chicken (clade 
Dinosauria), and opposum (clade Mammalia), showing a summary of the best‐scor-
ing chains. By clicking on the chains or nets you can access the pairwise sequence 
alignments. In this example, there are dozens of distinct blocks of aligned genomic 
DNA sequence for each comparison between species, separated by regions that could 
not be reliably aligned.

BLASTZ has been employed for various projects including an analysis of 13 million 
base pairs of DNA from the extinct woolly mammoth (Mammuthus primigenius) to the 
modern African elephant (Loxodonta africana) (Poinar et al., 2006) and an analysis of 
transcription units on human chromosome 22 (Lipovich and King, 2006). The BLASTZ 
program is available for local use.

enredo and pecan

In Chapter 6 we discuss software for the multiple sequence alignment of genomic DNA 
that is used at Ensembl: Enredo (to create a large‐scale homology map for pairwise whole‐
genome alignment); Pecan (to make multiple sequence alignments using the principle of 
consistency); and Ortheus (to reconstruct ancestral sequences; Paten et al., 2008). The 
resulting alignments are more accurate than those produced by other software by several 
criteria.

MegaBLaSt and Discontinuous MegaBLaSt

MegaBLAST is an NCBI program optimized for the rapid alignment of very large DNA 
queries (Zhang et al., 2000). The program offers a default word size of 28 (and can 
accommodate a word size as large as 256), in contrast to the default word size of 11 for 
BLASTN. This greatly increases the speed of MegaBLAST, since the word size corre-
sponds to the minimal length of an exact match required to initiate an extension. With its 
smaller word size, BLASTN is more sensitive but slower. For MegaBLAST you can also 
specify the percent identity threshold to be reported (e.g., only alignments sharing values 
such as 99%, 90%, or 80% identity) as well as the corresponding match and mismatch 
scores. For example, for sequences sharing 95–99% identity, a match score of +1 and 
mismatch of −3 is applied; for alignments sharing 85–90% identity the mismatch score 
is instead set to −2. Non‐affine gapping parameters are used: the gap opening penalty 
is 0 (causing MegaBLAST to have alignments with more gaps but with the benefit of 
enhanced speed), and the gap extension penalty is based on the selected match and mis-
match scores.

Discontiguous MegaBLAST is a related algorithm at NCBI that is designed to align 
more distantly related genomic sequences. It employs a “discontiguous word” strategy of 
Ma et al. (2002) described for PatternHunter. It is useful for comparing relatively diver-
gent sequences (e.g., from different organisms).

We can demonstrate the use of MegaBLAST selecting 50,000 base pairs of DNA 
from the short arm of human chromosome 11 as a query, and selecting an orang‐utan 
(Pongo pygmaeus) nonredundant nucleotide collection (abbreviated nr/nt). This query 
region contains five globin genes (HBE1, HBD, HBB, HBG2, and HBG1) and a beta 
globin pseudogene (HBBP1). Using the default settings of MegaBLAST (word size 28, 
match score +1, mismatch score −2, and gap opening and extension penalties zero), we 
find matches ranging from about 80% to 97% nucleotide identity to the human genomic 
DNA query (Fig. 5.15).

You can obtain LASTZ and 
BLASTZ at Webb Miller’s web site 
at Pennsylvania State University, 

 http://www.bx.psu.edu/miller_
lab/ (WebLink 5.27).

Try this using Macaca mulatta 
(taxid:9544), the Anubis baboon 
(taxid:9555), or the bonobo Pan 
paniscus (taxid:9597). You can 
also try varying the word size up 
to as large as 256.

http://www.bx.psu.edu/miller_lab/
http://www.bx.psu.edu/miller_lab/
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BLaSt-Like tool (BLat)

BLAT is designed to perform extremely rapid genomic DNA searches (Kent, 2002). Like 
SSAHA2 (see section of this title below), the BLAT algorithm is in some ways a mirror 
image of BLAST. BLAST parses a query sequence into words and then searches a data-
base with words above a threshold score. Two proximal hits are extended. BLAT parses 
an entire genomic DNA database into an index of words. These words consist of all non-
overlapping 11‐mers in the genome (excluding repetitive DNA sequences). BLAT then 
searches a query using words from the database. The BLAT strategy of database indexing 
has been adopted by SSAH2 (see below) and subsequently by MegaBLAST (Morgulis 
et al., 2008).

BLAT offers a variety of additional features (Kent, 2002):

 • While BLAST triggers an extension with two hits, BLAT triggers extensions on mul-
tiple strong hits.

 • BLAT is designed to find matches between queries that share 95% nucleotide identity 
or more. While it is in some ways similar to the Megablast, Sim4, and SSAHA pro-
grams, it is orders of magnitude faster.

 • BLAT searches for intron–exon boundaries, essentially building a model of a gene 
structure. It uses each nucleotide derived from an mRNA query once (as is appropri-
ate from a biological perspective), rather than searching for highest scoring segment 
pairs.

A BLAT search using human beta globin protein as a query is shown in Figure 5.16. 
Human genomic DNA is translated in six frames, and the best match is to the HBB gene 
on chromosome 11 that encodes the HBB protein. By adjusting the coordinates on the 
genome browser to display 50,000 base pairs in the beta globin locus region, we can see 
that the BLAT search also resulted in matches to genes encoding other closesly related 
globin proteins.

LagaN

LAGAN (Limited Area Global Alignment of Nucleotides) is a pairwise alignment tool for 
genomic DNA (Brudno et al., 2003). We discuss its companion Multi‐LAGAN in Chap-
ter 6 (multiple sequence alignment). LAGAN proceeds in three steps to create a global 
pairwise alignment (Fig. 5.17a). First, it generates local alignment between two sequences, 
therefore identifying a set of anchors (Fig. 5.17b). This strategy permits the matching of 

BLAT is accessible on the web 
at  http://genome.ucsc.edu 
(WebLink 5.28).

Query

1 10000

40–50 50–80 80–200 >=200<40

20000

Color key for alignment score

30000 40000 50000

Figure 5.15 MegaBLAST is an NCBI tool specialized for rapidly searching long DNA queries 
against genomic DNA databases. Here 50 kilobases of DNA spanning the human beta globin genes were 
used as a query restricted to nonredundant sequences of Pongo pygmaeus. Matches are to orang-utan 
globin genes and pseudogenes (area 1) as well as to repetitive sequences (area 2). 

Source: MegaBLAST, NCBI.

http://genome.ucsc.edu
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Figure 5.16 The BLAST‐Like Tool (BLAT) at the UCSC Genome Bioinformatics website. (a) DNA or 
protein sequence can be pasted or uploaded from a text file. The output settings include a hyperlink option 
to access the Genome Browser view. (b) The Browser view includes a custom track (“Your Sequence from 
BLAT Search”) which shows a seris of matches to five globin genes (HBB, HBD, HBG1, HBG2, and HBE1) 
in a 50,000 base pair segment of human chromosome 11. 

Source: http://genome.ucsc.edu, courtesy of UCSC.

BLAT query (protein or DNA)

BLAT result (zoomed to 50 kilobases)

(a) 

(b) 

(a) (b)

(c) (d)
▼

▼

▼

▼

Figure 5.17 The LAGAN algorithm for pairwise alignment of genomic DNA sequences.  
(a) LAGAN uses a combined local/global strategy to produce a global alignment of two sequences. The 
x and y axes correspond to the physical position (e.g., chromosomal coordinates) of two DNA queries.  
(b) A local alignment search strategy identifies conserved regions (solid downward‐slanting lines). 
Note that an inversion in one of the sequences would be represented by a line having a positive slope.  
(c) Locally aligned segments are joined in chains. Anchors, or maximally scoring ordered subsets of locally 
aligned regions, are identified and joined to create a rough global map. (d) LAGAN computes an optimal 
alignment within the boxed areas, ignoring the hatched regions. Adapted from Brudno et al. (2003).

http://genome.ucsc.edu
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multiple short inexact words rather than long exact words. Second, LAGAN creates a 
rough global map consisting of a maximally scoring ordered subset of the alignments 
(anchors). Third, it computes a final global alignment, restricting the operation to the lim-
ited area defined by the rough map. This focused search strategy avoids the inefficiency of 
performing a global alignment with the Needleman–Wunsch algorithm on the two input 
sequences.

SSaha2

Sequence Search and Alignment by Hashing Algorithm, abbreviated SSAHA, is designed 
to search large DNA databases very rapidly (Ning et al., 2001). It is commonly used to 
map next‐generation sequence reads to a reference genome. An input file includes the 
genomic reference sequence (such as the human genome) in the FASTA format. SSAHA2 
converts such a DNA database into a hash table with a fixed word length (user‐selected 
k‐mers). This hash table can then be searched quickly for matches by pairwise alignment. 
Sequencng reads in the FASTQ format (introduced in Chapter 9) are mapped against 
the genomic reference. Exactly matching seeds in the sequence reads are identified and 
aligned using a modified Smith–Waterman algorithm.

alIgnIng next-generatIon Sequence (ngS)  
readS to a reFerence genoMe
Beginning in the 1970s and continuing to the present, dideoxynucleotide sequencing 
(also called Sanger sequencing) has been an important way to determine the nucleotide 
sequence of DNA. Next‐generation sequencing (NGS) was introduced in 2005, beginning 
a technological revolution that has massively increased available DNA sequence (see 
Fig. 2.3; Chapter 9). When we sequence an individual haploid human genome, which has 
∼3 billion bases of DNA, it is necessary to obtain adequate depth of coverage such as an 
average of 30‐fold redundancy for each base. (This is necessary to obtain reliable base 
calls and because reads are not distributed evenly across the genome.) For 90 billion base 
pairs of sequence, each read may be 100 base pairs in length. In such a case there would 
be 900 million (i.e., 9 × 1011) reads. We address the technology by which these reads are 
generated and perform alignment in Chapter 9. Here we ask: how are these reads aligned 
to a reference human genome? The reference genome is typically available in the FASTA 
format. The output we seek is a set of genomic coordinates for each read.

In performing alignment we need to consider matches and mismatches. Not all reads 
will map to the genome at unique postions. In some cases this is because of duplications of 
genomic regions (e.g., ∼5% of the human genome has segmental duplications and about half 
the genome has other kinds of repetitive DNA). It is also expected that each genome is likely 
to have single‐nucleotide variants, as well as variants that may be due to technical error.

We must also consider speed. Both genome sizes and cumulative read sizes are so 
large that dynamic programming (e.g., with the Smith–Waterman algorithm) is too slow 
to be feasible. Some form of indexing is therefore required. Two of the main approaches 
to alignment are those based on hash tables and suffix trees (Fig. 5.18) (Trapnell and Salz-
berg, 2009; Li and Homer, 2010).

alignment Based on hash tables

Hash table indexing adopts the seed‐and‐extend strategy that we described for BLAST 
(Fig. 4.12). The approach is outlined in Figure 5.18a. There are two inputs: a reference 
genome and a large set of short reads. Hash table indexing begins with the approach of 
BLAST: the positions of k‐mers (e.g., 11‐mers using the default BLASTN word size) 
are stored in a hash table and scanned for k‐mer exact matches (seeds) which are then 

SSAHA2 is available at the 
Ensembl web server  http://
www.ensembl.org (WebLink 
5.29). The SSAHA2 home 
page is available at  http://
www.sanger.ac.uk/resources/
software/ (WebLink 5.30). A hash 
table contains data (e.g., a list of 
words having a length of  
14 nucleotides in a DNA 
database) and associated 
information (e.g., the positions in 
genomic DNA of each of those 
words).

http://www.ensembl.org
http://www.ensembl.org
http://www.sanger.ac.uk/resources/software/
http://www.sanger.ac.uk/resources/software/
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       •
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Figure 5.18 Two strategies by which short read aligners take a large number of short reads (e.g., 
500 million reads, each of length 150 base pairs) and align them to a reference genome (e.g., the haploid 
human genome reference sequence of ∼3 billion base pairs). (a) Spaced seed indexing algorithms use 
hash tables. The reference genome and the short reads are cut into equal-sized segments called seeds. 
Seeds from the short reads are paired and stored in a lookup table (hash table) and used to scan the ref-
erence. Matches to the seed index have an assigned genomic location. (b) The Burrows–Wheeler trans-
form is used to efficiently represent the reference genome in software such as BWA2 and Bowtie. The 
reference genome is concatenated into a string, transformed using the Burrows–Wheeler transform (see 
Fig. 5.19), and indexed. Reads are aligned beginning with the base at the 3′ end and continuing towards 
the 5′ end. This approach is very fast relative to spaced seed approaches. 

Source: Redrawn from Trapnell and Salzberg (2009). Used with permission from Macmillan Publishers.

extended using dynamic programming. Spaced seeds are commonly used because they 
offer increased sensitivity.

One of the earliest programs to use this approach was MAQ (Li et al., 2008). It builds 
multiple hash tables to index the reads, and scans the reference database against the hash 
tables to identify hits. Using multiple hash tables ensures that all reads having zero, one, 
or two mismatches will be identified. (Consider a 16 base pair read split into four smaller 
seeds. If there are no mismatches, all four seeds will align. If there is one mismatch, three 
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seeds will align perfectly; if there are two mismatches, either two or three seeds will align 
perfectly. By aligning all six possible seed pairs to the reference genome, the location of 
that read can be mapped allowing as many as two mismatches. Given three mismatches, 
57% of the hits can still be identified.)

Other software tools adopting a hash table approach include ELANDv2 (alignment 
software from Illumina) and SSAHA2. A limitation of this approach is that it can require 
tens of gigabytes of memory to store the indexed reads.

alignment Based on the Burrows–Wheeler transform

A faster approach to alignment is offered by suffix trees and suffix arrays. Two of the 
most popular aligners are BWA and Bowtie2, each of which matches sequences against 
a reference genome. BWA uses BWA‐backtrack for short sequence reads (up to 100 base 
pairs) (Li and Durbin, 2009) while BWA‐MEM is more accurate for longer reads (Li and 
Durbin, 2010). Bowtie2 is an ultrafast, memory‐efficient aligner (Langmead et al., 2009; 
Langmead and Salzberg, 2012). Both BWA and Bowtie take into consideration read 
lengths, sequencing error rates, gap penalties, and local versus global alignment of reads.

The key feature of this class of aligners is a method used to index a reference genome 
as large as the human genome into <2 Gb of memory. The reference genome sequence 
is first modified and compressed using the Burrows–Wheeler transform (BWT). This is 
a lossless method, that is, one that allows data to be compressed then fully retrieved in 
the original decompressed form. We can explain the transform using the example pro-
vided in the original article from Burrows and Wheeler (1994; Fig. 5.19). Given a string of 
characters we first build an N × N matrix in which each row corresponds to a cyclic shift 
or rotation of the sequence. We reorder this into a new matrix M having rows sorted by 
the first character of each line. The first column is defined as F and the last column as L. 

row
0 abraca   aabrac
1 aabrac   abraca
2 caabra   acaabr
3 acaabr   bracaa
4 racaab   caabra
5 bracaa   racaab 

Create conceptual 
N x N matrix. Rows 
are the rotations 
(cyclic shifts) of S 
(first character of S 
is a)

Begin with string 
(’abraca’) 
of length N

String S of N characters:
S[0], ..., S[N-1]
S = ‘abraca’
N=6
alphabet X = {’a’, ‘b’, ‘c’, ‘r’}
Index I = 1

M

reversible
transformation compression

reconstruct string S 
of length N (using only 
strings F and L and index I)

matrix M is sorted by rows in 
lexigraphic order (a, a, a, b, c, r).
Define first column as F

String L is the last column of M
with characters L[0], ... , L[N-1].
Here L = ‘caraab’

decompression

Calculate column F of 
matrix M by sorting 
the characters of L

N x N

Figure 5.19 The Burrows–Wheeler Transform (BWT). A string, such as the genomic DNA 
sequence of a reference genome, undergoes compression transformation then decompression to recover 
the original string. We begin with an input of a string S of N characters (N = 6 here). We create an N × 
N matrix consisting of cyclic rotations of S, then sort lexigraphically. Following compression and later 
decompression, the original string can be recovered. Adapted from Burrows and Wheeler (1994).
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This matrix can be effectively compressed and, surprisingly, it can then be reconstructed 
using only the information in strings F and L as well as an index. The BWT method does 
not itself compress data, but it stores data in a way that makes compression very fast and 
efficient.

Why is the BWT effective? Burrows and Wheeler (1994) give the example of a text 
document sorted using the BWT, having many instances of the word “the.” When the list 
of cyclic shifts is sorted, all the rotations starting with “he” will sort together, and many 
will end in “t.” Any local region of string L is likely to have a disprortionately high num-
ber of a limited set of characters. This facilitates compression and decompression.

When short reads are mapped to a BWT‐transformed genome, the 3´ base is first 
searched against the genome (the wide swath corresponding to the single T in Figure 5.18b 
corresponds to a T matching many locations of a genome). Next genomic positions 
matching AT are identified, then AAT, until finally the entire short read is assigned one or 
more genomic positions. If perfect matches are not found, BWA and Bowtie2 can back-
track to tolerate mismatches (tolerating two mismatches in a read by default). Bowtie (the 
predecessor to Bowtie 2) is 30‐fold faster than MAQ.

perSpectIve
While BLAST searching has emerged as a fundamental tool for studying proteins and 
genes (Chapter 4), many specialized BLAST applications have also been developed. 
These applications include variant algorithms (such as the PSSM of DELTA‐BLAST and 
the hidden Markov models of HMMER) and specialized databases (such as a variety 
of organism‐specific databases). Currently, a BLASTP search using human beta globin 
as a query fails to identify human myoglobin as a significant match. In contrast, using 
DELTA‐BLAST or HMMER, myoglobin is easily detected. This highlights the need for 
position‐specific scoring matrices as well as databases built upon HMMs. We highlight 
one such database, Pfam, in Chapters 6 and 12.

The exponential rise in DNA sequence data (Fig. 2.3) presents us with massive amounts 
of information about genes and proteins. BLAST is not able to search large amounts of 
genomic DNA, and alternative strategies include the use of longer word sizes (as in Mega-
BLAST), spaced seeds, and indexing of databases and/or queries. Short‐read aligners are 
specialized for aligning tens or hundreds of millions of short reads to a reference genome. 
Typical uses are to identify single‐nucleotide variants or structural variants in a genome. 
We use a short‐read aligner in Chapter 9. These tools will continue to be fundamentally 
important to biology for many years to come, especially as the pace of genomic sequenc-
ing continues to accelerate.

pItFallS
As with any bioinformatics problem, it is essential to define the purpose of a database 
search. What are you trying to accomplish? Once you have decided this, you can select 
the appropriate database and search algorithm.

For PSI‐BLAST (and DELTA‐BLAST), the biggest problem is obtaining false pos-
itives. Once a spurious sequence has been detected that is better than some expect value 
cutoff, it will be included in the PSSM for the next iteration. This iteration will almost 
certainly find the spurious sequence again, and will probably expand the number of data-
base matches. To avoid this problem:

 • Inspect the results for apparently spurious database matches. If you see them, remove 
such spurious matches by deselecting them.

 • Adjust the expect value as appropriate.
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 • Perform “reverse” searches in which you evaluate a potentially spurious PSI‐BLAST 
result by using that sequence as a query in a BLAST search.

 • Further evaluate a marginal database match by performing pairwise sequence align-
ment as described in Chapter 3.

For PHI‐BLAST, the most common problem encountered is that new users do not 
have a feel for the rules involved in creating a PHI‐BLAST pattern. The best approach is 
to practice using a variety of signatures.

For studies of genomic DNA (as for any bioinformatics problem), it is important 
to select the appropriate tool for the task at hand. The various tools we described offer 
trade‐offs in speed and sensitivity. Some are designed to analyze regions of a particular 
length or composition.

advIce For StudentS
We discussed a series of programs (e.g., PSI‐BLAST, DELTA‐BLAST, HMMER) for pro-
tein (or in some cases, DNA) database searches. Take your favorite protein (or take beta 
globin) and get a feel for the performance of each tool. How did the developers of these 
tools measure the sensitivity and specificity? Consider a small family of well‐characterized 
proteins (such as the globins) in which you have a clear definition of true positive and true 
negative (as well as false positive and false negative) findings. Read the key papers on each 
of these search tools. Approximately how many authentic database matches are likely to be 
missed with each tool?

WeB reSourceS
We have described different kinds of BLAST and related search tools, including organ-
ism‐specific databases for BLAST searching, BLAST sites that focus on specialized 
molecules, and alternative algorithms for database searching including DELTA‐BLAST, 
HMMER, MegaBLAST, and BLAT. Links to these resources are provided at  http://
www.bioinfbook.org/chapter5.

Discussion Questions
[5-1] BLAT is an extremely fast, accurate 
program. Why will it not replace BLAST 
or at least become as commonly used as 
BLAST? Is it applicable to protein searches?

[5-2] In the original implementation of PSI‐BLAST, the 
algorithm performed a multiple sequence alignment and 
deleted all but one copy of aligned sequence segments hav-
ing ≥98% identity (Altschul et al., 1997). In a recent mod-
ification, the program now purges segments having ≥94% 
identity. What do you think would happen if this percent-
age were adjusted to ≥75%? How could you test this idea 
in practice?

prOBLeMS/COMputer LaB
[5-1] Create an artificial protein sequence consisting of 
human RBP4 followed by the C2 domain of human protein 

kinase Cα. An example of this is shown in Web Document 
5.5. Enter this combined sequence into a PSI‐BLAST or 
DELTA-BLAST search. In general, are multiple domains 
always detected by these programs? Do any naturally occur-
ring proteins have both lipocalin and C2 domains?

[5-2] The purpose of this problem is to compare BLASTP 
to DELTA‐BLAST. The malarium parasite Plasmodium 
vivax has a multigene family called vir that is specific to 
that organism (del Portillo et al., 2001). There are 600–
1000 copies of these genes, and they may have a role in 
causing chronic infection through antigenic variation. 
Select vir1 and perform a BLASTP search of the nonre-
dundant protein database (restricting the species to Plas-
modium vivax). Then perform a DELTA‐BLAST search 
with the same entry. For each search, approximately how 
many proteins have an E value less than 1 × 10−10?

http://www.bioinfbook.org/chapter5
http://www.bioinfbook.org/chapter5
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Self-test Quiz
[5-1] A DELTA‐BLAST search is most 
useful when you want to:

(a) find the rat ortholog of a human protein;

(b) extend a database search to find addi-
tional proteins;

(c) extend a database search to find additional DNA 
sequences; or

(d) use a pattern or signature to extend a protein search.

[5-2] Which of the following BLAST programs uses a sig-
nature of amino acids to find proteins within a family?

(a) PSI‐BLAST;

(b) PHI‐BLAST;

(c) MS BLAST; or

(d) WormBLAST.

[5-3] Are there globins in fungi? Perform a PSI‐BLAST 
search using human beta globin (NP_000509) as a query, 
restricting the output to sequences from fungi (taxid:4751) 
in the nr database. What is the approximate range of lengths 
of fungal proteins having globin domains? What nonglo-
bin domains are often present in fungal globins? Does the 
presence of these unrelated domains lead to corruption? 
Why or why not? In the first iteration there are several hits 
(with E values below the 0.005 threshold). After several 
more iterations there are many dozens of hits, including fla-
vohemoproteins that include a globin domain. These fun-
gal proteins have globin domains that are more related to 
bacterial than vertebrate orthologs. Most of the fungal fla-
vohemoproteins are quite long (over 400 amino acids and 
sometimes about 1000 amino acids long), having multiple 
domains. However, only the globin domain is used for the 
continued PSI‐BLAST iterations.

[5-4] Perform HMMER searches. First make two different 
HMMs. You can obtain sets of vertebrate globin and bac-
terial/fungal/vertebrate globin sequences from Web Doc-
uments 5.6 and 5.7 at  http://www.bioinfbook.org/chap-
ter5. The multiple sequence alignments that we use as input 
to HMMER are in these documents.

  When the profile HMM is built from a multiple sequence 
alignment of vertebrate alpha and beta globins and used to 
search the human RefSeq database there are many database 
matches, including myoglobin (that we could not detect 
with BLASTP). In contrast, when an alignment of bacterial 
and fungal globins is used to generate a profile HMM, the 
output consists of one result with a nonsignficant expect 
value. Combining several human globins with the bacte-
rial and fungal globins in a multiple sequence alignment 
results in the creation of a HMM that readily detects human 

globins. The profile HMM is therefore a model that is sen-
sitive to the choice of sequences that are used as input for 
the multiple sequence alignment.

  The full results of the HMMER searches for (1) verte-
brate, (2) bacterial plus fungal, and (3) bacterial plus fungal 
plus vertebrate globins are shown in Web Documents 5.8, 
5.9, and 5.10 at  http://www.bioinfbook.org/chapter5. The 
HMM match to human myoglobin had a higher score and 
lower E value in search (3) than in (1). HMMER searches are 
run locally. This search was run against all human RefSeq 
proteins. You can download NCBI databases such as RefSeq 
by visiting the file transfer protocol (FTP) site from the home 
page of NCBI or going directly to  http://www.ncbi.nlm.nih 
.gov/Ftp/ (WebLink 5.31). Place the downloaded data-
base into the same directory as your input sequences for 
HMMER.

[5-5] We previously performed a series of BLAST 
searches using HIV‐1 Pol as a query (NP_057849). Per-
form a BLASTP search using this query. Look at the tax-
onomy report to see which viruses match this query. Next, 
repeat the search using DELTA‐BLAST. Compare this tax-
onomy report to that of the BLASTP search. What do you 
observe? Are there any nonviral sequences detected in the 
DELTA‐BLAST search? Did you expect to find any?

[5-6] Explore PHI‐BLAST using human RBP4 
(NP_006735) as a query, restricting the output to bacteria 
and the RefSeq database. Use the PHI pattern GXW[YF]
X[VILMAFY]A[RKH]. Perform this search and save 
the results. Then repeat the search using the PHI pattern 
GXW[YF][EA][IVLM]. How do the results differ? Select 
one protein that appears as a bacterial protein in a pairwise 
alignment with the human RBP4 query; what are the E val-
ues, and why do they differ?

http://www.bioinfbook.org/chap-ter5.The
http://www.bioinfbook.org/chap-ter5
http://www.bioinfbook.org/chapter5
http://www.ncbi.nlm.nih.gov/Ftp/
http://www.ncbi.nlm.nih.gov/Ftp/
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SuggeSted readIng
In this chapter we introduced a variety of BLAST servers and BLAST‐related soft-
ware. In most cases the websites contain documentation online. PSI‐BLAST was intro-
duced in an excellent paper by Altschul et al. (1997) (see also Suggested Reading for 
Chapter 4). Further modifications of PSI‐BLAST are introduced by Schäffer et al. (2001). 
For DELTA-BLAST see Boratyn et al. (2012). Benjamin Schuster‐Böckler and Alex 
Bateman (2007) contributed an excellent introduction to hidden Markov models. Trapnell 
and Salzberg (2009) introduce short-read alignment.

[5-3] Which of the following BLAST programs is best 
used for the analysis of immunoglobulins?

(a) RPS‐BLAST;

(b) PHI‐BLAST;

(c) IgBLAST; or

(d) ProDom.

[5-4] In a position‐specific scoring matrix, the column 
headings can have the 20 amino acids and the rows can rep-
resent the residues of a query sequence. Within the matrix, 
the score for any given amino acid residue is assigned 
based on:

(a) a PAM or BLOSUM matrix;

(b) its frequency of occurrence in a multiple sequence 
alignment;

(c) its background frequency of occurrence; or

(d) the score of its neighboring amino acids.

[5-5] As part of a PSI‐BLAST search, a score is assigned 
to an alignment between a query sequence and a database 
match over some length (such as 50 amino acid residues). 
It is possible for this pairwise alignment to receive a higher 
or lower score over successive PSI‐BLAST iterations, even 
though there is no change in which amino acid residues are 
aligned:

(a) true; or

(b) false.

[5-6] A position‐specific scoring matrix is said to be “cor-
rupted” when it incorporates a spurious sequence (i.e., a 
false positive result). Which of the following choices is the 
best way to reduce corruption?

(a) lower the E value;

(b) remove filtering;

(c) use a shorter query; or

(d) run fewer iterations.

[5-7] What is a major advantage of using HMMER for 
protein searches?

(a) it uses full probabilistic models, including models of 
amino acid substitutions, insertions, and deletions, 
to accurately find even distant databases matches;

(b) it converts amino acid substitution matrices to log‐
odds forms, increasing sensitivity and specificity;

(c) it employs position‐specific scoring matrices; or

(d) it uses successive search iterations.

[5-8] If you want to find proteins that are distantly related 
to your query, which of these strategies is most likely to be 
successful?

(a) using DELTA‐BLAST, because you can specify a 
signature that is selective for the proteins related to 
your query;

(b) using PSI‐BLAST, because its strategy of using a 
position‐specific scoring matrix is likely to be most 
sensitive;

(c) using BLASTP, because you can adjust the scoring 
matrices to maximize the sensitivity of your search; 
or

(d) using organism‐specific databases, because they are 
most likely to include distantly related sequences.

[5-9] Which of the following steps is crucial to validating 
a sequence you believe to be that of a novel gene?

(a) performing a PSI‐BLAST search;

(b) checking the EST database to see where this gene 
might be expressed;

(c) checking NCBI Gene to see if other family members 
of this gene have been annotated; or

(d) BLAST searching your novel sequence into the 
appropriate database to determine whether anyone 
else has described your protein.
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Source: Watson and Kendrew (1961). Reprpoduced with permission from Macmillan 
Publishers.

The determination of the pri-
mary amino acid sequences of 
myoglobin, alpha globin, and 
beta globin were milestones 
in the history of biochemistry. 
(See the quote on horse versus 
human hemoglobin at the start 
of Chapter 21.) Each protein was 
purified, cleaved with endopro-
teases, and peptide fragments 
were overlaid to generate full 
length sequences. There were 
many ambiguities; for example, 
the sequencing technology did 
not allow aspartate and gluta-
mate to be discriminated. Once 
the sequences were identified 
Watson and Kendrew (1961) 
performed one of the earliest 
multiple sequence alignments. 
This clearly showed the relat-
edness of the three globin pro-
teins. In this figure the correct 
sequences of the three proteins 
are also indicated. In some cases 
the correct (or nearly correct) 
short peptide sequence was 
positioned incorrectly in the 
protein. 
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A progressive alignment method is described that utilizes the Needleman and Wunsch 
pairwise alignment algorithm iteratively to achieve the multiple alignment of a set of 
protein sequences and to construct an evolutionary tree depicting their relationship. The 
sequences are assumed a priori to share a common ancestor, and the trees are constructed 
from different matrices derived directly from the multiple alignment. The thrust of the 
method involves putting more trust in the comparison of recently diverged sequences than 
in those evolved in the distant past.

— Da-Fei Feng and Russell F. Doolittle (1987, p. 351)

LEaRnIng ObjECTIvES

after reading this chapter, you should be able to:
 ■ explain the three main stages by which ClustalW performs multiple sequence alignment 

(MSa);
 ■ describe several alternative programs for MSa (such as Muscle, ProbCons, and TCoffee), 

explain how they work, and contrast them with ClustalW;
 ■ explain the significance of performing benchmarking studies and describe several of their 

basic conclusions for MSa; and
 ■ explain the issues surrounding MSa of genomic regions.

IntroductIon
When we consider a protein (or gene), one of the most fundamental questions is what 
other proteins are related. Biological sequences often occur in families. These families 
may consist of related genes within an organism (paralogs), sequences within a popula-
tion (e.g., polymorphic variants), or genes in other species (orthologs). Sequences diverge 
from each other for reasons such as duplication within a genome or speciation leading 
to the existence of orthologs. We have studied pairwise comparisons of two protein (or 
DNA) sequences (Chapter 3), and we have also seen multiple related sequences in the 
form of profiles or as the output of a BLAST or other database search (Chapters 4 and 5). 
We will also explore multiple sequence alignments in the context of molecular phylogeny 
(Chapter 7), protein domains (Chapter 12), and protein structure (Chapter 13).

In this chapter, we consider the general problem of multiple sequence alignment from 
three perspectives. First, we describe five approaches to making multiple sequence align-
ments from a group of homologous proteins of interest. Second, we explore databases of 
multiply aligned sequences such as Pfam, the protein family database. Third, we discuss 

C h a p t e r

6
Multiple Sequence 
alignment

http://www.wiley.com/go/pevsnerbioinformatics
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multiple alignment of genomic DNA. This is typically a comparative genomics problem 
of aligning large chromosomal regions from different species or from distinct, repeated 
regions of a single genome.

Multiple sequence alignments are of great interest because homologous sequences 
often retain similar structures and functions (Edgar and Batzoglou, 2006; Do and Katoh, 
2008; Pirovano and Heringa, 2008; Kemena and Notredame, 2009). Compared to pairwise 
alignments, multiple sequence alignments are very powerful because two sequences that 
may not align well to each other can be aligned via their relationship to a third sequence, 
thereby integrating information in a way not possible using only pairwise alignments. We 
can therefore define members of a gene or protein family, and identify conserved regions. 
If we know a feature of one of the proteins (e.g., hemoglobin transports oxygen), then 
when we identify homologous proteins, we can predict that they may have a similar func-
tion. The overwhelming majority of proteins have been identified through the sequencing 
of genomic DNA or complementary DNA (cDNA; Chapter 8). The function of most pro-
teins is therefore assigned on the basis of homology to other known proteins rather than 
on the basis of results from biochemical or cell biological (functional) assays.

Definition of Multiple Sequence alignment

Domains or motifs that characterize a protein family are defined by the existence of a 
multiple sequence alignment of a group of homologous sequences. A multiple sequence 
alignment is a collection of three or more protein (or nucleic acid) sequences that are 
partially or completely aligned. Homologous residues are aligned in columns across the 
length of the sequences. These aligned residues are homologous in an evolutionary sense: 
they are presumably derived from a common ancestor. The residues in each column are 
also presumed to be homologous in a structural sense: aligned residues tend to occupy 
corresponding positions in the three-dimensional structure of each aligned protein.

Multiple sequence alignments are easy to generate, even by eye, for a group of very 
closely related protein (or DNA) sequences. We have seen an alignment of closely related 
sequences (Fig. 3.10, GAPDH). As soon as the sequences exhibit some divergence, the 
problem of multiple alignment becomes extraordinarily difficult to solve. In particular, 
the number and location of gaps is difficult to assess. We saw an example of this with 
kappa caseins (Fig. 3.11), and in this chapter we examine a challenging region of five dis-
tantly related globins. Practically, you must: (1) choose homologous sequences to align; 
(2) choose software that implements an appropriate objective scoring function (i.e., a 
metric such as maximizing the total score of a series of pairwise alignments); (3) choose 
appropriate parameters such as gap opening and gap extension penalties; and (4) interpret 
the output and re-run the analyses as needed.

There is not necessarily one “correct” alignment of a protein family (Löytynoja, 
2012). This is because while protein structures tend to evolve over time, protein sequences 
generally evolve even more rapidly than structures. Looking at the sequences of human 
beta globin and myoglobin, we saw that they share only 25% amino acid identity (Fig. 3.5) 
but the three-dimensional structures are nearly identical (Fig. 3.1). In creating a multiple 
sequence alignment, it may be impossible to identify the amino acid residues that should 
be aligned with each other as defined by the three-dimensional structures of the proteins 
in the family. We do not often have high-resolution structural data available, and we rely 
on sequence data to generate the alignment. Similarly, we do not often have functional 
data to identify domains (such as the specific amino acids that form the catalytic site of 
an enzyme), so again we rely on sequence data. It is possible to compare the results of 
multiple sequence alignments that are generated solely from sequence data and then to 
examine known structures for those proteins. For a given pair of divergent but signifi-
cantly related protein sequences (e.g., for two proteins sharing 30% amino acid identity), 
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Chothia and Lesk (1986) found that about 50% of the individual amino acid residues are 
superposable in the two structures.

Aligned columns of amino acid residues characterize a multiple sequence alignment. 
This alignment may be determined due to features of the amino acids, such as:

 • There are highly conserved residues such as cysteines that are involved in forming 
disulfide bridges.

 • There are conserved motifs such as a transmembrane span or an immunoglobulin 
domain. We encounter examples of protein domains and motifs (such as the PROSITE 
dictionary) in Chapter 12.

 • There are conserved features of the secondary structure of the proteins, such as resi-
dues that contribute to α helices, β sheets, or transitional domains.

 • There are regions that show consistent patterns of insertions or deletions.

typical Uses and practical Strategies of Multiple Sequence alignment

When and why are multiple sequence alignments used?

 • If a protein (or gene) you are studying is related to a larger group of proteins, this 
group membership can often provide insight into the likely function, structure, and 
evolution of that protein.

 • Most protein families have distantly related members. Multiple sequence alignment 
is a far more sensitive method than pairwise alignment to detect homologs (Park et 
al., 1998). Profiles (such as those described for DELTA-BLAST and hidden Markov 
models in Chapter 5) depend on accurate multiple sequence alignments.

 • When the output of any database search (such as a BLAST search) is examined, a 
multiple sequence alignment format can be extremely useful to reveal conserved res-
idues or motifs in the output.

 • Each human genome harbors ∼11,000 nonsynonymous single-nucleotide variants 
(causing an amino acid substitution) of which ∼300 are predicted to be deleterious (see 
Chapters 9 and 21). Algorithms that predict whether variants are harmful often rely on 
DNA and/or protein multiple sequence alignments to assess cross-species conserva-
tion. Deleterious variants tend to occur at more conserved positions.

 • Analysis of population data can provide insight into many biological questions 
involving evolution, structure, and function.

 • When the complete genome of any organism is sequenced, a major portion of the 
analysis consists of defining the protein families to which all the gene products belong. 
Database searches effectively perform multiple sequence alignments, allowing com-
parisons of each novel protein (or gene) to the families of all other known genes.

 • We see in Chapter 7 how phylogeny algorithms begin with multiple sequence align-
ments as the raw data with which to generate trees. The most critical part of making 
a tree is to produce an optimal multiple sequence alignment.

 • The regulatory regions of many genes contain consensus sequences for transcription fac-
tor-binding sites and other conserved elements. Many such regions are identified based 
on conserved noncoding sequences that are detected using multiple sequence alignment.

Benchmarking: assessment of Multiple Sequence alignment algorithms

We describe five different approaches to creating multiple sequence alignments. How 
can we assess the accuracy and performance properties of the various algorithms? The 
performance depends on factors including the number of sequences being aligned, their 
similarity, and the number and position of insertions or deletions. Benchmarking provides 
an important answer. There are databases with information about protein secondary or 
tertiary structure (introduced in Chapter 13), including distantly related proteins that are 
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known to be homologous and for which structural data can be used to decide the extent 
to which multiple sequence alignment programs are accurate. We first describe a series of 
prominent alignment methods, then describe the results of benchmarking.

FIve MaIn approaches to MultIple sequence 
alIgnMent
There are many approaches to multiple sequence alignment; in the past decade many 
dozens of programs have been introduced (reviewed in Batzoglou, 2005; Do and Katoh, 
2008). We consider five algorithmic approaches: (1) exact methods; (2) progressive align-
ment (e.g., ClustalW); (3) iterative approaches (e.g., PRALINE, IterAlign, MUSCLE);  
(4) consistency-based methods (e.g., MAFFT, ProbCons); and (5) structure-based 
methods that include information about one or more known three-dimensional protein 
structures to facilitate creation of a multiple sequence alignment (e.g., Expresso). The 
programs we describe in categories (3) to (5) are often overlapping; for example, all rely 
on progressive alignment and some combine iterative and structure-based approaches. All 
the programs offer tradeoffs in speed and accuracy. MUSCLE and MAFFT are fastest, 
and are therefore most useful for aligning large numbers of sequences. ProbCons and 
T-COFFEE, although slower, are more accurate in many applications.

We explore how the same set of globin sequences can be aligned differently using 
various programs, and we try to assess which alignments are most accurate. A related 
question is the consequence of a misalignment. Potentially, the conservation of critical 
residues (such as active site amino acids of an enzyme, the heme-binding residues of a 
globin, or conserved residues that cause disease when mutated) may be missed. Phy-
logenetic inference (Chapter 7) may be compromised because all molecular phylogeny 
algorithms depend on a multiple sequence alignment as input. Protein structure prediction 
(Chapter 13) is severely compromised by faulty multiple sequence alignment, which is 
often a first step in homology-based modeling.

The programs we explore can be used by web interfaces, although local installation 
of the programs typically allows you access to a more complete package of options. All 
the web interfaces allow you to paste in a set of DNA, RNA, or protein sequences in the 
FASTA format, or to upload a text file containing these sequences.

exact approaches to Multiple Sequence alignment

Dynamic programming as described by Needleman and Wunsch (1970) for pairwise 
alignment is guaranteed to identify the optimal global alignment(s). Exact methods for 
multiple sequence alignment employ dynamic programming, although the matrix is mul-
tidimensional rather than two-dimensional. The goal is to maximize the summed align-
ment score of each pair of sequences. Exact methods generate optimal alignments but are 
not feasible in time or space for more than a few sequences. For N sequences, the compu-
tational time that is required is O(2N LN) where N is the number of sequences and L is the 
average sequence length. An exact multiple sequence alignment of more than four or five 
average-sized proteins would consume prohibitively too much time. Non-exact methods, 
which we discuss next, are computationally feasible. For example, ClustalW has time 
complexity O(N4+L2) and MUSCLE has time complexity O(N4+NL2). Although they are 
faster, these heuristic approaches are not guaranteed to produce optimal alignments.

progressive Sequence alignment

The most commonly used algorithms that produce multiple alignments are derived from 
the progressive alignment method. This was proposed by Fitch and Yasunobu (1975) and 
described by Hogeweg and Hesper (1984) who applied it to the alignment of 5S ribosomal 
RNA sequences. The method was popularized by Da-Fei Feng and Russell Doolittle 

We explore sets of distantly and 
closely related globin sequences 
in the FASTA format. These are 
available as Web Documents 
6.1 and 6.2 at  http://www.
bioinfbook.org/chapter6. 
There are many ways that you 
can easily obtain a group of 
sequences in the FASTA format. 
Examples include HomoloGene 
at NCBI (for eukaryotic proteins), 
or you can select any subset of 
the results of a BLAST search 
and view the sequences in NCBI 
Protein (or NCBI Nucleotide) in 
the FASTA format.

http://www.bioinfbook.org/chapter6
http://www.bioinfbook.org/chapter6
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(1987, 1990). It is called “progressive” because the strategy entails calculating pairwise 
sequence alignment scores between all the proteins (or nucleic acid sequences) being 
aligned, then beginning the alignment with the two closest sequences and progressively 
adding more sequences to the alignment. A benefit of this approach is that it permits the 
rapid alignment of hundreds or even thousands of sequences. A major limitation is that 
the final alignment depends on the order in which sequences are joined. It is therefore not 
guaranteed to provide the most accurate alignments.

From the 1990s until recently the most popular web-based program for performing 
progressive multiple sequence alignment has been ClustalW (Thompson et al., 1994; 
Larkin et al., 2007). While most experts recommend newer programs (such as MAFFT, 
ProbCons, MUSCLE, and T-COFFEE) which offer improved performance, we introduce 
the ClustalW algorithm to explain progressive alignment. It proceeds in three stages. We 
illustrate the procedure by aligning five distantly related globins, selected from NCBI 
protein and pasted into a text document in the FASTA format (Fig. 6.1). The results are 

Note that while most database 
searches such as BLAST rely on 
local alignment strategies, many 
multiple sequence alignments 
focus on global alignments or a 
combination of global and local 
strategies.

FIGUre 6.1 Multiple sequence alignment of five distantly related globins using ClustalW. Five distantly related globin proteins were 
pasted in using the FASTA format from Entrez (NCBI). 

Source: ClustalW, European Bioinformatics Institute.
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shown in Figures 6.2 and 6.3. Later we also align five closely related globins (Figs 6.4 and 
6.5). In this particular example we select proteins for which the corresponding three-di-
mensional structure has been solved by X-ray crystallography. This will help us to inter-
pret the accuracy of the alignment from a structural perspective as well as an evolutionary 
perspective.

1. In stage 1, the global alignment approach of Needleman and Wunsch (1970; Chapter 3) 
is used to create pairwise alignments of every protein that is to be included in a multi-
ple sequence alignment (Fig. 6.2, stage 1). As shown in the figure, for an alignment of  
5 sequences, 10 pairwise alignment scores are generated.

Algorithms that perform pairwise alignments generate raw similarity scores. Note 
that for the default setting of ClustalW, the scores are simply the percent identities. 
Many progressive sequence alignment algorithms including ClustalW use a distance 

The 1994 ClustalW paper has 
been cited over 48,000 times (as 
of February 2015). It is present 
but no longer actively maintained 
at the European Bioinformatics 
Institute (EBI) website (  http://
www.ebi.ac.uk/Tools/msa/, 
WebLink 6.1). In its place, Clustal 
Omega has been introduced 
(Sievers et al., 2011) with an 
emphasis on aligning thousands 
of sequences. ClustalW 
continues to be maintained at 
dozens of websites, such as 
the EMBOSS program emma 
at servers such as  http://
embossgui.sourceforge.net/
demo/emma.html (WebLink 6.2) 
and Galaxy (  http://usegalaxy.
org, WebLink 6.3), and through 
MEGA software (see Computer 
Lab problem 6.1) at  http://
www.megasoftware.net/ 
(WebLink 6.4).

(a) Stage 1: series of pairwise alignments

(b) Stage 2: create a guide tree (calculated from a distance matrix)

1

FIGUre  6.2 Progressive alignment method of Feng and Doolittle (1987) used by many multiple 
alignment programs such as ClustalW. In stage 1, a series of pairwise alignments is generated for five 
distantly related globins (see Fig. 6.1). Note that the best score is for an alignment of two plant glo-
bins (score = 43; arrow 1). In stage 2, a guide tree is calculated describing the relationships of the five 
sequences based upon their pairwise alignment scores. A graphical representation of the guide tree is 
shown using the JalView tool at the ClustalW web server. Branch lengths (rounded off) reflect distances 
between sequences and are indicated on the tree; compare to Figure 6.4. 

Source: Kyoto University Bioinformatics Center, Courtesy of Kanehisa Laboratories.

http://www.ebi.ac.uk/Tools/msa/
http://www.ebi.ac.uk/Tools/msa/
http://embossgui.sourceforge.net/demo/emma.html
http://embossgui.sourceforge.net/demo/emma.html
http://usegalaxy.org
http://usegalaxy.org
http://www.megasoftware.net/
http://www.megasoftware.net/
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matrix rather than a similarity matrix to describe the relatedness of the proteins. The 
conversion of similarity scores for each pair of sequences to distance scores is outlined 
in Box 6.1. The purpose of generating distance measures is to generate a guide tree 
(stage 2, below) to construct the alignment.

In our example, note that the best pairwise global alignment score is for rice ver-
sus soybean globin (Fig. 6.2, arrow 1). For a group of closely related beta globins, all 
have high scores (Fig. 6.4), even for sequences from avian and mammalian species that 
diverged over 300 million years ago.

2. In the second stage, a guide tree is calculated from the distance (or similarity) matrix. 
There are two principal ways to construct a guide tree: the unweighted pair group 
method of arithmetic averages (UPGMA) and the neighbor-joining method. We define 
these algorithms in Chapter 7. The two main features of a tree are its topology (branch-
ing order) and branch lengths (which can be drawn so that they are proportional to 
evolutionary distance). The tree therefore reflects the relatedness of all the proteins to 
be multiply aligned.

In ClustalW, the tree is described with a written syntax called the Newick format, 
as well as with a graphical output (Figs. 6.2 and 6.4, stage 2). The chicken sequence 
has the lowest score relative to the human, chimpanzee, dog, and mouse beta globins, 

For N sequences that are 
multiply aligned, the number of 
pairwise alignments that must be 
calculated for the initial matrix 
equals (N – 1)N/2. For 5 proteins, 
10 pairwise alignments are made. 
For a multiple sequence alignment 
of 500 proteins, 499 × 500/2 = 
12,250 pairwise alignments are 
made; this is why the speed of 
an algorithm can be a concern. 
ClustalW is slow relative to other 
approaches such as MUSCLE, 
described below, but for most 
typical applications its speed is 
quite reasonable.

To confirm that the ClustalW 
scores are percent identities, 
perform pairwise alignments 
between any two of the 
sequences in Figure 6.2 or 6.4 
using BLASTP at NCBI (Chapter 3).

CLUSTAL 2.1 multiple sequence alignment

beta_globin    ----------MVHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFG- 47
myoglobin      -----------MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFK- 48
neuroglobin    -------------MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR 47
soybean_globin ----------MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFLA- 49
rice_globin    MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSFLR- 59
                            :   :   :   :  ..      .      ::   *     *.    

beta_globin    DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFAT------LSELHCDKLHVDP 101
myoglobin      HLKSEDEMKASEDLKKHGATVLTALGGILKKKGHHEAEIKP------LAQSHATKHKIPV 102
neuroglobin    QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSLEEY---LASLGRKHRAVGVKLS 104
soybean_globin --NGVDPT--NPKLTGHAEKLFALVRDSAGQLKASGTVVAD----AALGSVHAQKAVTDP 101
rice_globin    --NSDVPLEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLGATHLKYGVGDA 117
                 .       . ..  *  .::        :                *.  *        

beta_globin    ENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------ 147
myoglobin      KYLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG 154
neuroglobin    SFSTVGESLLYMLEKCLG-PAFTPATRAAWSQLYGAVVQAMSRGWDGE---- 151
soybean_globin QFVVVKEALLKTIKAAVG-DKWSDELSRAWEVAYDELAAAIKKA-------- 144
rice_globin    HFEVVKFALLDTIKEEVPADMWSPAMKSAWSEAYDHLVAAIKQEMKPAE--- 166
                   .    :  :        :      * .     .   :           

▼▼

▼

FIGUre 6.3 Multiple sequence alignment of five distantly related globins. The output is from Clust-
alW using the progressive alignment algorithm of Feng and Doolittle. In stage 3, a multiple sequence 
alignment is created by performing progressive sequence alignments. First, the two closest sequences are 
aligned (soybean and rice globins). Next, further sequences are added in the order based on their position 
in the guide tree. An asterisk indicates positions in which the amino acid residue is 100% conserved in 
a column; a colon indicates conservative substitutions; a dot indicates less conservative substitutions. 
The proteins are human beta globin (accession NP_000509; Protein Data Bank identifier 2hhb), human 
myoglobin (NP_005359; 3RGK), human neuroglobin (NP_067080; 1OJ6A), leghemoglobin (from the 
soybean Glycine max; 1FSL), and nonsymbiotic plant hemoglobin (from rice; 1D8U). Regions of alpha 
helices (defined in Chapter 13) based on X-ray crystallography are indicated in red letters. Three highly 
conserved residues are indicated by arrowheads and bold blue letters: phe44 of myoglobin; his65; and 
his93. Those two histidines are important in coordinating protein binding to the heme group. A green 
box surrounds the second histidine including five amino acids downstream (to the carboxy terminus) and 
17 amino acids upstream (to the end of an alpha helical region). We discuss the alignment within this box 
for ClustalW in comparison to other alignment programs (Fig. 6.6). 

Source: Kyoto University Bioinformatics Center, Courtesy of Kanehisa Laboratories.
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FIGUre 6.4. Example of a multiple sequence alignment of closely related globin proteins using the 
progressive sequence aligment method of Feng and Doolittle as implemented by ClustalW. Compare 
these scores to those for distantly related proteins (Fig. 6.2), and note that the pairwise alignment scores 
are consistently higher and the distances (reflected in branch lengths on the guide tree) are much shorter. 

Source: Kyoto University Bioinformatics Center, Courtesy of Kanehisa Laboratories.

(a) Stage 1: series of pairwise alignments (closely related globin proteins)

(b) Stage 2: create a guide tree (calculated from a distance matrix)

and this is reflected in its position in the guide tree (Fig. 6.4, stages 1 and 2). A tree can 
also be displayed graphically at the ClustalW site by using the JalView option. Guide 
trees are usually not considered true phylogenetic trees, but instead are templates 
used in the third stage of ClustalW to define the order in which sequences are added 
to a multiple alignment. A guide tree is estimated from a distance matrix based on the 
percent identities between sequences you are aligning. In constrast, a phylogenetic 
tree almost always includes a model to account for multiple substitutions that com-
monly occur at the position of aligned amino acids (or nucleotides), as discussed in 
Chapter 7.

3. In stage 3, the multiple sequence alignment is created in a series of steps based on the 
order presented in the guide tree. The algorithm first selects the two most closely related 
sequences from the guide tree and creates a pairwise alignment. These two sequences 
appear at the terminal nodes of the tree, that is, the locations of extant sequences. For 
example, rice globin and soybean globin are aligned. The next sequence is either added 
to the pairwise alignment (to generate an aligned group of three sequences, sometimes 
called a profile) or used in another pairwise alignment. At some point, profiles are 
aligned with profiles. The alignment continues progressively until the root of the tree 
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▼▼

▼

FIGUre 6.5. Multiple sequence of five closely related beta globin orthologs (see Fig. 6.4). The output 
is a screen capture from ClustalW using the progressive alignment algorithm of Feng and Doolittle. The 
arrowheads correspond to the human beta globin phe44, his72, and his104 residues, respectively, and the 
green box corresponds to the same region as in Figure 6.3. The coloring scheme (from the ClustalW pro-
gram) includes groups such as acidic amino acids (blue), basic amino acids (magenta), and hydrophobic res-
idues (red). The asterisks highlight the dozens of column positions conserved among all five globin proteins. 

Source: Kyoto University Bioinformatics Center, Courtesy of Kanehisa Laboratories.

Box 6.1 sIMIlarIty versus dIstance Measures

Trees that represent protein or nucleic acid sequences usually display the differences between various sequences. One way to measure 
distances is to count the number of mismatches in a pairwise alignment. Another method, employed by the Feng and Doolittle progres-
sive alignment algorithm, is to convert similarity scores to distance scores. Similarity scores are calculated from a series of pairwise 
alignments among all the proteins being multiply aligned. The similarity scores S between two sequences (i, j) are converted to distance 
scores D via:

 D S= − ln eff  6.1
where

 

S
S S

S S
ij ij

ij ij
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real rand

iden rand

=
−
−

( ) ( )

( ) ( )

××100.

 6.2

Here, Sreal(ij) describes the observed similarity score for two aligned sequences i and j; Siden(ij) is the average of the two scores for the 
two sequences compared to themselves (if score i compared to i receives a score of 20 and score j compared to j receives a score of 10, 
then Siden(ij) = 15); Srand(ij) is the mean alignment score derived from many (e.g., 1000) random shufflings of the sequences; and Seff is a 
normalized score. If sequences i, j have no similarity, then Seff = 0 and the distance is infinite. If sequences i, j are identical, then Seff = 1 
and the distance is 0.

is reached, and all sequences have been aligned. At this point a full multiple sequence 
alignment is obtained (Figs 6.3 and 6.5, stage 3).

In the alignment of five distantly related globins, note that a highly conserved phe-
nylalanine is aligned as are two histidines that coordinate heme binding in most glo-
bins (Fig. 6.3, arrowheads). The region of the second histidine is prone to misalignment, 
and we will explore how other programs treat this region. For a group of closely related 
globins, the level of conservation is so high that there are no gaps and therefore no 
ambiguities about how to perform the alignment (Fig. 6.5).



AnAlyzing DnA, RnA, AnD PRotein SequenceS214

The Feng–Doolittle approach includes the rule “once a gap, always a gap.” The most 
closely related pair of sequences is aligned first. As further sequences are added to the 
alignment, there are many ways that gaps could be included. The rationale for the “once 
a gap, always a gap” rule is that the two most closely related sequences that are ini-
tially aligned should be weighted most heavily in assigning gaps. ClustalW dynamically 
assigns position-specific gap penalties that increase the likelihood of having a new gap 
occur in the same position as a pre-existing gap. That serves to give the overall alignment 
a block-like structure that often appears efficient in terms of minimizing the number of 
gap positions.

Should an insertion be penalized by the same amount as a deletion? No, according to 
Löytynoja and Goldman (2005): a single deletion event is typically penalized once where 
it occurs, but a single insertion event that occurs once inappropriately results in multi-
ple penalties to all the other sequences. The result of these high penalties is that many 
multiple sequence alignments are unrealistically aligned with too few gaps. Löytynoja 
and Goldman (2005) introduced a pair hidden Markov model approach that distinguishes 
insertions from deletions. They showed that their method creates gaps that are consistent 
with phylogeny, even though the alignments appear less compact than with ClustalW. 
Their approach applies to the alignment of protein, RNA, or DNA sequences, but it may 
be especially useful for the alignment of genomic DNA. There, overfitting may occur 
with traditional progressive alignment, for example when one sequence has long inser-
tions. The approach of Löytynoja and Goldman (2005), reviewed in Higgins et al. (2005), 
provides multiple sequence alignments that have more gaps but are likely to be more 
accurate, based on criteria such as correct alignment of exons.

ClustalW implements a series of additional features to optimize the alignment 
(Thompson et al., 1994). The distance of each protein (or DNA) sequence from the root 
of the guide tree is calculated, and those sequences that are most closely related are down-
weighted by a multiplicative factor. This adjustment ensures that if an alignment includes 
a group of very closely related sequences as well as another group of divergent sequences, 
the closely related sequences will not overly dominate the final multiple sequence align-
ment. Other adjustments include the use of a series of scoring matrices that are applied 
to pairwise alignments of proteins depending on their similarity, and compensation for 
differences in sequence length.

Many other algorithms use variants of progressive alignment. For example, Kalign 
employs a string-matching algorithm to achieve speeds ten times faster than ClustalW 
(Lassmann and Sonnhammer, 2005). Kalign aligns 100 protein sequences of length 500 
residues in less than a second.

Iterative approaches

Iterative methods compute a suboptimal solution using a progressive alignment strategy, 
and then modify the alignment using dynamic programming or other methods until a 
solution converges. An initial tree is divided and profiles from each side are re-aligned. 
These methods therefore create an intial alignment and then modify it to try to improve it, 
using some objective function to maximize a score (Fig. 6.6).

Progressive alignment methods have the inherent limitation that once an error occurs 
in the alignment process it cannot be corrected; iterative approaches can overcome this 
limitation. In standard dynamic programming the branching order of the guide tree may 
be suboptimal, or the scoring parameters may cause gaps to be misplaced. Iterative 
refinement can search for more optimal solutions stochastically (seeking higher maximal 
scores according to some metric such as sum-of-pairs scores or SPS) or by systematically 
extracting and realigning sequences from an initial profile that is generated. Examples of 
programs employing iterative approaches are MAFFT (Multiple Alignment using Fast 

Note that there are two different 
senses in which sequences 
are weighted by ClustalW. The 
“once a gap, always a gap” rule 
places the greatest emphasis 
for gap selection on the most 
closely related sequences 
(weighting their importance most 
heavily). Separately, a set of very 
closely related sequences are 
downweighted (reducing their 
impact on the alignment).

The website  http://msa.cgb 
.ki.se (WebLink 6.5) includes 
Kalign for alignment, Kalignvu 
as a viewer and Mumsa to 
assess the quality of a multiple 
sequence alignment (Lassmann 
and Sonnhammer, 2006). 
Kalign is also offered through 
the European Bioinformatics 
Institute  http://www.ebi.ac.uk/
kalign/ (WebLink 6.6).

http://msa.cgb.ki.se
http://www.ebi.ac.uk/kalign/
http://msa.cgb.ki.se
http://www.ebi.ac.uk/kalign/
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Fourier Transform; Katoh et al., 2005), Iteralign (Karlin and Brocchieri, 1998), PRA-
LINE (Profile ALIgNmEnt; Heringa, 1999; Simossis and Heringa, 2005), and MUSCLE 
(MUltiple Sequence Comparison by Log-Expectation; Edgar, 2004a, b).

MAFFT is an example of a multiple alignment package that is considered to be 
highly accurate based on recent benchmarking studies. It offers a suite of tools with 
choices of more speed or accuracy (Katoh et al., 2009; Katoh and Standley, 2013). It 
includes progressive alignment, including: (1) a one-cycle progressive method (called 
FFT-NS-1) resembling ClustalW, but using a fast Fourier transform for the refinement 
step; (2) a two-cycle method (FFT-NS-2) in which a multiple alignment is created then 
refined distances are calculated from that alignment, and a second progressive alignment 
is formed; and (3) a very fast progressive aligner called PartTree that is useful to align 
large numbers of sequences (∼50,000). The progressive alignment uses matching 6-tuples 
(strings of six residues) to calculate pairwise distances. This approach is called k-mer 
counting. A k-mer (also called a k-tuple or word) is a contiguous subsequence of length 
k. k-mer counting is extremely fast because it requires no alignment. The initial distance 
matrix can be recalculated once all pairwise alignments are calculated, yielding a more 
reliable progressive alignment. In the iterative refinement step, a weighted sum-of-pairs 
score is calculated and optimized. MAFFT allows options including global or local pair-
wise alignment.

As a practical example, we can align nine globin proteins using a variety of software 
tools and see that they each produce different alignments, even when using the leading 
programs such as MUSCLE, MAFFT, ProbCons, and T-COFFEE. While most alignment 
programs are available on the internet, MAFFT is designed as a command-line program 
(although it can be accessed via web servers). We obtain a set of nine globin proteins, put 
them into a text file on a computer running Linux, perform progressive alignment, and 
send the results to a file called msa1.txt:

Obtain a set of sequences from 
NCBI, Ensembl or other sites  
(e.g., saving BLAST or 
HomoloGene results in a text file), 
or use Web Document 6.3 for this 
set of nine globin sequences. 
Paste the sequences into a Linux 
editor such as vim or nano. 
Instructions for downloading and 
installing MAFFT are available 
from  http://mafft.cbrc.jp/
alignment/software/ (WebLink 
6.7). Once you install it, type 
mafft –h for a list of options. 
MAFFT is also available (with 
more limited options) at the EBI 
website,  http://www.ebi.ac.uk/
Tools/msa/mafft/ (WebLink 6.8).

Initial 
alignment

Divide into
subalignments

Tree-dependent 
partitioning

Group-to-group
alignment

Replace
(if score 
is improved)

Sequences

a
b
c

d
e

a
b
c
d
e

a
b
c
d
e

a  b  c  d  e

FIGUre 6.6 Iterative refinement method used by MAFFT. A progressive alignment is made then 
divided into subalignments by tree-dependent partitioning. Partitions are re-aligned, then subgroups are 
aligned. If an objective score improves, this new alignment replaces the intial one and the process may 
be repeated. Used with permission. Redrawn from Katoh et al. (2009) with permission from Springer 
Science and Business Media.

$ home/msa$ mafft ––retree 2 ––maxiterate 0 betaglobins.txt > msa1.txt

In the resulting MAFFT alignment, the nine globins include well-aligned conserved 
residues (Fig. 6.7a, arrowheads 1–3) including two histidine residues that are critical for 
binding oxygen. The alignment includes a series of terminal and internal gaps, and the 

http://mafft.cbrc.jp/alignment/software/
http://www.ebi.ac.uk/Tools/msa/mafft/
http://www.ebi.ac.uk/Tools/msa/mafft/
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hbb_human   ----------MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFE-SFG
hbb_chimp   ----------MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFE-SFG
hbb_dog     ----------MVHLTAEEKSLVSGLWGKVNVD--EVGGEALGRLLIVYPWTQRFFD-SFG
hbb_mouse   ----------MVHLTDAEKSAVSCLWAKVNPD--EVGGEALGRLLVVYPWTQRYFD-SFG
hbb_chicken ----------MVHWTAEEKQLITGLWGKVNVA--ECGAEALARLLIVYPWTQRFFA-SFG
myoglobin   -----------MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFD-KFK
neuroglobin -------------MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
soybean     ----------MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFS-FLA
rice        MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFS-FLR
                             :   :   :  ..      .      ::   *     *     

hbb_human   DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---DNLKGTFATLSELHCDK--LHVDPE
hbb_chimp   DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---DNLKGTFATLSELHCDK--LHVDPE
hbb_dog     DLSTPDAVMSNAKVKAHGKKVLNSFSDGLKNL---DNLKGTFAKLSELHCDK--LHVDPE
hbb_mouse   DLSSASAIMGNPKVKAHGKKVITAFNEGLKNL---DNLKGTFASLSELHCDK--LHVDPE
hbb_chicken NLSSPTAILGNPMVRAHGKKVLTSFGDAVKNL---DNIKNTFSQLSELHCDK--LHVDPE
myoglobin   HLKSEDEMKASEDLKKHGATVLTALGGILKKK---GHHEAEIKPLAQSHATK--HKIPVK
neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNV---EDLSSLEEYLASLGRKHRAVGVKLS
soybean     NGVDPT----NPKLTGHAEKLFALVRDSAGQL----KASGTVVADAALGSVHAQKAVTDP
rice        NSDVP--LEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLGATHLKYGVGDA
                      .  .  *  .::        :                    :    :  

(b) Alignment of nine globins by MUSCLE (3.8)

1

2 3

1

2 3

hbb_human   ----------MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFE-SFG
hbb_chimp   ----------MVHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFE-SFG
hbb_dog     ----------MVHLTAEEKSLVSGLWGKVNVD--EVGGEALGRLLIVYPWTQRFFD-SFG
hbb_mouse   ----------MVHLTDAEKSAVSCLWAKVNPD--EVGGEALGRLLVVYPWTQRYFD-SFG
hbb_chicken ----------MVHWTAEEKQLITGLWGKVNVA--ECGAEALARLLIVYPWTQRFFA-SFG
myoglobin   -----------MGLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFD-KFK
neuroglobin -------------MERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
soybean     ----------MVAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFS-FLA
rice        MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFS-FLR
                             :   :   :  ..      .      ::   *     *

hbb_human   DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAH---LDNL---KGTFATLSELHCDKLHVDP
hbb_chimp   DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAH---LDNL---KGTFATLSELHCDKLHVDP
hbb_dog     DLSTPDAVMSNAKVKAHGKKVLNSFSDGLKN---LDNL---KGTFAKLSELHCDKLHVDP
hbb_mouse   DLSSASAIMGNPKVKAHGKKVITAFNEGLKN---LDNL---KGTFASLSELHCDKLHVDP
hbb_chicken NLSSPTAILGNPMVRAHGKKVLTSFGDAVKN---LDNI---KNTFSQLSELHCDKLHVDP
myoglobin   HLKSEDEMKASEDLKKHGATVLTALGGILKK---KGHH---EAEIKPLAQSHATKHKIPV
neuroglobin QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSL---EEYLASLGRKH-RAVGVKL
soybean     NGVDP----TNPKLTGHAEKLFALVRDSAGQLKASGTV-VADAA---LGSVH-AQKAVTD
rice        NSDVP--LEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLGATH-LKYGVGD
            .         .  .  *  .::        :    .     .     *.  *     :

(a) Alignment of nine globins by MAFFT FFT-NS-2 (v7.058b) (DSSP colors: turn, alpha helix, bend, 3/10 helix)

FIGUre 6.7 Multiple sequence alignment of nine globins using (a) MAFFT, (b) MUSCLE, (c) Prob-
Cons, and (d) T-COFFEE. The sequences are color-coded according to secondary structure predictions 
made by DSSP (Kabsch and Sander, 1983) as provided on the Protein Data Bank website (Chapter 13). 
The secondary structure features are turn (shaded green), empty (no feature assigned; black), 3/10-helix 
(shaded brown), bend (shaded cyan) and alpha helix (shaded red). The arrowheads correspond to the 
human beta globin phe44, his72, and his104 residues (as in Fig. 6.5). Note that the programs differ in 
their abilities to align corresponding regions of alpha helical and other secondary structure; in their 
alignment of highly conserved residues (arrowheads 1–3); and in the number and placement of gaps (see 
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boxed regions). The proteins used to make these alignments (given in Web Document 6.3) are as follows, 
including the RefSeq accession and the Protein Data Bank identifier of a structure having exactly or 
close to the same sequence: (1) hbb_human (human NP_000509.1, 1HBB); (2) hbb_chimp (Pan_troglo-
dytes XP_508242.1, no structure); (3) hbb_dog (Canis lupus familiaris NP_001257813.1, 2QLS|B); (4) 
hbb_mouse (Mus_musculus NP_058652.1, 3HRW|B); (5) hbb_chicken (Gallus_gallus NP_990820.1, 
1HBR|B); (6) myoglobin (human NP_005359.1, 3RGK); (7) neuroglobin (human NP_067080.1, 
1OJ6|A); (8) globin_soybean (Glycine max leghemoglobin A, NP_001235928.1, 1FSL); and (9) glo-
bin_rice (Oryza sativa (japonica cultivar-group) NonSymbiotic Plant Hemoglobin NP_001049476.1, 
1D8U). The first two-thirds of each alignment are shown. 

(d) Alignment of nine globins by T-COFFEE (Expresso version_10.00)

(c) Alignment of nine globins by ProbCons (version 1.12)

hbb_human      M----------VHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFES-FG
hbb_chimp      M----------VHLTPEEKSAVTALWGKVNVD--EVGGEALGRLLVVYPWTQRFFES-FG
hbb_dog        M----------VHLTAEEKSLVSGLWGKVNVD--EVGGEALGRLLIVYPWTQRFFDS-FG
hbb_mouse      M----------VHLTDAEKSAVSCLWAKVNPD--EVGGEALGRLLVVYPWTQRYFDS-FG
hbb_chicken    M----------VHWTAEEKQLITGLWGKVNVA--ECGAEALARLLIVYPWTQRFFAS-FG
myoglobin      M-----------GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDK-FK
neuroglobin    M-------------ERPEPELIRQSWRAVSRSPLEHGTVLFARLFALEPDLLPLFQYNCR
soybean        M----------VAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSF-LA
rice           MALVEDNNAVAVSFSEEQEALVLKSWAILKKDSANIALRFFLKIFEVAPSASQMFSF-LR
               *          *     :   :   :  ..      .      ::   *     *     

hbb_human      DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNL------KGTFATLSELHCDKLHVDP
hbb_chimp      DLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNL------KGTFATLSELHCDKLHVDP
hbb_dog        DLSTPDAVMSNAKVKAHGKKVLNSFSDGLKNLDNL------KGTFAKLSELHCDKLHVDP
hbb_mouse      DLSSASAIMGNPKVKAHGKKVITAFNEGLKNLDNL------KGTFASLSELHCDKLHVDP
hbb_chicken    NLSSPTAILGNPMVRAHGKKVLTSFGDAVKNLDNI------KNTFSQLSELHCDKLHVDP
myoglobin      HLKSEDEMKASEDLKKHGATVLTALGGILKKKGHH------EAEIKPLAQSHATKHKIPV
neuroglobin    QFSSPEDCLSSPEFLDHIRKVMLVIDAAVTNVEDLSSL---EEYLASLGRKHRAV-GVKL
soybean        NGVDP----TNPKLTGHAEKLFALVRDSAGQLKASGTV---V-ADAALGSVHAQK-AVTD
rice           NSDVP--LEKNPKLKTHAMSVFVMTCEAAAQLRKAGKVTVRDTTLKRLGATHLKY-GVGD
               .         .  .  *  .::        :    ..:         *.  *     :  

1

2 3

2 3

1
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secondary structure features (such as alpha helices), although not analyzed as part of this 
particular MAFFT module, are generally well aligned.

MAFFT and PRALINE can both incorporate information from homologous sequences 
that are analyzed in addition to those you submit for multiple sequence alignment. These 
sequences are used to improve the multiple sequence alignment; in the case of MAFFT, 
the extra sequences are then removed. PRALINE performs a PSI-BLAST search (Chap-
ter 5) on the query protein sequences and then performs progressive alignment using the 
PSI-BLAST profiles. PRALINE also permits the incorporation of predicted secondary 
structure information.

Since its introduction in 2004, the MUSCLE program of Robert Edgar (2004a, 4b) 
has become popular because of its accuracy and its exceptional speed, especially for 
multiple sequence alignments involving large numbers of sequences. For example, 1000 
protein sequences of average length 282 residues were aligned in 21 seconds on a desktop 
computer (Edgar, 2004a). MUSCLE operates in a series of three stages.

1. A draft progressive alignment is generated. To achieve this, the algorithm calculates 
the similarity between each pair of sequences using either the fractional identity (cal-
culated from a global alignment of each pair of sequences), or k-mer counting. Based 
on the similarities, MUSCLE calculates a triangular distance matrix, then constructs a 
rooted tree using UPGMA or neighbor-joining (see Chapter 7). Sequences are progres-
sively added to the multiple sequence alignment following the branching order of the 
tree.

2. MUSCLE improves the tree and builds a new progressive alignment (or a new set of 
alignments). The similarity of each pair of sequences is assessed using the fractional 
identity, and a tree is constructed using a Kimura distance matrix (discussed in Chapter 
7). In a comparison of two sequences there is some likelihood that multiple amino acid 
(or nucleotide) substiutions occurred at any given position, and the Kimura distance 
matrix provides a model for such changes. As each tree is constructed it is compared to 
the tree from stage (1), and the process results in an improved progressive alignment.

3. The guide tree is iteratively refined by systematically partitioning the tree to obtain 
subsets; an edge (branch) of the tree is deleted to create a bipartition. Next, MUSCLE 
extracts a pair of profiles (multiple sequence alignments), and realigns them (perform-
ing profile–profile alignment; see Box 6.2). The algorithm accepts or rejects the newly 
generated alignment based on whether the sum-of-pairs score increases. All edges 
of the tree are systematically visited and deleted to create bipartitions. This iterative 
refinement step is rapid and had earlier been shown to increase the accuracy of the 
multiple sequence alignment (Hirosawa et al., 1995).

In general MUSCLE is an excellent program, but in our alignment of nine globins a 
histidine residue that is critical for binding oxygen is not aligned among several distantly 
related globins (Fig. 6.7b, arrowhead 3).

Consistency-Based approaches

In progressive alignments using the Feng–Doolittle approach, pairwise alignment 
scores are generated and used to build a tree. Consistency-based methods adopt a dif-
ferent approach by using information about the multiple sequence alignment as it is 
being generated to guide the pairwise alignments. We discuss two consistency-based 
multiple sequence alignment programs: ProbCons (Do et al., 2005) and T-COFFEE 
(Notredame et al., 2000). MAFFT also includes an iterative refinement approach with 
consistency-based scores (Katoh et al., 2005), and the Ensembl program Pecan (discussed 
in “Analyzing Genomic DNA Alignments via Ensembl”) applies a consistency approach 
to aligning genomic DNA.

PRALINE can be accessed from 
 http://www.ibi.vu.nl/programs/

pralinewww/ (WebLink 6.9).

The idea of a triangular distance 
matrix in stage 1 is that the 
distance measure between 
sequences (A, B) equals the 
distance of (A, C) plus (B, C). 
This is a good approximation 
for closely related sequences, 
but the accuracy is further 
increased using the Kimura 
distance correction in stage 2.
MUSCLE can be downloaded or 
accessed via web servers at  

 http://www.drive5.com/
muscle/ (WebLink 6.10) or from 
the European Bioinformatics 
website at  http://www.
ebi.ac.uk/Tools/msa/muscle/ 
(WebLink 6.11). As of late 
2014, the Edgar (2004a, 2004b) 
MUSCLE papers have 12,000 
literature citations.

http://www.ibi.vu.nl/programs/pralinewww/
http://www.drive5.com/muscle/
http://www.ebi.ac.uk/Tools/msa/muscle/
http://www.ibi.vu.nl/programs/pralinewww/
http://www.drive5.com/muscle/
http://www.ebi.ac.uk/Tools/msa/muscle/
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The idea of consistency is that for sequences x, y, and z, if residue xi aligns with zk 
and zk aligns with yj, then xi should align with yj. Consistency-based techniques score 
pairwise alignments in the context of information about multiple sequences, for example 
adjusting the score of xi to yi based on the knowledge that zk aligns to both xi and to yi. 
This approach is distinctive because it incorporates evidence from multiple sequences to 
guide the creation of a pairwise alignment (Do et al., 2005). Using the notation given in a 
review by Wallace et al. (2005), the likelihood that residue i from sequence x and residue 
j from sequence y are aligned, given the sequences of x and y, is given by:

 P x y x y( | , ).i j∼  (6.8)

This is the posterior probability, calculated for each pair of amino acids. The consis-
tency transformation further incorporates data from additional residues to improve the 
estimate of two residues aligning (i.e., given information about how x and y each align 
with z):

 P x y x y z P x z x z P y z y z( | , , ) ( | , ) ( | , ).i j i
k

k j k∼ ∼ ∼∑≈  (6.9)

The consistency-based approach often generates final multiple sequence alignments 
that are more accurate than those achieved by progressive alignments, based on bench-
marking studies.

The ProbCons algorithm has five steps.

1. The algorithm calculates the posterior probability matrices for each pair of sequences. 
This involves a pair-hidden Markov model as described in Figure 5.10. This HMM 
has three states: M (corresponding to two aligned positions of sequences x and y), Ix  
(a residue in sequence x that is aligned to a gap), and Iy (a residue in y that is aligned 
to a gap). There is an initial probability of starting in a particular state, a transition 
probability from the initial state to the next residue, and an emission probability for the 
next residue to be aligned.

Box 6.2 proFIle–proFIle alIgnMent wIth the Muscle algorIthM

The name MUSCLE (multiple sequence comparison by log expectation) includes the phrase “log expectation.” Like ClustalW, MUS-
CLE measures the distance between sequences (Edgar, 2004a, b). In its third stage, MUSCLE iteratively refines a multiple sequence 
alignment by deleting the edge of the guide tree to form a bipartition, then extracting a pair of profiles and realigning them. It does this 
using several scoring functions to optimally align pairs of columns. For amino acid types i and j, pi is the background probability of 
of i, pij is the joint probability of i and j being aligned, Sij is the score from a substitution matrix, f xi is the observed frequency of i in 
column x of the first profile, f xG is the observed frequency of gaps in column x, and α xi is the estimated probability of observing residue 
i in position x in the family based on the observed frequencies f. (Note that Sij = log(pij / pipj) as discussed in Chapter 3.) MUSCLE, 
ClustalW and MAFFT use a profile sum-of-pairs (PSP) scoring function:
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PSP is a sequence-weighted sum of substitution matrix scores for each pair of letters (one from each column that is being aligned in 
a pairwise fashion). The PSP function maximizes the sum-of-pairs objective score. MUSCLE applies two PAM matrices for its PSP 
function. MUSCLE also employs a novel log-expectation (LE) score that is defined:
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where the factor (1 – fG) is the occupancy of a column. This promotes the alignment of columns that are highly occupied (i.e., that have 
fewer gaps) while down-weighting column pairs with many gaps. Edgar (2004a) reported that this significantly improved the accuracy 
of the alignment.
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2. The expected accuracy of each pairwise alignment is computed. The expected accuracy 
is the number of correctly aligned pairs of residues divided by the length of the shorter 
sequence. The alignment is performed according to the Needleman–Wunsch dynamic 
programming method but, instead of using a PAM or BLOSUM scoring matrix, scores 
are assigned based on the posterior probability terms for the corresponding residues 
and gap penalties are set to zero.

3. The quality scores for each pairwise alignment are re-estimated by applying a “prob-
abilistic consistency transformation.” This step applies information about conserved 
residues that were identified through all the pairwise alignments, resulting in the use 
of more accurate substitution scores.

4. An expected accuracy guide tree is constructed using hierarchical clustering (similar to 
the approach adopted by ClustalW). The guide tree is based on similarities (rather than 
distances).

5. The sequences are progressively aligned (as in ClustalW) by following the order spec-
ified by the guide tree. Further iterative refinements may be applied.

Do et al. (2005) reported that ProbCons outperformed six other multiple sequence 
alignment programs including ClustalW, DIALIGN, T-COFFEE, MAFFT, MUSCLE, 
and Align-m based on testing on the BAliBASE, PREFAB, and SABmark benchmark 
databases.

Applying ProbCons to our nine globins, note that (like MAFFT) it places the col-
umns of key residues correctly, but all three programs handle the placement of gaps quite 
differently (Fig. 6.7a–c, boxed regions).

T-COFFEE is an acronym for tree-based consistency objective function for align-
ment evaluation. T-COFFEE first computes a library consisting of pairwise alignments. 
By default these include all possible pairwise global alignments of the input sequences 
(using the Needleman–Wunsch algorithm), and the 10 highest-scoring local alignments. 
Every pair of aligned residues is assigned a weight. These weights are recalculated to 
generate an “extended library” that serves as a position-specific substitution matrix. The 
program then computes a multiple sequence alignment by progressive alignment, creating 
a distance matrix, calculating a neighbor-joining guide tree, and using dynamic program-
ming and the substitution matrix derived from the extended library.

T-COFFEE includes a suite of related alignment and evaluation tools. M-COFFEE 
(Meta-COFFEE) combines the output of as many as 15 different multiple sequence align-
ment methods (Wallace et al., 2006; Moretti et al., 2007). These include T-COFFEE, 
ClustalW, MAFFT, MUSCLE, and ProbCons. M-COFFEE employs a consistency-based 
approach to estimate a consensus alignment that is more accurate than any of the individ-
ual methods. By adding structural information (discussed in the next section), even more 
accuracy is achieved.

Structure-Based Methods

Tertiary structures evolve more slowly than primary sequences. For example, human 
beta globin and myoglobin share limited sequence identity (in the “twilight zone”) yet 
share structures that are clearly related. It is possible to improve the accuracy of multiple 
sequence alignments by including information about the three-dimensional structure of 
one or more members of the group of proteins being aligned. Programs that enable you to 
incorporate structural information include PRALINE (Simossis and Heringa, 2005) and 
the T-COFFEE module Expresso (Armougom et al., 2006b).

When you use the Expresso program at the T-COFFEE website, you submit a series 
of sequences (typically in the FASTA format). Each sequence is automatically searched 
by BLAST against the Protein Data Bank (PDB) database, and matches (sharing >60% 
amino acid identity) are used to provide a template to guide the creation of the multiple 

ProbCons is available at  http://
probcons.stanford.edu/ (WebLink 
6.12).

T-COFFEE was developed by 
Cédric Notredame, Desmond 
Higgins, Jaap Heringa and 
colleagues. It is available at  

 http://www.tcoffee.org 
(WebLink 6.13). It is also mirrored 
at the European Bioinformatics 
Institute at  http://www.
ebi.ac.uk/Tools/msa/tcoffee/ 
(WebLink 6.14), the Swiss 
Institute of Bioinformatics 
and the Centre National de la 
Recherche Scientifique (Paris).

View an output of the five 
distantly related globins using 
M-COFFEE in Web Document 6.4.

http://probcons.stanford.edu/
http://probcons.stanford.edu/
http://www.tcoffee.org
http://www.ebi.ac.uk/Tools/msa/tcoffee/
http://www.ebi.ac.uk/Tools/msa/tcoffee/
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sequence alignment. For our nine globin proteins the resulting alignment conserves the 
critical residues appropriately, and includes color-coded results showing agreement 
between all the pairwise structural alignments (most of which are good, indicated in red; 
Fig. 6.7d).

Structural information can also be used to assess the accuracy of a multiple sequence 
alignment after it has been made. This is performed in benchmarking studies (see next 
section) for protein families having known structures. In another approach you can incor-
porate structural information and assess the quality of a protein multiple sequence align-
ment that you make at the iRMSD-APDB (“Analyze alignments with Protein Data Bank”) 
server of the T-COFFEE package (O’Sullivan et al., 2003; Armougom et al., 2006c). It is 
necessary to obtain the accession numbers corresponding to the Protein Data Bank (PDB) 
file having the known structures of at least two of the proteins you are aligning. As an 
example, we can obtain the PDB accession numbers for each of the five distantly related 
globins described above by performing a BLASTP search at NCBI, restricting the output 
to PDB. Next, perform a multiple sequence alignment using T-COFFEE or any other 
program. Finally, input this alignment (using the PDB accession number in place of the 
name) to the APDB server at the T-COFFEE website. The output provides an analysis of 
the quality of the alignment on the basis of all pairwise comparisons of those sequences 
having structures, as well as an average quality assessment for each protein. The main 
approach to assessing how well two structures align is to measure the root mean square 
deviation (RMSD; see Chapter 13). The RMSD is a measure of how closely the alpha car-
bons of two aligned amino residues are positioned. Notredame and colleagues introduced 
iRMSD as an intra-molecular RMSD measure (Armougom et al., 2006a).

For a set of five divergent globins analyzed with the iRMSD-APDB server, 79% of 
the pairwise columns could be evaluated, 51% of the columns were aligned correctly 
(according to APDB), and the average iRMSD over all the evaluated columns was 1.07 
Ångstroms. This analysis did not depend on a reference alignment, but instead involved a 
calculation of the superposition of the structures in the alignment.

BenchMarkIng studIes: approaches, FIndIngs, 
challenges
The field of bioinformatics uses algorithms to analyze data across a huge range of appli-
cations such as pairwise alignment, database searching, measuring RNA transcript levels, 
or predicting protein function. Many dozens of software packages are typically available 
for data analysis. How do we know which to trust? Benchmarking provides an import-
ant approach. We can obtain a “gold standard” correct answer, consisting of trusted true 
positive relationships, then compare software programs to determine objectively which 
is most accurate.

Benchmark datasets may contain separate categories of multiple sequence alignments, 
such as those having proteins of varying length, varying divergence, insertions or deletions 
(indels) of various lengths, and varying motifs (such as internal repeats). McClure et al. 
(1994) performed one of the earliest benchmarking studies for multiple sequence align-
ment, noting the strengths of global rather than local alignment algorithms. More recently 
Aniba et al. (2010) reviewed the concept of benchmarking, particularly with respect to 
multiple sequence alignment. They note the following qualities of benchmark databases:

 • Relevance: benchmarks should include tasks actually encountered by users of the 
software.

 • Solvability: tasks should not be too easy (such as alignment of proteins sharing 
>50% amino acid identity) or too hard (such as alignment of proteins sharing limited 
sequence identity and limited structural data).

We described BLAST in 
Chapter 4, and we describe PDB 
in Chapter 13.

The iRMSD-APDB server is part of 
the T-COFFEE suite of tools  
(  http://www.tcoffee.org) 
(WebLink 6.15). Examples of five 
divergent and five closely related 
globin sequences formatted for 
input to the APDB server, as 
well as the detailed output, are 
available in Web Documents 6.5 
and 6.6 at  http://www 
.bioinfbook.org/chapter6.

http://www.tcoffee.org
http://www.bioinfbook.org/chapter6
http://www.bioinfbook.org/chapter6
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 • Scalability: some tasks are small, while others require the analysis of large numbers 
of proteins.

 • Accessibility: the benchmark should be publicly available.
 • Independence: the methods used to construct the benchmark database should not be 
used to perform the sequence alignment.

 • Evolution: the benchmark database likely needs to be expanded over time to adapt to 
new problems.

There are several prominent benchmark databases available for multiple sequence 
alignments. Existing benchmark datasets include BAliBASE (the first large-scale 
benchmark database; Thompson et al., 2005), HOMSTRAD (Mizuguchi et al., 1998), 
OXBench (Raghava et al., 2003), PREFAB, SABmark (Van Walle et al., 2005), and 
IRMBASE (based on synthetic datasets). The general approach is to obtain alignments 
based on known three-dimensional structures as established by X-ray crystallography 
(Chapter 13). Proteins which are by definition structurally homologous can therefore 
be studied. This allows an assessment of how successfully assorted multiple sequence 
alignment algorithms can detect distant relationships among proteins. For proteins shar-
ing about 40% amino acid identity or more, most multiple sequence alignment programs 
produce closely similar results. For more distantly related proteins, the programs can 
produce markedly different alignments and benchmarks are useful to compare accuracy. 
Local alignment strategies tend to be more successful for sequences having variable 
lengths.

The performance of a multiple sequence alignment algorithm relative to a benchmark 
dataset is measured by some objective scoring function. One commonly used metric is 
the sum-of-pairs scores (Box 6.3). This involves counting the number of pairs of aligned 
residues that occur in the target and reference alignment, divided by the total number of 
pairs of residues in the reference. The sum-of-pairs score has been criticized because it is 
not practical for large numbers of sequences, it does not use an evolutionary model, and 
it is based on global alignment assuming that proteins in the benchmark have a similar 
domain organization (Edgar and Batzoglou, 2006). Several alternatives have been pro-
posed (Edgar, 2010; Blackburne and Whelan, 2012).

Löytynoja (2012) noted that three-dimensional structures can be reliably aligned 
(superimposed) across their core regions, which typically are hydrophobic and evolve 
slowly. However, it may be misleading to base benchmarking on structural alignments 
outside the core. Edgar (2010) proposed improvements to benchmarks including the fol-
lowing: discarding sequence data having too high amino acid identity to be informative; 
discarding sequences for which the structure is unknown; discarding highly diverged 
structures for which homology is uncertain or there are ambiguous residue correspon-
dences; assessing regions having conserved secondary structure; and taking care to iden-
tify multi-domain proteins that may be misaligned in benchmark databases. Benchmark 
datasets will continue to be developed to increase their utility in evaluating the perfor-
mance of alignment software.

dataBases oF MultIple sequence alIgnMents
We have discussed different methods for creating multiple sequence alignments. We next 
examine databases of precomputed multiple sequence alignments, many of which are 
available. These may be searched using text (i.e., a keyword search) or using any query 
sequence. The query may be an already-known sequence (such as myoglobin or RBP) or 
any novel protein (such as the raw sequence of a new lipocalin or globin you have identi-
fied). In some databases, the query sequence you provide is incorporated into the multiple 
sequence alignment of a particular precomputed protein family.

The website of Robert Edgar 
provides a downloadable 
collection of protein sequence 
alignment benchmarks  
(  http://www.drive5.com/
bench/, WebLink 6.16). These 
include BALIBASE v3, PREFAB 
v4, OXBENCH, and SABRE. You 
can directly access BAliBASE  
(  http://www-bio3d-igbmc 
.u-strasbg.fr/balibase/, WebLink 
6.17), HOMSTRAD (  http://
tardis.nibio.go.jp/homstrad/, 
WebLink 6.18), SABmark  
(  http://bioinformatics.vub.
ac.be/databases/databases.html, 
WebLink 6.19), and OxBench  
(  http://www.compbio.dundee 
.ac.uk/downloads/oxbench/, 
WebLink 6.20).

http://www.drive5.com/bench/
http://www.drive5.com/bench/
http://www-bio3d-igbmc.u-strasbg.fr/balibase/
http://www-bio3d-igbmc.u-strasbg.fr/balibase/
http://tardis.nibio.go.jp/homstrad/
http://tardis.nibio.go.jp/homstrad/
http://bioinformatics.vub.ac.be/databases/databases.html
http://bioinformatics.vub.ac.be/databases/databases.html
http://www.compbio.dundee.ac.uk/downloads/oxbench/
http://www.compbio.dundee.ac.uk/downloads/oxbench/
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pfam: protein Family Database of profile hMMs

Pfam is one of the most comprehensive databases of protein families (Punta et al., 2012). 
It is a compilation of both multiple sequence alignments and profile HMMs of protein 
families. The database can be searched using text (keywords or protein names) or by 
entering sequence data. Its combination of HMM-based approach and expert curation 
makes Pfam one of the most trusted and widely used resources for protein families.

Pfam consists of two databases. Pfam-A is a manually curated collection of protein 
families in the form of multiple sequence alignments and profile HMMs. HMMER soft-
ware (Chapter 5) is used to perform searches. For each family, Pfam provides features 
(Fig. 6.8a) including: a summary; domain organization, reflecting the architecture of pro-
tein domains (Chapter 12); a variety of alignment formats for viewing or download; a 

Box 6.3 evaluatIng MultIple sequence alIgnMents

Thompson et al. (1999a, b) described two main ways to assess multiple sequence alignments. The first is the sum-of-pairs scores 
(SPS). This score increases as a program succeeds in aligning sequences relative to the BAliBASE or other reference alignment. The 
SPS assumes statistical independence of the columns. For an alignment of N sequences in M columns, the ith column is designated 
Ai1, Ai2, …, AiN. For each pair of residues Aij and Aik, a score of 1 is assigned (pijk = 1) if they are also aligned in the reference, and a 
score of 0 is assigned if they are not aligned (pijk = 0). Then for the entire ith column, the score Si is given by:
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 For the entire multiple sequence alignment, the SPS is defined:
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where Sri is the score Si for the ith column in the reference alignment, and Mr corresponds to the number of columns in the reference 
alignment.
 A second approach is to create a column score (CS). For the ith column, Ci = 1 if all the residues in the column are aligned in the 
reference and Ci = 0 if not:
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 Sum-of-pairs scores and column scores have been used to assess the performance of multiple sequence alignment algorithms. Gotoh 
(1995) and others further described weighted sum-of-pairs scores that correct for biased contributions of sequences caused by divergent 
members of a group being aligned. Lassmann and Sonnhammer (2005) note that a column score becomes zero if even a single sequence 
is misaligned; it may therefore be too stringent.
 A distance metric must obey three conditions:

1. d(x,y) = 0 if and only if x = y (identity)
2. d(x,y) = d(y,x) (this assures symmetry)
3. d(x,z) ≤ d(x,y) + d(y,z) (the triangle inequality).

 Blackburne and Whelan (2012) demonstrated that SP scores are not true metrics because those dissimilarity scores violate the con-
ditions of identity and symmetry.
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profile HMM; species data; and structural data. The full alignment can be quite large; 
for globins there are currently 6000 proteins in that Pfam family, and the top 20 Pfam 
families currently each contain from 80,000 up to 360,000 sequences in their full align-
ment. The seed alignments contain a smaller number of representative family members 
(73 in the case of the globins). Sequences in Pfam-A are grouped in families, assigned 
stable accession numbers (such as PF00042 for globins) and expertly curated. Additional 
protein sequences are automatically aligned and deposited in Pfam-B where they are not 
annotated or assigned permanent accession numbers. Pfam-B serves as a useful supple-
ment that makes the database more comprehensive. For all Pfam families, the underlying 
HMM is accessible from the main output page.

We can see the main features of Pfam in a search for globins using the Wellcome Trust 
Sanger Institute site. The main ways to access the database include browsing for families, 
entering a protein sequence search (with a protein accession number or sequence), and 
entering a text search. From the front page, select a text-based search and enter “globin.” 
The results summary includes links to the Pfam entry and to related databases (InterPro, 
described below; the Protein Data Bank, introduced in Chapter 13; and clans). Each pro-
tein in Pfam can have membership in exactly one family. Some proteins, such as sperm 
whale myoglobin and a globin from the leprosy-causing bacterium Mycobacterium lep-
rae, belong to distinct families (globins and bacterial-like globins, respectively). Those 
two families are distantly related and are defined as members of a larger clan.

The output includes an overview of the globin family including description of the 
structure of a typical member, a Pfam accession number, clan membership, and a descrip-
tion of the globin family from the InterPro database (discussed below). The Pfam entry 
further includes access to the alignment, domain organization, species distribution, and a 
phylogenetic tree. The alignment can be viewed for the seed set, consisting of a core group 
of representative members of the family (Fig. 6.8b); the full set, consisting of all known 
family members; or representative proteomes (Chen et al., 2011). The alignment can 
also be retrieved in a variety of formats, including gapped alignments (useful for viewing 
aligned regions of the family) or ungapped alignments (useful as input into other multiple 
sequence alignment programs such as those discussed earlier in this chapter). One of the 
versatile output formats is JalView. After selecting this option, press the JalView button. 
A Java applet allows the multiple sequence alignment to be viewed, analyzed, and saved 
in a variety of ways. The applet will display a principal components analysis (PCA) on 
the aligned family (Fig. 6.9a). We will describe PCA, a technique to reduce highly dimen-
sional data to two- (or three-) dimensional space, in Chapter 11 (Fig. 11.10). Here, each 
protein in a multiple sequence alignment is represented as a point in space based on a 
distance metric, and outliers are easily identified. Similar information can be represented 
with a phylogenetic tree (Fig. 6.9b; see Chapter 7) using the Java applet.

SMart

The Simple Modular Architecture Research Tool (SMART) is a database of protein 
families implicated in cellular signaling, extracellular domains, and chromatin func-
tion (Letunic et al., 2012). Like Pfam, SMART employs profile HMMs using HMMER 
software. SMART can be used in normal mode (providing searches against Swiss-Prot, 
SP-TrEMBL, and stable Ensembl proteomes) or in genomic mode (providing searches 
against proteomes of completely sequenced metazoan organisms from Ensembl or other 
organisms from Swiss-Prot including eukaryotes, bacteria, and archaea).

Also like Pfam, the SMART database is searchable by sequence or by keyword or by 
browsing the available domains. Domains identified in a SMART search are extensively 
annotated with information on functional class, tertiary structure, and taxonomy.

Pfam is maintained by a 
consortium of researchers 
including Alex Bateman, Ewan 
Birney, Lorenzo Cerrutti, Richard 
Durbin, Sean Eddy, and Erik 
Sonnhamer. Three sites host 
Pfam:  http://pfam.sanger.
ac.uk/ (UK, WebLink 6.21),  

 http://pfam.janelia.org/ (US, 
WebLink 6.22), and  http://pfam 
.sbc.su.se/ (Sweden, WebLink 
6.23). Version 27.0 (March 2013) 
contains >14,800 protein families. 
Pfam is based on sequences 
in Swiss-Prot and SP-TrEMBL 
(Chapter 2).

Mycobacterium leprae is a 
bacterium that causes leprosy. 
Its globin has accession 
NP_301903.

You can also search Pfam with 
a DNA query, or apply many 
search options. Go to  http://
pfam.sanger.ac.uk/search 
(WebLink 6.24).

SMART is available online  
(  http://smart.embl-heidelberg 
.de/, WebLink 6.25). Currently 
(February 2015) it has over 1100 
profile HMMs (domains). It was 
developed by Peer Bork and 
colleagues.

http://pfam.sanger.ac.uk/
http://pfam.janelia.org/
http://pfam.sbc.su.se/
http://pfam.sanger.ac.uk/search
http://pfam.sanger.ac.uk/search
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://pfam.sanger.ac.uk/
http://pfam.sbc.su.se/
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FIGUre 6.8 The Pfam database is a comprehensive, authoritative resource for studying protein families. (a) A typical entry is shown for 
globins. The top bar shows links to protein archhitectures (i.e., domain organization including globins), sequences, interactions, species, and 
structures. The left sidebar provides links to alignments and other information. These alignments can be downloaded as seed alignments 
(consisting in this case of 73 representative globins), full alignments, or representative proteomes. By clicking the HTML view of the seed 
alignment, a multiple sequence alignment is produced; a portion is shown in (b). For those entries having known structures, secondary struc-
ture (denoted SS) is displayed (highlighted in red, with abbreviations corresponding to helix (H), turn (T), bend (S), and 3/10 helix (G) in 
Fig. 6.7a–c). 

Source: PFAM. Courtesy of Dr A. Bateman.

(a) Pfam alignments

(b) Pfam seed alignment
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Conserved Domain Database

The Conserved Domain Database (CDD) is an NCBI tool that allows sequence-based 
or text-based queries of Pfam and SMART. CDD uses reverse position-specific BLAST 
(RPS-BLAST) by comparing a query sequence to a set of many position-specific scor-
ing matrices (PSSMs). RPS-BLAST is related to PSI-BLAST (Chapter 5), but is dis-
tinct because it searches against profiles generated from preselected alignments. The 
main purpose of CDD (and RPS-BLAST) is to identify conserved domains in the query 
sequence. We provided an example in Chapter 5 (Fig. 5.6). DELTA-BLAST, the most sen-
sitive protein-protein search tool at NCBI, constructs a PSSM using the results of a CDD 
search and uses that to search a sequence database.

Integrated Multiple Sequence alignment resources: Interpro and 
iproClass

A main theme of multiple sequence alignment databases is that, while each employs a unique 
algorithm and search format, they are well integrated with each other. Another important idea 
is that individual databases such as Pfam and PROSITE have evolved specific approaches 
to the problem of protein classification and analysis. Some databases employ HMMs; some 
focus on protein domains, while others assess smaller motifs. Integrated resources allow 
you to explore the features of a protein using several related algorithms in parallel.

At least two comprehensive resources have been developed to integrate most of the 
major alignment databases. The InterPro database provides an integration of PROSITE, 
PRINTS, ProDom, Pfam, and TIGRFAMs with cross-references to BLOCKS (table 6.1; 
Hunter et al., 2012).

CDD is available at  http://
www.ncbi.nlm.nih.gov/Structure/
cdd/cdd.shtml (WebLink 6.26) or 
through the main BLAST page 
(  http://www.ncbi.nlm.nih.gov/
BLAST/, WebLink 6.27). CDD can 
also be searched by entering a 
protein query sequence into the 
Domain Architecture Retrieval 
Tool (DART) at NCBI. DART is 
available at  http://www.ncbi.
nlm.nih.gov/Structure/lexington/
lexington.cgi (WebLink 6.28).

The InterPro project is 
coordinated by eight centers 
including EBI and The Wellcome 
Trust Sanger Institute. It is 
available at  http://www 
.ebi.ac.uk/interpro/ (WebLink 
6.29). Release 51.0 (April 2015) 
contains ∼27,000 entries, 
representing approximately 
7500 domains, 18,500 families, 
300 repeats, 100 active sites, 
70 binding sites and 15 post-
translational modification sites.

(a) Principal components analysis (PCA) (b) Neighbor-joining tree

Visualization of Pfam seed alignment of globins using JalView

FIGUre 6.9 Pfam alignment can be retrieved in the JalView Java viewer format. The Pfam JalView 
applet displays a multiple sequence alignment of any Pfam protein family. The relationships of the pro-
teins within the family can be explored using a variety of algorithms. (a) Principal components analysis 
(PCA), further described in Chapter 11, visualizes the relationship of the proteins based on features 
such as their percent identity. The view can be rotated and displays the percent of the variance that is 
explained along the x, y, and z axes. In this case, PCA shows that the group of five globins (including a 
rat hookworm globin, highlighted as GLB2_NIPBR) are similar to each other but different from other 
globins in the seed alignment. (b) A phylogenetic tree is displayed, created with the neighbor-joining 
method (Chapter 7). By clicking the tree a vertical red bar is placed, with nodes to its right displayed in 
color. Moving this indicator bar allows you to focus analyses on a subset of the sequences in the seed 
alignment. JalView Java viewer is described by Waterhouse et al. (2009).

http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi
http://www.ebi.ac.uk/interpro
http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi
http://www.ebi.ac.uk/interpro
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The iProClass organizes information reports for UniProtKB and NCBI protein 
records, with links to 170 other databases (Wu et al., 2004). It provides information about 
protein families, domains, motifs, taxonomy, and literature. Resources such as iProClass 
and InterPro can be useful to identify conflicts between a variety of databases and to 
define the size of protein families.

Multiple Sequence alignment Database Curation: Manual Versus 
automated

Some databases are curated manually. This requires expert annotation; Sean Eddy 
and colleagues have curated Pfam, while Amos Bairoch and colleagues have curated 
PROSITE. BLOCKS and PRINTS are also manually annotated. Expert annotation 
is obviously difficult but has the great advantage of allowing judgments to be made 
on the protein family members. Programs such as DOMO and ProDom use auto-
mated annotation. Errors in the alignment or the addition of unrelated sequences 
can be problematic, as discussed for PSI-BLAST and DELTA-BLAST (Chapter 5). 
However, automated annotation is valuable for exhaustive analyses of large datasets 
such as the millions of predicted protein sequences derived from genome-sequencing 
projects.

MultIple sequence alIgnMents oF genoMIc 
regIons
Complete genomes are being sequenced at a rapid pace, with thousands of projects now 
completed or in progress. These are described in Part III of this book (Chapters 15–21). 
A basic problem is the alignment of entire genomes, or parts of genomes. In some cases 
closely related species are compared, such as humans and the chimpanzee Pan troglodytes 
(these diverged 5–7 million years ago), or different strains of the yeast Saccharomyces 
cerevisiae that diverged recently. In other cases highly divergent genomes are compared, 

You can access iProClass at 
 http://pir.georgetown.edu/

pirwww/dbinfo/iproclass.shtml 
(WebLink 6.30). Currently (2015)  
it includes data on over  
125 million proteins.

taBle 6.1 Databases on which Interpro (release 51.0) is based. entries are rounded 
off to the nearest 100. 

Database Contents (entries)

PANTHER 9.0 60,000

Pfam 27.0 14,800

PIRSF 3.01 3,300

PRINTS 42.0 2,000

ProDom 2006.1 1,900

PROSITE 20.105 patterns 1,300

PROSITE 20.105 profiles 1,100

SMART 6.2 1,000

TIGRFAMs 15.0 4,500

CATH-Gene3D 3.5.0 2,600

SUPERFAMILY 1.75 2,000

UniProtKB 2015_04 47,300,000

UniProtKB/Swiss-Prot 2015_04 531,000

UniProtKB/TrEMBL 2015_04 46,715,000

GO Classification 27,000

Source: http://www.ebi.ac.uk/interpro/release_notes.html. Accessed April 2015.

http://www.ebi.ac.uk/interpro/release_notes.html
http://pir.georgetown.edu/pirwww/dbinfo/iproclass.shtml
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such as Homo sapiens and the monotremes (e.g., the platypus Ornithorhynchus anati-
nus) which diverged about 210 million years ago. We examine the alignment of bacterial 
genomes in Chapter 17 (on bacteria and archaea).

One basic motivation for performing multiple sequence alignments of genomic 
regions is to identify DNA sequences that are under the influence of positive selection 
(and are therefore changing rapidly in a given lineage) or negative selection (and are 
therefore highly conserved and accumulate mutations slower than the neutral rate). We 
will introduce the concepts of positive and negative selection in Chapter 7, and see in 
Part III that comparative genome analyses are used to identify highly conserved regions 
between genomes that are presumed to be functionally important. Practically, multiple 
sequence alignment of genomic regions typically uses modifications of the progressive 
alignment strategy we have discussed. The problem differs from that of conventional 
multiple sequence alignment in several ways.

 • We have been considering programs that are typically used for a set of many protein 
or nucleic acid sequences, ranging up to hundreds or even thousands of sequences 
that typically have a length of no more than 1000 or 2000 residues. For genomic 
alignments, we typically have only a few sequences (perhaps several dozen) that may 
have lengths of millions or tens of millions of base pairs. The addition of sequences 
from multiple species improves the accuracy of multiple sequence alignments of 
orthologous regions, relative to pairwise alignments or to the use of a limted number 
of species (Margulies et al., 2006).

 • Aligning the genomic DNA of closely related organisms (e.g., those that diverged 
less than 10 million years ago) is often straightforward, but for more diverged 
organisms (e.g., human to mouse or human to fish) there are often islands of 
appreciable conservation (typically consisting of exons and conserved noncoding 
elements) separated by regions of extremely low conservation. This lead to the 
idea of “anchors” for multiple sequence alignment of genomic regions, discussed 
below.

 • Eukaryotic genomes are riddled with repetitive DNA elements such as DNA trans-
posons and long and short interspersed nuclear elements (LINEs, SINEs; Chapter 8). 
Such repeats occur in a lineage-specific fashion and can occupy a substantial portion 
of a genome. They must be accounted for in multiple sequence alignment.

 • Chromosomal loci are subject to dynamic rearrangements such as duplications, dele-
tions, inversions, and translocations. These often involve millions of base pairs. Such 
genomic changes occur frequently in individuals (serving as a major source of human 
disease) and as features of a species that become fixed (e.g., human chromosome 2 
corresponds to two separate acrocentric chromosomes of the chimpanzee, following 
a chromosomal fusion event early in the hominoid lineage perhaps 5–7 million years 
ago). In the multiple sequence alignment of genomic regions it is common to find 
large stretches of apparent deletions or inversions, presenting a challenge for align-
ment algorithms.

 • There are no benchmark datasets for genomic alignments comparable to those 
described above based on protein structures. However, for each algorithm it is essen-
tial to define both the sensitivity (the fraction of all truly orthologous relationships 
that are detected) and specificity (the fraction of predictions of an orthologous rela-
tionship that are correct). Two approaches have been adopted (Blanchette et al., 
2004). First, biological sequences with known features such as exons are studied, 
although this approach does not provide information on how to correctly align poorly 
conserved regions. Second, simulations have been used, although a challenge is to 
faithfully model varying evolutionary rates and assorted genomic features such as 
repetitive elements.

Human chromosome 2, the 
second largest chromosome, 
is 243 million base pairs (Mb) 
in size. It corresponds to 
chromosomes 2a and 2b of the 
chimpanzee Pan troglodytes.
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analyzing Genomic DNa alignments via UCSC

Consider the human beta globin locus on chromosome 11 as an illustration of the use-
fulness of creating and exploring multiple sequence alignments of genomic DNA. We 
visited this region in Chapter 5 when we introduced the BLASTZ algorithm for pairwise 
alignments of genomic DNA. We used the UCSC Genome Browser to visualize the extent 
of conservation in a region of 50,000 base pairs across multiple species relative to human 
(Fig. 5.14). This browser allows the user to select a region of interest across many scales 
(from single nucleotides to whole chromosomes) and across many eukaryotic organisms 
while displaying a user-selected set of annotation tracks. We can now revisit this region, 
focusing on a span of ∼2400 base pairs that includes the beta globin gene (Fig. 6.10a). 
The Vertebrate Multiz Alignment and Conservation track features alignments of 46 spe-
cies (a subset of which are displayed in the figure). It is based on the PHAST package 
consisting of two programs (Siepel et al., 2005; Pollard et al., 2010). (1) PhastCons is 
a hidden-Markov-model-based algorithm that evaluates nucleotides in both individual 
columns and flanking columns. Its scores (ranging from 0 to 1) represent probabilities 
of negative selection. (2) phyloP measures conservation at individual columns. Its scores 
reflect rapidly evolving, neutral, or slowly evolving positions. Multiz refers to a program 
that implements dynamic programming to align blocks of sequences. It is a component of 
the the Threaded Blockset Aligner (TBA) program (Blanchette et al., 2004).

The peak heights for the conservation track therefore indicate that the coding exons 
are highly conserved among a group of vertebrates (including mouse, dog, frog, and 
chicken), while much of the intergenic regions tends to be poorly conserved. Some con-
served noncoding regions are apparent (e.g., Fig. 6.10a, arrow 1) which could represent 
conserved regulatory domains. By further zooming in to view just 100 base pairs, a multi-
ple sequence alignment is displayed (Fig. 6.10b), in this case including the ATG codon that 
encodes the start methionine (arrow 2).

Figure 6.10a, b also shows Genomic Evolutionary Rate Profiling (GERP) scores 
(Davydov et al., 2010). These are constraint scores for individual column positions in a 
multiple sequence alignment of genomic DNA. GERP++ software employs maximum 
likelihood evolutionary rate estimation for position-specific scoring, and has been used to 
identify 1.3 million constrained elements covering >7% of the human genome.

The Table Browser is always complementary to the UCSC Genome Browser. Set the 
Table Browser to the GRCh37/hg19 assembly, choose the Comparative Genomics group 
and the Conservation track, then explore the outputs of the various tables at the position 
of hbb on chromosome 11. For the table “Multiz Align,” the output format includes mul-
tiple alignment format (MAF). This is a standard for storing genomic alignments. Each 
MAF file can contain multiple blocks (these may overlap) including genomic coordinates 
for each species. (In contrast to BED and GFF files, coordinates on the minus strand are 
numbered relative to the reverse complement.)

analyzing Genomic DNa alignments via Galaxy

Galaxy offers useful tools for whole-genome multiple alignments (Blankenberg et al., 
2011).

 • It includes alignment extractors. These allow you to retrieve alignments of interest, 
with trimming available to restrict blocks to boundaries of interest.

 • Galaxy provides format converters. A MAF file can be converted to FASTA (consist-
ing of either a single block or multiple blocks). A MAF file can also be converted to 
an interval format resembling a zero-based half-open BED format (refer to Box 2.5).

 • It provides MAF stitchers that concatenate adjacent blocks, as well as filtering tools 
and calculations of alignment coverage.

To find this genomic region, go 
to  http://genome.ucsc.edu 
(WebLink 6.31) and select hbb 
(discussed further in Chapter 8). 
Click on the conservation track 
(Fig. 6.10a, arrow 2) to download 
the multiple sequence alignment.

For an example of a MAF file from 
the HBB region, downloaded from 
the UCSC Table Browser; see Web 
Document 6.7.

http://genome.ucsc.edu
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(a) HBB gene (zoomed out 1.5x to 2,409 base pairs)

(b)  View of HBB gene (100 base pairs)

1

2

FIGUre 6.10 Multiple sequence alignment of the human beta globin gene (HBB) and other vertebrate orthologs. (a) A view in the UCSC 
Genome Browser of the beta globin gene (zoomed out 1.5×). Exons are represented by blocks in the RefSeq Genes track and tend to be 
highly conserved among a group of vertebrate genomes. Three vertebrate conservation tracks are shown (Placental Mammal Conservation by 
PhastCons, Placental Mammal Conserved Elements, and GERP scores). These show that there is particular conservation in exonic regions; 
additional conserved noncoding regions (e.g., arrow 1) may represent regulatory elements. (b) Zoomed view of 100 base pairs shows the same 
tracks as well as the Multiz alignment of 46 vertebrates (nine are displayed). The aligned nucleotides are shown on the right half, while amino 
acids begin with the start methionine (arrow 2) and extend to the left, matching the start of protein NP_000509.1, MVHLTPEEKS). Note that 
by clicking (e.g., on a peak from the PhastCons track), multiple alignment data can be downloaded. 

Source: http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
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As an example of how to use Galaxy, begin at the UCSC Table Browser (Gene 
and Gene Prediction tracks, Vega genes) and select hbb (position chr11:5,246,696–
5,248,301 of the GRCh37/hg19 assembly). Select the BED output format, and send the 
output to Galaxy (coding exons only). In Galaxy’s tools menu choose “Fetch Align-
ments” and then “Extract Pairwise MAF blocks” to convert the genomic interval to the 
corresponding blocks in another species (e.g., mouse). Choosing “Extract MAF blocks” 
allows you to select from 46 species. Selecting “MAF Coverage Stats” shows generally 
excellent coverage of these well-conserved exons across 46 species. If we then choose 
Tools > Convert Formats > MAF to FASTA we can output the various sequences in the 
FASTA format.

analyzing Genomic DNa alignments via ensembl

Ensembl and UCSC share the same species tree for genomic alignments. However, 
Ensembl offers a series of innovative tools that in some cases outperform those avail-
able at UCSC. Ewan Birney and colleagues introduced several pipelines for alignment of 
genomic DNA. We explore Ensembl by searching for the human HBB gene. This leads to 
a series of options including Genomic Alignments (Fig. 6.11a, arrow 1). These include a 
series of pairwise genomic alignments based on tools such as BLASTZ (Kent et al., 2003; 
Schwartz et al., 2003) and translated BLAT.

There are also options for EPO analyses of primates, eutherian mammals, or amni-
ota (Fig. 6.11a, arrow 2). An DNA alignment at the globin locus is shown in Figure 6.11b. 
The EPO pipeline is based on Enredo, Pecan, and Ortheus (Paten et al., 2008a, b). First, 
Enredo generates colinear segments of genomes, including the ability to detect rearrange-
ments, deletions, and duplications. This produces anchors (typically ∼100 base pairs in 
length) between a reference genome (e.g., human) and a comparison genome of interest 
(e.g., mouse). Paten et al. (2008a) assessed its performance and reported that its coverage 
was better than that of Multiz (i.e., the proportion of ancient repeat bases aligned), as was 
its accuracy (proportion of ancient repeat bases covered by a full match). Second, Pecan 
builds multiple sequence alignments using a consistency approach (as described above). 
Third, Ortheus reconstructs ancestral sequences on a genome-wide basis. Ortheus uses a 
phylogenetic model to predict ancestral sequences at each node of a phylogenetic tree, 
improving its ability to classify insertions and deletions.

Ortheus is an example of a phylogeny-aware multiple sequence alignment tech-
nique. Examining a pairwise alignment of human and mouse beta globin DNA, it is not 
possible to know whether a given gap position corresponds to an insertion or a deletion 
in either species (Fig. 6.12a); is it also impossible to know the ancestral allele. Inference 
of an ancestral sequence answers these questions (Fig. 6.12b). Even more information 
can be gained from a multiple sequence alignment (Fig. 6.12c), but it is limited because 
it does not explicitly model insertion and deletion events, or complex (e.g., overlap-
ping) indels. Ortheus produces probabilistic multiple sequence ancestor alignments 
(Fig. 6.12d). This facilitates both alignment and reconstruction of indels from a phylo-
genetic perspective.

alignathon Competition to assess Whole-Genome alignment Methods

The Alignathon competition was designed to assess the performance of a series of 
whole-genome sequence alignment tools (Earl et al., 2014). The organizers provided the 
participants with three datasets: a simulated dataset modeling a great ape phylogeny, a 
simulation modeling a mammalian phylogeny, and a set of 20 fly genomes using real 
data. There were 35 submissions, including alignment software used by the major brows-
ers (e.g., MULTIZ for the UCSC Genome Browser, EPO for Ensembl) and a variety 
of other tools such as VISTA-LAGAN (see Fig. 8.17) and ProgressiveMauve (Fig. 15.12). 

Web Documents 6.8 and 6.9 show 
the output from the pairwise MAF 
(human/mouse) and multiple 
sequence extraction (human, 
gorilla, mouse, rabbit, horse, dog).

The EPO pipeline is described at 
 http://useast.ensembl.org/info/

genome/compara/epo_anchors_
info.html (WebLink 6.32).

http://useast.ensembl.org/info/genome/compara/epo_anchors_info.html
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(b) Ensembl multiple sequence alignment (Enredo/Pecan/Ortheus software)

(a) Ensembl entry for HBB

1

2

3

FIGUre 6.11 Analyzing multiple sequence alignments at the Ensembl website. (a) Following a search for human beta globin (HBB) select 
“Genomic alignments” (arrow 1) then choose sequences from a group such as 6 primates or 36 eutherian mammals (arrow 2). The aligned 
sequences are displayed with exons color-coded in red (arrow 3). (b) A portion of the Enredo/Pecan/Ortheus pipeline results are shown. 

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.
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(a) Pairwise alignment

(b) Ancestor alignment

(c) Multiple sequence alignment

(d) Multiple sequence ancestor alignment

Human     TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 11:5247749
Gorilla   TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 11:5182738
Rabbit    TTGAT-TGTTCTTTC---T-TTTTCGCTATTGTAAA-ATTCAT  1:146237759
Mouse     TCCTGGGTTTCCTTCCCCTGGCTATTC--TGCTCAACCTTCCT  7:103813380
Horse     TCAAT-TTCTCCTTTGCCT-TCCTCTTTTTGGTCAA-GCTCAT  7:73937279
Dog       TCAACATTCTCTTTGATCT-TCCTTTTTAAGACCCA-ACTCAT 21:28179781

Human     TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 11:5247749
Ancestral TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 619_196521:74
Gorilla   TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 11:5182738
Ancestral TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 619_196519:74
Ancestral TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTCAA-GTTCAT 619_196525:75
Rabbit    TTGAT-TGTTCTTTC---T-TTTTCGCTATTGTAAA-ATTCAT 1:146237759
Ancestral TCAATGTTTTCTTTCCCCT-TCTTTTCTATGGTCAA-GTTCAT 619_196527:75
Mouse     TCCTGGGTTTCCTTCCCCTGGCTATTC--TGCTCAACCTTCCT 7:103813380
Ancestral TCAATGTTTTCTTTCCCCT-TCTTTTCTATGGTCAA-GTTCAT 619_196523:75
Ancestral TCAATATTCTCTTT------------TTATGGTCAA-GCTTGT 619_196526:63
Ancestral TCAATGTTCTCTTTCTCCT-TCTTTTTTATGGTCAA-GCTCGT 619_196524:74
Ancestral TCAATGTTCTCTTTCCCCT-TCTTTTTTATGGTCAA-GCTCAT 619_196522:74
Horse     TCAAT-TTCTCCTTTGCCT-TCCTCTTTTTGGTCAA-GCTCAT 7:73937279
Ancestral TCAATGTTCTCTTTCCCCT-TCTTTTTTATGGTCAA-GCTCAT 619_196520:74
Dog       TCAACATTCTCTTTGATCT-TCCTTTTTAAGACCCA-ACTCAT 21: 28179781

Human     TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 11:5247749
Ancestral TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 619_196519:74
Mouse     TCCTGGGTTTCCTTCCCCTGGCTATTC--TGCTCAACCTTCCT 7:103813380

Human     TTGATGTTTTCTTTCCCCT-TCTTTTCTATGGTTAA-GTTCAT 11:5247749
Mouse     TCCTGGGTTTCCTTCCCCTGGCTATTC--TGCTCAACCTTCCT  7:103813380

1 2 3 4

insertion in mouse or
deletion in human?

insertion
in mouse

deletion
in mouse

insertion
in mouse

ancestral T, G
or other?

ancestral T

inference of nested insertion
and deletion events

FIGUre 6.12 The Ortheus program of the EPO pipeline at Ensembl provides phylogeny-aware mul-
tiple sequence alignment including reconstruction of ancestral sequences. Alignments of the human 
beta globin region are shown. (a) In a pairwise alignment between human and mouse DNA, it is unclear 
whether an aligned T and G residue derive from an ancestral T, G, or other nucleotide (see column 1). 
It is also unclear whether gaps correspond to insertions or deletions in one or the other species. (b) 
By inferring an ancestral human/mouse sequence we can infer ancestral alleles and specify whether 
gap positions correspond to insertions or deletions in either lineage. (c) A multiple sequence alignment 
offers further evidence and implicitly resolves ambiguities. (d) A multiple sequence ancestor alignment 
includes information about every node in a phylogeny and explicitly resolves questions of the origin of 
insertions, deletions, and complex events such as nested insertions/deletions. Note that chromosome and 
position (or ancestral sequence identifier and position) are given to the right of each sequence. Multiple 
ancestral sequences are given because there are multiple internal nodes (introduced in Chapter 7). You 
can view the sequences shown in this figure by visiting the viewing HBB genomic alignments as shown 
in Figure 6.11 and selecting “13 eutherian mammals EPO.” Then click “Configure this page” to add or 
remove species as well as inferred ancestral sequences. 

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.
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For the closely related primate sequences the alignments were very similar, while results 
differed substantially for more divergent genome comparisons. The Alignathon project 
offers the community an opportunity to assess software performance, even though the par-
ticular datasets are not necessarily optimal for each software package and the statistical 
assessment of alignments is difficult in the absence of gold standards for true alignments.

perspectIve
Multiple sequence alignment is the operation by which various members of a protein 
family (or nucleic acid family) may be grouped together. Rows correspond to sequences 
and columns correspond to residues, with aligned residues in a column implying shared 
evolutionary ancestry and/or shared positions in three-dimensional structures. Multiple 
sequence alignment serves many purposes, including the identification of conserved res-
idues that are functionally important. There is tremendous enthusiasm in the bioinfor-
matics community for the variety of novel approaches to generating accurate multiple 
sequence alignments, including progressive alignment, and approaches based on iterative 
refinement, consistency, and/or the use of structural information. A general conclusion 
is that most programs perform very well with sequences that are closely related (e.g., 
sharing approximately 40% amino acid identity or more). For more distantly related 
sequences, the available programs may differ considerably, particularly in where gaps 
are placed. For the typical user, two suggestions are: try performing multiple sequence 
alignments using several programs; and try using a variety of alternative parameters such 
as gap penalties.

The subdiscipline of multiple sequence alignment algorithms is rapidly changing. 
New challenges include the analysis of genomic DNA sequences. Benchmark datasets 
are not always available for the purpose of assessing the accuracy of a newly developed 
algorithm.

Databases of multiply aligned protein families such as Pfam and InterPro are rapidly 
expanding in size and are increasingly important tools. These databases are often accom-
panied by careful expert annotation. A general trend is that databases offer the integration 
of many alignment resources.

pItFalls
A very basic pitfall to avoid is the use of a group of sequences for multiple sequence 
alignment in which one or more sequences are not homologous to the rest. For multi-
ple sequence alignments with relatively divergent members, it is common for different 
programs to give dramatically different results. A challenge is that you may not be able 
to assess which is the most accurate based on criteria such as structure or shared evo-
lutionary history. Gaps are particularly hard to place, and the most compact alignment 
(with the fewest gaps) is not necessarily the most faithful to the evolutionary history of 
the sequences you are aligning. As an example of a challenge, ProbCons, MAFFT, and 
MUSCLE all adopt different approaches to the problem of what gap penalties to assign 
to terminal gaps (deletions) relative to internal gaps. There may not be a single correct 
approach, but this is an example of why different programs will produce different align-
ments.

It is especially important to perform a proper multiple sequence alignment for 
molecular phylogeny studies. The alignment constitutes the raw data that go into making 
a tree (see Chapter 7). This is one of the many reasons that benchmarking studies are 
important to define the specificity and sensitivity of different algorithms. However, there 
are considerable concerns about the current state of benchmarking (Aniba et al., 2010; 
Edgar, 2010).

Visit the Alignathon website at 
 http://compbio.soe.ucsc.edu/

alignathon/ (WebLink 6.33).

http://compbio.soe.ucsc.edu/alignathon/
http://compbio.soe.ucsc.edu/alignathon/


MuLTIPLE SEquEnCE aLIgnMEnT 235

advIce For students
It may seem that there is a bewildering number of tools available for multiple sequence 
alignment of proteins (and DNA sequences). In principle, benchmarking is essential to 
help both experts and beginners alike decide which tools perform the best. What are the 
criteria for deciding the specificity of these tools and their sensitivity? Read papers that 
perform benchmarking and those that explain and challenge the current nature of bench-
mark databases (e.g., Edgar, 2010; Löytynoja, 2012).

To gain a deeper understanding of multiple alignment of proteins, select a group of 
distantly related protein sequences. (If they are too closely related then most tools are 
likely to give comparable answers.) Inspect the alignments, and try to develop a feel for 
which alignments are better. Experts routinely make manual adjustments to alignments, 
using their experience and judgment. You can become expert by studying alignments, 
learning what objective functions are applied to evaluate which are superior, and recog-
nizing alignments that can be improved or that contain errors.

We showed several tools for aligning genomic DNA, including PhastCons, phyloP, 
and GERP scores given at the UCSC Genome and Table Browser. Keep in mind that 
each of these tools has an associated configuration page that details what the program 
does and how its output may be interpreted. There are links to literature references and 
external resources. Actively explore these resources to learn more about the strengths and 
limitations of each tool.

Discussion Questions
[6-1] Feng and Doolittle introduced 
the “once a gap, always a gap” rule, 
saying that the two most closely related 
sequences that are initially aligned 

should be weighted most heavily in assigning gaps. Why 
was it necessary to introduce this rule? How does iterative 
refinement overcome this rule?

[6-2] Could BLAST searches incorporate HMMs? How 
does DELTA-BLAST differ from an HMM-based search 
in Pfam?

[6-3] How would you construct a benchmark dataset for 
genomic DNA? What features would you need to consider 
(e.g., protein versus DNA, degree of conservation, chromo-
somal rearrangements)?

proBleMS/CoMpUter laB
[6-1] Practice using three NCBI resources to obtain 
groups of sequences in the FASTA format that you can 
use for multiple sequence alignment. Select a keyword 
such as cytochrome (other suggestions are ferritin, S100, 
or trypsin). In a first approach, enter this search from the 
home page of NCBI, and follow the link to HomoloGene. 
By default, the entries are displayed in the summary for-
mat. Using the pull-down menu change the display to 
Multiple Alignment. This allows you to scroll through a 
series of multiple sequence alignments. Select one for fur-

ther study. It is helpful to choose one in which there are 
some gaps, so that you can evaluate the performance of 
various software programs (see problem (6.2)). Once you 
identify a group of proteins of interest, click to view that 
HomoloGene group, and change the display to FASTA. 
Copy these sequences and/or save them to a text docu-
ment. In a second approach, repeat this exercise beginning 
at the home page of NCBI, but select the link to CDD 
(the Conserved Domain Database). Here, there are Pfam, 
CDD, SMART, and/or COG identifiers. Select an entry 
with a CDD identifier (such as cd00904 for ferritin). Here, 
a multiple sequence alignment is shown. Change the for-
mat to obtain the desired number of proteins in this family 
(e.g., up to 5, 10, or 20) in the FASTA format; you may 
select the most diverse members of this group. In a third 
approach, perform a BLASTP search using a query such as 
ferritin light chain (NP_000137) and inspect the pairwise 
alignments to the query. Select a group of 10 proteins by 
clicking on the box next to each, and click “Get selected 
sequences.” These ten proteins appear on an NCBI Pro-
tein page; change the display option to FASTA and use the 
pull-down menu option to “send to text.” The sequences 
are now available in the FASTA format for further study.

[6-2] Using the FASTA-formatted sequences from prob-
lem (6.1), perform multiple sequence alignments using 
programs available at the European Bioinformatics  
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Institute: MAFFT, MUSCLE, and T-COFFEE. Save and 
compare each result. How do they differ? How can you 
assess which is likely to be the most accurate? When appli-
cable, try adjusting the parameters such as the scoring 
matrices, gap opening and extension penalties, or number 
of iterations to see the effects on the alignments.

[6-3] Use EDirect to access sets of homologous proteins 
from HomoloGene. These can be viewed in various for-
mats. Retrieve the sets of protein sequences in the FASTA 
format containing the protein HBB. How many Homolo-
Gene entries are there in this set?

Next retrieve the alignment scores (rather than the sequences) 
for HomoloGene entries containing the protein HBB.

[6-4] We described how ClustalW applies a correction fac-
tor to downweight the influence of closely related proteins. 

Test the performance of ClustalW: take the globins in 
Web Documents 6.1 and/or 6.2 and align. Then repeat 
the alignment with the additional input of one divergent 
sequence repeated a varying number of times. For example, 
in the closely related group of beta globins, add five copies 
of the chicken sequence to see its influence on the alignment.

[6-5] Use the T-COFFEE programs to evaluate the effect 
of structural information on your alignments. Follow these 
steps. (1) Obtain a group of five distantly related lipocalins 
from Web Document 6.10 (  http://www.bioinfbook.org/
chapter6). These include rat odorant-binding protein and 
human retinol-binding protein. (2) Align the sequences using 
T-COFFEE (  http://www.tcoffee.org/, WebLink 6.13), or use 
another program. (3) Evaluate the alignment with the iRMSD 
program (  http://www.tcoffee.org/). Include the information 
on two known lipocalin structures. Note the score. (4) Align 
the same sequences again using Expresso (  http://www.tcof-
fee.org/) to incorporate structural information. Note the score. 
Did it improve? Do the alignments differ?

[6-6] MAFFT was developed as a command-line program. 
This problem introduces you to using MAFFT in the Linux 
environment. In particular, we obtain a set of alpha glo-
bin proteins and a set of beta globin proteins, align them, 
and then align the two profiles. (1) First obtain the globins 
using EDirect. Alternatively, search NCBI’s HomoloGene 
resource with the term globin. The beta globin group 
(HomoloGene:68066) currently includes 15 proteins. Click 
the download link and save them as a text file. Repeat 
this for 14 proteins in the “hemoglobin, alpha 2” family 
(HomoloGene:469; all proteins have a length of 142 res-
idues). These files are given as Web Documents 6.11 and 
6.12, and the entries are conveniently renamed in Web Doc-
uments 6.13 and 6.14. (2) Open a Linux terminal session, 
and create two new documents: vim hba.fasta (paste 
your sequences into the editor, then use :wq to write the file 
and quit) and vim hbb.fasta. Alternatively, if you are 
working on a PC use WinSCP or a similar utility to transfer 
a text file to your working directory. (3) Perform alignments 
as described in this chapter for the command-line MAFFT.

[6-7] The purpose of this problem is to obtain mammalian 
DNA sequences in the beta globin region and align them. 
(1) Visit the UCSC Genome Browser (build GRCh37) posi-
tion chr11:5,245,001–5,295,000. This 50 kilobase region 
of chromosome 11p15.4 includes the RefSeq genes HBB, 
HBD, HBBP1, HBG1, HBG2, and HBE1. (2) In the Com-
parative Genomics section click the header for the “Con-
servation” track. Download the sequences. (You can also 
download multiple alignments of 45 vertebrate genomes 
with human from  http://hgdownload.soe.ucsc.edu/down-
loads.html. As another example to try, obtain a MAF file 

$ esearch -db homologene -query “HBB” | efetch 
-db homologene -format fasta
1: HomoloGene:128037. Gene conserved in 
Boreoeutheria
>gi|4504351|ref|NP_000510.1| hemoglobin subunit 
delta
MVHLTPEEKTAVNALWGKVNVDAVGGEALGRLLVVYPWTQRFFESFG-
DLSSPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFSQLSELHCDKLHVDPENFRLLGN-
VLVCVLARNFGKEFTPQMQAAYQKVVAGVAN
ALAHKYH
>gi|332835679|ref|XP_001162045.2| PREDICTED: 
hemoglobin subunit delta isoform 1 [Pan 
troglodytes]
MVHLTPEEKTAVNALWGKVNVDAVGGEALGRLLVVYPWTQRFFESFG-
DLSSPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFSQLSELHCDKLHVDPENFRLLGN-
VLVCVLARNFGKEFTPQVQAAYQKVVAGVAN
ALAHKYH
…

$ esearch -db homologene -query “HBB” | efetch 
-db homologene -format alignmentscores
…
4: HomoloGene:68066. Gene conserved in 
Boreoeutheria
Pairwise Alignment Scores
Gene Identity (%)  
Species  Symbol   Protein  DNA
H.sapiens HBB
vs. P.troglodytes HBB 100.0 99.8 Blast
vs. M.mulatta HBB 94.6 95.9 Blast
vs. C.lupus LOC476825 86.4 86.2 Blast
vs. C.lupus LOC480784 89.8 87.8 Blast
vs. C.lupus LOC609402 89.8 87.8 Blast
vs. M.musculus Hbb-bs 80.3 82.5 Blast
vs. M.musculus Hbb-bt 80.3 82.8 Blast
vs. R.norvegicus Hbb 81.6 82.8 Blast
vs. R.norvegicus Hbb-b1 73.5 78.7 Blast
vs. R.norvegicus LOC100134871 78.9 81.0 Blast
vs. R.norvegicus LOC689064 78.9 81.0 Blast
…

http://www.bioinfbook.org/chapter6
http://www.bioinfbook.org/chapter6
http://www.tcoffee.org/
http://www.tcoffee.org/
http://www.tcof-fee.org/
http://www.tcof-fee.org/
http://hgdownload.soe.ucsc.edu/down-loads.html
http://hgdownload.soe.ucsc.edu/down-loads.html
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from  http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
multiz46way/maf/ and browse to chrM.maf.gz (252 kB) 
for an example of a small set of sequences.) (3) Analyze 
multiple alignments in MAFFT as described above.

[6-8] This problem introduces multiple alignments in 
the MAF format at the Galaxy website. Go to Galaxy 
(either the main public server or a local instance you set 
up). (2) Under the “Get Data” tool (left sidebar), select 
UCSC Main Table Browser. Choose mammal, human, 
Feb. 2009 (GRCh37/hg19), Genes and Gene Prediction 
Tracks (group), RefSeq Genes (track), and in the position 
box type in hbb then “lookup” to obtain the coordinates 
chr11:5,246,696–5,248,301. Use the output format “BED” 
and send the output to Galaxy. (3) View the dataset. (4) Go 
to Tools > Fetch Alignments > Extract MAF blocks. For 
the interval, use the imported dataset from the UCSC Table 
Browser; for MAF source, choose “Locally Cached Align-
ments”; and select “46-way multiZ (hg19).” (5) Inspect 
the output (click the eye icon on the history panel). There 
are 37 blocks across this region. For each block, the line 
labeled “a” shows a float point score while the lines labeled 
“s” correspond to sequences (these are 0-based starts).  
(6) On the Tools panel choose “Graph/Display Data” then 
choose GMAJ. This is an interactive, Java-based multiple 
alignment viewer (Blanchette et al., 2004). (7) Convert the 
multiple alignment to a set of FASTA files. Go to Tools 
> Convert Formats > “MAF to FASTA” and choose one 
sequence per species as the type of FASTA output. Option-
ally, you can download these sequences (e.g., to align them 
with different methods). For example, you can use Tools 
> Multiple Alignments > ClustalW to align these FASTA 
files. (8) Choose Tools > Evolution > “Neighbor Joining 
Tree Builder”. Use the FASTA file, and a distance model 
such as Kimura 2 parameter (see Chapter 7). (9) Choose 
Tools > Fetch Alignments > MAF Coverage Stats. Using 
the summarized coverage output option, the coverage is the 

number of nucleotides divided by total length of the given 
intervals.

[6-9] The goal of this exercise is to understand genomic 
alignments available at Ensembl. We will use a Linux 
machine. (1) Visit the Ensembl website (http://useast.
ensembl.org/Homo_sapiens/Info/Index) for Human (build 
GRCh37). There is a comparative genomics section with 
information about comparative analyses as well as down-
loads (ftp://ftp.ensembl.org/pub/release-71/emf/ensem-
bl-compara/). Visiting the ftp site we see directories for 
various groups of vertebrates. We select a folder called 
homologies (ftp://ftp.ensembl.org/pub/release-71/emf/
ensembl-compara/homologies/). It has five protein files. 
(2) Download the first file with the wget command:

This is 226 MB in size (as shown with the ls –lh 
command) and is a .gz (compressed) file. We unzip 
using the command gunzip Compara.71.protein 
.aa.fasta.gz and the resulting uncompressed file, 
called Compara.71.protein.aa.fasta, is large 
(1.6 GB in size). To see how many lines are in this file, type 
wc –l Compara.71.protein.aa.fasta (there 
are 29,337,499 rows). These are FASTA protein records 
with headers beginning with >ENSEEUP00000006240. 
Explore these. (3) Use wget ftp://ftp.ensembl 
.org/pub/release-71/emf/ensembl-
compara/homologies/Compara.71.protein 
.cds.fasta.gz to obtain the coding sequence alignment 
for every protein_tree in FASTA format (this 565 MB file 
uncompresses to 4.8 GB). It contains nucleotide FASTA 
records (beginning with >ENSEEUP00000006240, 
corresponding to the hedgehog ZNF235 gene).

Self-test Quiz
[6-1] Benchmarking refers to:

(a)  making a set of multiple sequence align-
ments (MSAs) from closely related 
proteins that form a trusted alignment;

(b) making a set of MSAs from proteins which have 
had their tertiary structure determined, allowing the 
MSA to be validated based on structural criteria;

(c) making a set of MSAs with an algorithm that are 
subsequently employed to refine tertiary structure 
predictions; or

(d) making a set of MSAs from proteins which are 
known, based on structural criteria, to be members 
of distinct protein families.

$ wget ftp://ftp.ensembl.org/pub/release-71/emf/
ensembl-compara/homologies/Compara.71.protein 
.aa.fasta.gz

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz46way/maf/
http://useast.ensembl.org/Homo_sapiens/Info/Index
http://useast.ensembl.org/Homo_sapiens/Info/Index
ftp://ftp.ensembl.org/pub/release-71/emf/ensem-bl-compara/
ftp://ftp.ensembl.org/pub/release-71/emf/ensem-bl-compara/
ftp://ftp.ensembl.org/pub/release-71/emf/ensembl-compara/homologies/
ftp://ftp.ensembl.org/pub/release-71/emf/ensembl-compara/homologies/
ftp://ftp.ensembl.org/pub/release-71/emf/
ftp://ftp.ensembl
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz46way/maf/
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[6-2] Why doesn’t ClustalW (a program that employs the 
Feng and Doolittle progressive sequence alignment algo-
rithm) report expect values?

(a) ClustalW does report expect values;

(b) ClustalW uses global alignments for which E value 
statistics are not available;

(c) ClustalW uses local alignments for which E value 
statistics are not available; or

(d) ClustalW uses combined global and local align-
ments for which E value statistics are not available.

[6-3] The “once a gap, always a gap” rule for the Feng–
Doolittle method ensures that:

(a) gaps will not be filled in inappropriately with inserted 
sequences;

(b) sequences that diverged early in evolution will be 
given priority in establishing the order in which a 
multiple sequence alignment is constructed;

(c) gaps occurring between sequences that are most 
closely related in a multiple sequence alignment will 
be preserved; or

(d) gaps occurring between sequences that are distantly 
related will be maintained in the multiple sequence 
alignment.

[6-4] How can multiple sequence alignment programs 
improve performance?

(a) by performing PSI-BLAST;

(b) by incorporating data on secondary structure;

(c) by incorporating data on three-dimensional structures; or

(d) all of the above.

[6-5] What is a main strength of consistency-based 
approaches (such as ProbCons)?

(a) they include information based on position-specific 
scoring matrices;

(b) they include information based on three-dimen-
sional protein structures, typically obtained from 
X-ray crystallography studies;

(c) they perform profile–profile alignments and are 
extremely fast algorithms; or

(d) they include information based on multiple sequence 
alignments to guide the determination of pairwise 
alignments.

[6-6] The main difference between Pfam-A and Pfam-B 
is that:

(a) Pfam-A is manually curated while Pfam-B is auto-
matically curated;

(b) Pfam-A uses hidden Markov models while Pfam-B 
does not;

(c) Pfam-A provides full-length protein alignments 
while Pfam-B aligns protein fragments; or

(d) Pfam-A incorporates data from SMART and 
PROSITE while Pfam-B does not.

[6-7] The Enredo/Pecan/Ortheus pipeline at Ensembl 
includes Ortheus to reconstruct ancestral sequences. One 
of its strengths is that:

(a) it is “phylogeny-aware,” meaning that it accurately 
infers ancestral sequences;

(b) it is specialized to model ancestral sequences using 
both protein and DNA information;

(c) it creates phylogenetic trees, breaks them, then itera-
tively reconstructs them; or

(d) it uses sampling with replacement of sequences to 
improve accuracy.

[6-8] What is a feature of algorithms that align large tracts 
of genomic DNA, in contrast to programs such as ClustalW 
that align smaller blocks of DNA or protein?

(a) they are generally unable to align DNA from organ-
isms that are highly divergent, such as those that spe-
ciated several hundred million years ago;

(b) they generally use progressive alignment and so are 
fundamentally similar;

(c) they often employ anchors that help to align 
regions of conservation that are interspersed with 
less-conserved regions (such as those arising in 
noncoding regions, deleted regions, or inverted 
regions); or

(d) they are specialized to accept very long inputs.

suggested readIng
Da-Fei Feng and Russell F. Doolittle’s (1987) progressive alignment approach to multi-
ple sequence alignment is an important early paper. This work stresses the relationship 
between multiple sequence alignment and the evolutionary relationships of proteins. It 
is therefore relevant to our treatment of phylogeny in Chapter 7. Doolittle (2000) also 
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wrote a personal account of his interest in sequence analysis, phylogeny, and bioinfor-
matics, including mention of the historical context in which he developed his alignment 
algorithm.

Excellent papers that review multiple sequence alignment and explain its challenges 
include Löytynoja (2012), Kemena and Notredame (2009), Pirovano and Heringa (2008), 
Do and Katoh (2008), and Edgar and Batzoglou (2006).
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For the first half of the twenti-
eth century, the main phyloge-
netic analyses based on molec-
ular data were the remarkable 
precipitin tests pioneered by 
George Nuttall and colleagues. 
Antisera were incubated with 
serum samples from a variety of 
species, and the time required 
for a precipitation reaction was 
recorded as well as the strength 
of the reaction. (a) Sample test 
tubes in which the reactions 
were conducted (Nuttall, 1904, 
plate I). (b) Excerpt from Nut-
tall (1904, p. 160) describing 
the 16,000 tests he performed. 
(c) Portion of the 92-page data 
summary of Nuttall (1904, 
p. 222–223). The 900 rows (of 
which 11 are shown here) rep-
resent blood samples that were 
tested, and the columns cor-
respond to antisera obtained 
from 30 organisms (of which 
18 are shown here). The values 
represent the time (in minutes) 
required for a reaction. The sym-
bols indicate the degree of reac-

tion (+ being greatest, and · indicating no reaction). The letter D indicates the pres-
ence of deposits in the test tube. Nuttall used these data to infer the phylogenetic 
relationships of assorted mammals, birds, reptiles, amphibians, and crustaceans. In 
the 1950s and 1960s, amino acid sequence comparisons largely replaced immuno-
logical tests for phylogenetic analysis. 

Source: Nuttall (1904).

(a) Test tubes for precipitin reactions (b) Description of 16,000 tests

(c) Findings (portion)
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Nothing in biology makes sense except in the light of evolution.
—Theodosius Dobzhansky (1973)

Molecular Phylogeny  
and Evolution

C h a p t e r 

7
LEArNING objEcTIvES

Upon completing this chapter you should be able to:
 ■ describe the molecular clock hypothesis and explain its significance;
 ■ define positive and negative selection and test its presence in sequences of interest;
 ■ describe the types of phylogenetic trees and their parts (branches, nodes, roots);
 ■ create phylogenetic trees using distance-based and character-based methods; and
 ■ explain the basis of different approaches to creating phylogenetic trees and evaluating them.

IntroductIon to Molecular evolutIon
Evolution is the theory that groups of organisms change over time so that descendants 
differ structurally and functionally from their ancestors. Evolution may also be defined as 
the biological process by which organisms inherit morphological and physiological fea-
tures that define a species. In 1859 Charles Darwin published his landmark book, On the 
Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races 
in the Struggle for Life.

As many more individuals of each species are born than can possibly survive; and as, 
consequently, there is a frequently recurring struggle for existence, it follows that any 
being, if it vary however slightly in any manner profitable to itself, under the complex and 
sometimes varying conditions of life, will have a better chance of surviving, and thus be 
naturally selected. From the strong principle of inheritance, any selected variety will tend 
to propagate its new and modified form.

Evolution is a process of change. Heredity is generally conservative – offspring 
resemble their parents – and yet the structure and function of bodies changes over the 
course of generations. There are three main mechanisms by which changes may occur 
(Simpson, 1952):

 • Conditions of growth affect development. Environmental factors such as accidents 
and disease-causing infections are not hereditary in nature (although an individual’s 
response to disease or environmental stimuli is genetically controlled to some extent, 
as discussed in Chapter 21).

We explore the tree of life in 
Chapter 15. You can read The 
Origin of Species by Charles 
Darwin online at  http://www 
.literature.org/authors/darwin-
charles/the-origin-of-species/ 
(WebLink 7.1).

http://www.literature.org/authors/darwin-charles/the-origin-of-species/
http://www.wiley.com/go/pevsnerbioinformatics
http://www.literature.org/authors/darwin-charles/the-origin-of-species/
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 • The mechanism of sexual reproduction ensures change from one generation to the 
next. DNA sequences including genes are “shuffled” via recombination when an off-
spring inherits chromosomes from two parents.

 • Mutation with selection as well as genetic drift can produce changes in genes and 
more generally in chromosomes.

At the molecular level, evolution is a process of mutation with selection. Molecular 
evolution is the study of changes in genes and proteins throughout different branches of 
the tree of life. This discipline also uses data from present-day organisms to reconstruct 
the evolutionary history of species.

Phylogeny is the inference of evolutionary relationships. Traditionally, phylogeny 
was assessed by comparing morphological features between organisms from a variety of 
species (Mayr, 1982). However, molecular sequence data can also be used for phyloge-
netic analysis. The evolutionary relationships that are inferred, which are usually depicted 
in the form of a tree, can provide hypotheses of past biological events.

PrIncIPles of Molecular Phylogeny and evolutIon
Goals of Molecular phylogeny

All life forms share a common origin and are part of the tree of life. More than 99% of 
all species that ever lived are extinct (Wilson, 1992). Of the extant species, closely related 
organisms are descended from more recent common ancestors than distantly related 
organisms. In principle, there may be one single tree of life that accurately describes 
the evolution of species. One object of phylogeny is to deduce the correct trees for all 
species of life. Historically, phylogenetic analyses were based upon observable pheno-
typic features such as the presence or absence of wings or a spinal cord. More recently, 
phylogenetic analyses also rely on molecular sequence data that define families of genes 
and proteins. Another object of phylogeny is to infer or estimate the time of divergence 
between organisms since the time they last shared a common ancestor.

While the tree of life provides an appealing metaphor, our definition of evolution is not 
predicated on there necessarily being a single tree. Instead, evolution is based on a process 
of mutation and selection. We see in Chapter 17 that genes can be laterally transferred 
between species, complicating the ways in which organisms can acquire genes and traits. 
In many situations the tree of life has been described as a densely interconnected bush (or 
reticulated tree) rather than a simple tree with well-defined branches (e.g., Doolittle, 1999).

A true tree depicts the actual, historical events that occurred in evolution. It is essen-
tially impossible to generate a true tree. Instead, we generate inferred trees, which depict 
a hypothesized version of the historical events. Such trees describe a series of evolution-
ary events that are inferred from the available data, based on some model.

The tree of life has three major branches: bacteria, archaea, and eukaryotes. We 
explore the global tree in Chapter 15. In this chapter we address the topic of phylogenetic 
trees that are used to assess the relationships of homologous proteins (or homologous 
nucleic acid sequences) in a family. Any group of homologous proteins (or nucleic acid 
sequences) can be depicted in a phylogenetic tree.

In Chapter 3 we defined two proteins as homologous if they share a common ances-
tor. You may perform a BLAST search and observe several proteins with high scores (low 
expect values) and simply view these database matches as related proteins that possi-
bly have a related function. However, it is also useful to view orthologs and paralogs in 
an evolutionary context. We have applied a variety of approaches to study the relations 
of proteins: pairwise alignment using Dayhoff’s scoring matrices (Chapter 3); BLAST 
searching (Chapters 4 and 5); and multiple sequence alignment (Chapter 6). We address 
the identification of related protein folds later in Chapters 12 and 13. All these approaches 

The word phylogeny is derived 
from the Greek phylon (“race, 
class”) and geneia (“origin”). 
Ernst Haeckel, whose tree of 
life is shown on the frontis to 
Chapter 15, coined the terms 
phylogeny, phylum, and ecology. 
He also wrote that “ontogenesis 
is a brief and rapid recapitulation 
of phylogenesis, determined 
by the physiological functions 
of heredity (generation) and 
adaptation (maintenance)” 
(Haeckel, 1900, p. 81). See 
also  http://www.ucmp.
berkeley.edu/history/haeckel.
html (WebLink 7.2).

Viruses are generally not 
considered to be part of the tree 
of life (see Chapter 16), although 
phylogenetic trees have been 
studied for all subgroups of 
viruses.

http://www.ucmp.berkeley.edu/history/haeckel.html
http://www.ucmp.berkeley.edu/history/haeckel.html


MoLEcULAr PhyLoGENy AND EvoLUTIoN 247

rely on evolutionary models to account for the observed similarities and differences 
between molecular sequences.

historical Background

Historically, the globins have been among the protein families most important to our 
understanding of biochemistry and molecular evolution, from the identification of hemo-
globin in the 1830s and myoglobin in the 1860s to their crystallization in the nineteenth 
century for the purpose of comparative studies across species. (I describe this history in 
Web Document 7.1.) Globins were among the first proteins to be sequenced and to be 
analyzed using X-ray crystallography (Chapter 13). Following earlier work by Ingram 
(1961) and others to determine globin protein sequences, Eck and Dayhoff (1966) used 
parsimony analysis (defined in “Phylogenetic Inference: Maximum Parsimony” below) 
to generate trees of the globin family. We provided phylogenetic trees to introduce the 
concepts of paralogs (various human globins in Fig. 3.3) and orthologs (myoglobins in var-
ious species; Fig. 3.2). Figure 7.1 shows a phylogenetic analysis of 13 globin proteins from 
various species, redrawn from Dayhoff et al. (1972). We return to these 13 sequences 
for phylogenetic analyses later in this chapter. Figure 7.2 (also from Dayhoff et al., 1972) 
further provides a timeline of the events in which globin genes duplicated (e.g., an ances-
tral globin gene duplicated to form the lineages leading to modern alpha globin and beta 
globin), and also a timeline for speciation events (e.g., the modern fish and humans shared 
a common vertebrate ancestor ~400 million years ago or MYA). These studies focused 
on two aspects of phylogenetic trees. First, trees can depict the relatedness of particular 
protein subfamilies such as the alpha globins, beta globins, and myoglobins. Second, 
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lamprey

Hemoglobin beta
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FiGure 7.1 In the 1960s, several groups performed pioneering studies of globin phylogeny. This tree 
is modified from Dayhoff et al. (1972) who used maximum parsimony analysis to infer the relationships 
and history of 13 globins. The observed percent difference between sequences was corrected using the 
data on PAM matrices in table 3.3. Arrow 1 indicates a node corresponding to the last common ances-
tor of the group of vertebrate globins, while arrow 2 indicates the ancestor of the insect and vertebrate 
globins (see text for details).

Source: Dayhoff et al. (1972). Reproduced with permission from National Biomedical Research Foundation.
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trees can depict the relatedness of species, providing inferences about the evolutionary 
history of life forms as well as the history of genes and gene products. We expand upon 
the relation of gene trees and species trees in the section “Species Trees versus Gene/
Protein Trees”.

Tremendous progress was also made in our understanding of molecular evolution 
through the study of insulin beginning in the 1950s. Insulin is a small protein secreted by 
pancreatic islet cells that stimulates glucose uptake upon binding to an insulin receptor 
on muscle and liver cells. In 1953 Frederick Sanger and colleagues determined the pri-
mary amino acid sequence of insulin, the first time this feat had been accomplished for 
any protein. The mature, biologically active protein consists of two subunits, the A chain 
and B chain, that are covalently attached through intermolecular disulfide bridges. More 
recently, the structure of the human preproinsulin molecule was shown to consist of a 
signal peptide, the B chain, an intervening sequence called the C peptide, and the A chain 
(Fig. 7.3a). The C peptide is flanked by dibasic residues (arg-arg or lys-arg; see Fig. 7.3a, b) 
at which proteolytic cleavage occurs.

Sanger and others sequenced insulin proteins from five species (cow, sheep, pig, 
horse, and whale). It became clear immediately that the A chain and B chain residues are 
highly conserved. Furthermore, amino acid differences were restricted to three residues 
within a disulfide “loop” region of the A chain (Fig. 7.3b, shaded turquoise). This sug-
gested that amino acid substitutions occur nonrandomly, some changes affecting biolog-
ical activity dramatically and other changes having negligible effects (Anfinsen, 1959). 
The differences within the disulfide loop are termed “neutral” changes (Jukes and Cantor, 
1969, p. 86; Kimura, 1968). Later, when the biologically active A and B chain sequences 
were compared to the functionally less important C peptide, even more dramatic differences 
were seen. Kimura (1983) reported that the C peptide evolves at a rate of 2.4 × 10−9 per 
amino acid site per year, sixfold faster than the rate for the A and B chains (0.4 × 10−9 
per amino acid site per year). At the nucleotide level, the rate of evolution is similarly 
about sixfold faster for the DNA region encoding the C peptide (Li, 1997).

Thirteen protein sequences 
corresponding to the proteins in 
Figure 7.1 are provided in Web 
Document 7.2 at  http://www 
.bioinfbook.org/chapter7. We use 
these sequences as examples 
in this chapter. A similar 
phylogenetic tree was reported 
by Zuckerkandl and Pauling 
(1965).

The protein sequences shown in 
Figure 7.3 are available at Web 
Document 7.3.

Frederick Sanger won the 
Nobel Prize in Chemistry (1958) 
“for his work on the structure 
of proteins, especially that of 
insulin” (  http://nobelprize.
org/nobel_prizes/chemistry/
laureates/1958/, WebLink 7.3). 
In 1980, he shared the Nobel 
Prize in Chemistry (with Paul 
Berg and Walter Gilbert) for his 
“contributions concerning the 
determination of base sequences 
in nucleic acids.”

Plants

Insects

Bony fish

Monkeys
Mammals

MyoglobinHemoglobins
AlphaNon-alpha

β γ Gγ Aγ 1α 2α

100 million years ago

500 million years ago

~1 billion years ago

present time

FiGure 7.2 Dayhoff et al. (1972) summarized the relationship of the globin subfamilies in the con-
text of evolutionary time. The dates of speciation events were inferred from fossil-based studies. 

Source: Dayhoff et al. (1972). Reproduced with permission from National Biomedical Research Foundation.

http://www.bioinfbook.org/chapter7
http://nobelprize.org/nobel_prizes/chemistry/laureates/1958/
http://nobelprize.org/nobel_prizes/chemistry/laureates/1958/
http://nobelprize.org/nobel_prizes/chemistry/laureates/1958/
http://www.bioinfbook.org/chapter7
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cow        MALWTRLAPLLALLALWAPAPARAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
sheep      MALWTRLVPLLALLALWAPAPAHAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
pig        MALWTRLLPLLALLALWAPAPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
human      MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKT
chimpanzee MALWMRLLPLLVLLALWGPDPASAFVNQHLCGSHLVEALYLVCGERGFFYTPKT
dog        MALWMRLLPLLALLALWAPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKA
rat        MALWIRFLPLLALLILWEPRPAQAFVKQHLCGSHLVEALYLVCGERGFFYTPMS
mouse      MALWMRFLPLLALLFLWESHPTQAFVKQHLCGSHLVEALYLVCGERGFFYTPMS
rabbit     MASLAALLPLLALLVLCRLDPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKS
sperm      ------------------------FVNQHLCGSHLVEALYLVCGERGFFYTPKA
elephant   MALWTRLLPLLALLAVGAPPPARAFVNQHLCGSHLVEALYLVCGERGFFYTPKT
chicken    MALWIRSLPLLALLVFSGPGTSYAAANQHLCGSHLVEALYLVCGERGFFYSPKA
                                          

cow        RREVEGPQVGALELAGGPG-----AGGLEGPPQKRGIVEQCCASVCSLYQLENYCN
sheep      RREVEGPQVGALELAGGPG-----AGGLEGPPQKRGIVEQCCAGVCSLYQLENYCN
pig        RREAENPQAGAVELGGGLG--GLQALALEGPPQKRGIVEQCCTSICSLYQLENYCN
human      RREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN
chimpanzee RREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN
dog        RREVEDLQVRDVELAGAPGEGGLQPLALEGALQKRGIVEQCCTSICSLYQLENYCN
rat        RREVEDPQVAQLELGGGPGAGDLQTLALEVARQKRGIVDQCCTSICSLYQLENYCN
mouse      RREVEDPQVAQLELGGGPGAGDLQTLALEVAQQKRGIVDQCCTSICSLYQLENYCN
rabbit     RREVEELQVGQAELGGGPGAGGLQPSALELALQKRGIVEQCCTSICSLYQLENYCN
sperm      -----------------------------------GIVEQCCTSICSLYQLENYCN
elephant   RREVEDTQVGEVELGTG-----LQPFPAEAPKQKRGIVEQCCTGVCSLYQLENYCN
chicken    RRDVEQPLVSSPLRG---EAGVLPFQQEEYEKVKRGIVEQCCHNTCSLYQLENYCN
                                             

(a)
signal peptide B chain C peptide A chain

RR KR

1-24 25-54 55-89 90-110

(b)

(c)

human      MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKT
mouse      MALWMRFLPLLALLFLWESHPTQAFVKQHLCGSHLVEALYLVCGERGFFYTPMS
guinea pig MALWMHLLTVLALLALWGPNTGQAFVSRHLCGSNLVETLYSVCQDDGFFYIPKD
coypu      ------------------------YVSQRLCGSQLVDTLYSVCRHRG-FYRPND
                                           

human      RREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN-
mouse      RREVEDPQVAQLELGGGPGAGDLQTLALEVAQQKRGIVDQCCTSICSLYQLENYCN-
guinea pig RRELEDPQVEQTELGMGLGAGGLQPLALEMALQKRGIVDQCCTGTCTRHQLQSYCN-
coypu      -----------------------------------GIVDQCCTNICSRNQLMSYCND
                                              

signal peptide B chain

C peptide A chain

FiGure 7.3 Since the 1950s, studies of insulin have facilitated our understanding of molecular evolution. (a) The human insulin mol-
ecule consists of a signal peptide (required for intracellular transport; amino acid residues 1–24), the B chain, the C peptide, and the A 
chain. Dibasic residues (amino acids RR, KR) flank the C peptide and are the sites at which proteases cleave the protein. The A chain and 
B chain are then covalently linked through disulfide bridges, forming mature insulin. (b) Multiple sequence alignment of insulin from 12 
species. Amino acid substitutions occur in nonrandom patterns. Note that within the A chain of insulin the amino acid residues are almost 
perfectly conserved between different species, except for three divergent columns of amino acids (A chain, residues in green font). How-
ever, the rate of nucleotide substitution is about six-fold higher in the region encoding the intervening C peptide than in the region encoding 
the B and A chains (Kimura, 1983), and gaps in the multiple sequence alignment are evident here. Disulfide bridges between cysteine 
 residues are indicated by dashed lines. The accession numbers are NP_000198.1 (human), NP_001008996.1 (chimpanzee), NP_062003.1 
(rat), NP_001123565.1 (dog), NP_001172013.1 (mouse), NP_001075804.1 (rabbit), NP_001103242.1 (pig), NP_990553.1 (chicken), 
NP_001172055.1 (cow), P01318.2 (sheep), XP_003422420.1 (elephant), and P67974.1 (sperm whale). (c) Guinea pig (Cavia porcellus, 
accession NP_001166362.1) and coypu (Myocastor coypus, P01330.1) insulins evolve about seven-fold faster than insulin from other 
 species. Human, mouse, guinea pig, and coypu insulins are aligned. Arrows indicate 18 amino acid positions at which the guinea pig 
sequence (purple) varies from that of human and/or mouse.
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As insulin was sequenced from additional species, a surprising finding emerged. 
Insulin from guinea pig and a closely related species of the family Caviidae (the coypu) 
appeared to evolve seven times faster than insulin from other species. As shown in the 
alignment of Figure 7.3c, the guinea pig insulin sequence differs from human and mouse 
insulin at 18 different amino acid positions within the A and B chains. The explanation 
for this phenomenon (Jukes, 1979) is that guinea pig and coypu insulin do not bind two 
zinc ions, whereas insulin from all the other species do. Insulin from coypu has a very low 
biological potency (relative to pig or human insulin) and is primarily monomeric (Bajaj et 
al., 1986). There is presumably a strong functional constraint on most insulin molecules 
to maintain amino acid residues that are able to complex zinc, but guinea pig and coypu 
insulin have less-selective constraint.

In the early 1950s, other laboratories sequenced vasopressin and oxytocin and found 
that peptides differing by only two amino acid residues have vastly different biological 
function (Fig. 7.4). In 1960 Max Perutz and John Kendrew solved the structures of hemo-
globin and myoglobin. These proteins, both of which serve as oxygen carriers, are homol-
ogous and share related structures (see Fig. 3.1). It therefore became clear by the 1960s 
that there are significant structural and functional consequences to variation in primary 
amino acid sequence.

Molecular Clock hypothesis

In the 1960s, primary amino acid sequence data were accumulated for abundant, soluble 
proteins such as hemoglobins, cytochromes c, and fibrinopeptides in a variety of species. 
Some proteins, such as cytochromes c from many organisms, were found to evolve very 
slowly, while other protein families accumulated many substitutions. Emil Zuckerkandl 
and Linus Pauling (1962) as well as Emanuel Margoliash (1963) proposed the concept 
of a molecular clock (reviewed in Zuckerkandl, 1987). This hypothesis states that for 
every given gene (or protein), the rate of molecular evolution is approximately constant. 
In a pioneering study, Zuckerkandl and Pauling observed the number of amino acid dif-
ferences between human globins including beta and delta (about 6 differences), beta and 
gamma (~36 differences), beta and alpha (~78 differences), and alpha and gamma (~83 
differences). They could also compare human to gorilla (both alpha and beta globins), 
observing either 2 or 1 differences respectively, and they knew from fossil evidence 
that humans and gorillas diverged from a common ancestor about 11 million years ago. 
Using this divergence time as a calibration point, they estimated that gene duplications 
of the common ancestor to beta and delta occurred 44 million years ago (MYA); beta and 
gamma derived from a common ancestor 260 MYA; alpha and beta 565 MYA; and alpha 
and gamma 600 MYA.

Perutz and Kendrew won 
the 1962 Nobel Prize in 
Chemistry “for their studies 
of the structures of globular 
proteins.” You can read about 
their accomplishments at  
http://www.nobel.se/chemistry/
laureates/1962/ (WebLink 
7.4). The oxytocin gene OXT 
encodes oxytocin/neurophysin 
I prepropeptide (NP_000906.1, 
155 amino acids); the arginine 
vasopressin gene AVP encodes 
vasopressin-neurophysin 
2-copeptin preproprotein 
(NP_000481.2, 164 amino acids 
including the 9 amino acid 
arginine vasopressing peptide 
20..28).

For alignments of these globin 
proteins and a summary 
(including the correct number of 
differences) of the Zuckerkandl 
and Pauling (1962) data, see Web 
Document 7.4 at  http://www 
.bioinfbook.org/chapter7.

Arginine vasporessin (NP_000481.2)

Oxytocin (NP_000906.1)

FiGure 7.4 Human oxytocin (NP_000906.1, residues 20-28) and arginine vasopressin (NP_000481.2, 
residues 20–28) differ at only two amino acid positions, yet they have vastly different biological func-
tions. The comparison of these peptide sequences in the 1960s led to the appreciation of the importance 
of primary amino acid sequences in determining protein function. The output of a pairwise alignment 
using BLASTP is shown. 

Source: NCBI.

http://www.nobel.se/chemistry/laureates/1962/
http://www.bioinfbook.org/chapter7
http://www.nobel.se/chemistry/laureates/1962/
http://www.bioinfbook.org/chapter7
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A related study demonstrating the existence of a molecular clock was performed by 
Richard Dickerson in 1971 (Fig. 7.5). He analyzed three proteins for which a large amount 
of sequence data were available: cytochromes c, hemoglobins, and fibrinopeptides. For 
each, he plotted the relationship between the number of amino acid differences for a pro-
tein in two organisms versus the divergence time (in millions of years) for the organisms. 
These divergence times were estimated from paleontology.

When estimating the number of amino acid (or nucleic acid) differences between 
a group of sequences, a model is needed to explain the process by which substitutions 
occur; we address this subject later in this chapter. We have already encountered the idea 
that more mutational events occur than can be directly observed when we examined PAM 
matrices (Chapter 3). We saw that two proteins of length 100 that share 50% amino acid 
identity have sustained an average of 80 changes (Fig. 3.19). Notably, Zuckerkandl and 
Pauling (1962) had assumed for the purpose of their analyses that the number of observed 
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FiGure 7.5 A comparison of the number of amino acid changes that occurs between proteins (y axis) 
versus the time since the species diverged (x axis) reveals that individual protein families evolve at distinct 
rates. Some proteins, such as cytochromes c from a variety of organisms, evolve very slowly; others such 
as hemoglobin evolve at an intermediate rate; and proteins such as fibrinopeptides undergo substitutions 
rapidly. This behavior is described by the molecular clock hypothesis, proposed by Zuckerkandl and 
Pauling (1962), Margoliash (1963), and others in the 1960s. The time of divergence of various organisms 
(arrows) is estimated primarily from fossil evidence. Abbreviation: MY, millions of years in the past. 
Adapted from Dickerson (1971) with permission from Elsevier.



AnAlyzing DnA, RnA, AnD PRotein SequenceS252

differences reflects the number of substitutions that have actually occurred. However, 
they acknowledged that the situation is more complicated because multiple substitutions 
may occur at any given site: “Thus the number of effective mutational events that have 
actually occurred since the α- and β-chains have evolved from their common ancestor 
may be significantly greater than is presently apparent” (Zuckerkandl and Pauling, 1962, 
p. 204). Margoliash and Smith (1965, p. 233) as well as Zuckerkandl and Pauling (1965, 
p. 150) proposed a correction for the relationship between observed changes and actual 
changes. This correction was employed by Dickerson (1971; Fig. 7.5). The y axis of this 
plot consists of the corrected number of amino acid changes per 100 residues, m. The 
value of m is calculated via:

 
m n

100
ln 1

100
.= − −



 (7.1)

This equation can be written as

 
n

e
100

1 m /100= − ( )− (7.2)

where m is the total number of amino acid changes which have occurred in a 100-amino 
acid segment of a protein and n is the observed number of amino acid changes per 100 
residues. This correction adjusts for amino acid changes that occur but are not directly 
observed, such as two or more amino acid changes occurring in the same position (see 
“DNA, RNA, or Protein-Based Trees” below).

The results of this plot (Fig. 7.5) allow several conclusions (Dickerson, 1971):

 • For each protein, the data lie on a straight line. This suggests that the rate of change 
of amino acid sequence has remained constant for each protein.

 • The average rates of change are distinctly different for each protein. For example, 
fibrinopeptides evolve with a much higher rate of substitution. The time (in millions 
of years) for a 1% change in amino acid sequence to occur between two divergent 
lines of evolution is 20.0 MYA for cytochrome c, 5.8 MYA for hemoglobin, and 1.1 
MYA for fibrinopeptides.

 • The observed variations in rate of change between protein families reflect functional 
constraints imposed by natural selection.

The rate of amino acid substitution is measured by the number of substitutions per 
amino acid site per year, λ. Some values for λ are given in table 7.1. Note that some pro-
teins such as histones and ubiquitin undergo substitutions extraordinarily slowly.

Note that we say that histones undergo substitution very slowly, but we do not 
say that they mutate very slowly. Mutation is the biochemical process that results 
in a change in sequence. For example, a polymerase copies DNA (or RNA) with 
a particular mutation rate. Substitution is the observed change in nucleic acid or 
protein sequences (e.g., between various histones). The observed substitutions that 
are fixed in a population occur at a rate that reflects both mutation and selection, the 
process by which characters are selected for (or against) in evolution. If the rate of 
mutation of the DNA or RNA polymerases among an organism’s genes is relatively 
constant, then variation in substitution rates among those genes may be due primarily 
to positive or negative selection. In the language of Susumu Ohno (1970), some sub-
stitutions are forbidden because they are deleterious to the organism and are selected 
against. For example, substitutions in histones are almost always not tolerated, that 
is, they are lethal.

A significant implication of the molecular clock hypothesis is that if protein sequences 
evolve at constant rates, then they can be used to estimate the time that the sequences 
diverged. In this way phylogenetic relationships can be established between organisms. 

The correction formula of 
Equation (7.1) was written 
incorrectly in the original 
Margoliash and Smith (1965) 
article, but was used correctly 
by Dickerson (1971) and is further 
discussed by Fitch and Ayala 
(1994).
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This is analogous to the dating of geological specimens using radioactive decay. An 
example of how the molecular clock may be used is given in Box 7.1.

The molecular clock hypothesis does not apply to all proteins, and a variety of excep-
tions and caveats have been noted:

 • The rate of molecular evolution varies among different organisms. For example, 
some viral sequences tend to change extremely rapidly compared to other life forms.

 • The clock varies among different genes (see table 7.1) and across different parts of 
an individual gene (e.g., Fig. 7.3; see also the discussion on the gamma parameter in 
“Stage 3: Models of DNA and Amino Acid Substitution” below). The main force 
guiding the molecular clock is selection. Rodents tend to have a faster molecular 
clock than primates: this may be because their generation times are shorter and they 
have high metabolic rates.

 • The clock is only applicable when a gene in question retains its function over evolu-
tionary time. Genes may become nonfunctional (e.g., pseudogenes) leading to rapid 

We discuss the duplication of 
an entire genome, followed by 
subsequent, rapid mutation and 
gene loss, in Chapters 18 (on 
the yeast S. cerevisiae) and 19 
(eukaryotic genomes).

taBle 7.1 rates of amino acid substitutions per amino acid site per 109 years  
(λ × 109) in various proteins. Dayhoff (1978) expressed these rates as accepted point 
mutations (paMs) per 100 amino acid residues that are estimated to have occurred in 
100 million years of evolution (compare Box 3.4). the rate of mutation acceptance for 
serum albumin is 19 paMs per 100 million years. 

Protein Rate Protein Rate

Fibrinopeptides 9.0 Thyrotropin beta chain 0.74

Growth hormone 3.7 Parathyrin 0.73

Immunoglobulin (Ig) kappa chain  
C region

3.7 Parvalbumin 0.70

Kappa casein 3.3 Trypsin 0.59

Ig gamma chain C region 3.1 Melanotropin beta 0.56

Lutropin beta chain 3.0 Alpha 108asteur108108ne A chain 0.50

Ig lambda chain C region 2.7 Endorphin 0.48

Lactalbumin 2.7 Cytochrome b5 0.45

Epidermal growth factor 2.6 Insulin (except Guinea pig and coypu) 0.44

Somatrotropin 2.5 Calcitonin 0.43

Pancreatic ribonuclease 2.1 Neurophysin 2 0.36

Serum albumin 1.9 Plastocyanin 0.35

Phospholipase A2 1.9 Lactate dehydrogenase 0.34

Prolactin 1.7 Adenylate kinase 0.32

Carbonic anhydrase C 1.6 Cytochrome c 0.22

Hemoglobin alpha chain 1.2 Troponin C, skeletal muscle 0.15

Hemoglobin beta chain 1.2 Alpha 108asteur108108ne B chain 0.15

Gastrin 0.98 Glucagon 0.12

Lysozyme 0.98 Glutamate dehydrogenase 0.09

Myoglobin 0.89 Histone H2B 0.09

Amyloid AA 0.87 Histone H2A 0.05

Nerve growth factor 0.85 Histone H3 0.014

Acid proteases 0.84 Ubiquitin 0.010

Myelin basic protein 0.74 Histone H4 0.010

Source: Dayhoff et al. (1972). Reproduced with permission from National Biomedical Research 
Foundation and Columbia.
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changes in nucleotide (and amino acid) sequence. The rate of evolution  sometimes 
accelerates after gene duplication occurs. For example, after gene duplication 
 generated α- and β-hemoglobins, high rates of amino acid substitution occurred that 
presumably altered the function of the gene, allowing some globin proteins to be 
expressed at highly specific developmental stages.

Despite these issues, the molecular clock hypothesis has proven useful and valid 
in many cases to which it is applied. Fitch and Ayala (1994) described a reasonably 
accurate molecular clock for Cu, Zn superoxide dismutase from a group of 67  protein 
sequences. However, obtaining correct inferences from the clock required tuning a 
 variety of parameters.

As one practical approach to testing whether a molecular sequence has clock-like 
behavior, we can use the relative rate test of Tajima (1993; Box 7.2). For sequences A, B, 
C of the same protein or DNA/RNA from three species, let A and B be from two species 
from which we wish to compare the relative rates of evolution. Let C be a sequence from 
an outgroup, and let O be the common ancestor of A and B (Fig. 7.6a). Tajima’s test deter-
mines whether there is accelerated evolution in lineage A or B, in which case we reject 
the null hypothesis that A and B exhibit equal evolutionary rates. Given the observed 
number of substitutions in sequence pairs AB, AC, and BC we can infer distances OA, 
OB, and OC and therefore test the null hypothesis that the relative rates OA and OB are 
the same (Fig. 7.6b–d). Tajima’s relative rate test is implemented in MEGA software pro-
gram (Tamura et al., 2013). We use MEGA for phylogenetic analyses in this chapter. We 
provide a specific example of using the test in Problems/Computer Lab (7.1), including an 
explanation of how to enter the sequences into MEGA, align them, and perform Tajima’s 
test.

positive and Negative Selection

Darwin’s theory of evolution suggests that, at the phenotypic level, traits in a population 
that enhance survival are selected for (positive selection), while traits that reduce fitness 
are selected against (negative selection). For example, among a group of giraffes millions 
of years in the past, those giraffes that had longer necks were able to reach higher foliage 

MEGA is available at  http://
www.megasoftware.net/ 
(WebLink 7.5).

Box 7.1 rate of nucleotIde suBstItutIon r and tIMe of dIvergence T 
The rate of nucleotide substitution r is the number of nucleotide substitutions that occur per site per year. Similar calculations can be 
made for the rate of amino acid substitutions. These rates vary considerably and it is of interest to characterize whether a region evolves 
slowly or rapidly. The rate is defined:

 r
K

T2
= (7.3)

 where T is the time of divergence of two extant sequences from a common ancestor. 2T is used in the equation to reflect the time 
of divergence from a common ancestor on two separate lineages. T can sometimes be established based upon fossil (paleontological) 
data. As an example, the lineages leading to modern humans and rodents diverged about 90 million years ago. K is the number of 
substitutions per site. The α-globins from rat and human differ by 0.093 nonsynonymous substitutions per site (Graur and Li, 2000); 
nonsynonymous changes are DNA substitutions in coding regions that result in a change in the amino acid that is specified. Given values 
for K and T we can estimate r:

 r
0.093 substitutions per site

2 9 107 years
.( )=

×
(7.4)

 We therefore calculate that the α chain of hemoglobin undergoes 0.52×10−9 nonsynonymous nucleotide substitutions per site per 
year. We can also use Equation (7.3) to estimate the time of divergence of two sequences given values for r and K (T = K/2r; Graur and 
Li, 2000).

http://www.megasoftware.net/
http://www.megasoftware.net/
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A B C

O

(a)

(b)

(c)

(d)

FiGure 7.6 A relative rate test to determine if two sequences follow the molecular clock hypothesis 
of approximately constant rates of amino acid or nucleotide substitution over evolutionary time. (a) Tajima 
(1993) proposed a relative rate test to determine whether protein or nucleic acid sequences from two organ-
isms (A and B) have evolved at a similar relative rate. A and B share a common ancestor (O), and the 
sequence of an outgroup (C) is known. By measuring the substitution rates AB, AC, and BC it is possible to 
infer the rates OA and OB and to perform a chi square (χ2) test to determine whether these rates are compa-
rable (the null hypothesis) or whether one lineage has evolved at a relative accelerated or decelerated rate, 
thus violating the behavior of a molecular clock. Details of this test are presented in Kimura (1993) and 
Nei and Kumar (2000, p. 193–195). (b) Tajima’s test is implemented in MEGA software. The pull-down 
menu for phylogenetic analysis is shown. (c) The test in MEGA allows the user to specify groups A, B, and 
C (outgroup). In this example mitochrondial DNA sequences from human and chimpanzee are compared 
using orang-utan DNA as an outgroup. (d) The output consists of a table listing the number of substitutions 
and an associated p value from a χ2 test. In this example the p value is < 0.05, suggesting that the null 
hypothesis can be rejected and the human and chimpanzee sequences do not exhibit molecular clock-like 
behavior. This specific example is presented in problem (7.1) at the end of this chapter. 

Source: MEGA version 5.2; Tamura et al. (2013). Courtesy of S. Kumar.
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Box 7.2 tajIMa’s relatIve rate test 
Tajima (1993) introduced a test for whether DNA or protein sequences in two lineages (such as human and chimpanzee) undergo 
evolution at equal rates. This is a test of the molecular clock: the null hypothesis is that there is an equal rate, and if we reject the null 
hypothesis at the 0.05 level then one of the lineages is evolving significantly faster or slower. For three protein or DNA sequences A, 
B, and C, let A and B be from two species we wish to compare and C is from an outgroup. For example, we can compare human and 
chimpanzee mitochondrial DNA using orangutan mitochondrial DNA as an outgroup. The relationships of A, B, and the outgroup C are 
shown in the form of a tree in Figure 7.6a. The observed number of sites nijk have the nucleotides i, j, k respectively. The expectation 
of nijk must equal that of njik, that is,

E n E n .ijk jik( ) ( )=  (7.5)

 If this equality occurs, the rate is constant per year; if it does not hold, the rate is not constant. We can measure the number of sites 
m1 in which residues in sequence A differ from those in B and C; similarly m2 corresponds to sites in B that are different than A and C. 
Given that C is an outgroup, the expectation of m1 must equal the expectation of m2, that is,

E m E m .1 2) )( (=  (7.6)

 This equality is tested with a chi-squared analysis:

  (7.7)
m m

m m
2 1 2

1 2

2

χ
( )

=
−
+

 which results in a p value. If p<0.05, the molecular evolutionary clock hypothesis is rejected at the 5% level, regardless of the substi-
tution model. Tajima’s relative rate test is implemented in Molecular Evolutionary Genetics Analysis (MEGA) software (Tamura et al., 
2013). For the mitochondrial sequences analyzed in Figure 7.6, there were 31 unique sequence differences in A (human) and 49 unique 
differences in B (chimpanzee), so the χ2 test statistic was 4.05. This was obtained from:

  (7.8) 31 49

31 49
.2

2

χ ( )= −
+

 This corresponds to a p = 0.04 with 1 degree of freedom, suggesting that we may reject the null hypothesis of equal rates between 
lineages. In using Tajima’s test it is important to select an outgroup that is an appropriate evolutionary distance from the two organisms 
you are comparing. For example, the bonobo or pygmy chimpanzee (Pan paniscus) may be too closely related to human and chim-
panzee as all three species diverged about 5–7 million years ago; it is a problem for an intended outgroup to have the properties of an 
ingroup. At the other extreme, rat or mouse are too divergent as they diverged from the primate lineage about 90 million years ago. 
Suitable choices may include primates such as orang-utan or gorilla; select the closest true outgroup that is available.

and were more reproductively successful than their shorter-necked group members, that 
is, there was positive selection for height.

At the molecular level, a conventional evolutionary point of view is that positive 
and negative selection also operate on DNA sequences. A gene encoding an enzyme 
may duplicate (see Chapters 18 and 19), and then subsequent nucleotide changes may 
allow one of the duplicated genes to encode an enzyme with a novel function that is 
advantageous and hence selected for. This process of positive selection is thought to have 
occurred on two occasions in the evolution of lysozyme, an enzyme that breaks down bac-
terial peptidoglycan linkages and therefore serves as an antimicrobial protein in sources 
such as milk, saliva, and tears. About 25 million years ago the lysozyme gene duplicated 
and assumed a novel digestive function in stomach in the ancestor of goats, cows, and 
deer. The emergence of this novel function occurred independently in leaf-eating mon-
keys such as the langur some 15 million years ago (Jollès et al., 1990). In each of these 
instances the rate of amino acid replacement increased due to positive selection as the 
lysozyme assumed a novel function. Other examples of positive selection include the pri-
mate ribonuclease genes (Zhang and Gu, 1998) and the MEDEA genes in plants (Spillane 
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et al., 2007). In general, variants that have undergone a “selective sweep” have increased 
in prevalence through positive selection (Cutter and Payseur, 2013).

There are several ways to assess whether selection has occurred in sequence data. 
One approach relies on the fact that the portion of DNA that codes for a protein can 
have both synonymous and nonsynonymous substitutions. For a nucleotide change in 
a given codon, a synonymous substitution does not result in a change in the amino acid 
that is specified. For example, consider an alignment of human, chimpanzee, mouse, 
and dog beta globin DNA sequences at their 5′ ends (amino termini of the proteins; 
Fig. 7.7). In the third codon the nucleotides CAT in the human and dog sequences 
encode a histidine. Changing the third position to yield CAC in the chimpanzee and 
mouse sequences does not alter the amino acid that is encoded. Other synonymous 
changes are evident (Fig. 7.7, red-colored nucleotides). A nonsynonymous substitution 
does change the amino acid that is specified. For example, human and chimpanzee 
beta globin have a CCT codon that specifies a proline, but the corresponding canine 
sequence has a single substitution resulting in a codon (GCT) that specifies an alanine 
(Fig. 7.7, codon 6).

Comparison of the rates of nonsynonymous substitution per nonsynonymous site  
(d̂N) versus synonymous substitution per synonymous site (d̂S) may reveal evidence of   
positive or negative selection. If d̂S is greater than d̂N, this suggests that the DNA sequence 
is under negative or purifying selection. Negative selection limits change in a correspond-
ing amino acid sequence; this occurs when some aspect of the structure and/or function 
of a protein is critical and cannot tolerate substitutions. When d̂N is greater than d̂S, this 

Refer to the genetic code in 
Box 3.6.

human                     M   V   H   L   T   P   E   E   K   S   A   V

chimpanzee                M   V   H   L   T   P   E   E   K   S   A   V

mouse                     M   V   H   L   T   D   A   E   K   S   A   V

dog                       M   V   H   L   T   A   E   E   K   S   L   V

human      5’ AACAGACACC ATG GTG CAT CTG ACT CCT GAG GAG AAG TCT GCC GTT 3’

chimpanzee 5’ AACAGACACC ATG GTG CAC CTG ACT CCT GAG GAG AAG TCT GCC GTT 3’

mouse      5’ AACAGACATC ATG GTG CAC CTG ACT GAT GCT GAG AAG TCT GCT GTC 3’

dog        5’ AACAGACACC ATG GTG CAT CTG ACT GCT GAA GAG AAG AGT CTT GTC 3’

codon                     1   2   3   4   5   6   7   8   9  10  11  12

▼ ▼

▼▼

▼

▼

▼▼

▼▼

▼

FiGure  7.7 Phylogenetic trees can be constructed using DNA, RNA, or protein sequence data. 
Often, the DNA sequence is more informative than protein in phylogenetic analysis. As an example, the 
sequences of beta globin from three species are aligned at the 5′ end of the DNA (with the corresponding 
amino termini of the proteins). In the 5′ and 3′ untranslated regions, where no protein is encoded, there 
is typically less selective pressure to maintain particular nucleotide residues. (Some regulatory elements 
may be highly conserved.) Here, just one nucleotide position varies (arrow). Within the protein-coding 
region, there are variant amino acid residues at amino acid positions 6, 7, and 11 (see green arrowheads). 
These variants may be informative in performing phylogeny. However, there is an even greater number 
of informative nucleotide changes, restricting our attention to the coding region. There are six positions 
of synonymous nucleotide changes (nucleotides shaded blue; see codons 3, 7, and 10–12) that do not 
cause a different amino acid to be specified. There are also six positions with nonsynonymous changes 
that do cause an amino acid change (red arrowheads and nucleotides). For one of these (codon 6 of the 
dog sequence), a single-nucleotide change of C→G, relative to the primate sequences, accounts for the 
amino acid change. For three other nonsynonymous codons, two nucleotides are changed relative to the 
primate sequences. The beta globin sequences are from human (GenBank accession NM_000518.4), 
chimpanzee (Pan troglodytes; XM_508242.3), mouse (Mus musculus; NM_016956.3), and dog (Canis 
lupus familiaris; NM_001270884.1).
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suggests that positive selection occurs. An example of positive selection is a duplicated 
gene that is under pressure to evolve new functions.

A variety of computer programs assess the ratio of synonymous to nonsynonymous 
substitutions. One is Synonymous Nonsynonymous Analysis Program (SNAP), which 
requires codon-aligned nucleotide sequences as its input (Korber, 2000). Datamonkey is 
a suite of tools including robust maximum likelihood approaches for determining positive 
or negative selection (Delport et al., 2010). MEGA employs the Nei and Gojobori (1986) 
method to test the null hypothesis that the sequences are under either positive, negative, 
or neutral selection (Tamura et al., 2013).

There is considerable interest in measuring positive or negative selection on a 
genome-wide basis. Many approaches have been adopted (Nielsen, 2005, Sabeti et al., 
2006). For example, Bustamante et al. (2005) studied the DNA sequence 11,000 genes in 
39 individuals and reported rapid amino acid evolution at 9% of the informative loci. For 
many of the genomes that have recently been sequenced (e.g., human, chimpanzee, dog, 
chicken, rat), a description of those genes that are under positive selection is a basic part 
of the genome analysis (see Chapter 19).

Positive and negative can also be studied on a highly compressed time scale in 
viruses. In 1978, 500 women were inadvertently infected with hepatitis C virus (HCV). 
Stuart Ray and colleagues (2005) sequenced a 5.2 kilobase portion of the HCV genome 
from the original inoculum and from 22 women about 20 years after the infection. They 
showed loci with both positive and negative selection, reflecting the evolution of the virus 
to optimize its fitness in each host. For example, amino acid substitutions in known epi-
topes diverged from the consensus sequence in individuals having the human leukocyte 
antigen (HLA) allele for that epitope, indicating a mechanism of immune selection. In 
another study, Cox et al. (2005) studied sequence variation of HCV both before, during, 
and after HCV infection. They showed that amino acid substitutions reflect escape from 
T cell recognition; in those individuals with persistent infection, there were selection 
pressures on epitopes that resulted in nonsynonymous changes. The Ray et al. (2005) 
and Cox et al. (2005) results provide examples of the usefulness of longitudinal studies 
in phylogeny, and they reveal mechanisms through which positive and natural selection 
shape the fitness of viruses.

Neutral theory of Molecular evolution

There is a tremendous amount of DNA polymorphism in all species that is difficult to 
account for by conventional natural selection. We examine this throughout the tree of 
life in Part III. In Chapter 8, we examine single-nucleotide polymorphisms (SNPs), an 
extremely common form of polymorphism that does not appear to be under selection 
in most instances. Similarly, many chromosomal copy number variants occur in appar-
ently normal individuals (Chapter 8). These involve multiple regions of up to millions 
of base pairs of DNA that are deleted or duplicated. The majority of copy number 
variants appear to be sporadic, benign and not under positive or negative selective 
pressure.

In the decades up to the 1960s the prevailing model of molecular evolution was that 
most changes in genes are selected for or against in a Darwinian sense. Motoo Kimura 
(1968, 1983) proposed a different model to explain evolution at the DNA level. Kimura 
(1968) noted that the rate of amino acid substitution averages approximately one change 
per 28 × 106 years for proteins of 100 residues. He further estimated that the correspond-
ing rate of nucleotide substitution must be extremely high (one base pair of DNA replaced 
in the genome of a population every 2 years on average).

Kimura’s conclusion was that most observed DNA substitutions must be neutral 
or nearly neutral, and that the main cause of evolutionary change (or variability) at 

SNAP is available at the HIV 
sequence database website  
(  http://www.hiv.lanl.gov, 
WebLink 7.6) in the tools menu. 
Web Document 7.5 introduces 12 
globin DNA coding sequences 
(11 myoglobin orthologs plus 
one cytoglobin sequence as an 
outgroup); see  http://www 
.bioinfbook.org/chapter7. That 
file includes multiple sequence 
alignments of those sequences. 
We use these sequences as 
examples later in this chapter. 
Web Document 7.6 provides an 
example of how to use four of 
those globin-coding sequences 
to test for selection using SNAP 
software, while Web Document 
7.7 shows an example of tests 
for selection in MEGA software. 
Datamonkey is available at  

 http://www.datamonkey.org/ 
(WebLink 7.7).

Kimura (1968) based his 
calculations on substitution 
rates measured within the 
families of alpha and beta 
globin, cytochrome c, and 
triosephosphate dehydrogenase 
proteins.

http://www.hiv.lanl.gov
http://www.bioinfbook.org/chapter7
http://www.datamonkey.org/
http://www.bioinfbook.org/chapter7
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the  molecular level is random drift of mutant alleles. Most nonsynonymous mutations 
are  deleterious, and are therefore not observed as substitutions in the population. Under 
this model, called the neutral theory of evolution, positive Darwinian selection plays an 
extremely limited role. Indeed, the existence of a molecular clock makes sense in the  context 
of the neutral hypothesis because most amino acid substitutions are neutral.  (Substitutions 
are therefore tolerated by natural selection to change in a manner that has clock-like prop-
erties. If substitutions occurred primarily in the context of positive or negative selection, it 
is unlikely that they could account for clock-like evolution.) In the decades since his 1983 
publication, the neutral theory continues to be tested in a variety of organisms. We explore 
some of these studies when we consider the eukaryotic chromosome in Chapter 8.

Molecular Phylogeny: ProPertIes of trees
Molecular phylogeny is the study of the evolutionary relationships among organisms or 
among molecules using the techniques of molecular biology. Many other techniques are 
used to study evolution, including morphology, anatomy, paleontology, and physiology. 
We focus on phylogenetic trees using molecular sequence data, and begin with an expla-
nation of the nomenclature used to describe trees.

topologies and Branch lengths of trees

There are two main kinds of information inherent in any phylogenetic tree: the topology 
and the branch lengths. The topology of a tree defines the relationships of the proteins 
(or other objects) that are represented in the tree. For example, the topology shows the 
common ancestor of two homologous protein sequences. The branch lengths sometimes 
(but not always) reflect the degree of relatedness of the objects in the tree.

We define the main parts of a tree and the main types of trees, using nine globin 
coding sequences as an example. The four trees shown in Figure 7.8a–d are all made from 
the same input dataset (a multiple sequence alignment), and present alternative ways to 
view and analyze the data. You can make these same trees in MEGA (Tamura et al., 
2013) by following these steps. (1) Install MEGA software. (2) Copy the set of nine DNA 
sequences. (3) In MEGA select Align > Edit/Build Alignment > Create a New Alignment 
> DNA (see Fig. 7.9a, b) and paste the sequences into the Alignment Explorer. (4) Select 
the sequences and choose Alignment > Align by MUSCLE (codons). Keeping the default 
options, select Compute. (5) Save the alignment (via Data > Save Session to create a .mas 
file suffix) and choose Data > Export Alignment > MEGA format to save the alignment as 
9globin_cds.meg. (6) Choose Phylogeny > Construct/Test Neighbor-Joining Tree (Fig. 7.9a). 
A dialog box opens with many options (Fig. 7.9c); choose Compute and a phylogenetic 
tree is generated.

A phylogenetic tree is a graph composed of branches and nodes. Only one branch 
(also called an edge) connects any two nodes. The nodes represent the taxonomic units 
(taxa or taxons); the node (from the Latin for “knot”) is the intersection or terminating 
point of two or more branches. For us, taxa will typically be DNA or protein sequences. 
An operational taxonomic unit (OTU) is an extant taxon present at an external node or 
leaf; the OTUs are the available nucleic acid or protein sequences that we are analyzing 
in a tree. The internal nodes represent ancestral sequences that we can infer but can only 
very rarely observe (as in the case of sequencing DNA from extinct organisms, discussed 
in Chapter 15).

Consider the trees in Figure 7.8. Each tree includes nine OTUs (globins) which 
define the external nodes. In addition, there are internal nodes, each of which  represents 
an inferred ancestor of the OTUs. For example, internal node 1 (Fig. 7.8a) corresponds 
to the globin DNA sequence of the ancestral sequence of mouse, dog, chimpanzee, 

A typical human genome has 
~3.5 million SNPs, most of which 
are intergenic (residing outside 
genes). Of the SNPs in exons, 
about 11,000 are synonymous and 
~11,000 are nonsynonymous. See 
Chapter 20.

You can download MEGA on any 
platform from  http://www 
.megasoftware.net/. The nine 
globin coding sequences (and 
their accession numbers) are 
available from Web Document 
7.8 at  http://bioinfbook.org 
(WebLink 7.8). 9globin_cds.meg 
is available as Web Document 
7.9; upon starting MEGA you can 
import this file directly. These nine 
globin DNAs correspond to the 
nine globin proteins we studied in 
Chapter 6. (DNA sequences are 
not yet available for some of the 
13 globin proteins we viewed in 
Fig. 7.1.)

http://www.megasoftware.net/
http://bioinfbook.org
http://www.megasoftware.net/
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FiGure  7.8 Phylogenetic 
trees contain nodes and branches, 
and are defined by the branch 
lengths and topology. These 
trees were created with MEGA 
software by importing nine glo-
bin DNA coding sequences, 
aligning them using MUSCLE, 
and creating or displaying the 
phylogenetic trees four differ-
ent ways. (a) Neighbor-joining 
(NJ) tree. Two clades are high-
lighted, and two internal nodes 
are indicated. Branch lengths 
were calculated by the p-distance 
correction in the units of number 
of nucleotide differences per site. 
(b) The tree was made as in (a) 
with the option to show topology 
only. Branch length values are 
shown (as in (a)) but the lengths 
of each branch are not propor-
tional. Note that the operational 
taxonomic units (OTUs, i.e., the 
nine extant sequences) are now 
neatly aligned at the right side of 
the tree. An example of a typical 
branch is indicated. (c) The same 
dataset is used to create a tree by 
the UPGMA rather than neigh-
bor-joining method. Note that the 
beta globin (hbb) clade maintains 
the same topology, but the two 
plant globins (highlighted with 
gray background) have a dif-
ferent topology (unrealistically 
sharing a common ancestor with 
vertebrate globins other than neu-
roglobin and myoglobin). The 
UPGMA tree is rooted. (d) The 
neighbor-joining tree of (a) is 
plotted as a radial tree. 

Source: MEGA version 5.2; Tamura 
et al. (2013). Use of this software 
courtesy of S. Kumar.
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(a) Nine globin coding sequences: neighbor-joining tree (rectangular tree style)
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(b) Nine globin coding sequences: neighbor-joining tree (“topology only” tree style)
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(c) Nine globin coding sequences: UPGMA tree
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(d) Nine globin coding sequences: neighbor-joining tree (radial tree style)
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(a) MEGA main dialog box

(b) Alignment editor

(c) Analysis preferences (for making a neighbor-joining tree)

1

2

FiGure 7.9 Using MEGA to make and analyze phylogenetic trees. (a) The main dialog box includes 
an option to import and align DNA or protein sequences (arrow 1). Once entered the data can be viewed 
(arrow 2) and manipulated (e.g., you may include/exclude particular taxa or sequence positions). The 
pull-down menu for phylogenetic analysis is shown. (b) Alignment editor. It is good practice to save 
sequences for analysis as a text file so they can be studied later. (c) Analysis options for making a 
 neighbor-joining tree. Similar preference boxes are available for other tree-making and analysis  methods. 
Options for the Model/Method are shown to the right. 

Source: MEGA version 5.2; Tamura et al. (2013). Courtesy of S. Kumar.
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and human beta globin. (I like to imagine a small, furry creature that roamed the world 
about 100 MYA.) Node 1 represents the beta globin sequence of that creature. Follow-
ing a series of speciation events the dog, rodent, and primate lineages emerged, each 
with its beta globin sequence that underwent changes to the forms we observe today. 
Internal node 2 represents an ancestral sequence that existed in an organism that pre-
dated the divergence of metazoans (animals) and plants some 1500 MYA (1.5 billion 
years ago).

Some OTUs can be swapped (that is, rotated or exchanged) without altering the 
topology of the tree. For example, the soybean globin is depicted above the rice globin in 
Figure 7.8a, but if it is swapped (rotated about the node so that the rice is now on top) the 
topology has not been changed. In general OTUs or clades that share an immediate ances-
tor node can be rotated on that node. Others cannot be swapped however, such as soybean 
globin and any of the other OTUs. (When you view a tree in MEGA, a tool allows you to 
swap branches.)

Branches define the topology of the tree, that is, the relationships among the taxa 
in terms of ancestry. In the trees of Figure 7.8, the branches leading to each of the nine 
OTUs are called external branches (or peripheral branches). The others are called internal 
branches.

Branch lengths should be defined for every tree. In some trees, the branch length 
represents the number of nucleotide or amino acid changes that have occurred in that 
branch. In Figure 7.8a, c, d scale bars are given, and the branch lengths are in units of 
base differences per site. This format (called a phylogram) has the helpful feature of 
conveying a clear visual idea of the relatedness of different proteins within the tree. In 
Figure 7.8b, the branches are unscaled. This implies that they are not proportional to the 
number of changes. This form of presenting a tree (called a cladogram) has the advan-
tage of aligning the OTUs neatly in a vertical column. This may be especially useful if 
the tree has many dozens of OTUs. Note however the branches leading to soybean and 
rice: they have lengths of 0.28 and 0.25 and are drawn to scale in Figure 7.8a but not 7.8b.

An internal node is bifurcating if it has only two immediate descendant lineages 
(branches). Bifurcating trees are also called binary or dichotomous; any branch that 
divides splits into two daughter branches. A tree is multifurcating if it has a node with 
more than two immediate descendants. It is not uncommon to see such trees in the litera-
ture, particular when it is challenging to resolve the relationships between closely related 
species or sequences.

A clade is a group of all the taxa that have been derived from a common ancestor plus 
the common ancestor itself. A clade is also called a monophyletic group. In our context, 
a clade is a set of sequences that form a group within a tree. In the example of any of 
the trees in Figure 7.8a–d a clade of four beta globin sequences is highlighted, including 
three internal nodes. Chicken HBG2 is not a member of this clade. Another clade is high-
lighted, including plant globins (rice and soybean) and their common ancestor.

tree roots

A phylogenetic tree can have a root representing the most recent common ancestor of all 
the sequences. Our set of nine globin DNA sequences is represented as a rooted tree in 
Figure 7.8c. If one assumes a constant molecular clock, then time and distance are propor-
tional: the direction of time moves from oldest (at the root) to newest (at the OTUs). Often 
the root is not known today, and some tree-making algorithms do not provide conjectures 
about placement of a root. The alternative to a rooted tree is an unrooted tree (shown in 
Fig. 7.8a, b, d). An unrooted tree specifies the relationships among the OTUs. However, it 
does not define the evolutionary path completely or make assumptions about common 
ancestors.

A multifurcation is also called a 
polytomy. Multifurcating trees 
are by definition nonbinary. For 
an example of a multifurcating 
tree, see Rokas et al. (2005). 
They reported that many 
metazoan (animal) phyla are 
unresolved, reflecting a temporal 
compression due to the rapid 
radiation of many animal groups. 
Philippe and colleagues (Baurain 
et al., 2007) suggested that 
such multifurcations occur in 
a phylogenetic tree because 
of insufficient sampling. For an 
example of multifurcation see 
Figure 7.29 below.
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If a tree is unrooted you may choose to add a root. The two main ways to do this are 
by specifying an outgroup and by midpoint rooting. To specify an outgroup, include one 
or more sequences that are known to have diverged earlier than the rest. Consider 
 Figure 7.8a, b, d. Since plants diverged from the vertebrate lineage about 1500 MYA, the 
two plant globins could be selected to define the position of the root (see arrow 3 of Fig. 7.8a 
for the position at which the root could be placed). A second way to place a root is through 
midpoint rooting. Here, the longest branch is determined and presumed to be the most 
reasonable site for a root.

enumerating trees and Selecting Search Strategies

The number of possible trees to describe the relationships of a dozen protein sequences is 
staggeringly large. It is important to know the number of possible trees for any tree you 
are making. There is only one “true” tree representing the evolutionary path by which 
molecular sequences (or even species) evolved. The number of potential trees is useful in 
deciding which tree-making algorithms to apply.

The number of possible rooted and unrooted trees is described in Box 7.3. For two 
OTUs, there is only one tree possible. For three taxa, it is possible to construct either one 

In Web Document 7.5 we include 
human cytoglobin as an outgroup 
for 11 closely related myoglobin 
DNA sequences.

Some phylogeny projects involve 
the generation of trees for 
thousands of taxa. See the Deep 
Green plant project at  http://
ucjeps.berkeley.edu/bryolab/
GPphylo/ (WebLink 7.9). The 
Ribosomal Database at  http://
rdp.cme.msu.edu/ (WebLink 7.10) 
includes an analysis of over 2.7 
million ribosomal RNA sequences 
(see Chapter 10). For typical 
analyses, you may analyze several 
dozen taxa. If you want to make 
a phylogenetic tree with the 
globins that are currently in Pfam 
(version 27.0), you could use the 
73 proteins available in the seed 
alignment or all 6000 proteins 
available in the full alignment.

Box 7.3 nuMBer of rooted and unrooted trees 
The number of bifurcating unrooted trees (NU) for n OTUs (n ≥ 3) is given by Cavalli-Storza and 
Edwards (1967):

N
n

n

2 5 !

2 3 !nU 3

( )
( )

= −
−−  (7.9)

 The number of bifurcating rooted trees (NR) for n OTUs (n ≥ 2) is:

N
n

n

2 3 !

2 2 !nR 2

( )
( )

= −
−−  (7.10)

 For example, for four OTUs, NR equals (8–3)!/(22)(2)! = 5!/8 = 15. The number of possible 
rooted and unrooted trees (up to 50 OTUs) is as follows. The values were calculated using MatLab 
software (MathWorks).

Number of OTUs Number of rooted trees Number of unrooted trees

2 1 1

3 3 1

4 15 3

5 105 15

6 945 105

7 10,395 945

8 135,135 10,395

9 2,027,025 135,135

10 34,489,707 2,027,025

15 213,458,046,676,875 8 × 1012

20 8 × 1021 2 × 1020

50 2.8 × 1076 3 × 1074

 To give a sense of the immense number of possible trees corresponding to just a few dozen taxa, 
there are on the order of 1079 protons in the universe.

http://ucjeps.berkeley.edu/bryolab/GPphylo/
http://ucjeps.berkeley.edu/bryolab/GPphylo/
http://rdp.cme.msu.edu/
http://rdp.cme.msu.edu/
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unrooted tree or three different rooted trees (Fig. 7.10). For four taxa, the number of possi-
ble trees rises to three unrooted trees or 15 rooted trees (Fig. 7.11).

An exhaustive search examines all possible trees and selects the one with the most 
optimal features such as the shortest overall sum of the branch lengths. An important 
practical limit is reached at around 12 sequences, for which there are over 6.5 × 108 pos-
sible unrooted trees and 1.3×1010 rooted trees. For about 12 taxa (or fewer) it is possible 
for a standard desktop computer to perform exhaustive searches for which all possible 
trees are evaluated.

The branch-and-bound method provides an exact algorithm for identifying the 
optimal tree (or trees) without performing an exhaustive search (Penny et al., 1982; 
reviewed in Felsenstein, 2004). In one variant of this approach three taxa are used to 
make a tree; only one unrooted tree is possible. A fourth taxon is added, creating three 
possible trees. Upon addition of a fifth taxon there are three times five (i.e., 15) pos-
sible trees. By considering the tree in each group having the shortest branch lengths, 
it is possible to efficiently identify candidates for the optimal tree(s). This allows a 
strategy of not performing exhaustive searches for trees (or subtrees) having a worse 
score than the potential optimal tree. The name of this method refers to a boundary 
that is reached once the search process has identified a subtree with a suboptimal 
score.

For more than a dozen sequences it is generally necessary to use a heuristic algo-
rithm to identify an optimal tree (or trees). A heuristic algorithm explores a subset of all 
possible trees, discarding vast numbers of trees that have a topology that is unlikely to 
be useful. In this way it is possible to create phylogenetic trees having hundreds or even 
thousands of protein (or DNA) sequences. As an example of how a heuristic algorithm 
works, consider a dataset in which the algorithm seeks a tree with the shortest total 
branch lengths (i.e., the most parsimonious tree). This search occurs without evaluating 
all possible trees, but instead by performing a series of rearrangements of the topology. 
Once a tree with a particular score is obtained, the algorithm can establish that score 
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FiGure 7.10 For three operational taxonomic units (such as three aligned protein sequences 1–3), 
there is (a) one possible unrooted tree. (b) Any of these edges may be used to select a root (see arrows), 
from which (c) three corresponding rooted trees are possible. 

Source: MEGA version 5.2; Tamura et al. (2013). Use of software courtesy of S. Kumar.

By analogy to branch-and-bound 
approach, the Needleman–
Wunsch method identifies the 
optimal subpaths in a pairwise 
alignment without exhaustively 
evaluating all possible subpaths 
(Chapter 3).
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FiGure 7.11 For four operational taxonomic units (such as four aligned protein sequences 1–4), 
there are (a) 3 possible unrooted trees and (b) 15 possible rooted trees. Only one of these is a true tree 
in which the topology accurately describes the evolutionary process by which these sequences evolved. 

as an upper limit and discard all trees for which rearrangements are unlikely to yield a 
shorter tree.

A variety of heuristic approaches are available. Stepwise addition involves the addi-
tion of taxa (as described for branch-and-bound) with subsequent branch swapping on 
the shortest tree(s). The choice of which three taxa are joined initially may be determined 
arbitrarily (e.g., by the order in which the sequence are input), randomly, or based on 
which three taxa are most closely related. Another heuristic algorithm is branch swap-
ping. In the “tree bisection and reconnection” version, a tree is bisected along a branch, 
generating two subtrees. These are reconnected by systematically joining all possible 
pairs of branches with one branch originating from each subtree (Fig. 7.12). Heuristic algo-
rithms have an inherent tradeoff between search time and confidence in the search result. 
One can assume that they provide an approximation of the “best” tree.



AnAlyzing DnA, RnA, AnD PRotein SequenceS266

tyPe of trees
Species trees versus Gene/protein trees

Species evolve and genes (and proteins) evolve. The analysis of molecular evolution can be 
complicated by the time that two species diverged. Speciation, the process by which two 
new species are created from a single ancestral species, occurs when the species become 
reproductively isolated (Fig. 7.13). In a species tree, an internal node represents a speciation 
event. For example, for a species tree containing human and mouse taxa connected by a node, 
that node corresponds to the last common ancestor of humans and mice, a creature that lived 
some 90 MYA. In a gene tree (or protein tree), an internal node represents the divergence 
of an ancestral gene into two new genes (or proteins) with distinct sequences. Phylogeny 
software such as MEGA can reconstruct ancestral DNA or protein sequences that are present 
at an inferred node. An example is shown for a group of globin sequences (Fig. 7.14). For a 
tree containing rat and mouse myoglobin sequences, the node connecting those two taxa 
represents the sequence of an ancestral rodent that existed at the time of the rat–mouse spe-
ciation (~25 MYA). In almost all cases this ancestral sequence is not known but is inferred. 
Reconstructions of ancestral states are subject to a variety of artifacts, especially when rates 
of evolution are rapid in some branches of the tree (Cunningham et al., 1998).

This interpretation of a phylogenetic tree should be in terms of historical events 
(Baum et al., 2005). Consider the tree of globins shown in Figure 7.8a. Is a globin from 

For estimates of species’ 
divergence times see  http://
www.timetree.org (WebLink 7.11).
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FiGure 7.12 Branch swapping using the tree bisection reconnection (TBR) approach. (a) After a 
tree is made it is bisected along a branch to form two subtrees. (b, c) These are reconnected by joining 
one branch from each subtree. All possible bisections are evaluated, as well as all possible reconnection 
patterns. The goal is to identify the most optimal tree(s). 

Source: Redrawn from PAUP User’s Guide. Courtesy of D. Swofford.

http://www.timetree.org
http://www.timetree.org
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species 1
(e.g. human)

species 2
(e.g. rat)

speciation event

past

present

1 2 3 4 5

FiGure 7.13 A species tree and a protein (or gene) tree can have a complex relationship. A specia-
tion event, such as the divergence of the lineage that generated modern humans and rodents, can be dated 
to a specific time (e.g., 90 MYA). When speciation occurs, the species become reproductively isolated 
from one another. This event is represented by dotted lines (see horizontal arrow). Phylogenetic analysis 
of a specific group of homologous proteins is complicated by the fact that a gene duplication could have 
preceded or followed the speciation event. In essentially all phylogenetic analyses, the extant proteins 
(OTUs) are sequences from organisms that are alive today. It is necessary to reconstruct the history of the 
protein family as well as the history of each species. In the above example, there are two human paralogs 
and three rat paralogs. Proteins 1 and 5 diverged at a time that greatly predates the divergence of the two 
species. Proteins 2 and 3 diverged at a time that matches the date of species divergence. Proteins 4 and 
5 diverged recently, after the time of species divergence. It is possible to reconstruct both species trees 
and protein (or gene) trees. Adapted from Graur and Li (2000), based upon Nei (1987). Reproduced with 
permission from Sinauer Associates and Columbia University Press.

chicken more closely related to mouse beta globin than to human beta globin? No, it is 
not: mouse and human globin are members of a clade that share a common ancestor (see 
internal node 1), and that ancestor is the descendant of the last common ancestor of mam-
malian and chicken globin. Interpreting trees in phylogeny contrasts with the analysis of 
trees in other areas of biology such as microarray data analysis (Chapter 11). There the 
nodes connecting samples or genes do not have a historical meaning.

In a genetically polymorphic population, gene duplication events may occur before 
or after speciation. A protein (or gene) tree differs from a species tree in two ways (Graur 
and Li, 2000): (1) the divergence of two genes from two species may have predated the 
speciation event, which may cause overestimation of branch lengths in a phylogenetic 
analysis; or (2) the topology of the gene tree may differ from that of the species tree. In 
particular, it may be difficult to reconstruct a species tree from a gene tree. A molecular 
clock may be applied to a gene tree in order to date the time of gene divergence, but it 
cannot be assumed that this is also the time that speciation occurred.

Reconstructing a phylogenetic tree based upon a single protein (or gene) can there-
fore give complicated results. For this reason, many researchers construct trees from a 
variety of distinct protein (or gene) families in order to assess the relationships of differ-
ent species. Another strategy that has been adopted is to generate concatenated protein 
(or DNA) sequences. For example, Baldauf et al. (2000) used four concatenated protein 
sequences to create a comprehensive phylogenetic tree of eukaryotes (Fig. 19.1). Such 
a strategy produces a tree that is weighted by the average protein length; the choice of 
which sequences are included will impact the outcome.

In looking at phylogenetic trees, it is important to be aware of the type of data that 
were used to generate the tree. It is also important to inspect the scale bar (if present) 
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which describes whether the units are number of substitutions per site, number of substi-
tutions per branch, elapsed time, or some other measure.

DNa, rNa, or protein-Based trees

When you generate a phylogenetic tree using molecular sequence data, you can use DNA, 
RNA, or protein sequences. In one common scenario, you may want to evaluate the rela-
tionship of a group of molecules such as globins. The choice of whether to study protein 
or DNA depends in part on the question you are asking. In some cases, protein studies 
are preferable; you may prefer to study a multiple sequence alignment of proteins, or the 
lower rate of substitutions in protein relative to DNA may make protein studies more 
appropriate for comparisons across widely divergent species. In many other cases, study-
ing DNA is more informative than protein. There are several reasons for this.

 • DNA allows the study of synonymous and nonsynonymous mutation rates, as 
dicussed above (Fig. 7.7).

 • Substitutions in DNA include those that are directly observed in an alignment, such 
as single-nucleotide substitutions, sequential substitutions, and coincidental substitu-
tions (depicted in Fig. 7.15). By analyzing two sequences with reference to an ances-
tral sequence (Fig. 7.15a, b), it is possible to infer a great deal of information about 
mutations that do not appear in a direct comparison of two (or more) sequences. 
These mutational processes include parallel substitutions, convergent substitutions, 
and back substitutions (Fig. 7.15c).

 • Noncoding regions (such as the 5′ and 3′ untranslated regions of genes, or introns; see 
 Fig. 7.7) may be analyzed using molecular phylogeny. For some portions of noncoding 
DNA, there is little evolutionary pressure to conserve the nucleotide sequence, and these 

Synapomorphy is defined as a 
character state that is shared 
by several taxa. Homoplasy is 
defined as a character state 
that arises independently (e.g., 
through convergent substitutions 
or back substitutions) but is not 
derived from a common ancestor 
(i.e., is not homologous). See 
Graur and Li (2000).

FiGure 7.14 Reconstruction of ancestral sequences using MEGA. A maximum likelihood tree was 
constructed with nine globin DNA sequences using the Tamura–Nei model with uniform rates among 
sites. The resulting tree was saved (in the Newick format) and used as input to the Ancestors tab (see 
top of Fig. 7.9a) and the tool “Infer Ancestral Sequences (ML).” The tree shows inferred ancestral states 
at a single position (from most likely to least likely). The full dataset can be exported as a spreadsheet. 

Source: MEGA version 5.2; Tamura et al. (2013). Use of software courtesy of S. Kumar.
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regions may vary greatly. That is, the nucleotide substitution rate equals the neutral muta-
tion rate. In other cases there is tremendous nucleotide conservation, perhaps because of 
the presence of a regulatory element such as a transcription factor binding motif.

 • Pseuodgenes have been studied using molecular phylogeny, for example to estimate 
the neutral rate of evolution. By definition, pseudogenes do not encode functional 
proteins (see Chapter 8). Similarly, inactive DNA transposons and other repetitive 
DNA elements have been analyzed as “molecular fossils” to explore speciation 
events and the evolution of chromosomes.

 • The rate of transitions and transversions can be evaluated (Box 7.4). In a comparison 
of mitochondrial DNA among a group of primate species (human, chimpanzee, and 
gorilla), 92% of the differences were transitions (Brown et al., 1982). Transitions 
commonly occur far more frequently than transversions in nuclear DNA as well, and 
this is reflected in various models of nucleotide substitution (see below).

A  A   A   AA
G  G         C  G         C  CC
T  T   T   TT
C  C   C         G  CG
C  C   C          T         A CA
T  T   T   TT
G  G   G   GG
T  T          A  T          C  AC
T  T          G  T   GT
C  C          G  C          T         G GG
A  A   A   AA
G  G          T         G G   GG

ancestral      M   V   H   L   S   P   V   E   K   S   A   V
human          M   V   H   L   T   P   E   E   K   S   A   V
mouse          M   V   H   L   T   D   A   E   K   S   A   V

ancestral  5’ ATG GTG CAT CTG AGT CCT GTT CAG AAG TCT GCT GTT 3’
human      5’ ATG GTG CAT CTG ACT CCT GAG GAG AAG TCT GCC GTT 3’
mouse      5’ ATG GTG CAC CTG ACT GAT GCT GAG AAG TCT GCT GTC 3’

ancestral beta globin

mouse beta globin human beta globin

time time

(a)

(b)

(c)

Substitution mechanism

single substitution
sequential substitution

coincidental substitutions

parallel substitutions

convergent substitutions

back substitution

ancestral globin
(hypothetical)

human globin mouse globin observed 
alignment

FiGure 7.15 Multiple types of mutations occur in sequences. (a) There is a hypothetical, ancestral glo-
bin sequence from which human and murine beta globin diverged in the past at time T when these organ-
isms last shared a common ancestor. We can infer the nucleotide and amino acid sequences of the ancestor. 
(b) Consider a portion of the coding sequence of human and murine beta globin (the data are from Fig. 7.7). 
There are two observed mismatches at the amino acid level, and seven observed mismatches at the nucleotide 
level. Many more than seven mutations may have occurred in this region. Hypothetical ancestral protein and 
DNA sequences are shown, selected for the purpose of illustration. (c) Comparison of 12 nucleotides of the 
hypothetical ancestral sequence with the observed human and murine sequences illustrates several mutational 
mechanisms. Single-nucleotide substitution, sequential substitution, and coincidental substitution could 
all account for observed mutations (red-colored nucleotides). Parallel, convergent, and back substitutions 
could all occur without producing an observed mismatch. In this example, four mutations are observed 
(nucleotides colored red) while 13 mutations actually occurred. (a, c) Data from Graur and Li (2000).

We describe several ribosomal 
RNA databases in Chapter 10. 
These serve as important sources 
of sequences for phylogenetic 
analyses.
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While the analysis of DNA can offer many advantages, it is sometimes  preferable 
to study proteins for phylogenetic analysis. The evolutionary distance between two 
 organisms may be so great that any DNA sequences are saturated. That is, at many sites 
all the possible nucleotide changes may occur (even multiple times), so that  phylogenetic 
signal is lost. Proteins have 20 states (amino acids) instead of only four states for DNA, 
so there is a stronger phylogenetic signal. We saw that BLASTP searches of human 
 globins against plants were more sensitive than BLASTN searches (Chapter 4). For 
closely related sequences, such as mouse versus rat beta globin,  DNA-based  phylogeny 
can be more appropriate than protein studies because of the advantages of DNA 
 discussed above.

Whether nucleotides or amino acids are selected for phylogenetic analysis, the effects 
of character changes can be defined. An unordered character is a nucleotide or amino 
acid that changes to another character in one step. An ordered character is one that must 
pass through one or more intermediate states before it changes to a different character. 
Partially ordered characters have a variable or indeterminate number of states between the 
starting value and the ending value. Nucleotides are unordered characters: any one nucle-
otide can change to any other in one step (Fig. 7.16a). Amino acids are partially ordered. If 
you inspect the genetic code, you will see that some amino acids can change to a different 
amino acid in a single step of one nucleotide substitution, while other amino acid changes 
require two or even three nucleotide mutations (Fig. 7.16b).

fIve stages of PhylogenetIc analysIs
Molecular phylogenetic analyses can be divided into five stages: (1) selection of sequences for 
analysis; (2) multiple sequence alignment of homologous protein or nucleic acid sequences; 
(3) specification of a statistical model of nucleotide or amino acid evolution; (4) tree build-
ing; and (5) tree evaluation. These states are discussed in the following sections.

Stage 1: Sequence acquisition

We have discussed some issues regarding the choice of DNA, RNA, or protein sequences 
for molecular phylogeny. You can acquire the sequences from many sources, including 
the following.

 • HomoloGene at NCBI includes thousands of eurkaryotic protein families. Homol-
oGene entries can be viewed as sequences in the FASTA format (or as a multiple 
sequence alignment).

We will show how the entire 
genome of a fungus duplicated 
in Chapter 18. The evidence 
for this consisted of BLASTP 
searches of all Saccharomyces 
cerevisiae proteins against each 
other, resulting in the detection 
of conserved blocks of sequence 
from various chromosomes 
(see Fig. 18.10). Here, BLASTN 
searches would not have been 
sensitive enough to reveal the 
homology between different 
chromosomes.

Box 7.4 transItIons and transversIons 
A transition is a nucleotide substitution between two purines (A to G or G to A) or between two 
pyrimidines (C to T or T to C). A transversion is the substitution between a purine and a pyrimidine 
(e.g., A to C, C to A, G to T; there are eight possible transversions). The International Union of 

Pure and Applied Chemistry (IUPAC;  http://www.iupac.org) defines many symbols commonly 
used in science. The abbreviations of the four nucleotides are adenine (A), cytosine (C), guanine 
(G), and thymine (T). Additional abbreviations are for an unspecified or unknown nucleotide (N), 
an unspecified purine nucleotide (R), and an unspecified pyrimidine nucleotide (Y).
 You can assess the rate of transitions and transversions using the MEGA package. Open 
a  protein-coding DNA alignment file in MEGA. Visit the Sequence Data Editor and, under the 
 Statistics pull-down menu, choose Nucleotide Pair Frequencies (Directional). The output tabulates 
the number of identical pairs of nucleotides, the transitional and transversional pairs, and their ratio. 
Alternatively, use the Pattern pull-down menu, and choose Computer Transition/Transversion Bias.

http://www.iupac.org
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 • Results from the BLAST family of proteins can be selected, viewed in NCBI Pro-
tein or NCBI Nucleotide, and formatted in the FASTA format. Sequences may be 
obtained from the European Bioinformatics Institute or Ensembl.

 • Sequences from a large variety of databases can be output in the FASTA format (or 
as multiple sequence alignments). For RNA, these databases include Rfam and the 
Ribosomal Database (Chapter 10). For proteins, these databases include Pfam and 
InterPro (Chapter 6). For viruses, examples include reference databases for human 
immunodeficiency virus and hepatitis C virus.

Stage 2: Multiple Sequence alignment

Multiple sequence alignment (Chapter 6) is a critical step of phylogenetic analysis. In 
many cases, the alignment of nucleotide or amino acid residues in a column implies that 
they share a common ancestor. If you misalign a group of sequences, you will still be able 
to produce a tree. However, it is not likely that the tree will be biologically meaningful. If 
you create a multiple alignment of sequences and include a nonhomologous sequence, it 
may still be incorporated into the phylogenetic tree.

In preparing a multiple sequence alignment for phylogenetic analysis, there are sev-
eral important considerations in creating and editing the alignment. Let us introduce these 
ideas by referring to a specific example of 13 globins. We presented a phylogenetic tree 

You can access the HIV Sequence 
Database at  http://www.hiv.lanl 
.gov/ (WebLink 7.12), and the HCV 
database at  http://hcv.lanl.gov/ 
(WebLink 7.13).

Web Document 7.10 (at  http://
www.bioinfbook.org/chapter7) 
includes 13 quasi-randomly 
selected protein sequences. If 
you import these into MEGA you 
can align them using ClustalW 
and generate a tree. Can you 
distinguish that tree from one 
generated using a group of 
homologous proteins?

(a)

(b)

 A C T G

A 0 1 1 1

C 1 0 1 1

T 1 1 0 1

G 1 1 1 0

   A  C  D  E  F  G  H  I  K  L  M  N  P  Q  R  S  T  V  W  Y
A  0  2  1  1  2  1  2  2  2  2  2  2  1  2  2  1  1  1  2  2
C     0  2  3  1  1  2  2  3  2  3  2  2  3  1  1  2  2  1  1
D        0  1  2  1  1  2  2  2  3  1  2  2  2  2  2  1  3  1
E           0  3  1  2  2  1  2  2  2  2  1  2  2  2  1  2  2
F              0  2  2  1  3  1  2  2  2  3  2  1  2  1  2  1
G                 0  2  2  2  2  2  2  2  2  1  1  2  1  1  2
H                    0  2  2  1  3  1  1  1  1  2  2  2  3  1
I                       0  1  1  1  1  2  2  1  1  1  1  3  2
K                          0  2  1  1  2  1  1  2  1  2  2  2
L                             0  1  2  1  1  1  1  2  1  1  2
M                                0  2  2  2  1  2  1  1  2  3
N                                   0  2  2  2  1  1  2  3  1
P                                      0  1  1  1  1  2  2  2  
Q                                         0  1  2  2  2  2  2
R                                            0  1  1  2  1  2
S                                               0  1  2  1  1
T                                                  0  2  2  2
V                                                     0  2  2
W                                                        0  2
Y                                                           0

FiGure  7.16 Step matrices for (a) nucleotides or (b) amino acids describe the number of steps 
required to change from one character to another. For the amino acids, between one and three nucleotide 
mutations are required to change any one residue to another. Adapted from Graur and Li (2000). Used 
with permission.

http://www.hiv.lanl.gov/
http://hcv.lanl.gov/
http://www.bioinfbook.org/chapter7
http://www.bioinfbook.org/chapter7
http://www.hiv.lanl.gov/
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of these proteins in Figure 7.1. The multiple sequence alignment from which this tree was 
generated is shown in Figure 7.17. There are several notable features:

 1. Carefully inspect the alignment to be sure that all sequences are homologous. It is 
sometimes possible to identify a sequence that is so distantly related that it is not 
homologous. You can further test this possibility by performing pairwise alignments 
(is the expect value significant?), BLAST searches, or checking whether the proteins 
are members of a Pfam family. If a sequence is not apparently homologous to the 
others, it should be removed from the multiple sequence alignment.

 2. Some multiple sequence alignment programs may treat distantly related sequences 
by aligning them outside the block of other sequences. If necessary, lower the 
gap creation and/or gap extension penalties to accommodate the distantly related 
homolog(s) into the multiple sequence alignment. As discussed in Chapter 6, 
include methods that incorporate structural information into the alignment of pro-
teins when possible. In some cases, a group of proteins share a domain (defined in 
Chapter 12) but are unrelated outside the domain; you can restrict your analyses to 
just the region of the homologous domain using software such as MEGA. These 
programs allow you to select any specific residues for inclusion or exclusion in the 
phylogenetic analysis.

 3. The complete sequence is not known for many genes. Whenever possible, the multiple 
sequence alignment data used for phylogenetic analyses should be restricted to por-
tions of the proteins (or nucleic acids) that are available for all the taxa being studied.

 4. There are both terminal and internal gaps in this alignment (Fig. 7.17, arrowheads). 
A gap could represent an insertion in some of the sequences or a deletion in 
the others. Most phylogeny algorithms are not equipped to evaluate insertions 
or deletions (also called indels). Many experts recommend that any column 
of a multiple sequence alignment that includes a gap in any position should be 
deleted, and software programs typically delete columns with incomplete data as 
a default option.

 5. In this example, note that the sequences include three myoglobins, three alpha globins, 
three beta globins, and four other globins. Intuitively, we expect these globin sequences 
to be distinguished in a phylogenetic tree, and this is the case (Figs. 7.1 and 7.2). Indeed, 
we can see such differences by inspecting the multiple sequence alignment. There are 
positions in which the amino acid in a particular position differs between the myo-
globins, alpha globins, and beta globins (Fig. 7.17, columns with open circles and red 
lettering). Other positions are highly conserved among all these proteins (columns 
indicated with diamonds), as expected for a family of proteins having closely related 
structures. The phylogenetic tree (Fig. 7.1) visualizes these various relationships. Any 
time you inspect a multiple sequence alignment and a tree, you are looking at related 
information from different perspectives.

A variety of tree-building programs accept a multiple sequence alignment as input. 
ReadSeq is a convenient program that translates multiple sequence alignments into for-
mats compatible with most commonly used phylogeny packages.

Stage 3: Models of DNa and amino acid Substitution

Phylogenetic analyses rely on models of DNA or amino acid substitution. These models 
may be implicit or explicit. For distance-based methods, statistical models are employed 
to estimate the number of DNA or amino acid changes that occurred in a series of pair-
wise comparisons of sequences. For maximum likelihood and Bayesian approaches, 
statistical models are applied to individual characters (residues) in order to assess the 
most likely topology as well as other features such as substitution rates along individual 

First released in 1993, ReadSeq 
was written by Don Gilbert. Many 
ReadSeq servers are available 
online, such as ones at EBI (  
http://www.ebi.ac.uk/Tools/sfc/
readseq/, WebLink 7.14) and the 
NIH (  http://www-bimas.cit.nih 
.gov/molbio/readseq/, WebLink 
7.15). It can be downloaded 
from SourceForge (  http://
sourceforge.net/projects/
readseq/, WebLink 7.16).

http://www.ebi.ac.uk/Tools/sfc/readseq/
http://www.ebi.ac.uk/Tools/sfc/readseq/
http://www-bimas.cit.nih.gov/molbio/readseq/
http://www-bimas.cit.nih.gov/molbio/readseq/
http://sourceforge.net/projects/readseq/
http://sourceforge.net/projects/readseq/
http://sourceforge.net/projects/readseq/
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                ▼▼▼▼▼▼▼▼▼▼▼▼▼ ▼   ○            ▼▼ ▼▼▼▼     ○     ○ ○        
myoglobin_kanga -------------MGLSDGEWQLVLNIWGKVETDEGGHGKDVLIRLFKGHPETLEKFDKF
myoglobin_harbo -------------MGLSEGEWQLVLNVWGKVEADLAGHGQDVLIRLFKGHPETLEKFDKF
myoglobin_gray_ -------------MGLSDGEWHLVLNVWGKVETDLAGHGQEVLIRLFKSHPETLEKFDKF
alpha_globin_ho ------------MV-LSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF
alpha_globin_ka -------------V-LSAADKGHVKAIWGKVGGHAGEYAAEGLERTFHSFPTTKTYFPHF
alpha_globin_do -------------V-LSPADKTNIKSTWDKIGGHAGDYGGEALDRTFQSFPTTKTYFPHF
beta_globin_dog ------------MVHLTAEEKSLVSGLWGKV--NVDEVGGEALGRLLIVYPWTQRFFDSF
beta_globin_rab ------------MVHLSSEEKSAVTALWGKV--NVEEVGGEALGRLLVVYPWTQRFFESF
beta_globin_kan -------------VHLTAEEKNAITSLWGKV--AIEQTGGEALGRLLIVYPWTSRFFDHF
globin_riverlam -PIVDS----GSPAVLSAAEKTKIRSAWAPVYSNYETSGVDILVKFFTSTPAAQEFFPKF
globin_sealampr MPIVDT----GSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKF
globin_soybean  -------------VAFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFL
globin_insect   MKFLILALCFAAASALSADQISTVQASFDKVKGD----PVGILYAVFKADPSIMAKFTQF
                               ::  :   :   :  .               :   *     *  :
                ▼ ▼   ▼▼▼▼▼▼▼○   ▼      ○ ▼▼  ▼▼▼  ○  ○    ▼
myoglobin_kanga KHLKSEDEMKASEDLKKHGITVLTALGNILKKKGHHEAELKPLAQS---HATKHKIPVQF
myoglobin_harbo KHLKTEAEMKASEDLKKHGNTVLTALGGILKKKGHHDAELKPLAQS---HATKHKIPIKY
myoglobin_gray_ KHLKSEDDMRRSEDLRKHGNTVLTALGGILKKKGHHEAELKPLAQS---HATKHKIPIKY
alpha_globin_ho -DLSHGSA-----QVKAHGKKVGDALTLAVGHLDDLPGALSNLSDL---HAHKLRVDPVN
alpha_globin_ka -DLSHGSA-----QIQAHGKKIADALGQAVEHIDDLPGTLSKLSDL---HAHKLRVDPVN
alpha_globin_do -DLSPGSA-----QVKAHGKKVADALTTAVAHLDDLPGALSALSDL---HAYKLRVDPVN
beta_globin_dog GDLSTPDAVMSNAKVKAHGKKVLNSFSDGLKNLDNLKGTFAKLSEL---HCDKLHVDPEN
beta_globin_rab GDLSSANAVMNNPKVKAHGKKVLAAFSEGLSHLDNLKGTFAKLSEL---HCDKLHVDPEN
beta_globin_kan GDLSNAKAVMANPKVLAHGAKVLVAFGDAIKNLDNLKGTFAKLSEL---HCDKLHVDPEN
globin_riverlam KGMTSADELKKSADVRWHAERIINAVNDAVASMDDTEKMSMK--DLSGKHAKSFQVDPQY
globin_sealampr KGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTEKMSMKLRDLSGKHAKSFQVDPQY
globin_soybean  ANPTDG----VNPKLTGHAEKLFALVRDSAGQL-KASGTVVADAALGSVHAQKAVTNPEF
globin_insect   AG-KDLESIKGTAPFEIHANRIVGFFSKIIGELPNIEADVNTFVAS---HKPRGVTHDQ-
                   .          .  *.  :   .        .              *          
                ▼▼▼ ▼○○ ○      ▼▼▼▼▼▼▼▼▼    ○      ○      ▼▼▼▼▼▼▼▼
myoglobin_kanga LEFISDAIIQVIQSKHAGNFGADAQAAMKKALELFRHDMAAKYKEFGFQG
myoglobin_harbo LEFISEAIIHVLHSRHPAEFGADAQGAMNKALELFRKDIATKYKELGFHG
myoglobin_gray_ LEFISEAIIHVLHSKHPAEFGADAQAAMKKALELFRNDIAAKYKELGFHG
alpha_globin_ho FKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR------
alpha_globin_ka FKLLSHCLLVTFAAHLGDAFTPEVHASLDKFLAAVSTVLTSKYR------
alpha_globin_do FKLLSHCLLVTLACHHPTEFTPAVHASLDKFFAAVSTVLTSKYR------
beta_globin_dog FKLLGNVLVCVLAHHFGKEFTPQVQAAYQKVVAGVANALAHKYH------
beta_globin_rab FRLLGNVLVIVLSHHFGKEFTPQVQAAYQKVVAGVANALAHKYH------
beta_globin_kan FKLLGNIIVICLAEHFGKEFTIDTQVAWQKLVAGVANALAHKYH------
globin_riverlam FKVL-AVIADTVAAG---------DAGFEKLSMCIILMLRSAY-------
globin_sealampr FKVLAAVIADTVAAG---------DAGFEKLMSMICILLRSAY-------
globin_soybean  --VVKEALLKTIKAAVGDKWSDELSRAWEVAYDELAAAIKAK--------
globin_insect   ---LNNFRAGFVSYMKAHTDFAGAEAAWGATLDTFFGMIFSKM-------
                   :       .              .       .   :           

FiGure  7.17 We introduce tree-making approaches with a multiple sequence alignment of 13 
globin proteins, made using MAFFT (FFT-NS-1 v5.861). The sequences correspond to those in 
Figure 7.1. There are three myoglobins (red kangaroo Macropus rufus, P02194; harbor porpoise 
 Phocoena phocoena, P68278; gray seal Halichoerus grypus, P68081); three alpha globins (horse Equus 
caballus, P01958; eastern gray kangaroo Macropus giganteus, P01975; dog Canis lupus familiaris, 
P60529); three beta globins (dog Canis lupus familiaris, XP_537902; rabbit Oryctolagus cuniculus, 
NP_001075729; eastern gray kangaroo Macropus giganteus, P02106); two fish globins (European river 
lamprey Lampetra fluviatilis, 690951A; sea lamprey Petromyzon marinus, P02208); an insect globin 
(midge larva Chironomus thummi thummi, P02229); and a plant leghemoglobin (soybean  Glycine 
max 711674A). Gaps in the alignment (solid arrowheads) are not easily interpretable by phylogenetic 
algorithms and could represent either insertions or deletions. Four positions are 100% conserved 
(open diamonds). Amino acids in many other positions distinguish the groups of myoglobins, alpha 
globins, beta globins, and other globins (examples are shown in columns with open circles; in some 
cases the groups are perfectly distinguishable in an aligned column). A phylogenetic tree provides a 
visualization of these relationships (Fig. 3.2 and this chapter). 

Source: MAAFT. Software used with permission from K. Katoh.
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branches. For maximum parsimony, the criterion for finding the best tree is based on the 
shortest branch lengths and, while individual characters are also evaluated, most of these 
statistical models are not applicable.

The simplest approach to defining the relatedness of a group of nucleotide (or amino 
acid) sequences is to align pairs of sequences and count the number of differences. The 
degree of divergence is sometimes called the Hamming distance. For an alignment of length 
N with n sites at which there are differences, the degree of divergence d is defined as:

 d
n

N
100.= × (7.11)

Earlier in this chapter we discussed an example of this type of calculation by Zuckerkandl 
and Pauling (1962) who counted the number of amino acid differences between human 
beta globin and delta, gamma, and alpha globin. The Hamming distance is simple to 
 calculate, but it ignores a large amount of information about the evolutionary  relationships 
among the sequences. The main reason is that character differences are not the same as 
distances: the differences between two sequences are easy to measure, but the genetic 
distance involves many mutations that cannot be observed directly. As shown in Figure 7.15, 
there are many kinds of mutations that occur but are not detected in an estimate of diver-
gence based on counting differences. We also discussed a correction implemented by 
Dickerson (1971) that was proposed by Margoliash and Smith (1965) and by Zuckerkandl 
and Pauling (1965); see Equations (7.1) and (7.2). In MEGA software this is referred to 
as the Poisson correction (see Nei and Kumar, 2000, p. 20). The Poisson correction for 
distance d assumes equal substitution rates across sites and equal amino acid frequencies. 
It uses the following formula to correct for multiple substitutions at a single site:

 d pln 1( )= − −  (7.12)

where d is the distance and p is the proportion of residues that differ. We make the follow-
ing assumptions (Uzzell and Corbin, 1971). First, the probability of observing a change is 
small but nearly identical across the genome. This probability is proportional to the length 
of the time interval λΔt for some constant λ. The probability of observing no changes is 
therefore 1 – λΔt. Second, we assume the number of nucleotide or amino acid changes 
is constant over the time interval t. When a mutation does occur, this does not alter the 
probability of another mutation occurring at this same position. Third, we assume that 
changes occur independently. Equation (7.12) is derived from the Poisson distribution 
which describes the random occurrence of events when that probability of occurrence 
is small. The Poisson distribution is used to model a variety of phenomena, such as the 
decay of radioactivity over time. It is given by the formula:

 P X
e

X
( )

!

Xµ=
µ−

  (7.13)

where P(X) is the probability of X occurrences per unit of time, μ represents the popula-
tion mean number of changes over time, and e is ~2.718 (Zar, 1999).

Let us consider a practical example of how different substitution models affect the dis-
tances that are measured in a set of 13 globin proteins. We enter the proteins into MEGA 
and select the Distances menu (Fig. 7.9a) to compute pairwise distances between the 13 
proteins. We can view the number of amino acid differences per sequence (Fig. 7.18a), 
highlighting several pairwise comparisons that are relatively closely or distantly related. 
Next we estimate the differences based on the Hamming distance (Equation (7.11); called 
the p-distance in MEGA; Fig. 7.18b). When we next use the Poisson correction, the distance 
values are comparable (relative to the Hamming distance) for closely related sequences 
such as globins from two lampreys (Fig. 7.18c, dashed red boxes). However, the estimated  
evolutionary divergence for distantly related sequences is dramatically  different using 
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(a) Number of differences

(b) p-distance

(c) Poisson correction

FiGure 7.18 Estimating the evolutionary divergence between sequences. The MEGA software package includes a menu for choosing mod-
els of nucleotide or amino acid substitution. Similar options are available in other software packages such as PHYLIP. (a) The number of amino 
acid differences per sequence is displayed below the diagonal, based on pairwise analyses of 13 globins (see Fig. 7.17 legend for their accession 
numbers). Two closely related globins (with few differences) are highlighted in dashed green boxes, while two divergent globins (with many 
 differences) are highlighted in solid red boxes. (Standard error estimates can be displayed above the diagonal.) (b) Evolutionary divergence 
was estimated using the p-distance option to calculate the number of amino acid differences per site. Note that each cell (below the diago-
nal)  represents the number of observed differences divided by the total number of positions in the dataset (113 in this case, with all columns 
 containing gaps eliminated from the final data matrix). For example, the value of 0.87 for a comparison of taxa 1 (myoglobin from kangaroo) 
and 12 (soybean globin), shown in a red box, is obtained by dividing 98 by 113. (c) Evolutionary divergence was estimated using the Poisson 
 correction. Note that this introduces a substantial increase in the estimated distance for the more divergent sequences. Such larger estimates are 
likely to be more realistic than simple Hamming distances, and will lead to the creation of trees with different branch lengths and topologies. 

Source: MEGA version 5.2; Tamura et al. (2013). Courtesy of S. Kumar.
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the Poisson correction (Fig. 7.18c, solid red boxes). The consequence of choosing among 
these models is that entirely different phylogentic trees may be constructed. We can use this 
 dataset of globin proteins to construct a neighbor-joining tree (defined in “Making Trees by 
 Distance-Based Methods: Neighbor-Joining” below) using either the p-distance (Fig. 7.19a) 
or the Poisson correction (Fig. 7.19b). Note that the topologies of the two trees are the 

(a) Neighbor-joining tree with p-distance correction

(b) Neighbor-joining tree with Poisson correction
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FiGure 7.19 The effect of differing models of amino acid substitution on phylogenetic trees. Phy-
logenetic trees of 13 globin proteins were made using the neighbor-joining method which uses the dis-
tance information that is presented in Figure 7.18. The trees were made using (a) the p-distance or (b) 
the Poisson correction. Branch lengths are in the units of evolutionary distances used to infer each tree. 
The sum of the branch lengths was 2.81 in (a) and 4.93 in (b). Trees were created using MEGA soft-
ware. Bootstrapping was performed using 500 bootstrap replicates to identify the percent of instances 
(indicated in red) in which bootstrap trees support each clade in the inferred tree. For example, in panel 
(b) in 100% of the bootstrap trials, horse, dog, and kangaroo alpha globin were supported as being in a 
clade. However, the clade containing horse and dog alpha globin proteins was supported in only 52% of 
the bootstrap replicates. This means that in 48% of the bootstrap trees kangaroo alpha globin joined that 
group of proteins, and we can infer that there is not strong support for a distinct, closely related horse/dog 
group that shared an ancestor with the kangaroo protein. In general the bootstrap can provide a measure 
of how well supported an inferred tree topology is upon repeated samplings of the dataset. 

Source: MEGA version 5.2; Tamura et al. (2013). Courtesy of S. Kumar.
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same in this example, but the branch lengths differ. For the optimal tree using the p-dis-
tance correction the sum of the branch lengths is 2.81, while for the tree made with the 
Poisson correction the sum of the branch lengths is 4.93. Such differences can have large 
effects on the interpretation of a phylogenetic tree.

In order to model substitutions that occur in DNA sequences, Jukes and Cantor (1969, 
p. 100) proposed a fundamentally useful corrective formula:

 D p
3

4
ln 1

4

3
.= − −



 (7.14)

As an example of how to use Equation (7.14), consider an alignment where 3 nucleo-
tides out of 60 aligned residues differ. The normalized Hamming distance is 3/60 = 0.05. 
The Jukes–Cantor correction d = – (3/4) ln[1 – (4 × 0.05/3)] = 0.052. In this case, applying 
the correction causes only a small effect. When 30/60 nucleotides differ, the Jukes–Cantor 
correction is – (3/4) ln [1–(4 × 0.5/3)] = 0.82, a far more substantial adjustment.

The Jukes–Cantor one-parameter model describes the probability that each nucle-
otide will mutate to another (Fig. 7.20a). It makes the simplifying assumption that each 
residue is equally likely to change to any of the other three residues and that the four bases 
are present in equal frequencies. This model therefore assumes that the rate of transi-
tions equals the rate of transversions. The corrections are minimal for very closely related 
sequences, but can be substantial for more distantly related sequences. Beyond about 70% 
differences, the corrected distances are difficult to estimate. This approaches the percent 
differences found in randomly aligned sequences.

Dozens of models have been developed that are more sophisticated than Jukes–Cantor. 
Usually, the transition rate is greater than the transversion rate; for eukaryotic nuclear 
DNA it is typically two-fold higher. The Kimura (1980) two-parameter model adjusts the 
transition and transversion ratios by giving more weight to transversions to account for 
their likelihood of causing nonsynonymous changes in protein-coding regions (Fig. 7.20b). 
In any region of DNA (including noncoding sequence), the transition/transversion ratio 
corrects for the biophysical threshold for creating a purine–purine or pyrimidine–pyrimidine 
pair in the double helix. For example, Tamura (1992) extended the two-parameter model 
to adjust for the guanine and cytosine (GC) content of the DNA sequences (Fig. 7.20c). We 
see in Part III of this book that the GC content varies greatly among different organisms 
and different chromosomal regions within an organism’s genome.
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FiGure 7.20 Models of nucleotide substitution. (a) The Jukes–Cantor model of evolution corrects 
for superimposed changes in an alignment. The model assumes that each nucleotide residue is equally 
likely to change to any of the other three residues and that the four bases are present in equal proportions. 
The rate of transitions α equals the rate of transversions β. (b) In the Kimura two-parameter model, α ≠ 
β. Typically, transversions are given more weight. (c) Tamura’s model, which accounts for variations in 
GC content. This is an example of a more complex model of nucleotide substitution. Note that there are 
distinct parameters for nucleotide substitutions, and that many of these parameters are directional (e.g., 
the rate of changing from nucleotides T to C differs from the rate for C to T).
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Changes in nucleotide substitution at a given position of an alignment represent one 
kind of DNA variation, and we have discussed several ways to correct for changes that 
occur. Substitution rates are often variable across the length of a group of sequences. This 
represents a second distinct category of DNA variation, and we can also model these 
changes. Some sites (columns of aligned residues) are relatively invariant, while others 
undergo substitutions readily.

 • Because of the degeneracy of the genetic code, the third position of a codon almost 
always has a higher substitution rate than the first and second codon position.

 • Some regions of a protein have conserved domains. We saw an example of this with 
the insulin orthologs in Figure 7.3. Viruses, immunoglobulin genes, and mitochondrial 
genomes often display hypervariable regions of mutation.

 • Noncoding RNAs (Chapter 10) often have functional constraints such as stem and 
loop structures that include highly conserved positions with low substitution rates.

A gamma (Γ) model accounts for unequal substitution rates across variable sites 
(Box 7.5). The gamma family of distributions can be plotted with the substitution rate (x 
axis) versus the frequency (y axis, Fig. 7.21). This shape of the distribution varies as deter-
mined by the gamma shape parameter α. Zhang and Gu (1998) measured α for protein 
sequences from 51 vertebrate nuclear genes and 13 mammalian mitochondrial genes. 
They reported a range of values from 0.17 to 3.45 (median value 0.71) for the 51 nuclear 
genes. There was a negative correlation between the extent of among-site rate variation 
and the mean substitution rate. Genes with a high level of rate variation among sites (large 
α) have a low mean substitution rate and are therefore slowly evolving. Rapidly evolving 
proteins have a low level of rate variation among sites.

When we create a phylogenetic tree using 13 globin protein sequences using MEGA 
or other software, we can specify that there is a uniform rate of variation among sites 
(thus not invoking the gamma distribution), or we can set the shape parameter of α to any 
positive value. For a group of globin proteins, there are dramatic differences in the branch 
lengths and the topologies of trees created using the same neighbor-joining method and 
the Poisson correction with varying gamma distributions and shape parameters α = 0.25, 
α = 1, or α = 5 (Fig. 7.22a–c).

It is now routine for users to evaluate dozens or even >100 different models of 
nucleotide or amino acid substitutions, and to apply criteria to select the best one for 

Box 7.5 the gaMMa dIstrIButIon 
In mathematics, the gamma distribution Γ is commonly used to model continuous variables that have skewed distributions. The gamma 
distribution has been used to model the among-site rate variation of proteins. Given a substitution rate r at a site, the Γ distribution has 
the following probability density function (Zhang and Gu, 1998):

  (7.15)g r r e( )
/

.r1 /α µ
α

( )
( )

=
Γ

α
α α µ( )− −

The two parameters in this equation are the mean rate μ = E(r) and the shape parameter α. Here E(r) is the mean substitution rate (or the 
expectation of r). Small values of α correspond to a high degree of rate variation among sites. In a study by Zhang and Gu (1998), genes 
with a high value of α included the C-kit proto-oncogene (α = 3.45) and α-globin (α = 1.93), while genes with a low α value included 
histone H2A.X (α = 0.19) and β2 thyroid hormone receptor (α = 0.21).
In the R programming language, you can invoke the gamma distribution from the stats package with the commands

> x=seq(0,10,length=101)
> plot(x,dgamma(x,shape=2)
> lines(x,dgamma(x,shape=0.25))

You can also display the gamma distribution using Microsoft Excel with the function gammadist.
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a particular analysis. For example, the ModelTest program implements a log likeli-
hood ratio test to compare models (Posada and Crandall, 1998; Posada, 2006). The 
log likelihood ratio test is a statistical test of the goodness-of-fit between two models. 
ModelTest systematically tests up to 56 models of variation. The likelihood scores of 
a null model (L0) and an alternative model (L1) are calculated for comparisons of a 
relatively simple model and a relatively complex model. A likelihood ratio test statistic 
is obtained:

  (7.16)2logδ = − Λ

where

 
( )

( )Λ =
 

 

L

L

max Null Model Data

max Alternative Model Data

0

1

|

|
 (7.17)

This test statistic follows a χ2 distribution and, given the number of degrees of freedom 
(equal to the number of additional parameters in the more complex model), a probabil-
ity value is obtained. As an alternative to log likelihood ratio tests, ModelTest also uses 
the Akaike information criterion (AIC; Posada and Buckley, 2004). This measures the 
best-fitting model as that having the smallest AIC value:

  (7.18)= − +L NAIC 2 ln 2

where L is the maximum likelihood for a model using N independently adjusted parame-
ters for that model. In this way good maxium likelihood scores are rewarded, while using 
too many parameters is penalized.
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FiGure 7.21 The gamma distribution describes the substitution rate (x axis; from low to high) with 
a frequency distribution (y axis) that is dependent on shape parameter α. For small values of α (e.g., 
α = 0.25), most of the nucleotides undergo substitutions at slow rates and most of the observed variation 
is attributed to relatively few nucleotide sites that evolve rapidly. For large values of α (e.g., α = 5) few 
nucleotide sites undergo very fast or very slow evolution, and there is minimal among-site rate variation. 
For intermediate values of α (e.g., α = 2) some nucleotides evolve with high substitution rates. This 
figure was generated in the R programming language using the dgamma function of the stats package. 

Source: R Foundation, from http://www.r-project.org.

Λ is the Greek letter 
corresponding to L. 

http://www.r-project.org
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For protein sequences, we can use the ProtTest software to evaluate an  alignment 
(made by MAFFT) of 13 globin protein sequences. ProtTest evaluates a dozen  different 
amino acid substitution matrices (Abascal et al., 2005; Darriba et al., 2011). For 13 
 globins it selects the LG+G+F (Fig. 7.23a). This refers to the LG matrix of Le and 
 Gascuel (2008) (+G assesses the probability of the rate of change, and +F uses the 

ModelTest and ProtTest as well 
as jModelTest2 (Darriba et al., 
2012) were developed by David 
Posada and colleagues, and are 
available from  http://darwin.
uvigo.es/our-software/ (WebLink 
7.17). The site includes servers 
for online analyses. An example 
of an output file from ModelTest, 
showing the results of analyzing 
56 substitution models from 11 
myoglobin coding sequences, 
is shown in Web Document 7.11 
at  http://www.bioinfbook.
org/chapter7. ProtTest output 
for 13 globins is shown as Web 
Document 7.12. The Hepatitis 
C Virus (HCV) sequence 
database at the Los Alamos 
National Laboratories (  http://
hcv.lanl.gov/, WebLink 7.18) 
offers Findmodel, a web-based 
implementation of ModelTest 
that accepts DNA sequences as 
input. It displays over two dozen 
models at  http://hcv.lanl.gov/
content/sequence/findmodel/
findmodel.html (WebLink 7.19).

(a) Neighbor-joining tree with Poisson correction and gamma distribution shape parameter    =0.25

(b) Neighbor-joining tree with Poisson correction and gamma distribution shape parameter    =1

(c) Neighbor-joining tree with Poisson correction and gamma distribution shape parameter    =5
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FiGure  7.22 Effect of changing the α parameter of the Γ distribution on phylogenetic trees. A 
dataset consisting of 13 globin proteins (see Fig. 7.1) was aligned and trees were generated in MEGA 
software using the neighbor-joining technique, the Poisson correction, and α parameters of (a) 0.25, 
(b) 1, or (c) 5. Note the dramatic effects on the estimated branch lengths. Also note that the topologies 
differ within the alpha globin, beta globin, and myoglobin clades. The scale bars are in units of number 
of substitutions. 

Source: MEGA version 5.2; Tamura et al. (2013). Use of software courtesy of S. Kumar.

http://darwin.uvigo.es/our-software/
http://www.bioinfbook.org/chapter7
http://hcv.lanl.gov/
http://hcv.lanl.gov/
http://hcv.lanl.gov/content/sequence/findmodel/findmodel.html
http://darwin.uvigo.es/our-software/
http://www.bioinfbook.org/chapter7
http://hcv.lanl.gov/content/sequence/findmodel/findmodel.html
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(a) ProtTest  lowest- (best-)scoring of 112 models for amino acid substitution (13 globins)

(b) MEGA models for amino acid substitution (13 globins)

************************************************************
Best model according to AIC: LG+G+F
************************************************************
Model          deltaAIC*    AIC          AICw       -lnL    
------------------------------------------------------------
LG+G+F         0.00         5883.41      0.52       -2898.71
LG+I+G+F       0.37         5883.78      0.43       -2897.89
LG+I+F         5.04         5888.45      0.04       -2901.23
LG+F           10.15        5893.56      0.00       -2904.78
RtREV+I+G+F    23.23        5906.65      0.00       -2909.32
RtREV+G+F      23.90        5907.31      0.00       -2910.65
Dayhoff+G+F    26.95        5910.37      0.00       -2912.18
RtREV+I+F      26.99        5910.40      0.00       -2912.20
DCMut+G+F      27.28        5910.69      0.00       -2912.34
Dayhoff+I+G+F  28.08        5911.49      0.00       -2911.75

FiGure 7.23 Evaluation of evolutionary models. (a) ProtTest software evaluates dozens of amino 
acid substitution matrices and many models of evolution to select a model that best fits a given sequence 
alignment. (Here, 13 globin proteins aligned by MAFFT are evaluated.) (b) MEGA also evaluates mul-
tiple models of evolution. For both software packages the Akaike information criterion (AIC) is used to 
identify the optimal model(s). 

Source: (a) ProtTest software. (b) MEGA version 5.2; Tamura et al. (2013). Use of software courtesyof S. Kumar.

amino acid frequencies observed in the dataset). A comparable analysis can be per-
formed in MEGA, which ranks the model of amino acid substitution with the lowest 
AIC value as best (Fig. 7.23b).

Stage 4: tree-Building Methods

There are many ways to build a phylogenetic tree, and these have been reviewed in both 
books (Durbin et al., 1998; Nei and Kumar, 2000; Felsenstein, 2004; Yang, 2006; Bax-
evanis and Ouellette, 2009; Lemey et al., 2009; Hall, 2011) and articles (Felsenstein, 
1988, 1996; Nei, 1996; Thornton and DeSalle, 2000; Bos and Posada, 2005; Whelan, 
2008; Yang and Rannala, 2012).
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We consider four principal methods of making trees: distance-based, maximum 
parsimony, maximum likelihood, and Bayesian inference. Distance-based methods 
begin by analyzing pairwise alignments of the sequences and using those distances to 
infer the relatedness between all the taxa. Maximum parsimony is a character-based 
method in which columns of residues are analyzed in a multiple sequence alignment 
to identify the tree with the shortest overall branch lengths that can account for the 
observed charcter differences. Maximum likelihood and Bayesian inference are mod-
el-based statistical approaches in which the best tree that can account for the observed 
data is inferred.

Molecular phylogeny captures and visualizes the sequence variation that occurs 
in homologous DNA, RNA, or protein molecules. The most popular software tools for 
phylogeny include the following. All are extremely versatile and offer a broad range of 
approaches to making trees.

 • PAUP (Phylogenetic Analysis Using Parsimony) was developed by David Swofford 
et al. (1996).

 • MEGA (Molecular Genetic Evolutionary Analysis) was written by Sudhir Kumar, 
Koichiro Tamura, and Masatoshi Nei (Tamura et al., 2013). Many of its concepts are 
explained in an excellent textbook by Nei and Kumar (2000), Molecular Evolution 
and Phylogenetics.

 • PHYLIP (the PHYLogeny Inference Package), developed by Joseph Felsenstein, is 
one of the most widely used phylogeny programs. Felsenstein has written an out-
standing book, Inferring Phylogenies (2004).

 • TREE-PUZZLE was developed by Korbinian Strimmer, Arndt von Haeseler, and 
Heiko Schmidt. It implements a maximum likelihood method, which is a mod-
el-based approach to phylogeny.

 • MrBayes was developed by John Huelsenbeck and Fredrik Ronquist. It implements 
Bayesian estimation of phylogeny, another model-based approach. MrBayes esti-
mates a quantity called the posterior probability distribution, which is the probability 
of a tree conditioned on the observed data.

Distance-Based
Distance-based methods begin the construction of a tree by calculating the pairwise dis-
tances between molecular sequences (Felsenstein, 1984; Desper and Gascuel, 2006). A 
matrix of pairwise scores for all the aligned proteins (or nucleic acid sequences) is used 
to generate a tree. The goal is to find a tree in which the branch lengths correspond as 
closely as possible to the observed distances. The main distance-based methods include 
the unweighted-pair group method with arithmetic mean (UPGMA) and neighbor-joining 
(NJ). Distance-based methods of phylogeny are computationally fast, so they are partic-
ularly useful for analyses of a larger number of sequences (e.g., >50 or even hundreds or 
thousands).

These methods use some distance metric, such as the number of amino acid changes 
between the sequences, or a distance score (see Box 6.3). A distance metric is distin-
guished by three properties: (1) the distance from a point to itself must be zero, that is, 
D(x, x) = 0; (2) the distance from point x to y must equal the distance from y to x, that 
is, D(x, y) = D(y, x); and (3) the triangle inequality must apply in that D(x, y) ≤ D(x, z) + 
D(z, y). While similarities are also useful, distances (which differ from differences when 
they obey the above properties) offer appealing properties for describing the relationships 
between objects (Sneath and Sokal, 1973).

The observed distances between any two sequences i, j can be denoted dij. The 
sum of the branch lengths of the tree from taxa i and j can be denoted d’ij. These two 
 distance measures are ideally the same, but phenomena such as the occurrence of multiple 

Phylip is available from  
http://evolution.genetics.
washington.edu/phylip/general.
html (WebLink 7.20). MEGA 
can be downloaded from  
http://www.megasoftware.net/ 
(WebLink 7.21). The TREE-
PUZZLE site is  http://www.
tree-puzzle.de/ (WebLink 7.22). 
MrBayes is available from  
http://mrbayes.sourceforge.
net/index.php (WebLink 7.23). 
Joseph Felsenstein offers a web 
page with about 200 phylogeny 
software links at  http://
evolution.genetics.washington.
edu/phylip/software.html 
(WebLink 7.24).

http://evolution.genetics.washington.edu/phylip/general.html
http://www.megasoftware.net/
http://www.tree-puzzle.de/
http://mrbayes.sourceforge.net/index.php
http://evolution.genetics.washington.edu/phylip/software.html
http://evolution.genetics.washington.edu/phylip/software.html
http://www.tree-puzzle.de/
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 substitutions at a single position typically cause dij and d′ij to differ. The goodness-of-fit 
of the distances based on the observed data and the branch lengths can be estimated as 
follows (see Felsentstein, 1984):

 w d dij
ji

ij ij

2∑∑ ( )− ′ (7.19)

The goal is to minimize this value; it is zero when the branch lengths of a tree match the 
distance matrix exactly. For Cavalli-Sforza and Edwards (1967) wij = 1 while for Fitch 
and Margoliash (1967) wij = 1/dij

2.
We can inspect the multiple sequence alignment in Figure 7.17 as well as the tree in 

 Figure 7.1 to think about the essence of distance-based molecular phylogeny. In this approach, 
the percent amino acid similarity between each pair of proteins in the multiple sequence 
alignment can be calculated. Some pairs, such as dog and rabbit beta globins, are very closely 
related and will be placed close together in the tree. Others, such as insect globin and soybean 
globin, are more distant than the other sequences and will be placed farther away on the tree. In 
a sense, we can look at the sequences in Figure 7.17 horizontally, calculating distance measure-
ments between the entire sequences. This approach discards a large amount of information 
about the characters (i.e., the aligned columns of residues), instead summarizing informa-
tion about the overall relatedness of sequences. In constrast, character information is evalu-
ated in maximum parsimony, maximum likelihood, and Bayesian approaches. All strategies 
for inferring phylogenies must make some simplifying assumptions, but nonetheless the 
simpler approaches of distance-based methods very often produce phylogenetic trees that 
closely resemble those derived by character-based methods.

The UPGMA Distance-Based Method We introduce UPGMA here because the tree- 
building process is relatively intuitive and UPGMA trees are broadly used in the field 
of bioinformatics. However, the algorithm most phylogeny experts employ to build dis-
tance-based trees is neighbor-joining (described in the following section). We can make 
an UPGMA tree in MEGA using the phylogeny menu (Fig. 7.9a). UPGMA clusters se-
quences based on a distance matrix. As the clusters grow, a tree is assembled. A tree of 
9 globins using UPGMA is shown in Figure 7.8c. As we would expect, the alpha globins, 
beta globins, lamprey globins, and myoglobins are clustered in distinct clades. The two 
most closely related protein (lamprey globins) are clustered most closely together.

The UPGMA algorithm was introduced by Sokal and Michener (1958) and works as 
follows. Consider five sequences whose distances can be represented as points in a plane 
(Fig. 7.24a). We also represent them in a distance matrix. Some protein sequences, such as 
1 and 2, are closely similar while others (such as 1 and 3) are far less related. UPGMA 
clusters the sequences as follows (adapted from Sneath and Sokal, 1973, p. 230):

 1. We begin with a distance matrix. We identify the least dissimilar groups (i.e., the two 
OTUs i and j that are most closely related). All OTUs are given equal weights. If there 
are several equidistant minimal pairs, one is picked randomly. In Figure 7.24a we see 
that OTUs 1 and 2 have the smallest distance.

 2. Combine i and j to form a new group ij. In our example, groups 1 and 2 have the 
smallest distance (0.1) and are combined to form cluster (1, 2; see Fig. 7.24b). This 
results in the formation of a new, clustered distance matrix having one fewer row and 
column than the initial matrix. Dissimilarities that are not involved in the formation 
of the new cluster remain unchanged; for example, in the distance matrix of Figure 7.23b,  
taxa 3 and 4 still maintain a distance of 0.3. The values for the clustered taxa 
(1, 2) reflect the average of OTUs 1 and 2 to each of the other OTUs. The distance of 
OTU 1 to OTU 4 was initially 0.8, 1.0 for OTU 2 to OTU 4, and 0.9 for OTU (1, 2)  
to OTU 4.

We described the use of a 
distance matrix to create a guide 
tree in Chapter 6.



AnAlyzing DnA, RnA, AnD PRotein SequenceS284

 3. Connect i and j through a new node on the nascent tree. This node corresponds to 
group ij. The branches connecting i to ij and j to ij each have a length Dij/2. In our 
example, OTUs 1 and 2 are connected through node 6, and the distance between 
OTU1 and node 6 is 0.05 (Fig. 7.24b, right side). We label the internal node 6 because 
we reserve the numbers 1–5 on the x axis as the terminal nodes of the tree.
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6
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1 2
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1 2 3 4 5
1 —
2 0.1 —
3 0.8 0.8 —
4 0.8 1 0.3 —
5 0.9 0.9 0.3 0.2 —

(1,2) [3,(4,5)]
(1,2) —

[3,(4,5)] 0.85 —

(1,2) 3 (4,5)
(1,2) —

3 0.8 —
(4,5) 0.9 0.3 —

(1,2) 3 4 5
(1,2) —

3 0.8 —
4 0.9 0.3 —
5 0.9 0.3 0.2 —

0.050.05

0.10.10.050.05

FiGure 7.24 Explanation of the UPGMA method. This is a simple, fast algorithm for making trees. 
It is based on clustering sequences. (a) Each sequence is assigned to its own cluster. A distance matrix, 
based on some metric, quantitates the distance between each object. The circles in the figure represent 
these sequences. (b) The taxa with the closest distance (sequences 1 and 2) are identified and connected. 
This allows us to name an internal node (right, node 6 in (b)). The distance matrix is reconstructed count-
ing taxa 1 and 2 as a group. We can also identify the next closest sequences (4 and 5; distance is in red). 
(c) These next closest sequences (4 and 5) are combined into a cluster, and the matrix is again redrawn. 
In the tree (right side) taxa 4 and 5 are now connected by a new node, 7. We can further identify the next 
smallest distance (value 0.3, red font) corresponding to the union of taxon 3 to cluster (4, 5). (d) The 
newly formed group (cluster 4, 5 joined with sequence 3) is represented on the emerging tree with new 
node 8. Finally, (e) all sequences are connected in a rooted tree.
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 4. Identify the next smallest dissimilarity (between OTUs 4 and 5 in Fig. 7.24b), and 
combine those taxa to generate a second clustered dissimilarity matrix (Fig. 7.24c). In 
this step it is possible that two OTUs will be joined (if they share the least dissimi-
larity), or a single OTU (denoted i) will be joined with a cluster (denoted jk), or two 
clusters will be joined (ij, kl). The dissimilarity of a single OTU i with a cluster jk is 
computed simply by taking the average dissimilarity of ij and ik. In this process a new 
distance matrix is formed, and the tree continues to be constructed. In Figure 7.24c the 
smallest distance in the matrix is 0.3, corresponding to the relation of OTU 3 to the 
combined OTU 4, 5. These are joined in Figure 7.24d in the graphic representation, in 
the distance matrix, and in the tree.

 5. Continue until there are only two remaining groups, and join these.

The tree shown in Figure 7.24 was made by the UPGMA approach using the sequences 
of 13 globin proteins, for which the Poisson-corrected distances are shown in Figure 7.18c. 
We demonstrate how to perform UPGMA calculations on this dataset in a series of 12 
tables available on the supplementary website. Compare Figures 7.18c and 7.24 and note 
that the two closest OTUs of the distance matrix (globin from lamprey and sea lamprey) 
have the shortest branch lengths on the UPGMA tree. The second closest group (myo-
blobin from harbor porpoise and gray seal) has the next shortest branch lengths. That 
group of two OTUs collectively has a short branch length to kangaroo myoglobin. These 
relationships are visualized in the phylogenetic tree.

A critical assumption of the UPGMA approach is that rate of nucleotide or amino 
acid substitution is constant for all the branches in the tree, that is, the molecular clock 
applies to all evolutionary lineages. If this assumption is true, branch lengths can be used 
to estimate the dates of divergence, and the sequence-based tree mimics a species tree. 
An UPGMA tree is rooted because of its assumption of a molecular clock. If it is violated 
and there are unequal substitution rates along different branches of the tree, the method 
can produce an incorrect tree. Note that other methods (including neighbor-joining) do 
not automatically produce a root, but a root can be placed by choosing an outgroup or by 
applying midpoint rooting.

The UPGMA method is a commonly used distance-based method in a variety of appli-
cations including microarray data analysis (see Chapter 11). In phylogenetic analyses using 
molecular sequence data, its simplifying assumptions tend to make it significantly less 
accurate than other distance-based methods such as neighbor-joining. We used UPGMA 
to make a rooted tree of nine globin DNA sequences (Fig. 7.8c). In contrast to the neigh-
bor-joining tree it placed two plant globins in a position that is biologically implausible.

Making Trees by Distance-Based Methods: Neighbor-Joining The neighbor-joining 
method is used for building trees by distance methods (Saitou and Nei, 1987). It produces 
both a topology and branch lengths. We begin by defining a neighbor as a pair of OTUs 
connected through a single interior node X in an unrooted, bifurcating tree. In the tree of 
globins shown in Figure 7.1, porpoise and seal myoglobins are neighbors while kangaroo 
myoglobin is not a neighbor because it is separated from those two proteins by two nodes. 
In general, the number of neighbor pairs in a tree depends on the particular topology. 
For a bifurcating tree with N OTUs, N–2 pairs of neighbors can potentially occur. The 
neighbor-joining method first generates a full tree with all the OTUs in a star-like pat-
tern with no hierarchical structure (Fig. 7.25a). All N (N–1) / 2 pairwise comparisons are 
made to identify the two most closely related sequences. These OTUs give the smallest 
sum of branch lengths (see taxa 1 and 2 in Fig. 7.25b). OTUs 1 and 2 are now treated as a 
single OTU, and the method identifies the next pair of OTUs that gives the smallest sum 
of branch lengths. This could be two OTUs such as 4 and 6, or a single OTU such as 4 
paired with the newly formed clade that includes OTUs 1 and 2. The tree has N–3 interior  

See Web Document 7.13 at 
 http://www.bioinfbook.org/

chapter7/ for a detailed UPGMA 
analysis.

http://www.bioinfbook.org/chapter7/
http://www.bioinfbook.org/chapter7/
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branches, and the neighbor-joining method continues to successively identify nearest 
neighbors until all N–3 branches are identified.

The process of starting with a star-like tree and finding and joining neighbors is con-
tinued until the topology of the tree is completed. We describe how branch lengths are cal-
culated in Box 7.6. The neighbor-joining algorithm minimizes the sum of branch lengths 
at each stage of clustering OTUs, but the final tree is not necessarily the one with the 
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FiGure 7.25 The NJ method is a distance-based algorithm. (a) The OTUs are first clustered in a star-
like tree. “Neighbors” are defined as OTUs that are connected by a single, interior node in an unrooted, 
multifurcating tree. (b) The two closest OTUs are identified, such as OTUs 1 and 2. These neighbors are 
connected to the other OTUs via the internal branch XY. The OTUs that are selected as neighbors in (b) 
are chosen as those that yield the smallest sum of branch lengths. This process is repeated until the entire 
tree is generated. Adapted from Saitou and Nei (1987) with permission from Oxford University Press.

Box 7.6 Branch lengths In a neIghBor-joInIng tree 
Saitou and Nei (1987) defined the sum of the branch lengths as follows. Let Dij equal the distance 
between OTUs i and j, and let Lab equal the branch lengths between nodes a and b. The sum of the 
branch lengths S for the tree in Figure 7.25a is:

  (7.20)S L
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 This result follows from the fact that in computing the total distance each branch is counted N–1 
times. For the tree in Figure 7.25b the branch length between nodes X and Y (given by LXY) is:
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 In Equation (7.21) the first term in the brackets is the sum of all distances that include LXY, and 
the other terms exclude irrelevant branch lengths. Saitou and Nei (1987) provide further detailed 
analyses of the total branch lengths of the tree.



MoLEcULAr PhyLoGENy AND EvoLUTIoN 287

shortest overall branch lengths. Its results may therefore differ from minimum evolution 
strategies or maximum parsimony (discussed in the following section). Neighbor-joining 
produces an unrooted tree topology (because it does not assume a constant rate of evolu-
tion), unless an outgroup is specified or midpoint rooting is applied.

We have shown several examples of neighbor-joining trees for 13 globins (Figs. 7.8, 
7.19, 7.22). This algorithm is especially useful when studying large numbers of taxa. There 
are many examples of its use in the literature such as studies of the 1918 influenza virus 
(Taubenberger et al., 2005). There are many alternative distance-based approaches, some of 
which have been systematically compared (Hollich et al., 2005; Desper and Gascuel, 2006).

Phylogenetic Inference: Maximum Parsimony
The main idea behind maximum parsimony is that the best tree is that with the shortest 
branch lengths possible (Czelusniak et al., 1990). Parsimony-based phylogeny based on 
morphological characters was described by Hennig (1966), and Eck and Dayhoff (1966) 
used a parsimony-based approach to generating phylogenetic trees such as that in  Figure 7.1. 
According to maximum parsimony theory, having fewer changes to account for the way a 
group of sequences evolved is preferable to more complicated  explanations of molecular 
evolution. We therefore seek the most parsimonius explanations for the observed data. 
The assumption of phylogenetic systematics is that genes exist in a nested hierarchy of 
relatedness, and this is reflected in a hierarchical distribution of shared  characters in the 
sequences. The most parsimonious tree is supposed to best describe the relationships of 
proteins (or genes) that are derived from common ancestors.

The steps are as follows:

 • Identify informative sites. If a site is constant (e.g., Fig. 7.17, diamonds), then it is 
not informative. MEGA software includes an option to view parsimony-informative 
sites (Fig. 7.26a, arrow). Noninformative sites include constant sites (Fig. 7.26a, closed 
arrowheads). Also, informative sites are column positions in which there are at least 
two states (e.g., two different amino acid residues) with at least two taxa having each 
state. Non-informative sites are indicated in Figure 7.26a, open arrowheads.

 • Construct trees. Every tree is assigned a cost, and the tree with the lowest cost is sought. 
When a reasonable number of taxa are evaluated, such as about a dozen or fewer, all 
possible trees are evaluated and the one with the shortest branch length is chosen. When 
necessary, a heuristic search is performed to reduce the complexity of the search by 
ignoring large families of trees that are unlikely to contain the shortest tree.

 • Count the number of changes and select the shortest tree (or trees).

Parsimony analysis assumes that characters are independent of each other. The length 
L of a full tree is computed as the sum of the lengths lj of the individual characters:

 L w lj j
j

C

1
∑=

=
 (7.22)

where C is the total number of characters, and the weight wj assigned to each character is 
typically 1. A different weight might be assigned if, for example, nucleotide transversions 
incur a greater penalty than transitions.

As an example of how maximum parsimony works, consider five aligned amino acid 
sequences (Fig. 7.26b, taken from the upper left of Fig. 7.26a). Two possible trees describe 
these sequences (Fig. 7.26c, d); each tree has hypothetical sequences assigned to ancestral 
nodes. One of the trees (Fig. 7.26c) requires fewer changes to explain how the observed 
sequences evolved from a hypothetical common ancestor. In this example, each site is 
treated independently.

An artifact called long-branch attraction sometimes occurs in phylogenetic infer-
ence, and parsimony approaches may be particularly susceptible. In a phylogenetic 

The word parsimony (from the 
Latin parcere, “to spare”) refers 
to simplicity of assumptions in a 
logical formulation.
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kangaroo   LKGH
porpoise   LKGH
gray seal  LKSH
horse α    MLGF
kangaroo α THSF
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FiGure 7.26 Principle of maximum parsimony. (a) Many columns of aligned residues are informative for parsimony analysis. However, 
columns with entirely conserved residues (filled arrowheads) are not informative, nor are columns in which there are at least two different 
residues that occur at least two times (open arrowheads). This alignment of 13 globin proteins was viewed in MEGA software, with the 
option to display parsimony-informative characters selected (see arrow); other options include viewing conserved or variable positions. (b) 
Example of four amino acid residues from five different species (taken from the top left of (a)). Maximum parsimony identifies the simplest 
(most parsimonious) evolutionary path by which those sequences might have evolved from ancestral sequences. (c, d) Two trees showing 
possible ancestral sequences. The tree in (c) requires 7 changes from its common ancestor, while the tree in (d) requires 9 changes. Maximum 
parsimony would therefore select the tree in (c). 

Source: MEGA version 5.2; Tamura et al. (2011). Use of MEGA software courtesy of S. Kumar.

reconstruction of protein or DNA sequences, a branch length indicates the number of 
substitutions that occur between two taxa. Parsimony algorithms assume that all taxa 
evolve at the same rate and that all characters contribute the same amount of infor-
mation. Long-branch attraction is a phenomenon in which rapidly evolving taxa are 
placed together on a tree, not because they are closely related, but artifactually because 
they both have many mutations. Consider the true tree in Figure 7.27, in which taxon 2 
represents a DNA or protein that changes rapidly relative to taxa 1 and 3. The outgroup 
is (by definition) more distantly related than taxa 1, 2, and 3 are to each other. A max-
imum parsimony algorithm may generate an inferred tree (Fig. 7.27) in which taxon 2 
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is “attracted” toward another long branch (the outgroup) because these two taxa have 
a large number of substitutions. Whenever two long branches are present, they may be 
attracted. This may also account for the apparent artifact involving the plant globins in 
our UPGMA tree (Fig. 7.8c).

Model-Based Phylogenetic Inference: Maximum Likelihood
Maximum likelihood is an approach that is designed to determine the tree topology 
and branch lengths that have the greatest likelihood of producing the observed dataset. 
A likelihood is calculated for each residue in an alignment, including some model of 
the nucleotide or amino acid substitution process. It is one of the most computationally 
intensive but most flexible methods available (Felsenstein, 1981). Maximum parsi-
mony methods sometimes fail when there are large amounts of evolutionary change 
in different branches of a tree. In contrast, maximum likelihood provides a statistical 
model for evolutionary change that varies across branches. For example, maximum 
likelihood can be used to estimate positive and negative selection across individual 
branches of a tree.

A computationally tractable maximum likelihood method is implemented in the 
TREE-PUZZLE program (Strimmer and von Haeseler, 1996; Schmidt et al., 2002). 
The program allows you to specify various models of nucleotide or amino acid sub-
stitution and rate heterogeneity (e.g., the Γ distribution). There are three steps. First, 
TREE-PUZZLE reduces the problem of tree reconstruction to a series of quartets of 
sequences. For quartet A, B, C, D there are three possible topologies (Fig. 7.11a). In the 
maximum likelihood step, the program reconstructs all quartet trees. For N sequences 
there are
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possible quartets; for example, for 12 myoglobin DNA sequences there are 
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probabilities.
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is a binomial coefficient that is pronounced “n choose k.” It describes the number of com-
binations, that is, how many ways there are to choose k things out of n possible choices. 
Given the factorial functions n! and k! we can write the binomial coefficient
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FiGure 7.27 Long-branch-chain attraction. The true tree includes a taxon (labeled 2) that evolves 
more quickly than the other taxa. It shares a common ancestor with taxon 3. However, in the inferred tree 
taxon 2 is placed separately from the other taxa because it is attracted by the long branch of the outgroup. 
Adapted from Philippe and Laurent (1998), with permission from Elsevier.
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There are many options for the analysis type, choice of outgroup, evolutionary model, 
Γ-distributed or other models of rate heterogeneity, and other features. There are three 
output files, including a distance matrix, a puzzle report file, and a tree file that can be 
drawn with independent programs such as Tree-View or the DrawTree program of Phylip 
(Fig. 7.28a). Note that TREE-PUZZLE provides support values for the branches of the 
tree, and these values differ from bootstraps (section “Stage 5: Evaluating Trees” below).

The TREE-PUZZLE program also allows an option called likelihood mapping which 
describes the support of an internal branch as well as a way to visualize the phylogenetic 
content of a multiple sequence alignment (Strimmer and von Haeseler, 1996). The quartet 
topology weights sum to 1, and likelihood mapping plots them on a triangular surface. 
In this plot, each dot corresponds to a quartet that is positioned spatially according to its 
three posterior weights (Fig. 7.28b). For 13 globin protein sequences, 9.7% of the quartets 
were unresolved (as indicated in the center of the triangle). An additional 0.3% + 0.4% + 
0.1% of the quartets were partially resolved. For 12 myoglobin DNA coding sequences, 
only 3% of the quartets were unresolved (not shown). Likelihood mapping summarizes 
the strength (or conversely the ambiguity) inherent in a dataset for which you perform 
tree puzzling.

Tree Inference: Bayesian Methods
Bayesian inference is a statistical approach to modeling uncertainty in complex models. 
Conventionally we calculate the probability of observing some data (such as the result of 
a coin toss) given some probability model. This probability is denoted P(data|model), that 
is, the probability of the data given the model. (This is also read as “the probability of the 
data conditional upon the model.”) Bayesian inference instead seeks the probability of a 
tree conditional on the data (that is, based on the observations such as a given multiple 
sequence alignment). This assumes the form P(model|data), P(hypothesis|data), or in our 
case P(tree|data). According to Bayes’s theorem (Huelsenbeck et al., 2002),

  (7.23) Pr[Tree Data]
Pr[Data Tree] Pr[Tree]

Pr[Data]
| = | ×

The TREE-PUZZLE program 
of Heiko Schmidt, Korbinian 
Strimmer and Arndt von Haeseler 
is available at  http://www.tree-
puzzle.de/. You can also perform 
maximum likelihood (and quartet 
puzzling) using DNAML (Phylip), 
PAUP, and MEGA. PhyML 
(Guindon et al., 2010) is available 
online at  http://www.hiv.lanl.
gov/content/sequence/PHYML/
interface.html (WebLink 7.25).
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In the second step, called the quartet puzzling step, a large group of intermediate trees 
is obtained. The program begins with one quartet tree. Since that tree has four sequences, 
N–4 sequences remain. These are systematically added to the branches that are most 
likely based on the quartet results from the first step. Puzzling allows estimates of the sup-
port to each internal branch of the tree that is constructed; such estimates are not available 
for distance- or parsimony-based trees. In the third step, the program generates a majority 
consensus tree. The branch lengths and maximum likelihood value are estimated.

To use TREE-PUZZLE we can download it from its website, install it (e.g., in a 
folder named TREE-PUZZLE), and place a set of aligned protein sequences in the Phylip 
format into the folder. You can try this with the 13 aligned globins available on the web-
site of this textbook, and follow the protocols suggested by Schmidt and von Haeseler 
(2007). Run the command:

A file showing how to format 13 
globin proteins for input into the 
TREE-PUZZLE program is provided 
in Web Document 7.14 at  http://
www.bioinfbook.org/chapter7. 
Web Document 7.15 shows the 
TREE-PUZZLE output file.

Try the following in R:

> choose(12,4)
[1] 495

$ puzzle 13globins.phy

Nguyen et al. (2015; 
PMID 25371430) introduced 
IQ-TREE, a fast method for 
producing phylogenetic trees 
by maximum likelihood. IQ-Tree 
implements a series of strategies 
(both “uphill” moves that perform 
rearrangements to increase the 
tree likelihood and “downhill” 
moves to sample trees avoiding 
local optima). Thus it is both 
fast and effective (finding trees 
with higher likelihoods). These 
investigators also developed 
UFboot, an ultrafast bootstrap 
approximation method (Minh 
et al., 2015; PMID 23418397). 
Both IQ-TREE and UFboot 
are available online and for 
download at  http://www.cibiv.
at/software/iqtree.

http://www.bioinfbook.org/chapter7
http://www.bioinfbook.org/chapter7
http://www.tree-puzzle.de/
http://www.tree-puzzle.de/
http://www.hiv.lanl.gov/content/sequence/PHYML/interface.html
http://www.cibiv.at/software/iqtree
http://www.cibiv.at/software/iqtree
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Bayesian estimation of phylogeny is focused on a quantity called the posterior prob ability 
distribution of trees, Pr[Tree|Data]. (This is read as “the probability of observing a 
tree given the data.”) For a given tree, the posterior probability is the probability that the 
tree is correct, and our goal is to identify the tree with the maximum probability. On the 
 right-hand side of Equation (7.23), the denominator Pr[Data] is a normalizing constant 
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FiGure 7.28 Maximum likelihood inference of phylogenetic trees using quartet puzzling. The taxa 
in any tree with four or more sequences can be represented as quartets of sequences (A, B, C, D) as 
shown in Figure 7.11b. These can be placed in a tree with three possible topologies. Quartet puzzling 
applies maximum likelihood criteria to identify the most likely tree. (a) This tree of 13 globin proteins 
was constructed using the TREE-PUZZLE program. Support values for the branches are shown. (b) 
Likelihood mapping (in TREE-PUZZLE) indicates the frequency with which quartets are successfully 
resolved. In the top triangle, there are 495 points corresponding to all possible quartets. Each quartet has 
three posterior weights which are mapped in triangles. For the analysis of 13 globins, only 9.7% of the 
quartets were unresolved. Likelihood mapping provides an estimate of the ability of a given dataset to 
be successfully analyzed in quartets. 

Source: TREE-PUZZLE.
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The execute command reads in the globin alignment.
Second, specify the evolutionary model and the parameters of your tree construction. 

This can be considered either a strength of the Bayesian approach (because your judg-
ment may help you to select optimal parameters) or a weakness (because there is a sub-
jective element to the procedure). All priors do not have to be informative; conservative 
settings can be selected.

Options are available for data comprising DNA (whether coding or not), ribosomal 
DNA (for the analysis of paired stem regions; see Chapter 10), and protein. Before per-
forming the analysis, a prior probability distribution is specified for the parameters of 
the likelihood model. There are six types of parameters that are set as the priors for the 
model in the case of the analysis of nucleotide sequences: (1) the topology of the trees 
(e.g., some nodes can be constrained to always be present); (2) the branch lengths; (3) 
the stationary frequencies of the four nucleotides; (4) the six nucleotide substitution rates 
(for A↔C, A↔G, A↔T, C↔G, C↔T, and G↔T); (5) the proportion of invariant sites; 
and (6) the shape parameter of the gamma distribution of rate variation. Your decisions on 
how to specify these parameters may be subjective.

As an example of specifying a parameter for protein studies, use the prset  command 
to set the priors for the probabilities. The mixed option of the aamodelpr parameter 
samples across amino acid rate matrices and is one method of averaging across ten models:

The procedure for performing 
this analysis is described in Web 
Document 7.16 at  http://www 
.bioinfbook.org/chapter7.

MrBayes is available from  
http://mrbayes.sourceforge.
net/ (WebLink 7.26). It was 
developed by Fredrik Ronquist 
and John Huelsenbaeck. By late 
2014, the 2001 and 2003 papers 
on MrBayes had been cited in 
over 28,000 publications. Web 
Document 7.17 shows how to 
format 13 globin proteins for 
input into MrBayes, and Web 
Document 7.18 shows the output. 
See  http://www.bioinfbook 
.org/chapter7.

over all possible trees. The numerator consists of the prior probability of a phylogeny 
Pr[Tree] and the likelihood Pr[Data|Tree]. These terms represent a distinctive feature of 
Bayesian inference of phylogeny: the user specifies a prior probability distribution of 
trees (although it is allowable for all possible trees to be given equal weight).

Practically, we can apply a Bayesian inference approach using the MrBayes software 
program (Ronquist et al., 2012). There are four steps. First, read in a Nexus data file. 
This can be accomplished by performing a multiple sequence alignment of interest, then 
converting it into the Nexus format with a tool such as ReadSeq. We use an example of 
13 globin protein-coding DNA sequences. Install the program (on the PC, Linux, or Mac 
O/S), open a terminal window, and enter mb (or in some cases ./mb) on the command 
line to begin the program.

MrBayes > execute globins.nex

MrBayes > prset aamodelpr=mixed

MrBayes > prset aamodelpr=fixed(dayhoff)

MrBayes > mcmc nchains=4 ngen=300000

As an alternative, specify a particular matrix (such as Dayhoff’s) with the argument 
fixed.

Third, run the analysis. This is invoked with the mcmc (Monte Carlo Markov Chain) 
command. You may include dozens of optional arguments such as the number of cycles 
(ngen) or chains (nchains) used in MCMC analysis.

The posterior probability of the possible phylogenetic trees is ideally calculated as a 
summation over all possible trees and, for each tree, all combinations of branch lengths 
and substitution model parameters are evaluated. In practice this probability cannot be 
determined analytically, but it can be approximated using MCMC. This is done by draw-
ing many samples from the posterior distribution (Huelsenbeck et al., 2002). MrBayes 

http://www.bioinfbook.org/chapter7
http://mrbayes.sourceforge.net/
http://www.bioinfbook.org/chapter7
http://www.bioinfbook.org/chapter7
http://www.bioinfbook.org/chapter7
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The summary of parameters includes convergence diagnostics indicating whether 
parameters have been undersampled and which models are favored. MrBayes provides 
a variety of additional output files providing information such as a list of trees found 
during the MCMC search (sorted by posterior probability values for the best trees), 
 phylogram, branch lengths (in units of the number of expected substitutions per site), 
and clade credibility values. The summary statistics for a Bayesian analysis are  provided. 
An example for 13 globin proteins is shown as a phylogram (Fig. 7.29a) or as a radial tree 
(Fig. 7.29b). This radial tree represents a consensus tree and includes support values for 
interior branches.

Bayesian inference of phylogeny resembles maximum likelihood because each 
method seeks to identify a quantity called the likelihood which is proportional to observ-
ing the data conditional on a tree. The methods differ in that Bayesian inference includes 
the specification of prior information and uses MCMC to estimate the posterior probabil-
ity distribution. Although they were introduced relatively recently, Bayesian approaches 
to phylogeny have become increasingly commonplace.

Stage 5: evaluating trees

After you have constructed a phylogenetic tree, how can you assess its accuracy? The main 
criteria by which accuracy may be assessed are consistency, efficiency, and  robustness 
(Hillis and Huelsenbeck, 1992; Hillis, 1995). The accuracy of a tree-building approach or 
the accuracy of a particular tree can be studied. The most common approach is bootstrap 
analysis (Felsenstein, 1985; Hillis and Bull, 1993). Bootstrapping describes the robust-
ness of the tree topology: given a particular branching order, how consistently does a 
tree-building  algorithm find that branching order using a randomly permuted version of 
the original dataset?  Bootstrapping allows an inference of the variability in an unknown 
distribution from which the data were drawn (Felsenstein, 1985).

Nonparametric bootstrapping is performed as follows. A multiple sequence align-
ment is used as the input data to generate a tree using some tree-building method. The 
program then makes an artificial dataset of the same size as the original dataset by ran-
domly picking columns from the multiple sequence alignment. This is usually performed 
with replacement, meaning that any individual column may appear multiple times (or 
not at all). A tree is generated from the randomized dataset. A large number of boot-
strap replicates are then generated; typically, between 100 and 1000 new trees are made 
by this process. The bootstrap trees are compared to the original, inferred tree(s). The 

The tree shown in Figure 7.29a is 
from the sumt output of MrBayes. 
The tree shown in Figure 7.29b 
is made by processing one of the 
MrBayes output files (globins.
nex.con.tre) using the FigTree 
graphical viewer of Andrew 
Rambaut and colleagues. FigTree 
is available at  http://tree.
bio.ed.ac.uk/software/figtree/ 
(WebLink 7.27).

Parametric bootstrapping refers 
to repeated random sampling 
without replacement from the 
original sample. It is not used 
as often as nonparametric 
bootstrapping.

Accuracy refers to the degree 
to which a tree approximates 
the true tree. We define and 
discuss precision and accuracy 
in Chapter 11 in the context of 
microarray data analysis.

runs two simultaneous, independent analyses beginning with distinct, randomly initiated 
trees. This helps to ensure that your analysis includes a good sampling from the posterior 
probability distribution. Eventually the two runs should reach convergence. An MCMC 
analysis is performed in three steps: first, a Markov chain is started with a tree that may 
be randomly chosen. Second, a new tree is proposed. Third, the new tree is accepted 
with some probability. Typically tens to hundreds of thousands of MCMC iterations are 
performed. The proportion of time that the Markov chain visits a particular tree is an 
approximation of the posterior probability of that tree. Some authors have cautioned that 
MCMC algorithms can give misleading results, especially when data have conflicting 
phylogenetic signals (Mossel and Vigoda, 2005). During the MCMC analysis you can 
observe a progressive decline of the average standard deviation of split frequencies, in our 
case declining from 0.12 to ~0.005.

Fourth, summarize the parameters of the run with sump, and summarize the trees 
from MCMC analysis with sumt:

MrBayes > sump
MrBayes > sumt

http://tree.bio.ed.ac.uk/software/figtree/
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(a) Phylogram (MrBayes output) 

(b) Radial tree with clade credibility values (MrBayes output)

   /---- mbkangaro (1)
   |                               |-------------| 0.500 expected changes per site 
   |-- mbharbor_ (2)
   |                                                                               
   |- mbgray_se (3)
   |                                                                               
   |                                     /-- alphahors (4)
   |                                   /-+                                         
   |                                   | \--- alphadog (6)
   +                          /--------+                                           
   |                          |        \--- alphakang (5)
   |                          |                                                    
   |                   /------+         /-- betadog (7)
   |                   |      |       /-+                                          
   |                   |      |       | \--- betarabbi (8)
   |                   |      \-------+                                            
   |                   |              \----- betakanga (9)
   \-------------------+                                                           
                       |                     /- globinlam (10)
                       |      /--------------+                                     
                       |      |              \- globinsea (11)
                       \------+                                                    
                              |           /------------------------- globinsoy (12)
                              \-----------+                                        
                                          \----------------------- globinins (13)

0.3

insect globin

soybean globin

lamprey globin sea lamprey globin

kangaroo myoglobinharbor porpoise myoglobin

gray seal myoglobin

rabbit beta globin

dog beta globin

kangaroo beta globin

horse alpha globindog alpha globin

kangaroo alpha globin

100

100

100

100

56

90
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FiGure 7.29 Bayesian inference of phylogeny for 13 globin proteins using MrBayes software (ver-
sion 3.2.2). The input sequences were aligned using MAFFT at EBI (see Chapter 6). The amino acid 
model (using default settings) was Poisson, with 20 states corresponding to the amino acids and equal 
rates of substitution. Prior parameters included equal, fixed frequencies for the states, an equal proba-
bility for all topologies, and unconstrained branch lengths. Monte Carlo Markov Chain estimation of 
the posterior distribution was achieved using a run of 1,000,000 trials. (a) Phylogram output shows 
clades containing various globin subtypes. Note that the myoglobin group is unresolved. (b) Tree files 
can be exported from MrBayes and viewed using FigTree software. An unrooted radial tree is shown 
here. Nodes are indicated as closed circles. Clade credibility values (values along branches) give 100% 
support for the separation of clades containing myoglobins, alpha globins, beta globins, and lamprey 
globins as well as 90% support for the insect globin and soybean globin clade. The node connecting the 
three unresolved myoglobins is multifurcating. The scale bar is 0.3 expected changes per amino acid site. 

Source: MrBayes. Courtesy of J. Huelsenbeck and F. Ronquist.
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 information you get from bootstrapping is the frequency with which each clade in the 
original tree is observed.

An example of the bootstrap procedure using MEGA is shown in Figure 7.19. The 
percentage of times that a given clade is supported in the original tree is provided based 
on how often the bootstraps supported the original tree topology. Bootstrap values above 
70% are sometimes considered to provide support for the clade designations. Hillis 
and Bull (1993) have estimated that such values provide statistical significance at the 
p < 0.05 level. This approach measures the effect of random weighting of characters in 
the original data matrix, giving insight into how strongly the phylogenetic signal that 
produces a tree is distributed through the multiple sequence alignment. In Figure 7.19a, b, 
the clade containing three alpha globins has 100% bootstrap support, indicating that in 
all 500 bootstrap replicates that clade maintained its integrity (with none of the three 
alpha globins assigned to a different clade, and no non-alpha globin joining that clade). 
However, the clade containing horse and dog alpha globin received only 52% bootstrap 
support (Fig. 7.19b), suggesting that about half the time kangaroo alpha globin was in a 
clade with the dog or horse orthologs. This example shows how viewing the bootstrap 
percentages can be useful to estimate the robustness of each clade in a tree. Note that 
bootstrapping supports a model in which alpha globins, beta globins, myoglobins, and 
lamprey globins each are assigned to a unique clade.

Maximum likelihood approaches report the tree with the greatest likelihood, 
and they also report the likelihood for internal branches. For Bayesian inference of 
 phylogeny, the result is typically the most probable tree (called a maxiumum a posteriori 
 probability estimate). The results are often summarized using a majority rule consensus 
tree in which the values represent the posterior probability that each clade is true. The 
confidence estimates may sometimes be too liberal (Suzuki et al., 2002). For example, 
Mar et al. (2005) found that Bayesian posterior probabilities reached 100% at bootstrap 
percentages of 80%.

PersPectIve
Molecular phylogeny is a fundamental tool for understanding the evolution and rela-
tionships of protein (and nucleic acid) sequences. The main output of this analysis is a 
phylogenetic tree, which is a graphical representation of a multiple sequence alignment. 
The recent rapid growth of DNA and protein sequence data, along with the visual impact 
of phylogenetic trees, has made phylogeny increasingly important and widely applied. 
We will show examples of trees in Chapters 15–19 as we explore genomes across the 
tree of life.

The field of molecular phylogeny includes conceptually distinct approaches includ-
ing those outlined in this chapter (distance, maximum parsimony, maximum likelihood, 
and Bayesian methods). For each of these approaches software tools continue to evolve. 
It is therefore quite reasonable for you to obtain a multiple sequence alignment and 
perform phylogenetic analyses with all four tree-making approaches and with a variety 
of substitution models. The relative merits of these maximum parsimomy versus mod-
el-based approaches continue to be debated (e.g., Kolaczkowski and Thornton, 2004; 
Steel, 2005).

PItfalls
The quality of a phylogenetic tree based on molecular sequence data depends upon 
the quality of the sequence data and the multiple sequence alignment. It is also nec-
essary to choose appropriate models of nucleotide or amino acid substitution for the 
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phylogeny. There is an active debate within the field concerning the importance of 
selecting models without too few or too many parameters. Furthermore, the choice 
of tree-making approaches (from distance to maximum parsimony, maximum likeli-
hood, and Bayesian frameworks) may produce an optimal tree having different topol-
ogies and branch lengths. In contrast to multiple sequence alignments of proteins 
having known structures, there are few “gold standard” benchmark datasets that allow 
objective definitions of the true trees.

In practice, for many published phylogenetic trees the underlying multiple sequence 
alignments are not available and it is challenging to assess the quality of published 
trees. A group of 28 phylogeny experts has begun to define reporting standards for phy-
logenetic analysis (called “Minimum Information about a Phylogenetic Analysis” or 
MIAPA; Leebens-Mack et al., 2006). Such standards may someday require those who 
report trees to include the underlying data as well as descriptions of the models used to 
construct trees.

Each approach has potential pitfalls. Neighbor-joining trees may introduce errors 
for distantly related sequences because they do not adequately account for the high vari-
ances. Bayesian and maximum likelihood approaches are both dependent on appropriate 
prior choices of parameters as well as proper estimation. Maximum parsimony essentially 
offers no statistical model for phylogeny.

Finally, your understanding of the output of the phylogenetic analysis is critical. 
Each of the methods used to reconstruct phylogenetic trees involves many assump-
tions and suffers from potential weaknesses. It is also important to learn how to 
interpret trees as graphs that reflect the historical relationships of taxa; in a tree of 
protein sequences, for example, the internal nodes correspond to inferred ancestral 
sequences.

advIce for students
While there are dozens of leading phylogeny software packages, I suggest that you 
immerse yourself in two: MEGA and MrBayes. Both are extraordinarily popular. As of 
2015 MEGA has been downloaded over 1.1 million times, while the MrBayes papers 
from 2001 and 2003 have together been cited over 25,000 times. Using MEGA provides 
an excellent introduction to phylogeny with the ability to compare distance matrices to 
trees and the ability to create trees using a wide range of methods. MrBayes provides a 
good method of becoming familiar with the thinking behind Bayesian analyses which 
have applications across the field of bioinformatics.

For MEGA and MrBayes, try these four approaches. (1) Read the documenta-
tion accompanying each tool. (2) Read the papers by the authors of the software. (3) 
Make and analyze as many trees as possible. Try taking some globin sequences (from 
the Web Documents given in this chapter), or choose your own data. (4) Find papers 
of interest in the literature – perhaps beginning with papers written by the authors 
of MEGA or MrBayes software – and find several examples of published phyloge-
netic trees. Read those papers and understand how phylogenetic trees were made and 
interpreted. The raw data that go into making a tree are almost never provided with 
publications (although they should always be required), but in many cases you should 
be able to find the DNA, RNA, or protein sequences in public databases and then try 
to make the same trees that were reported in the publications. All this will help you 
become familiar with the methods and scope of phylogeny. More broadly, you will 
learn the broad range of biological principles that can be elucidated through phyloge-
netic analyses.
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Discussion Questions
[7.1] Consider a multiple sequence 
alignment containing a grossly  incorrect 
region. What is the likely consequence 
of using this alignment to infer a 

 phylogenetic tree using a distance-based or character-based 
method?

[7.2] Are there gene (or protein) families for which 
you expect distance-based tree-building methods to 
give  substantially different results than character-based 
 methods?

[7.3] How would you test whether a particular human 
gene (or protein) is under positive selection? What 
species would you select for comparison to the human 
sequence?

[7.4] We showed in Chapter 3 that two proteins shar-
ing 50% identity have undergone an average of about 
80 changes per 100 aligned residues. Does the Jukes–
Cantor correction show the same phenomenon for DNA 
sequences?

proBleMS/CoMputer laB
[7.1] Determine whether human and chimpanzee mito-
chondrial DNA sequences have equal evolutionary rates 
between lineages. To do this, use Tajima’s relative rate test 
as implemented in MEGA.

(1) Obtain MEGA software.

(2) Obtain mitochondrial DNA sequences from human, 
chimpanzee, bonobo, orangutan, gorilla, and gibbon 
from Web Document 7.19 at  http://www.bioinfbook 
.org/chapter7.

(3) Apply Tajima’s test using an appropriate outgroup. Is 
the probability value significant (< 0.05)?

[7.2] Perform phylogenetic analyses using MEGA software.

(1) Go to the conserved domain database (  http://www 
.ncbi.nlm.nih.gov/cdd) at NCBI.

(2) Enter lipocalins (or another family of your choice; you 
can also begin at Ensembl, HomoloGene, or Pfam).

(3) Select the mFasta format then click “Reformat.” The 
result is a multiple sequence alignment. Copy this into 
a text editor (such as NotePad++), and simplify the 
names of the sequences.

(4) Import the file (or paste the sequences) into MEGA as 
shown in Figure 7.9. Align the sequences and save in 
the .mas and .meg formats.

(5) Choose Phylogeny > Construct/Test to create neighbor-
joining, maximum likelihood, or other trees.

(6) For each tree you create, read the caption. Try the tree 
tools (e.g., placing a root, flipping nodes, showing 
or hiding branch lengths, interconverting display 
formats).

(7) Perform bootstrapping. Identify clades having low 
levels of support. Why does this occur?

[7.3] Perform Bayesian inference of phylogeny using 
MrBayes software. A detailed analysis for 13 globin pro-
teins is provided in Web Documents 7.17 and 7.18. Use a 
group of proteins, and also perform an analysis for DNA 
coding sequences from a group of myoglobins (and cyto-
globin as an outgroup; provided in Web Document 7.5).

[7.4] For students interested in Python, explore the ETE 
programming toolkit for the automated manipulation, anal-
ysis, and visualization of phylogenetic trees. The website 

 http://pythonhosted.org/ete2/ (WebLink 7.29) includes 
documentation, access to ETE, and a tutorial.

WeB resources
An informative starting point for phylogeny resources on the World Wide Web is the site 
of Joseph Felsenstein (  http://evolution.genetics.washington.edu/phylip/software.html; 
WebLink 7.24). About 400 packages and 50 web servers are listed, organized by catego-
ries such as phylogenetic methods, computer platforms, and assorted types of data. All 
of the major software tools listed in this chapter have websites that we have listed, and 
most of these sites include detailed documentation and examples that further illustrate 
both the practical use of the software and the conceptual issues addressed by the authors’ 
particular approach to phylogeny.

The HIV Sequence Database at the Los Alamos National Laboratory (discussed in 
Chapter 16 on viruses) offers a brief online guide to making and interpreting phyloge-
netic trees.

The Los Alamos tutorial is 
available at  http://www.hiv 
.lanl.gov/content/sequence/
TUTORIALS/TREE_TUTORIAL/
Tree-tutorial.html (WebLink 7.28).

http://evolution.genetics.washington.edu/phylip/software.html
http://www.bioinfbook.org/chapter7
http://www.hiv.lanl.gov/content/sequence/TUTORIALS/TREE_TUTORIAL/Tree-tutorial.html
http://www.ncbi.nlm.nih.gov/cdd
http://www.ncbi.nlm.nih.gov/cdd
http://pythonhosted.org/ete2/
http://www.bioinfbook.org/chapter7
http://www.hiv.lanl.gov/content/sequence/TUTORIALS/TREE_TUTORIAL/Tree-tutorial.html
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Self-test Quiz
[7.1] According to the molecular clock 
hypothesis:

(a) all proteins evolve at the same, constant rate;

(b) all proteins evolve at a rate that matches the fossil 
record;

(c) for every given protein, the rate of molecular evo-
lution gradually slows down like a clock that runs 
down; or

(d) for every given protein, the rate of molecular evo-
lution is approximately constant in all evolutionary 
lineages.

[7.2] The two main features of any phylogenetic tree are:

(a) the clades and the nodes;

(b) the topology and the branch lengths;

(c) the clades and the root; or

(d) the alignment and the bootstrap.

[7.3] Which one of the following is a character-based phy-
logenetic algorithm?

(a) neighbor-joining;

(b) Kimura;

(c) maximum likelihood; or

(d) PAUP.

[7.4] Two basic ways to make a phylogenetic tree are dis-
tance-based and character-based. A fundamental difference 
between them is:

(a) distance-based methods essentially summarize relat-
edness across the length of protein or DNA sequences 
while character-based methods do not;

(b) distance-based methods are only used for DNA data 
while character-based methods are used for DNA or 
protein data;

(c) distance-based methods use parsimony while charac-
ter-based methods do not; or

(d) distance-based methods have branches that are propor-
tional to time while character-based methods do not.

[7.5] An example of an operational taxonomic unit 
(OTU) is:

(a) multiple sequence alignment;

(b) protein sequence;

(c) clade; or

(d) node.

[7.6] For a given pair of OTUs, which of the following is 
true?

(a) the corrected genetic distance is greater than or equal 
to the proportion of substitutions; or

(b) the proportion of substitutions is greater than or equal 
to the corrected genetic distance.

[7.7] Transitions are almost always weighted more heav-
ily than transversions:

(a) true; or

(b) false.

[7.8] One of the most common errors in making and ana-
lyzing a phylogenetic tree is:

(a) using a bad multiple sequence alignment as input;

(b) trying to infer the evolutionary relationships of genes 
(or proteins) in the tree;

(c) trying to infer the age at which genes (or proteins) 
diverged from each other; or

(d) assuming that clades are monophyletic.

[7.9] You have 1000 viral DNA sequences of 500 residues 
each, and you want to know if there are any pairs that are 
identical (or nearly identical). Which of the following is the 
most efficient method to use?

(a) BLAST;

(b) maximum-likelihod phylogenetic analysis;

(c) neighbor-joining phylogenetic analysis; or

(d) Popset.

suggested readIng
For an excellent review of phylogeny see Yang and Rannala (2012) as well as books by 
Yang (2006) and Felsenstein (2004). For an overview of trends in phylogeny see Blair and 
Murphy (2011). Sudhir Kumar, Koicihro Tamura and colleagues discuss statistical issues 
in phylogenomics (Kumar et al., 2012).

For Bayesian inference of phylogeny, excellent articles have been published by Ron-
quist (2004) and Huelsenbeck et al. (2002).
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PART

II
Genomewide 
Analysis of DNA, 
RNA, and Protein



In this second part of the book we follow 
the flow of central dogma of molecular 
biology by moving from DNA (Chapters 
8 and 9) to RNA (Chapters 10 and 11) to 
protein (Chapters 12 and 13). We then dis-
cuss functional genomics (Chapter 14), 
which is the genome-wide study of the 
function of genes and gene products. We 
focus on next-generation sequencing in 
our studies of DNA and RNA. This builds 
on Part I, in which we described how to 
find sequences (and other information) 
in databases, how to align DNA or pro-
tein sequences in a pairwise fashion or in 
a multiple sequence alignment, and how 
to perform evolutionary studies through 
molecular phylogeny.

(a) (b)

(c)

(d)

Through the first half of the twentieth century, Charles Darlington performed brilliant studies of the 
chromosomes. (a) First PG mitosis in Paris quadrifolia, Liliaceae, showing all stages from prophase 
to telophase; n = 10; 800× magnification. (b) First PG mitosis in polar view. Tradescantia virginiana, 
Commelinaceae; n = 9 (from aberrrant plant with 22 chromosomes). 1200× magnification. (c) Root 
tip squashes showing anaphase separation in Fritillaria pudica, 3x = 39. Note the spiral structure of 
chromatids (daughter chromosomes). 3000× magnification. (d) Cleavage mitosis in the morula of the 
teleostean fish, Coregonus clupeoides, in the middle of anaphase. Spindle structure revealed by slow 
fixation. 4000× magnification.

Source: Darlington (1932). Reproduced with permission from Taylor & Francis.
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Science is about building causal relations between natural phenomena (for instance, 
between a mutation in a gene and a disease). The development of instruments to increase 
our capacity to observe natural phenomena has, therefore, played a crucial role in the 
development of science – the microscope being the paradigmatic example in biology. With 
the human genome, the natural world takes an unprecedented turn: it is better described 
as a sequence of symbols. Besides high‐throughput machines such as sequencers and 
DNA chip readers, the computer and the associated software becomes the instrument to 
observe it, and the discipline of bioinformatics flourishes. However, as the separation 
between us (the observers) and the phenomena observed increases (from organism to cell 
to genome, for instance), instruments may capture phenomena only indirectly, through the 
footprints they leave. Instruments therefore need to be calibrated: the distance between 
the reality and the observation (through the instrument) needs to be accounted for. [We 
are] calibrating instruments to observe gene sequences; more specifically, computer pro-
grams to identify human genes in the sequence of the human genome.

— Martin Reese and Roderic Guigó (2006, p. S1.1), introducing EGASP,  
the Encyclopedia of DNA Elements (ENCODE) Genome Annotation Assessment Project

Inasumch as the only requirement to be qualified as partioning sequences [i.e., intergenic 
DNA including pseudogenes] is to be untranscribable and/or untranslatable, it is not 
likely that these sequences came into being as a result of positive selection. Our view is 
that they are the remains of nature’s experiments which failed. The earth is strewn with 
fossil remains of extinct species; is it a wonder that our genome too is filled with the 
remains of extinct genes?

— Susumu Ohno, So Much “Junk” DNA in our Genome (1972, p. 368)

DNA: The Eukaryotic 
Chromosome

C h a p t e r

8

LEARNING objECTIvES

Upon reading this chapter you should be able to:
 ■ define features of eukaryotic genomes such as the C value;
 ■ define five major types of repetitive DNA and bioinformatics resources to study them;
 ■ describe eukaryotic genes;
 ■ explain several categories of regulatory regions;
 ■ use bioinformatics tools to compare eukaryotic DNA;
 ■ define single-nucleotide polymorphisms (SNPs) and analyze SNP data; and
 ■ compare and contrast methods to measure chromosomal change.

http://www.wiley.com/go/pevsnerbioinformatics
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IntroductIon
Eukaryotes are single‐celled or multicellular organisms that are characterized by the 
presence of a membrane‐bound nucleus and a cytoskeleton. Genomic DNA is orga-
nized into chromosomes, a topic we explore in this chapter from a bioinformatics 
perspective. Later we examine specific eukaryotic genomes beginning with fungi 
(Chapter 18), including Saccharomyces cerevisiae. We then broadly survey eukary-
otes (Chapter 19), from the simplest primitive single‐celled organisms to plants and 
metazoans (animals).

At the start of Chapter 15 we address five basic perpectives on the field of genom-
ics. With respect to the topic of eukaryotic chromosomes, these five perspectives are as 
follows.

 • Perspective 1: Catalog genomic information. We examine genome sizes, noncod-
ing DNA (e.g., repetitive DNA), and coding DNA (genes). For a given segment of 
genomic DNA, we address the problem of annotation: how much repetitive DNA 
is present and of what type? How many protein‐coding genes or RNA genes are 
present?

 • Perspective 2: Catalog comparative genomic information. How can comparative 
genomics help us to understand chromosomal rearrangements that have occurred 
over time?

 • Perspective 3: Biological principles. What are the mechanisms underlying chromo-
somal functions and chromosomal variations such as duplications, inversions, and 
translocations? More broadly, as we examine genomic DNA, we want to address the 
molecular basis of how species evolve.

 • Perspective 4: Human disease relevance. In what ways are chromosomal variants 
associated with disease?

 • Perspective 5: Bioinformatics aspects. What tools are available to understand chro-
mosomes, from genome browsers to gene‐finding algorithms?

In Chapter 15 we suggest that students in genomics classes complete a project 
in which they select either one genome of a favorite organism or one gene and ana-
lyze it according to these five principles. These topics are consistent with a vision for 
the future of genomics research that was outlined by Eric Green and his colleagues 
at the National Human Genome Research Institute (Green and Guyer, 2011). Their 
five sequential, overlapping domains of genomics research are: (1) understanding the 
structure of genomes; (2) understanding the biology of genomes; (3) understanding the 
biology of disease; (4) advancing the science of medicine; and (5) improving the effec-
tiveness of healthcare. The material in this chapter is essential for the understanding of 
the structure and biology of genomes from which further advances in our understanding 
of disease may be made.

Major Differences between eukaryotes and Bacteria and archaea

Eukaryotes share a common ancestry with bacteria and archaea but, when we compare 
them, we find several outstanding differences (Vellai and Vida, 1999; Watt and Dean, 
2000; Cavalier‐Smith, 2002; Katz, 2012). Some of these genomic features are highlighted 
in table 8.1.

 • There is a tremendous diversity of bacterial, archaeal, and eukaryotic life forms. Very 
few bacterial or archaeal life forms are visible to the human eye and indeed many 
eukaryotes are also single‐celled, microscopic organisms. Most life forms that we 
can see are multicellular eukaryotes (e.g., plants and metazoans).

Synonyms of eukaryotes 
include eucaryotae, eucarya, 
eukarya, and eukaryotae. The 
word derives from the Greek 
eu‐ (“true”) and karutos (“having 
nuts”; this refers to the nucleus). 
There is currently a debate as 
to whether the word prokaryote 
should no longer be used. In its 
place we refer to bacteria and 
archaea. See the discussion in 
Chapter 15.

Learn more about the NHGRI 
strategic plan for genomics 
at  http://www.genome.gov/
sp2011/ (WebLink 8.1).

http://www.genome.gov/sp2011/
http://www.genome.gov/sp2011/


DNA: ThE EUkARyoTIC ChRomoSomE 309

 • Eukaryotic cells have three cellular features that are lacking in bacteria and archaea: 
(1) a membrane‐bound nucleus; (2) an extensive system of organelles bound by intra-
cellular membranes; and (3) a cytoskeleton, including elements such as actin and 
tubulin, and molecular motors. Notably, bacteria and archaea lack energy‐producing 
organelles and are incapable of endocytosis, the process by which extracellular cargo 
is internalized (Vellai and Vida, 1999).

 • Most eukaryotes undergo sexual reproduction, although some (such as Bdelloid 
rotifers) are asexual. Bacteria lack gamete fusion and do not exchange DNA 
by sex.

 • The genome size of eukaryotes varies widely, spanning five orders of magnitude 
(table 8.2). In contrast, most archaeal and bacterial genomes are between about 0.2 
and 13 Mb (million base pairs or megabases) in size (see Chapters 15 and 17).

 • Bacterial and archaeal genomes tend to have a relatively high density of protein‐cod-
ing genes and little repetitive or other noncoding DNA. For example, 0.7% of the 
Escherichia coli genome consists of noncoding repeats (Blattner et al., 1997). In 
contrast, many eukaryotic genomes include large tracts of noncoding DNA. Several 
examples are provided in table 8.1.

 • Bacteria and archaea are haploid, that is, the organism has one set of chromosomes. 
Eukaryotes may be haploid or diploid (2x; having two sets of chromosomes) or have 
other ploidy states (such as triploid; 3x). This higher level of ploidy offers eukary-
otes a variety of evolutionary mechanisms such as heterozygous advantage (Watt and 
Dean, 2000).

 • The genomes are organized differently. The majority of bacterial and archaeal 
genomes are organized in circular chromosomes, often with small accompanying 
plasmids (see Fig.  17.1). Eukaryotic nuclear genomes are organized primarily into 
linear chromosomes. These eukaryotic chromosomes are typically numerous (rang-
ing from a few to over one hundred) and each has a centromere (defined below) as 
well as telomeres at either end. These features are absent from bacterial and archaeal 
chromosomes, although centromere‐like elements have been described (Hazan and 
Ben‐Yehuda, 2006). The mechanisms by which bacteria segregate DNA are relatively 
obscure.

Sexual reproduction is called 
syngamy, the process by which 
the haploid chromosomes of 
the male and female gametes 
combine to form the zygote (i.e., 
the fertilized ovum).

taBLe 8.1 Features of several sequenced bacterial and eukaryotic genomes. 
adapted from Gardner et al. (2002), Blattner et al. (1997), International human 
Genome Sequencing Consortium (2001, 2004), and http://www.ensembl.org/.

Feature E. coli K‐12 Parasitea Yeastb Slime 
Moldc

Plantd Humane

Genome size (Mb) 4.64 22.8 12.5 8.1 115 3324

GC content (%) 50.8 19.4 38.3 22.2 34.9 41

Number of coding genes 4288 5268 5770 2799 25,498 20,774

Gene density (kb per 
gene)

0.95 4.34 2.09 2.60 4.53 27

Percent coding 87.8 52.6 70.5 56.3 28.8 1.3

Number of introns 0 7406 272 3578 107,784 53,295

Repeat (%) <1 <1 2.4 <1 14 46

aPlasmodium falciparum; bSaccharomyces cerevisiae; cDictyostelium discoideum; dArabidopsis thaliana; 
eHomo sapiens.

http://www.ensembl.org/
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General Features oF eukaryotIc Genomes and 
chromosomes
C Value paradox: Why eukaryotic Genome Sizes Vary So Greatly

In eukaryotic genomes, the haploid genome size (C value) varies enormously. This is 
shown in table 8.2 for various taxa of eukaryotes, and in table 8.3 for specific eukaryotic 
species. Some genomes are relatively quite small, such as the microsporidian Encephali-
tozoon cuniculi (2.9 Mb; Chapter 18). Others have genome sizes in the range of hundreds 
of billions of base pairs. Tremendous variation in C values occurs among the unicellular 
protists such as amoebae, with a 20,000‐fold range. Within the animal kingdom, the range 
is about 3000‐fold.

The C value is measured in 
base pairs or in picograms (pg) 
of DNA. One picogram of DNA 
corresponds to approximately 
1 Gb.

taBLe 8.2 Genome size of selected phyla or classes eukaryotes. Note that 0.001 Gb 
(gigabases) equals 1 Mb. Values in picograms were multiplied by 0.9869×109 to obtain 
Gb. adapted from Graur and Li (2000) with permission from Sinauer associates, 
animal Genome Size Database of t. r. Gregory (  http://www.genomesize.com) and 
the National Center for Biotechnology Information (  http://www.ncbi.nlm.nih.gov).

Taxon Phylum, class, or division Genome size range (Gb)
Ratio of genome 
sizes (highest/lowest)

All eukaryotes – 0.003–686 228,667

Alveolata – – 22,333

Apicomplexians 0.009–201 22,333

Ciliates 0.024–8.62 359

Dinoflagellates 1.37–98 72

Diatoms 0.035–24.5 700

Amoebae 0.035–686 19,600

Euglenozoa 0.098–2.35 24

Fungi/microsporidia 0.003–1.47 490

Animals – – 3,325

Sponges 0.059–1.78 30

Cnidarians 0.227–1.83 8

Insects 0.089–9.47 106

Elasmobranchs 1.47–15.8 11

Bony fishes 0.345–133 386

Amphibians 0.93–84.3 91

Reptiles 1.23–5.34 4

Birds 1.67–2.25 1

Mammals 1.7–6.7 4

Placozoa 0.04 –

Plants – – 6,140

Algae 0.080–30 375

Pteridophytes 0.098–307 3,133

Gymnosperms 4.12–76.9 19

Angiosperms 0.050–125 2,500

http://www.genomesize.com
http://www.ncbi.nlm.nih.gov
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Remarkably, the range in C values does not correlate well with the complexity of 
organisms. This is true for different species, such as an onion (Allium cepa) compared 
to a human. It is also true for species that are phenotypically very similar. Some organ-
isms such as Fugu rubripes (a pufferfish with a 400 megabase genome) have extremely 
compact genomes while closely related organisms of similar biological complexity have 

taBLe 8.3 Genome size (C value) for various eukaryotic species. adapted from Graur 
and Li (2000) with permission from Sinauer associates; NCBI (  http://www.ncbi.nlm.
nih.gov); Cameron et al. (2000); and the Database of Genome Sizes (  http://www.cbs.
dtu.dk/databases/DOGS/).

Species Common name C value (Gb)

Saccharomyces cerevisiae Yeast   0.012

Neurospora crassa Fungus   0.043

Dysidea crawshagi Sponge   0.054

Caenorhabditis elegans Nematode   0.097

Drosophila melanogaster Fruit fly   0.12

Paramecium aurelia Ciliate   0.19

Oryza sativa Rice   0.47

Strongylocentrotus 
purpuratus

Sea urchin   0.80

Gallus domesticus Chicken   1.23

Erysiphe cichoracearum Powdery mildew   1.5

Boa constrictor Snake   2.1

Parascaris equorum Roundworm   2.5

Carcharias obscurus Sand‐tiger shark   2.7

Canis familiaris Dog   2.9

Rattus norvegicus Rat   2.9

Xenopus laevis African clawed frog   3.1

Homo sapiens Human   3.3

Nicotania tabacum Tobacco plant   3.8

Locusta migratoria Migratory locust   6.6

Paramecium caudatum Ciliate   8.6

Allium cepa Onion  15

Truturus cristatus Warty newt  19

Thuja occidentalis Western giant cedar  19

Coscinodiscus 
asteromphalus

Centric diatom  25

Lilium formosanum Lily  36

Amphiuma means Two‐toed salamander  84

Pinus resinosa Canadian red pine  68

Protopterus aethiopicus Marbled lungfish 140

Amoeba proteus Amoeba 290

Amoeba dubia Amoeba 690
An online database of plant C 
values is available at  http://
data.kew.org/cvalues/ (WebLink 
8.2). Currently (February 2015) it 
lists data for over 8500 species. 
The Animal Genome Size 
Database (from T. Ryan Gregory) 
is online at  http://www.
genomesize.com/ (WebLink 8.3).

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.cbs.dtu.dk/databases/DOGS/
http://www.cbs.dtu.dk/databases/DOGS/
http://data.kew.org/cvalues/
http://data.kew.org/cvalues/
http://www.genomesize.com/
http://www.genomesize.com/
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genomes that are orders of magnitude larger (for example, the lungfish Protopterus aethi-
opicus genome size is ∼130,000 megabases). This lack of correlation is called the C value 
paradox (Hartl, 2000; Hancock, 2002; Kidwell, 2002; Knight, 2002).

The genomes of many eukaryotes were sequenced over a decade ago, including 
Caenorhabditis elegans (1998), Drosophila melanogaster (2000), Homo sapiens (2001), 
and Mus musculus (2002) (see Chapters 15 and 19). These whole‐genome studies provide 
one clear answer to the C value paradox: genomes are filled with large tracts of noncoding 
DNA sequences in varying amounts, which accounts for the variation in genome size. 
A major hypothesis is that this “extra” DNA, first called “junk” DNA by Susumu Ohno 
(1972), has little or no adaptive advantage for the organism (or for the species). Of course, 
some intergenic DNA contains elements having critical roles such as regulating gene 
expression. One way to assess the functional importance of large amounts of genomic 
DNA is to determine the extent to which DNA loci are under selective constraint; approx-
imately 10% of the human genome has been estimated to be selective pressure to be 
conserved across species.

This explanation of the C value paradox has been reasonably well accepted in recent 
decades (Eddy, 2012), until it was challenged by the ENCODE project in 2012. Below we 
discuss the ENCODE explanation and compare it to the traditional model.

Organization of eukaryotic Genomes into Chromosomes

Genomic DNA is organized in chromosomes. Originally, chromosomes were defined 
morphologically as the bodies into which the nucleus resolves itself at the beginning of 
mitosis and from which it is derived at the end of mitosis (Waldeyer, 1888; Darlington, 
1932). It was clear by the 1880s that the nucleus is the cellular organelle that directs 
the cell division process, and that mitosis occurs in both plants and animals (Lima‐de‐
Faria, 2003). Visualizing chromosomes cytogenetically was challenging. Reports from 
the 1920s that there are 48 human chromosomes were not corrected until Joe Hin Tjio and 
Albert Levan (1956) reported that the diploid number of chromosomes is 46, that is, there 
are 23 pairs of human chromosomes.

As we explore a variety of eukaryotic genomes that have been completely 
sequenced, it is helpful to describe the structure and content of chromosomes. We refer 
to a karyotype of human metaphase chromosomes visualized with Wright’s stain (Fig. 
8.1a). A variety of stains produce banding patterns on chromosomes. These include Q 
bands (based on stains using quinacrine mustard or derivatives) and G bands (based 
on the Giemsa dye; Wright’s stain is an example of such a dye). These dyes stain the 
entire length of each chromosome and produce a characteristic banding pattern. A band 
is defined as a portion of a chromosome that is distinguishable from adjacent segments 
by appearing lighter or darker.

There are several major features of eukaryotic chromosomes. The most apparent 
landmarks are the two telomeres (the chromosome ends) and the centromere. Telo-
meres are structures characterized by tandem arrays of repetitive sequences found at 
the chromosome ends. They provide stability to chromosomes by preventing the deg-
radation of the chromosome end and by blocking the fusion of chromosome ends. The 
centromere, a region that remains unstained with many dyes, appears as a constriction. 
Centromeres may be metacentric (located near the middle of the chromosome) or acro-
centric (located close to a telomere). In humans, the five acrocentric chromosomes are 
13, 14, 15, 21, and 22. In some species such as the mouse (Mus musculus), all chromo-
somes are acrocentric.

The human autosomes consist of chromosomes 1–22, while X and Y are the sex 
chromosomes. In the particular karyotype shown in Figure 8.1a there is a hemizygous 
deletion of the terminus of chromosome 11q. In a euploid (apparently normal) individual 

Chromosomes are often 
studied at metaphase, when 
they are thickest and most 
condensed. For human studies, 
a sample is typically collected 
from blood cells or amniotic 
fluid. Chromosomes are most 
often visualized using dyes or 
using specific DNA probes by 
fluorescence in situ hybridization 
(FISH).
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there are two copies of each autosome per nucleus; in a hemizygous deletion there is only 
one copy; and in a homozygous deletion there are zero copies. Using conventional karyo-
typing, deletions or duplications as small as several million base pairs can be observed 
by inspection of the banding patterns. Figure 8.1b shows a trisomy of chromosome 21 in 
which the entire chromosome (∼48 Mb) is present in three copies.

Deletion 11q syndrome results 
in trigonencephaly (a triangle‐
shaped head), a carp‐shaped 
mouth, and cardiac defects 
(Jones, 1997).

FIGUre 8.1 Example of human karyotypes. (a) The chromosomes are visualized with Wright’s stain. 
Centromeres are visible as an indentation in the chromosome (e.g., see arrows A and C). This karyotype 
is of a person with a hemizygous deletion of a telomeric portion of chromosome 11q, resulting in a loss 
of several million base pairs of DNA (arrow B). (b) Karyotype of a female with trisomy 21 (Down syn-
drome). Note that there are three copies of chromosome 21.
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Inside a nucleus, chromosomes tend to be unraveled structures that occupy restricted 
spaces called chromosome territories. Meaburn and Misteli (2007) provide an overview of 
the spatial organization of chromosomes and genomes, including visualization with chro-
mosome‐specific fluorescent probes. Trask (2002), Speicher and Carter (2005), Dolan 
(2011), and South (2011) have written overviews of the field of human cytogenetics.

analysis of Chromosomes Using Genome Browsers

The diploid number of chromosomes is constant in each species, although there may be 
individual variation. We explore the 16 S. cerevisiae chromosomes in Chapter 18, includ-
ing a variety of databases such as NCBI, MIPS, and SGD that provide graphic displays. 
In humans, the diploid number is 46 (i.e., there are 23 pairs of chromosomes in somatic 
cells). Ideograms of karyotypes for some other organisms are available online.

DNA databases (Chapter 2) store billions or trillions of base pairs of DNA from var-
ious organisms. For a particular organism of interest, whether a fungus, plant or animal, 
genome browsers represent an essential tool to store, centralize, process, and display both 
raw sequence data and analyses based on annotation of the data. Annotation consists of 
adding information about features such as the experimentally determined or computation-
ally predicted repetitive elements or genes or sites of variation.

There are several genome browsers that provide broad and deep coverage of a variety 
of eukaryotic genomes, as listed below; we focus on Ensembl and UCSC resources. We 
introduce many other genome browsers for other organisms (e.g., protozoans, plants, or 
fungi) in Part III of this book.

 1. NCBI offers a Map Viewer for dozens of species (Wolfsberg, 2011). It includes an 
ideogram, tracks that can be added or removed, and links for each gene to a variety 
of database resources. Additional browsers include one at the database of genomic 
structural variation (dbVar) and Genome Workbench.

 2. The Ensembl project offers a map viewer filled with annotation data (Flicek et al., 
2014). A view of human chromosome 11 includes summaries of the genomic fea-
tures such as GC content, single‐nucleotide polymorphisms (SNPs), and coding and 
noncoding gene content (Fig. 8.2a). A link to the location‐based viewer (Fig. 8.2.b) 
provides access to hundreds of additional tracks of features that can be viewed or 
downloaded for detailed chromosomal analyses.

 3. The UCSC Genome Browser includes a gateway to select a genome and chromo-
somal region of interest (Kuhn et al., 2013; Meyer et al., 2013). The main genome 
browser page depicts the chromosome of interest along with a series of user‐selected 
annotation tracks.

 4. The vertebrate genome annotation (Vega) database offers a genome browser reflect-
ing high‐quality manual annotation of selected vertebrate genomes.

analysis of Chromosomes Using BioMart and biomart

Data on chromosomes can also be obtained in tabular form. One resource is the UCSC 
Table Browser which provides access to the tables underlying the UCSC Genome Browser. 
Another resource is BioMart, a web service accessed through the home page of Ensembl. 
You can use BioMart to answer thousands of queries. For example, given five globin 
genes in the form of HGNC symbols (e.g., HBB, HBD, HBE1, HBG1, MB), what is their 
GC content, and what are the associated Protein Data Bank (PDB) identifiers? Go to the 
BioMart home page. (1) Choose a database (we select Ensembl Genes 73). (2) Choose 
a dataset (we select Homo Sapiens genes, GRCh37.p12 for patch 12 of the current GRC 
human genome assembly). (3) Choose filters. This specifies the input information. In the 
Gene section, choose “ID list limit” and enter the five globin gene symbols (Fig. 8.3a). 
You can also upload a text file containing entries of interest. Note that in the pulldown 

An ideogram is a diagram of a 
karyotype. A karyotype is an 
image (often a photograph) of 
the chromosomes from a cell 
during metaphase, when each 
chromosome is a pair of sister 
chromatids. Karyotypes display 
the chromosomes in numerical 
order, with the short arm (p arm) 
oriented upward. For humans, 
the short arm is called “p” for 
petit (French for “small”), while 
the q arm (long arm) is named 
as the letter following p. Online 
databases of chromosomes (and 
karyotypes) include the Ensembl 
genome browser (  http://www 
.ensembl.org/, WebLink 8.4), the 
Ideogram Album (  http://www 
.pathology.washington.edu/
research/cytopages/, WebLink 
8.5), and KaryotypeDB (  http://
www.nenno.it/karyotypedb/, 
WebLink 8.6).

The Map Viewer is available at 
 http://www.ncbi.nlm.nih.gov/

mapview/ (WebLink 8.7). dbVar 
is at  http://www.ncbi.nlm.nih.
gov/dbvar (WebLink 8.8); enter 
a query for HBB and when the 
browser opens click the wheel‐
shaped Configure link to select 
from a vast number of annotation 
options. We previously 
introduced Genome Workbench 
(  http://www.ncbi.nlm.nih.gov/
tools/gbench/, WebLink 8.9) in 
Chapter 2, and we show how to 
view next‐generation sequence 
reads by uploading BAM files to 
that viewer in Chapter 9.

Ensembl (  http://www.ensembl 
.org, WebLink 8.10) is a joint 
project between EMBL‐EBI and 
the Sanger Institute.

http://www.ensembl.org/
http://www.ensembl.org/
http://www.pathology.washington.edu/research/cytopages/
http://www.pathology.washington.edu/research/cytopages/
http://www.pathology.washington.edu/research/cytopages/
http://www.nenno.it/karyotypedb/
http://www.nenno.it/karyotypedb/
http://www.ncbi.nlm.nih.gov/mapview/
http://www.ncbi.nlm.nih.gov/dbvar
http://www.ncbi.nlm.nih.gov/tools/gbench/
http://www.ncbi.nlm.nih.gov/tools/gbench/
http://www.ensembl.org
http://www.ensembl.org
http://www.ncbi.nlm.nih.gov/mapview/
http://www.ncbi.nlm.nih.gov/dbvar
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FIGUre 8.2 View of human chromosome 11 using Ensembl (release 73, September 2013). This 
is one of the key genome browsers (with UCSC and NCBI) and offers an exceptionally wide range of 
viewing and analysis options. (a) Summary of chromosome 11. The gear‐shaped “configure” icon (upper 
left corner) can be clicked to change settings (e.g., adding or reformatting datasets). (b) The horizontal 
ideogram (upper portion) shows chromosome 11, with a red bar indicating the location of HBB (the gene 
that was searched for in this instance). The region overview (lower right graphic) includes HBB exons, 
and notes that 155 tracks are currently turned off. These can be accessed with the gear‐shaped link. The 
left sidebar includes a large number of additional display options. Data can be imported or exported, the 
page can be configured with a rich set of options, and there are links to other browsers.

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.

The UCSC Genome Bioinformatics 
site is  http://genome.ucsc.edu/ 
(WebLink 8.11). We explore it 
further in this chapter, and have 
seen examples of the Genome 
and Table Browser and BLAT 
(Figs. 2.12, 5.14, 5.16, 6.10).

Vega is available at  http://vega 
.sanger.ac.uk/ (WebLink 8.12).

(a) Ensembl: chromosome summary

(b) Ensembl: Region overview

http://genome.ucsc.edu/
http://vega.sanger.ac.uk/
http://vega.sanger.ac.uk/
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FIGUre 8.3 Using BioMart service at Ensembl. (a) The user selects a dataset (e.g., human genes; other options include variation and regu-
lation databases as well as Vega high‐quality annotations), filters (including many options from genes to microarray elements to chromosomal 
regions), and attributes (of which thousands are available). (b) The result may be sent to a spreadsheet. BioMart may also be accessed within 
Galaxy using the Get Data tool.

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.

(a) BioMart at Ensembl: specify filters (input for which you want to apply queries)

(b) BioMart output

menu you must specify HGNC symbols. (4) Choose attributes. These are the features we 
wish to search for. Under Gene > Ensembl choose Ensembl Gene ID and % GC content. 
Under External > External References select HGNC gene symbol and PDB ID. (5) Click 
count; as expected, results are available for all five genes. Click the results, and the data 
we requested can be viewed (Fig. 8.3b) or downloaded in several tabular formats.

GRC refers to the Genome 
Research Consortium (see 
Chapters 15 and 20).
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The R package biomaRt also provides powerful access to BioMart. We demonstrate 
its versatility in the following examples.

Example 1
Given a set of NCBI gene identifiers, we can find the official (HGNC) gene symbols and 
the GC content for five globins (Fig. 8.4). We first install R and RStudio, and then specify 
the package we wish to use.

FIGUre 8.4 Using the R package biomaRt to obtain information about a chromosome. This fig-
ure shows two central, boxed panels. The top one defines the output filename (we call it mydata) and 
the command getBM. We supply attributes (a vector of information we request), filters (restrictions 
on the query), values (defining the query) and mart (the database we wish to query). The next boxed 
panel shows the result, given by typing mydata (then pressing enter). biomaRt is extremely versatile, 
allowing many thousands of queries across many species and databases. Note that a command such as 
filters (followed by pressing the enter key) displays that particular file, while filters[1:10,] 
specifies rows, columns (within the brackets); here rows 1:10 are displayed, and since no column value 
is entered, by default all columns are displayed.

Source: R Foundation, from http://www.r‐project.org.

...then type mydata to see the
result. mydata is the 
data.frame returned by the 
getBM query, giving the
requested results

Attributes: a vector specifying  the output you request
> ens_att <- listAttributes(ensembl)
> ens_att[1:10,]
                     name
1         ensembl_gene_id
2   ensembl_transcript_id
3      ensembl_peptide_id
4         ensembl_exon_id
5             description
6         chromosome_name
7          start_position
8            end_position
9                  strand
10                   band
# currently the full list has 1,720 
# attributes you can choose from!

mart
--object of the class Mart
--to invoke (e.g. for mouse):
> UseMart
> mouse=useMart("ensembl",
dataset="mmusculus_gene_ensembl")

Filters: a vector that defines a restriction
on your query. To see your options:
>filters = listFilters(ensembl)
>filters[1:10,]
1             chromosome_name
2                       start
3                         end
4                  band_start
5                    band_end
6                marker_start
7                  marker_end
8                        type
9               encode_region
10                     strand
# Currently ~350 filters!

getBM function:
--used to perform a query
--has four main arguments 
(attributes, filters, values, mart)
--returns a data.frame

> mydata = getBM(attributes=c("entrezgene","hgnc_symbol",
 "percentage_gc_content"), filters="entrezgene", 
 values=myentrez, mart=ensembl)
> mydata
  entrezgene hgnc_symbol percentage_gc_content
1       3043         HBB                 37.64
2       3045         HBD                 37.91
3       3046        HBE1                 38.96
4       3047        HBG1                 45.86
5       4151          MB                 50.32

> myentrez = c("3043","3045","
 3046","3047","4151")
> myentrez
[1] "3043" "3045" "3046" "3047" "4151"

Values refers to vector of values for the filters

Type this command
in R or RStudio (first
define myentrez
as shown below)...

It is a surprisingly common error 
to analyze genes using obsolete 
or incorrect gene symbols. 
When we choose gene symbols 
such as HBG1 and MB, we can 
confirm that they are official 
HGNC symbols by entering them 
individually into  http://www 
.genenames.org (WebLink 8.13). 
Alternatively, we can add query 
them in BioMart or biomaRt 
as described in this section, 
even analyzing a text file with 
thousands of gene symbols 
to confirm that all are indeed 
correct.

http://www.r%E2%80%90project.org
http://www.genenames.org
http://www.genenames.org
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We need to select a filter (or filters) to restrict our query to some area of interest such as a 
chromosome, a region, or a list of identifiers. First we look at available filters.

To perform a query we’ll use the getBM function. This requires four main arguments 
that we assemble: (1) attributes (the output of a query that we want to produce); (2) filters 
(a vector of filters that restrict the input, such as searching only on a particular chromo-
some or database or organism); (3) values which apply to the filters, such as a vector of 
gene identifiers; and (4) mart, which is the mart we’ll create with useMart (e.g., search-
ing Ensembl or Vega). The R commands below start with a prompt in red (>); commands 
are in blue; and comments are in green preceded by a hash mark.

To begin, visit the biomaRt page 
at  http://www.bioconductor 
.org (WebLink 8.14). It includes 
instructions for downloading 
biomaRt as well as vignettes. 
You can also install packages 
using RStudio. The examples 
below are adapted from the 
biomaRt website. The R code 
below is available as a text file 
(so you can paste the commands 
into your own R session) at 
Web Document 8.1 at  http://
bioinfbook.org/chapter8.

> source("http://bioconductor.org/biocLite.R")
> biocLite("biomaRt") 
> library("biomaRt")
# We need to choose a BioMart database.
> listMarts()
# Choices include ensembl, vega, unimart, or many others.
> ensembl <- useMart("ensembl")
> listDatasets(ensembl)
# We can browse the datasets and select human
> ensembl = useDataset("hsapiens_gene_ensembl", mart=ensembl)

> filters = listFilters(ensembl)
# Look at the first seven rows of filters,
# then at the last few rows with the tail function.
> filters[1:7,]
  name  description
1  chromosome_name   Chromosome name
2  start   Gene Start (bp)
3  end  Gene End (bp)
4  band_start  Band Start
5  band_end  Band End
6  marker_start  Marker Start
7  marker_end  Marker End
> tail(filters)
  name  description
296  with_transmembrane_domain   Transmembrane domains
297  with_signal_domain  Signal domains
298  germ_line_variation_source   limit to genes with germline variation 

data sources
299  somatic_variation_source   limit to genes with somatic variation 

data sources
300  with_validated_snp  Associated with validated SNPs
301  so_parent_name  Parent term name

> attributes = listAttributes(ensembl)
> attributes[1:5,]
  name  description
1  ensembl_gene_id  Ensembl Gene ID
2  ensembl_transcript_id  Ensembl Transcript ID
3  ensembl_peptide_id  Ensembl Protein ID
4  ensembl_exon_id  Ensembl Exon ID
5  description   Description
> tail(attributes)
  name  description
1144  phase   phase
1145  cdna_coding_start  cDNA coding start
1146  cdna_coding_end  cDNA coding end
1147  genomic_coding_start  Genomic coding start
1148  genomic_coding_end  Genomic coding end
1149  is_constitutive  Constitutive Exon

There are therefore about 300 filters to choose from. We next review the available attri-
butes for our output:

http://bioconductor.org/biocLite.R
http://www.bioconductor.org
http://bioinfbook.org/chapter8
http://bioinfbook.org/chapter8
http://www.bioconductor.org
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This script will create a file called mydata (you can assign it any name). The getBM 
function performs the query. The attributes specify what output you seek; currently, for 
the human Ensembl dataset we use in this example, there are 1720 different types of infor-
mation you can request. The values for our query in this particular example are the NCBI 
Entrez identifiers for our five genes.

Example 2
What are the HGNC gene symbols for genes on human chromosome 21?

The values for the analysis in Figure 8.4 are obtained by creating a file with a list of 
Entrez gene identifiers. We are then ready to perform the search:

> mydata = getBM(attributes=c("entrezgene","hgnc_symbol",  
"percentage_gc_content"), filters="entrezgene", values=myentrez,  
mart=ensembl)

> chrom=21
# You could use chrom=c(21,22) to specify two chromosomes
> getBM(attributes="hgnc_symbol", filters="chromosome_name",  
values=chrom, mart=ensembl)
   hgnc_symbol
1    MIR548X
2    PPIAP22
3    SLC6A6P1
# We truncate this output of HGNC symbols from chromosome 21.

> getBM(c("hgnc_symbol","band","strand","gene_biotype"),  
filters=c("chromosome_name","start","end"),  
values=list(11,5200000,5300000), mart=ensembl)
  hgnc_symbol  band  strand  gene_biotype
1     p15.4  1       antisense
2      p15.4  -1  misc_RNA
3  HBBP1    p15.4  -1  pseudogene
4     p15.4  -1  sense_overlapping
5  OR52A1    p15.4  -1  protein_coding
6  OR51V1    p15.4  -1  protein_coding
7  HBB    p15.4  -1  protein_coding
8  HBD    p15.4  -1  protein_coding
9  HBG1    p15.4  -1  protein_coding
10  HBG2    p15.4  -1  protein_coding
11  HBE1    p15.4  -1  protein_coding

> getBM(c("rnorvegicus_homolog_ensembl_gene"),  
filters=c("chromosome_name","start","end"),  
values=list(11,5200000,5300000), mart=ensembl)
 [1] "ENSRNOG00000029978" "ENSRNOG00000015940"  
"ENSRNOG00000049424" "ENSRNOG00000047098"
 [5] "ENSRNOG00000048955" "ENSRNOG00000031230"  
"ENSRNOG00000048992" "ENSRNOG00000030879"
 [9] "ENSRNOG00000030784" "ENSRNOG00000029286"

Example 3
What Ensembl genes are in a 100,000 base pair region of chromosome 11 surrounding 
HBB? What chromosome band are they on, what strand, and what type of genes are they?

Note that we can expand the attributes (e.g., adding “start_position”, “end_
position” after “band”) for more information.

Example 4
What are the rat homologs of the genes in a 100 kilobase region of human chromosome 11?
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For some queries, using BioMart (or other web‐based software) is adequate. In many other 
cases, especially when we have a list of many genes (or any other features) of interest, it is 
easier to use a program such as biomaRt. By using a script, your search is less likely to be 
error‐prone, your results are saved to a file, your methods are more likely to be reproducible, 
and your data can easily be plotted in R (e.g., computer lab exercises 8.3, 8.4 and 8.11).

analysis of Chromosomes by the eNCODe project

An initial version of the human genome sequence was reported by a public consortium 
(International Human Genome Sequencing Consortium, 2001) and by Venter et al. (2001). 
It was clear that the annotation of the functional elements embedded in the genomic DNA 
is extraordinarily complex. The Encyclopedia of DNA Elements (ENCODE) project was 
initated to investigate the properties of the human and other genomes (ENCODE Project 
Consortium, 2004). The ENCODE Project Consortium et al. (2007) released its findings 
on 1% of the genome in a paper with over 250 coauthors. This represented the genera-
tion of over 200 datasets by 35 groups. A total of 44 regions of the human genome were 
selected, spanning 30 megabases. In the production phase, the ENCODE Project Consor-
tium et al. (2012) reported its findings across the entire human genome; a set of 30 papers 
were published at the same time.

We next describe the scope of the ENCODE project, their main conclusions, and 
where you can find, analyze, and explore ENCODE data and literature.

 1. Scope of the ENCODE project. The goal of the ENCODE project is to generate a 
comprehensive catalog of all functional elements in the human genome (as well as 
the genomes of model organisms such as fly, worm, and mouse). As of 2015 nearly 
4600 experiments have been performed, with an emphasis on using a wide range of 
assays on a large number of different cell types. A key aspect of this project has been 
its focus on functional elements which are defined as genomic segments encoding an 
RNA or protein product or a biochemical signature such as a chromatin modification. 
This emphasis on function may be contrasted with other approaches that focus on 
generating DNA sequences. Both fundamental approaches (sequencing/annotating 
genomic DNA and defining functional elements in DNA) can serve to build a rich 
catalog of DNA elements (such as gene structures or repetitive DNA elements). The 

Example 5
What are the paralogs of the genes in a 50 kb region of human chromosome 11? Since 
this region includes beta globin genes, we might expect the result to include alpha globin 
gene loci on chromosome 16.

> getBM(attributes=c("hsapiens_paralog_chromosome",
+ "hsapiens_paralog_chrom_start","hsapiens_paralog_chrom_end"),  
filters=c("chromosome_name","start","end"),  
values=list(11,5250000,5300000), mart=ensembl)
  hs_paralog_chromosome hs_paralog_chrom_start hs_paralog_chrom_end
1  NA  NA  NA
2  16  202686  204502
3  16  222846  223709
4  16  230452  231180
5  16  226679  227521
6  16  203891  216767
7  11  5253908  5256600
8  11  5289582  5526847
9  11  5274420  5667019
10  11  5269313  5271122
11  11  5246694  5250625
# The + sign indicates a line break in the R code
# For clarity the column titles hsapiens… are truncated to hs…
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scope of the ENCODE project included redefining the meaning of the gene (see the 
end of this chapter) and the transcript (see Chapter 10 on the topic of RNA).

 2. Main conclusions of ENCODE. Stamatoyannopoulos (2012) provides an overview of 
the main conclusions of the ENCODE project, as well as its significance and future 
directions. Conclusions include the following (from ENCODE Project Consortium et 
al. 2007, 2012):
 a. The human genome is pervasively transcribed; we discuss this in Chapter 10. 

While exons span less than 3% of the genome, RNA transcripts are generated 
from 62% of the genome.

 b. 80.4% of the human genome is functionally active, defined as participating in at 
least one RNA and/or chromatin‐associated event in at least one cell type. While 
this is presented as perhaps the major single finding of the ENCODE project, 
objections have been raised (see the following section). Previous estimates indi-
cate that ∼10% of the human genome is functionally active (e.g., Smith et al., 
2004), rather than 80.4% as championed by the ENCODE project. Indeed, the 
ENCODE consortium argues that the 80.4% estimate is conservative because not 
all cell types or physiological conditions were assayed.

 c. Many novel noncoding transcripts were identified, sometimes overlapping pro-
tein‐coding genes. A set of long noncoding RNAs was characterized (Derrien 
et al., 2012).

 d. Novel transcriptional start sites were identified and characterized in detail. Reg-
ulatory sequences surrounding transcription start sites are symmetrically distrib-
uted. Previously, it had been thought that there is a bias toward the location of 
regulatory sequences upstream of genes.

 e. Histone modification and chromatin accessibility predict the presence and activ-
ity of transcription start sites. 56.1% of the genome was shown to be enriched for 
histone modifications.

 f. Of the 80.4% of the human genome spanned by elements defined by ENCODE 
as functional, if we exclude the RNA elements and histone elements 44.2% of the 
genome is covered. These regions include sites of hypersensitivity to digestion 
by the endonuclease DNase I; transcription factor binding sites; or DNA bind-
ing sites defined by chromatin immunoprecipitation followed by next‐generation 
sequencing (ChIP‐Seq). The consortium reported finding 4.1 million DNase I 
hypersensitive sites and estimated this is half of the true total.

 g. 5% of the nucleotides in the human genome are under evolutionary constraint in 
mammals. Of these constrained bases, there is experimental evidence of some 
function for about 60%. Not all bases that are under evolutionary constraint have 
been experimentally shown to have function.

   ENCODE has been extended to the mouse genome (Mouse ENCODE Consor-
tium et al., 2012). It also includes the model organism (modENCODE) project 
which generated detailed functional annotation of a fruit fly genome (Drosoph-
ila melanogaster) and a nematode (Caenhorabditis elegans). We describe these 
project in Chapter 19.

 3. Where to find ENCODE data. The UCSC Genome Bioinformatics site serves as a 
central repository to browse and mine ENCODE data (Rosenbloom et al., 2013). It 
also enables downloads of raw and processed data files. Many of the datasets are also 
available at the Gene Expression Omnibus (GEO) database at the National Center for 
Biotechnology Information (NCBI) as well as the Sequence Read Archive at NCBI. 
The journal Nature also offers an extensive ENCODE explorer with many resources 
including links to publications. The ENCODE Project Consortium (2011) also pro-
vides a useful user guide to the project.

The modENCODE project website 
is  http://www.genome.gov/
modencode/ (WebLink 8.15).

Visit the ENCODE site at UCSC:  
http://genome.ucsc.edu/ENCODE/ 
(WebLink 8.16). The National 
Human Genome Research 
Institute which sponsored 
the ENCODE project offers 
information at  http://www 
.genome.gov/10005107 (WebLink 
8.17). See the Nature site at  
http://www.nature.com/encode/ 
(WebLink 8.18).

http://www.genome.gov/modencode/
http://genome.ucsc.edu/ENCODE/
http://www.genome.gov/10005107
http://www.nature.com/encode/
http://www.genome.gov/modencode/
http://www.genome.gov/10005107
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Critiques of eNCODe: the C Value paradox revisited and the Definition 
of Function

Several challenges have been made to the ENCODE Project Consortium et al. (2012) 
claims that 80.4% of the human is functional and that the concept of junk DNA is obso-
lete. This debate highlights the different meanings of function.

One objection is that junk DNA may have biochemical activity (as described by 
the ENCODE project) without having function in an evolutionary sense (Niu and Jiang, 
2013). The ENCODE definition of function does not distinguish between biologically 
important activities (such as a globin gene encoding a globin protein) and the activity 
found in “junk” DNA such as the activity of transposable elements that comprise half the 
human genome.

Sean Eddy (2012) notes that transposons that fill much of the human genome are 
expected to have a biochemical function according the ENCODE definitions of biochemi-
cal activity: many transposable sequences are actively transcribed and regulated, and they 
are also actively repressed by some host‐mediated chromatin modifications. Eddy (2013) 
contrasts two views: (1) a specific and reproducible biochemical phenomenon must have 
a biologically meaningful function; and (2) biology is “noisy” and background biochem-
ical activity is tolerated. To test these models he proposes a Random Genome Project in 
which a million bases of random synthetic DNA are introduced into a cell. He predicts 
it will display functional biochemical properties (e.g., transcription, transcription factor 
binding, histone modifications) such as those reported by the ENCODE project, although 
such function would not be biologically meaningful. The effects, he predicts, would even 
be cell‐type specific since each cell has its own regulatory machinery. In essence, Eddy 
proposes a negative control experiment that is likely to expose false positive results in 
ENCODE. Niu and Jiang (2013) and Graur et al. (2013) also distinguish biochemical 
function as defined by ENCODE from evolutionarily meaningful function.

Ford Doolittle (2013) proposes a different thought experiment. Suppose the ENCODE 
project were extended to a set of compact genomes (e.g., Takifugu rubipres; 400 Mb) and 
large genomes (e.g., a lungfish or various giant plant or protist genomes). He predicts two 
possible outcomes. First, functional elements could be constant in number, regardless 
of C value (similarly, the number of protein‐coding genes typically does not scale with 
genome size). In this outcome, the density of functional elements per kilobase would be 
dramatically smaller in such large genomes, yet would be surrounded by vast amounts of 
junk DNA. A second outcome is that functional elements as defined by ENCODE increase 
in proportion to C value (independent of organismal complexity). Would lungfish having 
300‐fold larger genome size and 300‐fold more functional elements then be expected to 
display more organismal complexity than related Takifugu having compact genomes?

These concerns lead Doolittle (2013) as well as Niu and Jiang (2013), Graur et al. 
(2013), and Eddy (2013) to consider the definition of function. One definition implies an 
evolutionarily selected effect: the function of a trait (or genomic feature) reflects its effects 
for which it was (or is) under positive natural selection. FOXP2 is a gene that, in the human 
lineage, faciliatates speech (Lai et al., 2001). While it is conserved among other vertebrates, 
in humans it has a selective function in speech that is selected for. We do not call some effects 
“functions” if they are incidental (e.g., lower back pain in primates that walk upright), and in 
the context of sequences we often infer selection by examining evolutionary conservation.

A second way to define function is based on causal roles. Elements are often studied 
by ablation: if a DNA region is deleted (or blocked from performing its inherent activity 
such as expression) and some effect then goes away, we may assign a causal role for that 
DNA element. Doolittle suggests that most biologists see experiments that indicate such 
causal roles as providing indirect evidence for a selected effect. Graur et al. (2013) cite an 
example of the DNA sequence TATAAA. This has a well‐known selected effect function, 
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maintained by natural selection, to bind a transcription factor. If another sequence arises 
by mutation and happens to closely resemble TATAAA it might bind the transcription 
factor (having a function based on causal role), but without any adaptive or maladaptive 
effect (there is therefore no selected effect function).

A third definition of function is based on existence (in the language used by critics). A 
structure or element exists and so must be functional whether it is an intron, Alu element, 
or endogenous retrovirus. These various elements may be actively transcribed. Doolittle 
suggests that this definition of function based on mere existence is the principal sense in 
which the ENCODE consortium defines over 80% of the genome as having function. To 
Graur et al. (2013), the human genome could be said to consist of 100% functional DNA 
according to a definition of function based on activity, since 100% of DNA is transcribed 
by DNA polymerases. This would extend the ENCODE conclusions to an absurd extent. 
We return to the subject of defining function in Chapters 12 and 14.

repetItIve dna content oF eukaryotIc 
chromosomes
eukaryotic Genomes Include Noncoding and repetitive DNa Sequences

Bacterial and archaeal genomes have both genes and additional, relatively small intergenic 
regions. Typically, these genomes are circular, and there is almost one gene per kilobase of 
genomic DNA (Chapter 17; table 8.1). In contrast, eukaryotic genomes contain a smaller 
proportion of protein‐coding genes and large amounts of noncoding DNA. This noncoding 
material includes repetitive DNA, genes encoding RNAs that have assorted functions, introns 
that interrupt exons and are spliced from mature RNA transcripts, and intergenic regions.

Repetitive DNA sequences can occupy vast proportions of eukaryotic genomes 
(Richard et al., 2008). These sequences consist of repeated nucleotides of various 

TATAAA commonly occurs 
upstream of polyadenylation sites.

We return to the subject of 
defining function in Chapter 12 (in 
the context of protein function; 
see Fig. 12.18). In Chapter 14 we 
discuss definitions of function and 
approaches to function (involving 
the ENCODE project and other 
sources); see Fig. 14.17.

FIGUre 8.5 The ENCODE project is intended to catalog functional elements in the human genome 
(as well as the genomes of mouse, fruit fly, and a nematode). This catalog includes regulatory DNA 
elements that control processes such as transcription, and elements that function at the RNA and protein 
levels. The image shows a chromosome (upper left) with the DNA unwound to show the types of tech-
nologies used by the ENCODE project: 5C (chromosome conformation capture carbon copy); DNA‐seq; 
FAIRE‐seq; ChIP‐seq; polymerase chain reaction with reverse transcription (RT‐PCR); and RNA‐seq. 
Source: ENCODE, courtesy of UCSC.
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lengths (Jurka, 1998). We also discuss these repeats in our analysis of the human genome 
(Chapter 20). In mammals, up to 60% of genomic DNA is repetitive; in some yeasts, 
20% is repetitive. Identifying repetitive DNA elements in eukaryotic DNA is essential 
in genome analysis. Such repeats can powerfully influence the structure of the genome, 
including the capacity of chromosomes to rearrange and to regulate transcription. They 
are often important in disease, serving as substrates for recombination events that delete 
or duplicate chromosomal segments. Repeats are also useful as “molecular fossils” in 
evolutionary studies based on comparative analysis of genomes from different species 
(Chapter 20).

Britten and Kohne (1968) performed some of the earliest experiments that defined the 
repetitive nature of eukaryotic DNA. They purified genomic DNA from a wide variety 
of species, sheared it, and dissociated the DNA strands. Under appropriate conditions of 
salt, temperature, and time, the DNA strands reanneal. They measured the rate at which 
the DNA reasssociates and found that for dozens of eukaryotes (but not for several viruses 
or bacteria) DNA reassociates in several distinct fractions. Large amounts of eukary-
otic DNA reassociate extremely rapidly. For the mouse genome, about 10% of genomic 
DNA reassociates rapidly and consists of about one million copies (Fig. 8.6, arrow A). 
This highly repetitive DNA is localized to the highly condensed portion of chromosomes 
referred to as heterochromatin (Redi et al., 2001; Avramova, 2002). A further 20% of the 
DNA reassociates in a fraction containing from 1000 to 100,000 distinct DNA species 
(arrow B). Finally, about 70% of the DNA is unique, consisting of only a single copy 
(arrow C). This DNA forms the euchromatin, a portion of the chromosome that is not 

Britten and Kohne (1968) 
used several techniques to 
distinguish single‐stranded from 
double‐stranded DNA such as 
hydroxyapatite chromatography 
(a calcium phosphate column), 
binding of radiolabeled DNA 
fragments to immobilized DNA on 
filters, and spectrophotometry. 
The rate of DNA reassociation is 
a function of the incubation time 
t and the DNA concentration C0. 
The C0t plot displays the fraction 
of DNA that remains single‐
stranded versus the C0t value, 
and it is the basis for the data 
shown in Figure 8.6.

FIGUre 8.6 The complexity of genomic DNA can be estimated by denaturing then renaturing DNA. 
This figure (redrawn from Britten and Kohne, 1968) depicts the relative quantity of mouse genomic 
DNA ( y axis) versus the logarithm of the frequency with which the DNA is repeated. The data are 
derived from a C0 t1/2 curve, which describes the percent of genomic DNA that reassociates at particu-
lar times and DNA concentrations. A large C0 t1/2 value implies a slower reassociation reaction. Three 
classes are apparent. The fast component accounts for 10% of mouse genomic DNA (arrow A), and 
represents highly repetitive satellite DNA. An intermediate component accounts for about 20% of mouse 
genomic DNA and contains repeats having from 1000 to 100,000 copies. The slowly reassociating com-
ponent, comprising 70% of the mouse genome, corresponds to unique, single‐copy DNA. Britten and 
Kohne (1968) obtained similar profiles from other eukaryotes, although distinct differences were evident 
between species. Used with permission.

Source: Britten and Kohne (1968). Reproduced with permission from AAAS.
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condensed and is therefore accessible for the transcription of genes. The banding pat-
tern of chromosomes (Fig. 8.1) corresponds to regions of heterochromatin and euchroma-
tin. Heterochromatic regions lack (or actively inhibit) gene expression, although some 
expressed genes have been identified in the heterochromatin of a variety of species from 
Drosophila to human (Yasuhara and Wakimoto, 2006).

RepeatMasker software, introduced in the following section, has been the most widely 
used tool for characterizing repetitive DNA. More recently, the leading researchers in this 
area (including Robert Finn, Arian Smit, Jerzy Jurka, and Sean Eddy) introduced Dfam, a 
database of repetitive DNA that relies on hidden Markov models (Wheeler et al., 2013). 
They report coverage of 54.5% of the human genome by repetitive elements.

The origin of these repeats and their function present fascinating questions. What 
different kinds of repeats occur? From where did they originate and when? Is there a logic 
to their promiscuous growth, or do they multiply without purpose? We are beginning to 
understand the extent and nature of the repeat content of eukaryotic genomes, including 
the human genome. Repetitive DNA has in the past been called “junk DNA” or “selfish 
DNA,” reflecting its propensity to expand throughout genomes. However, it is likely that 
repetitive DNA has important roles in chromosome structure, recombination events, and 
the function of some genes (Makalowski, 2000; see also the following section).

There are five main classes of repetitive DNA in eukaryotes (Jurka, 1998; Maka-
lowski, 2000; IHGSC, 2001; Kidwell, 2002; Jurka et al., 2007) as described in the fol-
lowing sections.

Interspersed Repeats (Transposon‐Derived Repeats)
Together, interspersed repeats constitute about 45% of the human genome (see Chapter 20; 
reviewed by Jurka et al., 2007; Rebollo et al., 2012). These repeats can be generated 
by elements that copy RNA intermediates (retroelements) or DNA intermediates (DNA 
transposons) (table 8.4). Genes may be copied by retrotransposition when an mRNA is 
reverse‐transcribed and then integrated into the genome. Such genes can be identified 
because they usually lack introns, while they do have short direct flanking repeats. Exam-
ples of some mammalian retrotransposed genes are presented in Table 8.5.

Interspersed repeats can be divided into four categories (Ostertag and Kazazian, 
2001; Kidwell, 2002; see also Figures 20.9, 20.10, table 20.5):

 • Long‐terminal‐repeat (LTR) transposons, which are RNA‐mediated elements. These 
are also called retrovirus‐like elements. LTR transposons have LTRs of several hun-
dred base pairs at either end of the element.

Dfam is available at  http://dfam.
janelia.org/ (WebLink 8.19).

A retrotransposon (also called 
a retroposon or retroelement) 
is a transposable element that 
copies itself to genomic locations 
through a process of reverse 
transcription with an RNA 
intermediate. This process is 
similar to that of a retrovirus.

Barbara McClintock was awarded 
a Nobel Prize in 1983 for her 
discovery of mobile genetic 
elements in maize (Zea mays). 
You can read more about this 
pioneering work at  http://www 
.nobel.se/medicine/laureates/ 
1983/ (WebLink 8.20).

A search of NCBI Nucleotide 
with the term “retropseudogene” 
yields ∼70 hits (February 2015), 
while “retrotransposed” yields 
120 hits. A search with the term 
“retrotransposon” however yields 
>325,000 core nucleotide matches, 
>21,000 expressed sequence 
tags, and >100,000 genome survey 
sequences.

taBLe 8.4 examples of repeat classes and transposable elements. adapted from Kidwell (2002) with permission 
from Springer Science and Business Media.

Class Subclass Superfamily Examples of family
Approximate 
size range (bp)

Retroelements (RNA‐
mediated elements)

LTR retrotransposons Ty1‐copia Opie‐1 (maize) 3000–12,000

Non‐LTR retrotransposons LINEs LINE‐1 (human) 1000–7000

SINEs Alu (human) 100–500

DNA transposons Cut‐and‐paste transposition Mariner‐Tc1 Tc1 in C. elegans 1000–2000

P P in Drosophila 500–4600

Rolling circle transposition Helitrons Helitrons in A. thaliana, O. sativa, 
and C. elegans

5500–17,500

http://dfam.janelia.org/
http://www.nobel.se/medicine/laureates/1983/
http://www.nobel.se/medicine/laureates/1983/
http://dfam.janelia.org/
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 • Long interspersed elements (LINEs), which encode an enzyme with reverse tran-
scriptase activity (and possibly additional proteins). In mammals, LINE1 and LINE2 
families are most prevalent.

 • Short interspersed elements (SINEs), which are also RNA‐mediated elements. Alu 
repeats, found in primates, are well‐known examples of SINEs. We see an example 
of an Alu repeat sequence below.

 • DNA transposons comprise about 3% of the human genome.

We can illustrate interspersed repeats using the UCSC Genome Browser. A region 
of 13,000 base pairs including the beta globin (HBB) gene is shown in Figure 8.7a. Infor-
mation on repeats that is precomputed using the RepeatMasker software package shows 
SINE, LINE, LTR, and DNA transposon elements as well as several other categories of 
repetitive DNA (simple repeats, low‐complexity DNA, satellite DNA). By clicking the 
Table link on the top sidebar of the UCSC Genome Browser, you can access the Table 
Browser (Fig. 8.7b). You can select the BED output format (Fig. 8.7c). By clicking “get out-
put” you can obtain a tab‐delimited file listing all the elements detected by RepeatMasker 
as well as their genomic coordinates. By selecting the “Sequence” output option, you are 
directed to a dialog box (Fig. 8.8.a) from which you obtain the RepeatMasked sequences (a 
portion of which are shown in Fig. 8.1.b). These include repetitive regions such as A‐rich, 
AT‐rich, and those with a repeating pattern such as (TA)n, (CA)n, or (TAAAA)n, where 
n denotes the number of occurrences of each pattern. Additional patterns such as L1 ele-
ments (Fig. 8.8.b, bottom) are not readily discernible by eye as repetitive.

RepeatMasker searches a DNA query of interest against RepBase, a database of 
known repeats and low‐complexity regions in eukaryotic DNA. Several programs, includ-
ing RepeatMasker and the Censor Server at GIRI, effectively allow searches of DNA 
query sequences against this database (Smit, 1999; Jurka, 2000).

We can explore repetitive DNA by using a RepeatMasker server to analyze 50,000 
bp of genomic DNA from human chromosome 11 in the beta globin locus. The out-
put includes a summary (table 8.6) as well as detailed tables of scores using the Smith–
Waterman algorithm, the position of the repeat, and information on the type of repeat 
(e.g., SINE/Alu, LTR, or simple repeat).

Processed Pseudogenes
These genes are not actively transcribed or translated (Echols et al., 2002; Harrison 
and Gerstein, 2002). They represent genes that were once functional, but are defined by 
their lack of protein product. They can be recognized because of the presence of a stop 

taBLe 8.5 examples of mammalian genes generated by retrotransposition. retrotransposed genes lack introns, 
and they often have flanking direct repeats and a polyadenine tail. Chr, chromosome; aDaM, a disintegrin and 
metalloproteinase; Cetn, centrin, eF-hand protein; Glud, glutamate dehydrogenase; pdha2, pyruvate dehydrogenase 
(lipoamide) alpha 2; Supt4h, suppressor of ty 4 homolog (S. cerevisiae). adapted from Betrán and Long (2002) and 
from a search of entrez (NCBI) with the term retropseudogene.

Retrotransposed gene Original gene

Distribution Age (Ma)Name RefSeq Chr Name RefSeq Chr

ADAM20 NM_003814 14q ADAM9 NM_003816 8p Human, not macaque <20

Cetn1 NM_004066 18p Cetn2 NM_004344 Xq28 Mammals >75

Glud2 NM_012084 Xq Glud1 NM_005271 10q Human, not mouse <70

Pdha2 NM_005390 4q Pdha1 NM_000284 Xp Placentals ∼70

SRP46 NM_032102 11q PR264/SC35 NM_003016 17q Human, simians ∼89

Supt4h2 NM_011509 10 Supt4h NM_009296 11 Mouse <70

RepBase Update has been 
developed from 1990 by 
Jerzy Jurka and colleagues. 
RepeatMasker was written by 
Arian Smit and Phil Green, and 
is available at  http://www.
repeatmasker.org/ (WebLink 
8.22). The Censor Server at the 
Genetic Information Research 
Institute (GIRI) is available 
at  http://www.girinst.org/
censor/index.php (WebLink 
8.23). RepeatMasker servers are 
available online at the Institute 
for Systems Biology (  http://
www.repeatmasker.org/, 
WebLink 8.24) and the NCKU 
Bioinformatics Center (Taiwan) 
(  http://www.binfo.ncku.edu.tw/
RM/RepeatMasker.php, WebLink 
8.25).

SINEBase is a database of SINEs 
(Vassetzky and Kramerov, 2013) 
available at  http://sines.eimb.
ru/ (WebLink 8.21).

The 50,000 bases of genomic 
DNA we used are available as 
Web Document 8.2 at  http://
www.bioinfbook.org/chapter8.

http://sines.eimb.ru/
http://www.repeatmasker.org/
http://www.girinst.org/censor/index.php
http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://www.binfo.ncku.edu.tw/RM/RepeatMasker.php
http://www.binfo.ncku.edu.tw/RM/RepeatMasker.php
http://www.bioinfbook.org/chapter8
http://www.bioinfbook.org/chapter8
http://sines.eimb.ru/
http://www.repeatmasker.org/
http://www.girinst.org/censor/index.php
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(a) Genes and repeat elements in 13,000 base pairs of the beta globin locus

(b) Access to tabular data on repeat elements using the UCSC Table Browser

(c) Options for Table Browser output formats

FIGUre 8.7 Interspersed and other repetitive DNA elements are visualized and tabulated using the 
UCSC Genome Browser and Table Browser. (a) A region of 13,000 bases in the beta globin region of 
chromosome 11 is shown (chr11:5,240,001–5,253,000). The RepeatMasker track is set to “full,” display-
ing the location of several repetitive DNA elements such as SINE, LINE, LTR, and DNA transposons. 
Gene tracks are also displayed (for RefSeq, UCSC Genes, Ensembl Gene Predictions, GENCODE, and 
the Consensus Coding Sequence or CCDS project). Note that the gene models differ slightly. (b) A link 
from the Genome Browser to the Table Browser allows you to access this (or other) information as a 
tabular output. (c) Table Browser output formats include browser extensible data (BED) files which are 
defined in detail at the UCSC site. See also Figure 2.13.

Source: http://genome.ucsc.edu, courtesy of UCSC.

codon or frameshift that interrupts an open reading frame. There are two main classes of 
pseudogenes. Processed pseudogenes arise through retrotransposition events (i.e., ran-
dom insertion events mediated by LINEs having reverse transcriptase activity) via an 
RNA intermediate. Nonprocessed pseudogenes are remnants of duplicated genes.

The mouse genome contains 
one functional gene encoding 
glyceraldehyde 3‐phosphate 
dehydrogenase (Gapdh; 
NM_008084.2) and at least 400 
pseudogenes distributed across 
19 chromosomes (Mouse Genome 
Sequencing Consortium et al., 
2002). The functional Gapdh 
gene was listed as assigned to 
mouse chromosome 7 (Mouse 
Genome Sequencing Consortium 
et al., 2002), but currently 
(February 2015) it is assigned to 
chromosome 6 by Gene at NCBI 
and by Ensembl. The presence of 
many pseudogenes contributes to 
the difficulty of assigning correct 
chromosomal loci.

Recall that a BLAST search uses 
the SEG and/or DUST programs to 
define and mask repetitive DNA 
sequences, and also to detect 
and mask low‐complexity protein 
sequences (Chapter 4).

http://genome.ucsc.edu
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>hg19_rmsk_A-rich range=chr11:5247588-5247663 5'pad=0 
3'pad=0 strand=+ repeatMasking=lower
gagaagaaaaaaaaagaaagcaagaattaaacaaaagaaaacaattgtta
tgaacagcaaataaaagaaactaaaa
>hg19_rmsk_MIR3 range=chr11:5248580-5248673 5'pad=0 
3'pad=0 strand=- repeatMasking=lower
tagacaaaactcttccacttttagtgcatcaacttcttatttgtgtaata
agaaaattgggaaaacgatcttcaatatgcttaccaagctgtga
>hg19_rmsk_(TA)n range=chr11:5248828-5248877 5'pad=0 
3'pad=0 strand=+ repeatMasking=lower
atatatatatatatgtgtgtatatatacacacatacatatacatatatat
>hg19_rmsk_(TAAAA)n range=chr11:5249689-5249736 5'pad=0 
3'pad=0 strand=+ repeatMasking=lower
aaaataaaataaaataaaataaaataaaacaataaaatgaaataaaat
>hg19_rmsk_AT_rich range=chr11:5250197-5250218 5'pad=0 
3'pad=0 strand=+ repeatMasking=lower
attttattttattaaatttaaa
>hg19_rmsk_(CA)n range=chr11:5250950-5250984 5'pad=0 
3'pad=0 strand=+ repeatMasking=lower
acacacacacacacacacacacacacacacacaca
>hg19_rmsk_AT_rich range=chr11:5251357-5251384 5'pad=0 
3'pad=0 strand=+ repeatMasking=lower
aattaattaattaaaatgaaataaaaat
>hg19_rmsk_L1PA15 range=chr11:5252059-5252285 5'pad=0 
3'pad=0 strand=- repeatMasking=lower
gtgggagctaaatgatgatacacatggacacaaaaaatagatcaacagac
acccaggcctacttgagggttgagggtgggaagagggagacgatgaaaaa
gaacctattgggtattaagttcatcactgagtgatgaaataatctgtaca
tcaagacccagtgatatgcaatttacctatataacttgtacatgtacccc
caaatttaaaatgaaagttaaaacaaa

(a) UCSC Table Browser sequence output

(b) Repeat sequences identified by RepeatMasker

FIGUre  8.8 RepeatMasker output. (a) The sequence retrieval option includes several formatting 
options such as masking repeats to lower case. (b) The sequences identified by RepeatMasker include 
nucleotide‐rich repeats, repeating motifs such as (TAAAA)n, and SINE and LINE elements.

Source: RepeatMasker.

While pseudogenes are defined as nonfunctional, many studies have emphasized their 
possible functional roles (Balakirev and Ayala, 2003; Castillo‐Davis, 2005; Pavlicek et al., 
2006). These include gene expression, the regulation of gene function, and roles in recombi-
nation. Evolutionary studies suggest that some pseudogenes do not evolve at the neutral rate 
(e.g., compared to extinct repeat elements), consistent with some functional role.

As part of ENCODE, the GENCODE project defined the expression levels of human 
pseudogenes, transcription factor binding, RNA polymerase II binding, and chromatin marks 

Mark Gerstein’s laboratory 
provides a website in 
pseudogenes (  http://www 
.pseudogene.org/, WebLink 8.26). 
This includes a browser and 
descriptions of pseudogenes 
in human, worm, fly, yeast, 
and plant. psiDR is available at 

 http://www.pseudogenes.org/
psidr/ (WebLink 8.27).

http://www.pseudogene.org/
http://www.pseudogene.org/
http://www.pseudogenes.org/psidr/
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taBLe 8.6 repeatMasker analysis of 50,000 base pairs of genomic DNa in the human 
HBB locus. the sequence (given at Web Document 8.2) was entered into the search 
engine at  http://www.repeatmasker.org (version open 4.0.3, default mode).

Elements Type
Number of 
elements*

Length 
occupied (bp)

Percentage 
of sequence

SINEs  8 2093 4.19

ALUs  7 2011 4.02

MIRs  1 82 0.16

LINEs 16 12,279 24.56

LINE1 12 11,419 22.84

LINE2  4 860 1.72

L3/CR1  0 0 0

LTR elements  5 1556 3.11

ERVL  1 513 1.03

ERVL‐MaLRs  2 669 1.34

ERV_classI  2 374 0.75

ERV_classII  0 0 0

DNA elements  1 248 0.5

hAT‐Charlie  1 248 0.5

TcMar‐Tigger  0 0 0

Unclassified  0 0 0

Total interspersed 
repeats

 16,176 32.35

Small RNA  0 0 0

Satellites  0 0 0

Simple repeats repeats: 18 824 1.65

Low complexity  3 363 0.73

*Most repeats fragmented by insertions or deletions were counted as one element.

Source: RepeatMasker.

(Pei et al., 2012). They concluded that some pseudogenes retain partial activity, for example 
having regulatory functions as noncoding RNAs. They also produced the pseudogene Dec-
oration Resource (psiDR) to annotate pseudogenes. We describe mechanisms for the origin 
of pseudogenes later in this chapter, and in Chapter 18 we discuss the duplication of entire 
yeast genomes followed by rapid, subsequent gene loss to generate pseudogenes.

The number of pseudogenes in the human genome is remarkably close to the number 
of predicted protein‐coding genes. For example, chromosome 1 has 3141 protein‐coding 
genes and 991 pseudogenes (Gregory et al., 2006); chromosome 2 has 1346 genes and 
1239 pseudogenes (Hillier et al., 2005); and the smallest autosome, chromosome 21, has 
225 known and predicted genes and 59 pseudogenes (Hattori et al., 2000).

You can activate the pseudogene track at the UCSC Genome Browser. This is shown 
for a segment of 15,000 base pairs within the beta globin locus (Fig. 8.9a). The RefSeq track 
shows three genes (the globin genes HBD and HBG1 flanking the pseudogene HBBP1), 
while the Ensembl and GENCODE genes tracks shows several additional gene mod-
els. A pseudogenes track is also displayed, showing HBBP1. As for any UCSC Genome 
Browser track, you can click on the title “pseudogenes” above the pull‐down menu to 

According to Ensembl (assembly 
GRCh38) there are ∼20,300 
protein‐coding genes and ∼14,200 
pseudogenes in the human 
genome.

http://www.repeatmasker.org
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(a) Region of beta globin pseudogene HBBP1 (15,000 base pair view)

(b) HBBP1 (2,000 base pair view)

FIGUre 8.9 Viewing pseudogenes at the UCSC Genome Browser. (a) 15,000 base pair view of the beta globin region (chr11:5,255,001–
5,270,000). Note that a consensus annotation track for pseudogenes is activated as well as a RefSeq, Ensembl, and GENCODE gene tracks. 
A pseudogene is evident, beta globin pseudogene 1 (HBBP1). It is flanked by HBD (to the 5′ side) and HBG1 (at the 3′ edge). The Yale 
Pseudogenes track indicates the pseudogene (arrow 1); clicking on its entry displays more information, including that the status of this entry 
is “ambiguous” (not shown). (b) Detailed view of HBBP1 (showing 2 kilobases at chr11:5,262,901–5,264,900) includes extensive ENCODE 
annotation of the regulation and expression of HBBP1. For example, histone modifications (such as H3K27AC) and DNaseI hypersensitivity 
are shown.

Source: http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
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access more details on the methodology as well as literature citations. This pseudogene 
corresponds to accession NR_001589.1 and is annotated in NCBI Gene as beta hemo-
globin pseudogene 1 (official symbol HBBP1). Viewing HBBP1 at higher magnification 
(a 2000 base pair view; Fig. 8.9b) reveals more details of the structure of the pseudogene; 
by clicking it, details of a model of the gene and information on its expression and RNA 
folding properties are obtained.

It is also straightforward to analyze repeats (or any other genomic features of interest) 
in R. Install biomaRt, specify the genome of interest (e.g., human), the region, and the 
features.

Simple Sequence Repeats
These microsatellites (typically from 1 to 6 base pairs in length) and minisatellites (typ-
ically from a dozen to 500 bp repeats) include short sequences such as (A)n, (CA)n, or 
(CGG)n. We saw examples of these repeats from our RepeatMasker analysis of human 
genomic DNA (Fig. 8.8). Replication slippage is a mechanism by which simple sequence 
repeats may occur (Richard et al., 2008). Many functions have been ascribed to simple 
sequence repeats, from influencing transcription factor binding to influencing morpholog-
ical traits in dogs and yeast (reviewed in Kashi and King, 2006).

Simple sequence repeats of particular length and composition occur preferentially 
in different species. For example, (AT)n is especially common in A. thaliana and (CT/
GA)n occurs preferentially in C. elegans (Schlötterer and Harr, 2000). In Drosophila 
virilis, the density and length of microsatellites are considerably greater than in D. mela-
nogaster or H. sapiens (Schlötterer and Harr, 2000). In humans, simple sequence repeats 
are of particular interest because they are highly polymorphic between individuals and 
therefore serve as useful genetic markers. The expansion of triplet repeats such as CAG 
is also associated with over a dozen diseases including Huntington disease (Cummings 
and Zoghbi, 2000). We discuss these issues in Chapter 21 (on human disease). A disease 
characterized by cerebellar ataxia and seizures (spinocerebellar ataxia type 10; SCA10) 
is caused by the expansion of the sequence ATTCT in intron 9 of the ataxin 10 gene on 
chromosome 22q13.31 (Matsuura et al., 2000). While there are 10–29 repeats in appar-
ently normal individuals, those with SCA10 have from several hundred to as many as 
4500 repeats.

Segmental Duplications
Segmental duplications are often defined as two genomic regions sharing at least 90% 
nucleotide identity over a span of one kilobase, although they sometimes consist of 
blocks of 200 or 300 kilobases (kb) in length (Bailey et al., 2001). These duplications 
occur both within and between chromosomes (intra‐ and interchromosomally). The 
euchromatic portion of the human genome consists of about 5.3% duplicated regions 
(She et al., 2004). This includes about 150 megabases. In “Mechanisms of Creating 
Duplications, Deletions, and Inversions” we discuss mechanisms by which segmental 
duplications (also called low‐copy repeats) may cause genes to become deleted, dupli-
cated, or inverted. A practical consideration is that after whole‐genome shotgun sequenc-
ing, the assembly of segmentally duplicated regions (especially those >15 kilobases in 
length and sharing >97% sequence identity) is problematic (She et al., 2004). As a con-
sequence, assemblies based on whole‐genome shotgun assembly may underestimate the 
extent of duplications (including duplicated genes), underestimate the length of euchro-
matin, and underrepresent duplication‐rich regions including pericentromeric and sub-
telomeric areas.

We can view segmental duplications using the UCSC Genome Browser for both 
the beta globin locus (Fig. 8.10a) and the alpha globin locus (Fig. 8.10b). At the beta 
globin locus, the immediately adjacent HBG1 and HBG2 genes represent a segmental 

Web Document 8.3 shows a 
pairwise alignment between 
HBB and its pseudogene HBBP1 
(  http://www.bioinfbook.org/
chapter8).

Some authors define 
microsatellites as having a length 
of 1–6 bp, while others suggest 
1–12 bp.

To see specific examples of 
simple sequence repeats, go 
to NCBI Nucleotide and enter 
“microsatellite.” There are over 
700,000 entries from which to 
choose. The Tandem Repeats 
Finder is an online tool that allows 
you to search a sequence for 
tandem repeats of up to 2000 bp 
(  http://tandem.bu.edu/trf/trf 
.html, WebLink 8.28; Benson, 
1999). Its output is available at 
UCSC in the Variation and Repeats 
group for the track Microsatellite. 
Currently (February 2015) there 
are >41,000 entries for the human 
genome (GRCh37). For more 
information on SCA10 and its 
repeats, enter the query SCA10 
at NCBI and see the Online 
Mendelian Inheritance in Man 
(OMIM) entry #603516.

You can download a table of 
segmentally duplicated regions 
from the UCSC Genome Browser. 
Currently (February 2015) they 
span 164 megabases (5.7% of 
the genome). To see this for the 
GRCh37 human genome assembly, 
set the group to Variation and 
Repeats, set the region to the 
genome, and click “summary/
statistics.”

http://www.bioinfbook.org/chapter8
http://www.bioinfbook.org/chapter8
http://tandem.bu.edu/trf/trf.html
http://tandem.bu.edu/trf/trf.html
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1 23 4

(a) Segmental duplication at the beta globin locus on chromosome 11

(b) Segmental duplications at the alpha globin locus on chromosome 16

LTR LTR

1 2 3 4

duplicated
segment

duplicated 
segment

duplicated 
segment

duplicated
segment

duplicated
segments

FIGUre 8.10 Segmental duplications visualized at the UCSC Genome Browser. (a) The beta globin region includes a segmentally dupli-
cated region (13,000 base pairs on chromosome 11p15.4 are shown; chr11:5,267,001–5,280,000). These two regions (arrows 1 and 2) are 
flanked at the 5′ end by long terminal repeats (LTRs; arrows 3 and 4) that could mediate tandem duplication. (b) A region of 26 kilobases is 
shown (chr16:202,001–228,000). Two pairs of segmentally duplicated regions are evident. For the first pair, the region encompasses the HBZ 
gene (arrow 1) but the duplicated region has no annotated genes (arrow 2), although expressed sequence tags (see Chapter 10) are localized 
to it (not shown). A second segmentally duplicated pair (arrows 3 and 4) includes the alpha globin genes HBA2 and HBA1; these encoded 
proteins share 100% amino acid identity.

Source: http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
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duplication. For the alpha globin locus on chromosome 16, the HBZ gene (zeta globin) 
is tandemly duplicated to generate a pseudogene less than 10,000 base pairs apart. By 
clicking on the segmental duplication block on the Genome Browser output, you can 
access the exact genomic coordinates of the duplicated blocks as well as a global pairwise 
alignment of the two.

Blocks of Tandemly Repeated Sequences
Tandem repeats occur at loci such as telomeres, centromeres, and ribosomal gene clusters. 
Several telomere repeat sequences are listed in table 8.7. In human telomeres, the short 
sequence TTAGGG is repeated thousands of times. These repeats span up to 20 kilobases 
(while in mice they span 25–150 kb). Try a BLASTN search using TTAGGG TTAGGG 
TTAGGG as a query, restricting the output to human, and remove the filter for low com-
plexity. The result is several thousand BLAST hits, most from telomeric sequences such 
as that shown in Figure 8.11.

The centromere is a constricted site of a chromosome that serves as an attachment 
point for spindle microtubules, allowing chromosomal segregation during mitotic and 

See Web Document 8.4 for a 
detailed description of segmental 
duplication of lipocalins. 
Lipocalins are proteins that 
transport hydrophobic ligands 
such as odorants (Pevsner 
et al., 1988). These genes offer 
further examples of segmental 
duplication that enable the 
diversification of gene function.

Web document 8.5 shows a global 
pairwise alignment between 
the two segmentally duplicated 
blocks at the beta globin locus. 
See  http://www.bioinfbook.org/
chapter8.

Telomeric repeats are 
synthesized by telomerase, 
a ribonucleoprotein that has 
specialized reverse transcriptase 
activity.

taBLe 8.7 telomeric repeat sequences from several eukaryotic organisms.

Organism Telomeric repeat Reference

Arabidopsis thaliana, other plants TTTAGGG McKnight et al., 1997

Ascaris suum (nematode) TTAGGC Jentsch et al., 2002

Euplotes aediculatus, Euplotes crassus, 
Oxytricha nova (ciliates)

TTTTGGGG Jarstfer and Cech, 2002; Shippen‐Lentz 
and Blackburn, 1989; Melek et al., 1994

Giardia duodenalis, Giardia lamblia TAGGG Upcroft et al., 1997; Hou et al., 1995

Guillardia theta (cryptomonad 
nucleomorph)

[AG]7AAG6A Douglas et al., 2001

Homo sapiens, other vertebrates TTAGGG Nanda et al., 2002

Hymenoptera, Formicidae (ants) TTAGG Lorite et al., 2002

Paramecium, Tetrahymena TTGGGG, TTTGGG McCormick‐Graham and Romero, 1996

Plasmodium falciparum AACCCTA Gardner et al., 2002

Plasmodium yoelii yoelii AACCCTG Carlton et al., 2002

>gi|224514922|ref|NT_024477.14| Homo sapiens chromosome 12 genomic 
contig, GRCh37.p13 Primary Assembly (displaying 3’ end)
CGGGAAATCAAAAGCCCCTCTGAATCCTGCGCACCGAGATTCTCCCCAGCCAAGGTGAGGCGGCAGCAGT
GGGAGATCCACACCGTAGCATTGGAACACAAATGCAGCATTACAAATGCAGACATGACACCGAAAATATA
ACACACCCCATTGCTCATGTAACAAGCACCTGTAATGCTAATGCACTGCCTCAAAACAAAATATTAATAT
AAGATCGGCAATCCGCACACTGCCGTGCAGTGCTAAGACAGCAATGAAAATAGTCAACATAATAACCCTA
ATAGTGTTAGGGTTAGGGTCAGGGTCCCGGTCCGGGTCGGGGTCCGGGTCCGGGGTCCGGGTCAGGGTGA
GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT
TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG
GTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTA
GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT
TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGG
GTTAGGGTTAGGGTTAGGGTTAG

FIGUre 8.11 A BLASTN search of the human genome (all assemblies) database was performed at 
the NCBI website using TTAGGGTTAGGGTTAGGG as query (i.e., three TTAGGG repeats). There 
were matches to hundreds of genomic scaffolds. This figure shows an example (NT_024477.14) assigned 
to the telomere of chromosome 12q having many dozens of TTAGGG repeats. These occurred at the 3′ 
end of the genomic contig sequence.

Source: BLASTN, NCBI.

http://www.bioinfbook.org/chapter8
http://www.bioinfbook.org/chapter8
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meiotic cell divisions (Choo, 2001). All eukaryotic chromosomes have a functional cen-
tromere, although the primary nucleotide sequence is not well conserved between species. 
In humans, this DNA consists largely of a 171 base pair repeat of α‐satellite DNA extend-
ing for 1–4 Mb. Almost all eukaryotic centromeres are able to bind a histone H3‐related 
protein (called CENP‐A in vertebrates). This protein–DNA complex forms a building 
block of centromeric chromatin that is essential for the function of the kinetochore, the 
site of attachment of the spindle fiber.

The GenBank accession number for a human α‐satellite consensus sequence is 
X07685. An alignment of this sequence (171 base pairs) with a typical bacterial artificial 
chromosome (BAC) clone from a pericentromeric region dramatically shows how often 
the satellite sequence is repeated (Fig. 8.12). A BLASTN search of the nonredundant data-
base, using this as a query and turning off filtering, results in thousands of database hits. 
If you exclude human entries from the output of your search, you find that the human 
α‐satellite sequence matches other primates. However, the human sequence has only very 
little conservation to nonprimate sequences, with nonsignificant expect values.

Satellite DNA is a feature of every known eukaryotic centromere, with only two doc-
umented exceptions. In the yeast S. cerevisiae, the entire centromere sequence extends 
only several hundred base pairs. A second exception is the neocentromere, an ectopic 
centromere that assembles a functional kinetochore, is stable in mitosis but lacks α‐satel-
lite DNA (Amor and Choo, 2002; Marshall et al., 2008). Over 90 human neocentromeres 
have been described, many involving trisomy or tetrasomy (extra chromosomal copies). 
As part of the analysis of the genome of the rhesus macaque Macaca mulatta, Ventura et 
al. (2007) described evolutionarily new centromeres that appeared while the conventional 
centromere was inactivated. They reported that in the 25 million years since macaque and 
human lineages diverged, 14 evolutionarily new centromeres have emerged and become 
fixed in one or the other species.

Gene content oF eukaryotIc chromosomes
Definition of Gene

We have begun our analysis of eukaryotic genomes by considering noncoding and repet-
itive DNA. The coding portions of a genome are of particular interest, as they largely 
determine the phenotype of all organisms. Two of the biggest challenges in understanding 

We described Expect values in 
Chapter 4. To perform this search 
try Net BLAST at the NCBI 
Genome Workbench (installation 
instructions are available at the 
NCBI website). Use the “Search 
Tool” (set for NCBI Nucleotide) 
to find X07685. Right‐click that 
entry to “Add to Project” and 
create a new project with this 
sequence (it appears in a data 
folder on the left sidebar). Right‐
click to “Run Tools” and select 
megaBLAST search. View the 
results (with Alignment Summary 
View).

FIGUre 8.12 The repetitive nature of α‐satellite DNA. A consensus sequence for human α‐satellite 
DNA (X07685) was compared to a BAC clone (AC125634) assigned to a pericentromeric region 
of chromosome 9q. BLASTN at NCBI was used, and the dotplot is shown. Note that a consecutive 
60 kilobases of the BAC clone ( y axis) matches the satellite consensus sequence repeatedly.

Source: BLASTN, NCBI.

Human alpha-satellite consensus 
sequence X07685  (171 base pairs)

Bacterial artificial 
chromosome (BAC) 
clone AC125634
(162,478 base pairs)

1 171
1

100,061

162,478
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any eukaryotic genome are defining what a gene is and identifying genes within genomic 
DNA. We first define the variety of genes and then provide the criteria for identifying 
them:

 • Protein‐coding genes form a major category of genes. Several criteria are applied to 
the assignment of a DNA sequence as a protein‐coding gene. The principal require-
ment is that there must be an open reading frame (ORF) of at least some minimum 
length such as 90 base pairs (corresponding to 30 codons encoding amino acids, or an 
3 kD protein). Frith et al. (2006) identified large numbers of short proteins (less than 
100 amino acids). Of the 3701 proteins they identified, only 232 matched a mouse 
International Protein Index or Swiss‐Prot database.

 • Pseudogenes do not encode functional gene products although, as discussed above, 
some important exceptions have been reported.

 • Many kinds of noncoding genes do not encode protein, but instead encode functional 
RNA molecules (Eddy, 2001, 2002). These include transfer RNA (tRNA) genes that 
translate information from the triplet codons in mRNA to amino acids. tRNAscan‐SE 
software identifies 99–100% of tRNA genes in genomic DNA sequence with an error 
rate of one false positive per 15 Gb (Lowe and Eddy, 1997). We show an example of 
the tRNAscan‐SE server in Figure 10.5.

 • We discuss a variety of other noncoding genes in Chapter 10. These include ribosomal 
RNA (rRNA) genes that function in translation; small nucleolar RNAs (snoRNAs) 
that function in the nucleolus; small nuclear RNAs that function in spliceosomes to 
remove introns from primary RNA transcripts; and microRNAs (miRNAs) of about 
21–25 nucleotides in length that are widely conserved among species and may serve 
as antisense regulators of other RNAs (Ambros, 2001; Ruvkun, 2001).

In annotating genomic DNA, an emphasis is often placed on describing the protein‐
coding genes. However, it is now clear that noncoding genes encoding various types of RNA 
products have diverse and important functions. Furthermore, it is not as straightforward to 
identify noncoding RNAs (Eddy, 2002), although the ENCODE Project Consortium et al. 
(2012) applied methods to characterize them. Their full size might be extremely small, as 
in the case of miRNAs. There is no ORF to help define the boundaries of noncoding genes. 
Database searches may be less sensitive than is possible for protein‐coding genes, because 
the scoring matrices for amino acids are more sensitive and specific. We discuss databases 
of noncoding RNAs such as Rfam (Griffiths‐Jones et al., 2003) in Chapter 10.

Classically, a gene was defined as a unit of hereditary information localized to a par-
ticular chromosome position and encoding one protein. More recently, we have become 
aware of alternative splicing to produce multiple transcripts from one gene locus, we 
have identified large numbers of noncoding RNAs, and we have observed pervasive tran-
scription throughout the genome (including transcriptionally active regions that have not 
been annotated as genes). Given the insights of the ENCODE project (ENCODE Project 
Consortium et al., 2007, 2012) as well as the analysis of completed genome sequences, 
the historical definitions of a gene have been challenged. Gerstein et al. (2007, p. 677) 
proposed that “The gene is a union of genomic sequences encoding a coherent set of 
potentially overlapping functional products.” (This definition is vague and suffers from 
the terms “coherent” and “potentially.”) Djebali et al. (2012) of the ENCODE project 
wrote “…We would propose that the transcript be considered as the basic atomic unit 
of inheritance. Concomitantly, the term gene would then denote a higher‐order concept 
intended to capture all those transcripts (eventually divorced from their genomic loca-
tions) that contribute to a given phenotypic trait.” Stamatoyannopoulos (2012) wrote: 
“Although the gene has conventionally been viewed as the fundamental unit of genomic 
organization, on the basis of ENCODE data it is now compellingly argued that this unit is 
not the gene but rather the transcript.”
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A gene is a DNA sequence that codes for an RNA product that may further be 
translated into a protein product. The genomic sequence constitutes the genotype that is 
related to the phenotype of a cell or ultimately of an organism. The ENCODE project has 
expanded our understanding of the complexity of transcription. This includes cataloging a 
large amount of the genome that is transcribed, and finding many RNA transcripts derived 
from multiple genomic loci. By calling the the transcript the “basic atomic unit of inher-
itance,” the ENCODE authors place greater weight on the product of a gene than on the 
gene itself. The use of the term “atomic” represents a metaphor; in an earlier metaphor, 
DNA is like the blueprint of a house, specifying products that assume various functions in 
the house (plumbing, trash removal, making compartments). The ENCODE project might 
see the blueprints as being so complex that only when they are interpreted (as transcripts) 
do they become functional blueprints.

Finding Genes in eukaryotic Genomes

Finding protein‐coding genes in eukaryotic genomes is a far more complex problem 
than for bacteria and archaea (Picardi and Pesole, 2010; Alioto, 2012). While bacterial 
genes typically correspond to long open reading frames (ORFs), most eukaryotic genes 
have exons and introns. The structure of a typical eukaryotic gene that is transcribed by 
RNA polymerase II is summarized in Figure 8.13a. Distal upstream and/or downstream 
enhancers and silencers as well as proximal (more neighboring) promoter elements reg-
ulate transcription. CCAAT box and a TATA box are promoter elements, with the TATA‐
box typically located 20–30 base pairs upstream of the transcription start site and the 
CCAAT box further to the 5′ side. There are several kinds of exons:

 1. Noncoding exons correspond to the untranslated 5′ or 3′ region of DNA.
 2. Initial coding exons include the start methionine and continue to the first 5′ splice 

junction.
 3. Internal exons begin with a 3′ splice site and continue to a 5′ splice site.
 4. Terminal exons proceed from a 3′ splice site to a termination codon.
 5. Single‐exon genes are intronless, beginning with a start codon and ending with a stop 

codon (Fig. 8.13b; table 8.5).

Introns have been categorized into four groups based on their splicing mechanism: 
(1) autocatalytic group I, found in protists, bacteria, and bacteriophages; (2) group II, 
found in fungal and land plant mitochondria and in bacteria and archaea; (3) spliceosomal 
introns, found in nuclear pre‐mRNA genes; and (4) tRNA introns, found in eukaryotic 
nuclei and in archaea (Haugen et al., 2005; Roy and Gilbert, 2006). Eukaryotic spliceoso-
mal introns vary by two orders of magnitude in their density, from <0.1 to 5.5 introns per 
gene in fungi to 2.6–9.3 introns per gene in the metazoans (Roy, 2006). Fascinating ques-
tions include the mechanisms by which introns are gained and lost, the selective pressures 
on intron size, and their evolutionary history (Jeffares et al., 2006; Pozzoli et al., 2007). 
While introns were thought to have arisen late in eukaryotic evolution, a single intron was 
discovered in the genome of the primitive protozoan Giardia lamblia (see Chapter 19) as 
well as several introns in its close relative Carpediemonas membranifera (Nixon et al., 
2002; Simpson et al., 2002).

In addition to the issue of introns, eukaryotic genes also occupy a far smaller pro-
portion of the genome than bacterial and archaeal genes. Eukaryotic protein‐coding 
exons occupy just 25% of nematode and insect genomes and less than 3% of human 
and mouse genomes. Chromosome 13 has the lowest protein‐coding gene density (6.5 
genes per megabase, with a region of 38 megabases having just 3.1 genes/Mb; Dunham 
et al., 2004). Chromosome 19 has the highest gene density, with 26 loci per megabase 
(Grimwood et al., 2004).

RNA polymerase I synthesizes 
most ribosomal RNAs; RNA 
polymerase II synthesizes 
messenger RNAs and small 
nuclear RNAs (snRNAs); and 
RNA polymerase III synthesizes 
5S rRNA and transfer RNAs 
(Chapter 10).
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Algorithms for finding protein‐coding genes in eukaryotes can be divided into two 
main categories: extrinsic and intrinsic (Stein, 2001; Brent, 2008; Picardi and Pesole, 
2010; Alioto, 2012). Extrinsic methods rely on comparisons to external data sources. 
These include RNA studies that map expressed sequence tags back to genomic loci, or 
studies of protein sequences to define gene structures. An additional form of extrinsic gene 
identification is to compare genomic DNA of two related organisms (Novichkov et al., 
2001; Morgenstern et al., 2002). By comparing human DNA to pufferfish (F. rubripes) 
DNA, it was possible to discover nearly 1000 putative human genes (Aparicio et al., 
2002; Hedges and Kumar, 2002). Intrinsic (also called ab initio) methods search for exons 
and introns based on signals or patterns in the genomic DNA. Extrinsic and intrinsic 
methods are often used in combination.

The use of RNA data is extremely helpful in annotating eukaryotic genes, and 
is sometimes considered a gold standard for identifying genomic loci correspond-
ing to exons (and therefore for annotating exon/intron borders). Until the advent of 
next‐generation sequencing, this approach relied on cDNA libraries (introduced in 
Chapter 10); more recently, RNA‐seq has been used. There are notable limitations to 
these approaches:

 • The quality of EST sequence is sometimes low, as clones are often sequenced on only 
one strand and sequencing errors are common.

 • Highly expressed genes are often disproportionately represented, although some 
cDNA libraries are normalized (Chapter 10).

 • Transcripts expressed at low levels may be incompletely characterized by RNA‐seq 
if there is not sufficient depth of coverage.

 • ESTs provide no information regarding the genomic location.

Intrinsic programs are also widely used to annotate genomic DNA. A large fraction 
of predicted genes do not have identifiable orthologs, nor are EST sequences avail-
able. It is therefore essential to identify protein‐coding genes using ab initio (intrinsic) 
approaches.

Most human genes are 
alternatively spliced (Buratti et 
al., 2013). If ESTs are available 
corresponding to alternatively 
spliced isoforms, these 
sequences can be mapped to 
exons.
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FIGUre 8.13 (a) Eukaryotic gene prediction algorithms differentiate several kinds of exons includ-
ing: those in noncoding regions; initial coding exons that include a start codon; internal exons; and 
terminal exons that include a stop codon. These exons are built into a model for a predicted gene. (b) In 
some cases, genes have a single exon and are intronless. The border of exons and introns typically has a 
GT/AG boundary, but the structure of such genes may still difficult to predict ab initio.
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Many eukaryotic gene prediction programs are available; some are listed in table 8.8. 
These programs typically produce models of gene structures (exons, introns, alterna-
tive splicing) and identify other features such as CpG islands (regions of a higher than 
expected occurrence of CpG dinucleotides over a particular distance such as 300 base 
pairs). Often these programs include searches with RepeatMasker to identify classes of 
repetitive DNA as well as BLAST or BLAST‐like searches to identify known genes, pro-
teins, and expressed sequence tags that help to model the gene structure.

As an example of an ab initio prediction tool we can run GENSCAN (Burge and 
Karlin, 1998) via a server, uploading 50 kilobases of DNA spanning the beta globin 
region on chromosome 11. The resulting annotation partially matches the known globin 
gene cluster, and includes a prediction of an exon in an intergenic region that has an open 
reading frame but without support of expressed sequence tag or other RNA‐based data.

The difficulty of finding protein‐coding genes in genomic DNA is illustrated by the 
efforts to annotate a typical eukaryotic genome: the indica and japonica subspecies of 
the rice genome. Yu et al. (2002) obtained 75,659 gene predictions when they submitted 
their assembled draft version of the rice genome (indica) to an FGeneSH web server. 
Only 53,398 of these predictions were complete (having both initial and terminal exons), 
about 7500 had only an initial exon, 11,000 had only a terminal exon, and 3400 pre-
dicted genes had neither. Additionally, they reported that exon–intron boundaries were 
often not precisely defined. However, when the finished sequence was obtained from the 
draft sequence, the estimate of gene content improved dramatically. Sasaki et al. (2002) 
obtained the finished sequence of rice chromosome 1 (subspecies japonica) and predicted 
6756 genes on this chromosome. In contrast, the draft version of this genome predicted 
just 4467 genes. The presence of several thousand gaps in the draft sequence precluded 
the ability to accurately predict complete genes.

As another example of an approach to annotating genes, the Drosophila 12 Genomes 
Consortium (2007) reported the sequencing of ten Drosophila species yielding a total of 

We discuss the GLIMMER 
program for annotating genes 
in bacteria and archaea in 
Chapter 17.

We obtain 50,000 base pairs of 
DNA from the beta globin region 
(chr11:5,245,001–5,295,000) of 
human genome build GRCh37/
hg19 (available as Web 
Document 8.6). This region 
includes HBB, HBD, HBBP1, 
HBG1, HBG2, and HBE1 
according to RefSeq. (The 
GENCODE version 17 models for 
HGB2 and HBE1 extend hundreds 
of kilobases further to positions 
~5,530,000 and ~5,670,000, 
respectively.) The GENSCAN 
server is available at  http://
genes.mit.edu/GENSCAN.html 
(WebLink 8.29). Its output is given 
in Web Document 8.7.

taBLe 8.8 algorithms for finding genes in eukaryotic DNa. adapted from picardi and pesole (2010), with 
permission from Springer.

Program Description URL

AAT Analysis and Automation Tool http://aatpackage.sourceforge.net/

ASPIC Extrinsic. Web server http://srv00.ibbe.cnr.it/ASPicDB/index.php

AUGUSTUS Extrinsic. University of Göttingen http://bioinf.uni‐greifswald.de/augustus/

Eugène Extrinsic http://eugene.toulouse.inra.fr/

Exogean Extrinsic http://www.biologie.ens.fr/dyogen/spip.php?rubrique4&lang=fr

FgeneSH Intrinsic. Ab initio gene finder http://www.softberry.com/berry.phtml

GAZE Combiner: extrinsic, intrinsic http://www.sanger.ac.uk/resources/software/gaze/

geneid Intrinsic. Web server from Roderic Guigó http://genome.crg.es/geneid.html

GeneMark Intrinsic. Georgia Institute of Technology http://exon.gatech.edu/GeneMark/

GenomeScan Extrinsic http://genes.mit.edu/genomescan.html

Genscan Intrinsic. Based on HMMs http://genes.mit.edu/GENSCANinfo.html

GlimmerHMM Intrinsic. Generalized HMM‐based. From TIGR 
and the University of Maryland

http://cbcb.umd.edu/software/glimmerhmm/

GRAILEXP Extrinsic http://compbio.ornl.gov/grailexp/

JIGSAW Combiner: extrinsic, intrinsic http://www.cbcb.umd.edu/software/jigsaw/

Xpound Intrinsic. A probabilistic model for detecting 
coding regions

http://mobyle.pasteur.fr/cgi‐bin/portal.py?#forms::xpound

http://aatpackage.sourceforge.net/
http://srv00.ibbe.cnr.it/ASPicDB/index.php
http://bioinf.uni%E2%80%90greifswald.de/augustus/
http://eugene.toulouse.inra.fr/
http://www.biologie.ens.fr/dyogen/spip.php?rubrique4&lang=fr
http://www.softberry.com/berry.phtml
http://www.sanger.ac.uk/resources/software/gaze/
http://genome.crg.es/geneid.html
http://exon.gatech.edu/GeneMark/
http://genes.mit.edu/genomescan.html
http://genes.mit.edu/GENSCANinfo.html
http://cbcb.umd.edu/software/glimmerhmm/
http://compbio.ornl.gov/grailexp/
http://www.cbcb.umd.edu/software/jigsaw/
http://mobyle.pasteur.fr/cgi%E2%80%90bin/portal.py?#forms::xpound
http://genes.mit.edu/GENSCAN.html
http://genes.mit.edu/GENSCAN.html
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12 Drosophila‐related genomes. The genomes were sequenced to varying depths, from 
over 10× coverage to just 2.9× coverage. They used four different de novo gene prediction 
algorithms, three homology‐based predictors that relied on the well‐annotated Drosoph-
ila melanogaster genome sequence, one predictor (called Gnomon) that combined de 
novo and homology‐based evidence, and a gene model combiner (called GLEAN) that 
reconciled all the predicted genes into a set of consensus models. Quality was assessed in 
part by measuring RNA transcript levels with microarrays (Chapter 11).

Finding Genes in eukaryotic Genomes: eGaSp Competition

The ENCODE Genome Annotation Assessment Project (EGASP) was a competition 
designed to objectively test the performance of a set of gene‐finding software. The GEN-
CODE consortium created a “gold standard” by rigorously mapping all the protein‐coding 
genes with the ENCODE regions (Harrow et al., 2006). This was achieved by carefully 
applying a range of experimental techniques such as 5′ rapid amplification of comple-
mentary DNA ends (RACE) and the polymerase chain reaction with reverse transcription 
(RT‐PCR). A total of 434 coding loci were annotated as part of the GENCODE reference 
set. Only 40% of the GENCODE annotations were within the RefSeq and Ensembl anno-
tation sets, reflecting the discovery of a large number of alternatively spliced isoforms 
with unique exons.

Given this deep level of annotation of ENCODE regions based on experimental evi-
dence, the EGASP competition consisted of groups that predicted gene structures with 
the raw sequence data but without prior access to the annotation results (Guigo et al., 
2006; Harrow et al., 2006). This allowed false positive and false negative error rates to 
be assessed. Sensitivity was defined as the proportion of annotated features (nucleotides, 
exons, or genes) that are predicted correctly, while specificity was defined as the propor-
tion of predicted features that is annotated. The most successful gene prediction methods 
achieved a maximum sensitivity of 70% at the gene level (for finding at least one correct 
exon/intron structure), 45% at the transcript level (for correctly predicting all alternatively 
spliced variants), and 90% at the coding nucleotide level. Only about 3% of the many 
computationally predicted exons could be experimentally validated, suggesting that over-
prediction remains a fundamental problem.

We can view the results of the EGASP competition at the UCSC Genome Browser 
website (Fig. 8.14). There is generally good agreement on the identification of exons, 
although there is considerable variation in the prediction of complete gene models.

One of the best‐performing programs in the GENCODE competition was JIGSAW 
by Jonathan Allen, Steven Salzberg and colleagues (Allen and Salzberg, 2005; Allen et 
al., 2006). JIGSAW is an integrative program that combines different sources of evidence 
into a model of a gene structure. It incorporates models from other gene prediction pro-
grams (typically three or more) as well as sequence alignment data and intron splice site 
prediction programs. It allows separate signal types including start codons, stop codons, 
and splice junctions (acceptor and donor sites at the 5′ and 3′ ends of introns). In one 
mode JIGSAW uses a linear combiner to assign a weight to each evidence source, and it 
maximizes the sum of the evidence (Allen et al., 2004). This can be accomplished without 
using a training set. In another mode JIGSAW uses a statistical combiner which requires 
a training set (with examples of known genes) that are used to evaluate the accuracy of 
various combinations of evidence. Once a model is trained it is applied to a dataset.

For the EGASP competition, JIGSAW predictions were based on training with a vari-
ety of inputs including gene finders used by the UCSC annotation database (GENEID, 
SGP, TWINSCAN, and GENSCAN) as well as the GeneZilla and GlimmerHMM pro-
grams. It further incorporated expression evidence from human and nonhuman sources, 
GC percentage, sequence conservation, and a variety of genomic features such as TATA 

We discuss other competitions 
for proteomics and protein 
structure (CASP) in Chapters 
12 and 13, respectively. The 
GENCODE Project website 
is  http://genome.imim.es/
gencode/ (WebLink 8.30), 
including a genome browser. 
The GENCODE team worked in 
collaboration with the Human 
And Vertebrate Analysis aNd 
Annotation (HAVANA) team at 
the Sanger Institute (  http://
www.sanger.ac.uk/HGP/havana/, 
WebLink 8.31).

JIGSAW can be downloaded from 
 http://cbcb.umd.edu/software/

jigsaw/ (WebLink 8.32). Details 
on the JIGSAW method are 
presented in Web Document 8.8.

http://genome.imim.es/gencode/
http://www.sanger.ac.uk/HGP/havana/
http://www.sanger.ac.uk/HGP/havana/
http://cbcb.umd.edu/software/jigsaw/
http://genome.imim.es/gencode/
http://cbcb.umd.edu/software/jigsaw/
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box and signal peptide sequences, intron phase, and CpG islands. Surprisingly, adding 
some categories of information (such as training on untranslated regions) diminished 
rather than improved accuracy (Allen et al., 2006).

three resources for Studying protein-Coding Genes:  
refSeq, UCSC Genes, GeNCODe

We can compare and contrast three major resources for protein‐coding loci available at 
the UCSC Genome Browser:

 1. We introduced the RefSeq project in Chapter 2.
 2. The UCSC Genes set includes broader sources (e.g., RefSeq, GenBank, CCDS, 

Rfam) and includes 10% more genes than the RefSeq track at UCSC, four times as 
many noncoding genes, and twice as many splice variants.

 3. The GENCODE project (Harrow et al., 2012) includes high‐quality manual annota-
tion along with automated annotation.

FIGUre 8.14 In the EGASP competition, protein coding genes were experimentally validated in ENCODE regions. Various gene‐finding 
software tools were used to independently predict gene structures. The beta globin ENCODE region consists of one million base pairs on 
human chromosome 11p. A portion of 200,00 base pairs is shown (x axis) with tracks for RefSeq genes and EGASP predictions from 19 
software programs ( y axis tracks). Many of the programs predict exons and/or entire gene structures that are not experimentally confirmed; 
examples are shown (arrows). Overfitting therefore remains a problem for prediction software. An even greater problem is that a complete, 
correct gene model is generated for fewer than half of all genes.

Source: ENCODE, courtesy of UCSC.
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These various tracks were shown in Figure 8.7a for the HBB locus. There are 
several notable differences. The 5′ region of the HBB gene is longer in the Ensembl 
transcripts and GENCODE tracks than the RefSeq or CCDS tracks. One Ensembl 
transcript extends about 2 kilobases further to the 5′ end than any other transcript. 
The UCSC Genes entry lists a single exon antisense gene of 23 base pairs (called 
DL074624) that is not annotated in the RefSeq collection and that lacks homologs in 
a variety of other species. Additional tracks for human mRNAs and human ESTs offer 
varying levels of support for these different models of the HBB gene. Another exam-
ple of differences between GENCODE and RefSeq in the alpha globin gene cluster is 
provided in Figure 8.15a.

When gene models differ, a challenge is to know which is correct. Projects that rely 
on expert manual annotation often yield superior results to automated pipelines. In each 
particular case, it is however helpful to understand the experimental data that support each 

>chr16:226174-227254 
CGTCCGGGTGCGCGCATTCCTCTCCGCCCCAGGATTGGGCGAAGCCTCCCGGCTCGCACT
CGCTCGCCCGTGTGTTCCCCGATCCCGCTGGAGTCGATGCGCGTCCAGCGCGTGCCAGGC
CGGGGCGGGGGTGCGGGCTGACTTTCTCCCTCGCTAGGGACGCTCCGGCGCCCGAAAGGA
AAGGGTGGCGCTGCGCTCCGGGGTGCACGAGCCGACAGCGCCCGACCCCAACGGGCCGGC
CCCGCCAGCGCCGCTACCGCCCTGCCCCCGGGCGAGCGGGATGGGCGGGAGTGGAGTGGC
GGGTGGAGGGTGGAGACGTCCTGGCCCCCGCCCCGCGTGCACCCCCAGGGGAGGCCGAGC
CCGCCGCCCGGCCCCGCGCAGGCCCCGCCCGGGACTCCCCTGCGGTCCAGGCCGCGCCCC
GGGCTCCGCGCCAGCCAATGAGCGCCGCCCGGCCGGGCGTGCCCCCGCGCCCCAAGCATA
AACCCTGGCGCGCTCGCGGCCCGGCACTCTTCTGGTCCCCACAGACTCAGAGAGAACCCA
CCATGGTGCTGTCTCCTGCCGACAAGACCAACGTCAAGGCCGCCTGGGGTAAGGTCGGCG
CGCACGCTGGCGAGTATGGTGCGGAGGCCCTGGAGAGGTGAGGCTCCCTCCCCTGCTCCG
ACCCGGGCTCCTCGCCCGCCCGGACCCACAGGCCACCCTCAACCGTCCTGGCCCCGGACC
CAAACCCCACCCCTCACTCTGCTTCTCCCCGCAGGATGTTCCTGTCCTTCCCCACCACCA
AGACCTACTTCCCGCACTTCGACCTGAGCCACGGCTCTGCCCAGGTTAAGGGCCACGGCA
AGAAGGTGGCCGACGCGCTGACCAACGCCGTGGCGCACGTGGACGACATGCCCAACGCGC
TGTCCGCCCTGAGCGACCTGCACGCGCACAAGCTTCGGGTGGACCCGGTCAACTTCAAGG
TGAGCGGCGGGCCGGGAGCGATCTGGGTCGAGGGGCGAGATGGCGCCTTCCTCGCAGGGC
AGAGGATCACGCGGGTTGCGGGAGGTGTAGCGCAGGCGGCGGCTGCGGGCCTGGGCCCTC
G

(b) CpG island associated with HBA1

(a) CpG islands in the human alpha globin gene cluster

FIGUre 8.15 CpG islands are associated with the regulation of expression of many eukaryotic genes. 
(a) The alpha globin gene cluster on human chromosome 16 is shown (in a window of 35,000 base pairs 
of chr16:200,001–235,000 on the UCSC Genome Browser). Each of the five genes has an associated 
CpG island, defined as having a GC content of 50% or greater, a length greater than 200 base pairs, and a 
ratio >0.6 of observed to expected CpG dinucleotides. (b) By clicking on the HBA2 CpG island, its DNA 
sequence (chr16:222,370–223,447) is accessed. CpG dinucleotides are highlighted in pink. 

Source: http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
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gene model, both in general (sensitivity and specificity of a computational or biochemical 
approach) and for a specific research question (e.g., you can view the evidence supporting 
particular gene models).

protein-Coding Genes in eukaryotes: New paradox

The C value paradox is answered based on the variable amounts of noncoding DNA in 
a variety of eukaryotes. A new paradox is introduced (Claverie, 2001; Betrán and Long, 
2002): why are the proteomes of various eukaryotes similar in size, given the enormous 
phenotypic differences between eukaryotes? As we survey eukaryotic genomes in Chap-
ters 18 and 19, we see that organisms such as worms and flies appear to have about 
13,000–20,000 protein‐coding genes, while plants, fish, mice, and humans have only 
slightly more (about 20,000–40,000 genes; Harrison et al., 2002). Why do organisms 
such as humans, having so much greater biological complexity than insects and nema-
todes, have not even twice as many genes? The genes of higher eukaryotes employ more 
complex forms of gene regulation, such as alternative splicing. The architecture of indi-
vidual genes also tends to be more complex, for example with more domains present in 
an average human protein relative to insect.

reGulatory reGIons oF eukaryotIc chromosomes
Databases of Genomic regulatory Factors

In addition to predicting the presence of genes, it is also important to predict the presence 
of genomic DNA features such as promoters, enhancers, silencers, insulators, and locus 
control regions (Maston et al., 2006; Pennacchio et al., 2013). Such regulatory elements 
are sometimes called cis‐regulatory modules (CRMs). Identifying them is difficult com-
pared to finding protein‐coding genes because the DNA sequences of interest may be very 
short (e.g., fewer than a dozen base pairs for transcription factor‐binding sites), and con-
served between species to variable extents. Algorithms are available for identifying reg-
ulatory elements, as well as databases storing compilations of genomic features. table 8.9 
lists some of these resources, including software tools developed and used in association 
with ENCODE.

CpG islands represent an example of a regulatory element. The dinucleotide cyto-
sine followed by guanosine (CpG) is approximately five‐fold underrepresented in many 
genomes, partly because the cytosine residue can be exchanged for thymidine by sponta-
neous deamination. Cytosine residues on CpG dinucleotides are often methylated. This 
in turn leads to the recruitment of protein complexes that include histone deacetylases 
capable of removing acetyl groups of histones and therefore inhibiting active transcrip-
tion. CpG islands are regions of high density of unmethylated CpG dinucleotides and are 
commonly found in upstream (5′) regulatory regions near the transcription start sites of 
constitutively active “housekeeping” genes. By one criterion, a CpG island is defined as 
having a GC content ≥50%, a length ≥200 base pairs, and a ratio of observed to expected 
number of CpG dinucleotides of >0.6. Figure 8.15a shows five CpG islands in the human 
alpha globin locus, visualized using the UCSC Genome Browser, each in the vicinity of 
an alpha globin gene. The extraordinarily dense number of CpG dinucleotides is evident 
in one of these islands (Fig. 8.15b).

The UCSC Genome Browser offers access to a wealth of additional resources. In the 
“Regulation” category of annotation tracks, several dozen tracks are available (Fig. 8.16a). 
Some of these elements are shown for a small region (15,000 base pairs) of the beta globin 
locus (Fig. 8.16b). For example, the Open REGulatory ANNOtation database (ORegAnno) 
compiles regulatory elements from the literature and includes a validation process by 
expert curators (Griffith et al., 2008). Information in ORegAnno includes promoters, 

The VISTA Enhancer Browser is 
available at  http://enhancer.lbl.
gov (WebLink 8.33).

In computer lab exercise (8.11) 
we use an R package to measure 
dinucleotide frequencies in 
genomic DNA.

http://enhancer.lbl.gov
http://enhancer.lbl.gov
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enhancers, transcription factor‐bindings sites, and regulatory polymorphisms. As another 
example, the 7× regulatory potential track is based on regulatory potential scores com-
puted from alignments of seven organisms (human, chimpanzee, rhesus macaque, mouse, 
rat, dog, and cow; King et al., 2005; Taylor et al., 2006). Scores are based on log ratios 
of transition probabilities from variable order Markov models, based on the use of a 
training set. Constrained (conserved) residues in a multiple sequence alignment may have 
regulatory potential if they are more similar to known regulatory elements than to ances-
tral repeats (which serve as a model for neutrally evolving DNA). King et al. evaluated 
regulatory regions of the beta globin locus, which includes 23 experimentally determined 
CRMs; all but three or four of these are conserved in rat and mouse, and just four are con-
served in chicken. The regulatory potential method performed better (based on estimates 
of sensitivity and specificity) than other methods that rely exclusively on conservation of 
loci among species.

The UCSC Genome Browser options for the “Regulation” category include ENCODE 
tracks (Fig. 8.16a). Clicking on any of these headers provides access to track display fea-
tures as well as the methodology and literature citations. You can further select track hubs 
(see Fig. 8.16b, red circle) to access a wealth of other datasets, including an ENCODE 
analysis hub. This provides access to data from hundreds of experiments, including 
genomic segmentation, RNA‐seq, transcription factors, and histone modifications (Fig. 
8.16b; Gerstein et al., 2012; Wang et al., 2012).

ORegAnno is available online 
at  http://www.oreganno.org 
(WebLink 8.34). Web Document 
8.9 lists definitions of several 
categories of regulatory elements 
within ORegAnno.

taBLe 8.9 Software for identifying features of promoter regions in genomic DNa. additional resources are 
summarized at  http://www.oreganno.org/oregano/Otherresources.jsp (WebLink 8.50) and  http://www.gene-
regulation.com/pub/programs.html (WebLink 8.51). eNCODe software tools are described at  https://www.
encodeproject.org/software (WebLink 8.52).

Program Description URL

AliBaba2 Predicts binding sites of transcription factor 
binding sites in an unknown DNA sequence

http://www.gene‐regulation.com/ pub/programs.html

ENCODE software: ENCODE‐
motifs

Database of transcription factors http://www.broadinstitute.org/~pouyak/motif‐disc/
human/

ENCODE software: Factorbook Wiki‐style resource for ChIP‐Seq data on 
transcription factors

http://www.factorbook.org/mediawiki/ index.php/
Welcome_to_factorbook

ENCODE software: HaploReg Tool to analyze haplotype blocks http://www.broadinstitute.org/ mammals/haploreg/
haploreg.php 

ENCODE software: 
RegulomeDB

Identifies DNA features and regulatory 
elements in noncoding regions

http://regulome.stanford.edu/

ENCODE software: Spark For epigenomic data http://sparkinsight.org/

Eukaryotic Promoter Database 
(EPD)

Annotated nonredundant collection of 
eukaryotic POL II promoters, for which the 
transcription start site has been determined 
experimentally

http://epd.vital‐it.ch/

Open REGulatory ANNOtation 
database (ORegAnno)

Comprehensive, open access, community‐
based resource

http://www.oreganno.org

Promoter 2.0 Prediction Server Technical University of Denmark http://www.cbs.dtu.dk/services/ promoter/ 

Regulatory Sequence Analysis 
Tools (RSAT)

Université Libre de Bruxelles http://rsat.ulb.ac.be/rsat/

Transcriptional Regulatory 
Element Database (TRED)

Cold Spring Harbor Laboratory http://rulai.cshl.edu/cgi‐bin/TRED/tred.
cgi?process=home

TRANSFAC Database of transcription factors, their 
genomic binding sites, and DNA‐binding 
profiles

http://www.gene‐regulation.com/index2

http://www.oreganno.org/oregano/OtherResources.jsp
http://www.gene-regulation.com/pub/programs.html
http://www.gene-regulation.com/pub/programs.html
https://www.encodeproject.org/software
http://www.gene%E2%80%90regulation.com/pub/programs.html
http://www.broadinstitute.org/%7Epouyak/motif%E2%80%90disc/human/
http://www.factorbook.org/mediawiki/index.php/Welcome_to_factorbook
http://www.broadinstitute.org/mammals/haploreg/haploreg.php
http://regulome.stanford.edu/
http://sparkinsight.org/
http://epd.vital%E2%80%90it.ch/
http://www.oreganno.org
http://www.cbs.dtu.dk/services/promoter/
http://rsat.ulb.ac.be/rsat/
http://rulai.cshl.edu/cgi%E2%80%90bin/TRED/tred.cgi?process=home
http://www.gene%E2%80%90regulation.com/index2
http://www.oreganno.org
https://www.encodeproject.org/software
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FIGUre 8.16 Regulatory elements in genomic DNA. (a) The UCSC Genome Browser (GRCh37/
hg19 assembly) includes two dozen annotation tracks in the “regulation” category, many of which 
include analyses of chromatin modifications. (b) The beta globin and delta globin gene loci are shown 
(15,000 bases at the location chr11:5,245,001–5,260,000) with some of these annotation tracks opened: 
ORegAnno (arrows 1–4 highlight regulatory elements) and SwitchGear (showing two transcriptional 
start sites). These tracks highlight regulatory elements surrounding these genes. Additionally, you can 
open track hubs (red circle) and open large amounts of ENCODE analysis data (see track options at the 
bottom of the figure). Many of these are opened, showing a variety of regulatory features.

Source: http://genome.ucsc.edu, courtesy of UCSC.

(a)

(b)

1 2 3 4

http://genome.ucsc.edu
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These options include chromatin immunoprecipitation sequencing (ChIP‐seq) exper-
iments, in which antisera directed against specific proteins (such as DNA‐binding tran-
scription factors) are used to immunoprecipitate those proteins with their target DNA. 
This DNA can be amplified and identified by next‐generation sequencing. ChiP‐seq data 
using a variety of approaches can be displayed on the UCSC Genome Browser.

Another set of data are from DNase I sensitivity experiments (Sabo et al., 2006). 
DNase I hypersensitive sites reveal accessible genomic regions that are characteristic 
of active cis‐regulatory sequences and transcription start sites in particular (John et al., 
2013). ENCODE findings include enriched interactions of exons with promoters and 
enhancers, and the cataloguing of ∼21.9 million DNase I hypersensitive sites across 125 
cell and tissue types (Thurman et al., 2012; Mercer et al., 2013).

Ultraconserved elements

Comparisons of eukaryotic genome sequences have revealed some highly conserved cod-
ing and noncoding DNA sequences. The Ensembl and UCSC Genome Browsers offer 
comparative genomics annotation tracks, including for conservation. A UCSC track 
shows the extent of conservation in up to 46 vertebrate species (including mammals, 
amphibians, birds, and fish) based on phastCons and PhyloP (described in Chapter 5).

Comparison of the human and Fugu rubripes genomes that last shared a common 
ancestor about 450 million years ago revealed many ultraconserved sequences (also called 
highly conserved elements). Ultraconserved elements are sometimes defined as having a 
length ≥200 base pairs that match identically with corresponding regions of the human, 
mouse, and rat genomes. Bejerano et al. (2004) identified 481 such segments, most of 
which were also highly conserved with the dog and chicken genomes. Many of these ele-
ments are distant from any protein‐coding gene. These regions are highly constrained evo-
lutionarily (Katzman et al., 2007). Dermitzakis et al. (2003) also described ultraconserved 
sequences on human chromosome 21. In a computer laboratory exercise (8.9), we iden-
tify a series of DNA sequences that share 100% nucleotide identity between human and 
chicken (species that last shared a common ancestor over 300 million years ago).

UCNEbase is a database of ultraconserved elements (Dimitrieva and Bucher, 2013). 
You can browse these conserved elements and link to view them in the UCSC Genome 
Browser (including a track with the Bejerano et al., 2004 data).

It might be expected that ultraconserved elements have important functions such that 
they are so highly conserved under negative selection. Some ultraconserved elements 
drive tissue‐specific expression, while non‐exonic ultraconserved elements are depleted 
in regions of segmental duplicatons and copy number variants (Chiang et al., 2008). 
McLean and Bejerano (2008) find that mammalian non‐exonic conserved elements are 
over 300‐fold more likely to be conserved during rodent evolution relative to neutral 
DNA.

These findings on the importance of conserved elements contrast with the results 
of earlier studies investigating the consequence of deleting them. For example, Nóbrega 
et al. (2004) deleted two large noncoding regions from the mouse genome (consisting of 
1511 and 845 kilobases) and created viable homozygous deletion mice. They detected 
no altered phenotype (and only very minor differences in the expression of neighbor-
ing genes). These deletion regions harbored over 1200 noncoding sequences conserved 
between humans and rodents. It is possible that, under some physiological conditions, the 
deletions would have large phenotypic consequences; nonetheless, this study suggests 
that large portions of chromosomal DNA are potentially dispensible.

You can access UCNEbase at 
 http://ccg.vital‐it.ch/UCNEbase/ 

(WebLink 8.35).

http://ccg.vital%E2%80%90it.ch/UCNEbase/
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Nonconserved elements

In analyzing regulatory regions of genomic DNA, a focus has been on identifying con-
served noncoding regions as candidates for functionally important loci. Fisher et al. (2006) 
studied regulatory regions near the RET gene in zebrafish, and used a transgenic assay to 
identify a series of teleost sequences that direct ret‐specific reporter gene expression. Sur-
prisingly, a series of human noncoding sequences were also able to drive zebrafish gene 
expression, even though there was no detectable conservation between the human and 
zebrafish sequences. This highlights how little we understand about transcription factor 
binding, and suggests that vast amounts of functionally important regulatory sequences are 
not detectable based on sequence conservation (Elgar, 2006). The ENCODE perspective 
is that functionally important loci (based on biochemical assays) tend not to be conserved 
(ENCODE Project Consortium et al., 2007, 2012). Andrew McCallion, Ivan Ovcharenko 
and colleagues expanded the Fisher et al. (2006) findings to show that human/zebrafish 
regions can retain common regulatory functions in the absence of sequence detectable 
conservation. Conversely, many highly conserved regions have not been shown to have 
biochemical function (reviewed in Stamatoyannopoulos, 2012).

comparIson oF eukaryotIc dna
Comparative genomics is a powerful approach to annotating and interpreting the meaning 
of genomic DNA from multiple organisms. When we analyze the genomes of organisms 
that diverged recently (e.g., humans and chimpanzees diverged at 5 MYA) or in the distant 
past (e.g., mosquitoes and fruit flies diverged at 250 MYA; Zdobnov et al., 2002), it is 
helpful to align the genomic sequences in order to define conserved regions. Such analy-
ses can provide a wealth of information about the existence and evolution of protein‐cod-
ing genes and other DNA features, as well as information about chromosomal evolution.

Genes from different organisms that are derived from a common ancestor are ortho-
logs (Chapter 3). In comparing genomic sequences from two (or more) organisms, we 
may wish to analyze regions in each species having orthologous genes. Such regions are 
said to have conserved synteny. Synteny denotes the occurrence of two or more gene loci 
on the same chromosome, regardless of whether or not they are genetically linked. This 
definition refers to an arrangement of genes along a chromosome within a single species. 
“Conserved synteny” refers to the occurrence of orthologous genes (i.e., in two species) 
that are syntenic. As an example, the occurrence of the neighboring genes RBP4 and 
CYP26A1 on human chromosome 10 and mouse chromosome 19 represents conserved 
synteny.

In order to analyze regions of conserved synteny – or even larger regions of genomic 
DNA that do not necessarily contain protein‐coding genes – it is necessary to perform 
pairwise alignment and multiple sequence alignment of genomic DNA. We discuss 
approaches to this for bacteria and archaea in Chapter 17, and in Chapter 5 we discussed 
algorithms that are useful for the comparison of large DNA queries to databases contain-
ing genomic DNA including PatternHunter, BLASTZ, MegaBLAST, BLAT, LAGAN, 
and EPO.

There are other powerful tools for the comparison of genomic DNA in eukaryotes 
including PipMaker (Schwartz et al., 2000), VISTA (Mayor et al., 2000; reviewed in 
Frazer et al., 2003) and MUMmer (Kurtz et al., 2004; see Chapters 16 and 17). The goal 
of each program is to align long sequences (e.g., thousands to millions of base pairs) 
while visualizing conserved segments (exons and presumed regulatory regions) as well as 
large‐scale genomic changes (inversions, rearrangements, duplications). It is important to 
learn both the order and orientation of conserved sequence features. The VISTA browser 
output for human chromosome 11, including the beta globin and delta globin genes, is 

Synteny derives from Greek 
roots meaning “same thread” or 
“same ribbon.” A common error 
is to refer to orthologous genes 
as being syntenic, when instead 
they share conserved synteny 
(Passarge et al., 1999).

PipMaker and MultiPipMaker 
are available at  http://
pipmaker.bx.psu.edu/pipmaker/ 
(WebLink 8.36). (“Pip” stands 
for “percent identity plot.”) 
VISTA (Visualization Tools 
for Alignments) is at  http://
genome.lbl.gov/vista/index.
shtml (WebLink 8.37). mVISTA 
(main VISTA) is a program for 
visualizing genomic alignments, 
while rVISTA (regulatory VISTA) 
is used to align transcription 
factor binding sites. AVID is 
an alignment algorithm used 
by the VISTA tools (Bray et 
al., 2003). A VISTA browser is 
online at  http://pipeline.lbl.
gov/cgi‐bin/gateway2 (WebLink 
8.38); a typical output is shown in 
Figure 8.17. This allows human–
mouse, mouse–rat, and human–
rat genomic DNA comparisons. 
VISTA also offers a browser for 
enhancer elements (  http://
enhancer.lbl.gov/; WebLink 8.39).

http://pipmaker.bx.psu.edu/pipmaker/
http://pipmaker.bx.psu.edu/pipmaker/
http://genome.lbl.gov/vista/index.shtml
http://genome.lbl.gov/vista/index.shtml
http://pipeline.lbl.gov/cgi%E2%80%90bin/gateway2
http://enhancer.lbl.gov/
http://enhancer.lbl.gov/
http://pipeline.lbl.gov/cgi%E2%80%90bin/gateway2
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shown in Figure 8.17. This includes an alignment to the chimpanzee, mouse, and chicken 
genomes, highlighting conserved exons and conserved noncoding regions.

varIatIon In chromosomal dna
We might think of chromosomes as unchanging entities that define the genome of each 
species. However, they are dynamic in many ways across large timescales (millions of 
years), between generations, between individuals in a population, and even with individ-
ual lifetimes. A broad variety of cytogenetic changes occur in eukaryotes, allowing an 
assessment of different types, mechanisms, and consequences of rearrangement (Coghlan 
et al., 2005).

Dynamic Nature of Chromosomes: Whole-Genome Duplication

When we compare the genomes of related species, we can observe many types of chro-
mosomal changes. One level is ploidy. In eukaryotes, normal germ cells are haploid while 
somatic cells are usually diploid. Different cells within an individual can therefore have 
different ploidy. Ploidy is the number of chromosome sets in a cell, and can vary in many 
ways. Some single‐celled eukaryotes such as S. cerevisiae can grow in either the haploid 

FIGUre 8.17 The VISTA program for aligning genomic DNA sequences is available through a web browser that can be queried with 
text or DNA sequence (up to 300,000 bases). The output for a query of the human beta and delta globin gene region is shown here. The x 
axis shows the nucleotide position along human chromosome 11, and the y axis shows the percent nucleotide identity between human and 
chimpanzee, mouse, and chicken. A variety of exons (e.g., arrow 1) and conserved noncoding sequences (e.g., arrow 2) are shown. Human 
and chimpanzee have nearly identical sequences, but divergent regions are easily seen (e.g., arrow 3). By clicking a link (not shown), VISTA 
data can be output on a version of the UCSC Genome Browser.

Source: VISTA. http://genome.lbl.gov/vista/index.shtml. Courtesy of VISTA.

1 2

3

http://genome.lbl.gov/vista/index.shtml
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or diploid state. Triploid Drosophila are viable (but with reduced fertility). Although 
we distinguish the ploidy state in germ cells and somatic cells, ploidy can also vary in 
somatic cells within an individual. For example, in humans a small fraction of liver cells 
is typically triploid. In general, an extra germline copy of even one chromosome is lethal 
in mammals.

One of the dramatic ways that ploidy can change for an entire species is through 
whole‐genome duplication. Mechanistically, a mitotic or meiotic error may cause diploid 
gametes to form, having two sets of chromosomes. These may fuse with haploid gam-
etes to form triploid zygotes which are unstable but may lead to the formation of stable 
tetraploid zygotes. When whole‐genome duplication occurs within a species, the result is 
termed autopolyploidy. Such a massive event happened in yeast; in Chapter 18 we review 
evidence for whole‐genome duplication and computational tools to analyze and visualize 
it. A variety of protozoan, plant, and fish genomes also underwent whole‐genome dupli-
cation. In the case of the ciliate Paramecium tetraurelia, analysis of the genome sequence 
suggests that there have been at least three whole‐genome duplication events (Aury et al., 
2006; Chapter 19).

The genomes of two distinct species may merge to generate a novel species (allopoly-
ploidy; Hall et al., 2002). This phenomenon has been described in many plants (Comai, 
2000), animals, and fungi. For example, the plant Arabidopsis suecica derives from the A. 
thaliana and Cardaminopsis aerenosa genomes (Lee and Chen, 2001; Lewis and Pikaard, 
2001). Another example of allopolyploidy is the mule, which is the result of a cross 
between a male donkey (Equus asinus, 2n = 62) and a female horse (Equus caballus, 2n 
= 64). Mules cannot propagate because they are sterile (they cannot produce functional 
halploid gametes; see Ohno, 1970).

Ohno (1970) hypothesized that the increased complexity of vertebrates is due to two 
rounds of whole‐genome duplication in early vertebrate evolution. This has been called 
the 2R hypothesis (reviewed in Dehal and Boore, 2005; Panopoulou and Poustka, 2005). 
Ohno argued that duplication provided the genetic material to be shaped by mutation 
and selection to introduce novel functions to organisms (Prince and Pickett, 2002; Taylor 
and Raes, 2004). There are three advantages of becoming polyploid (Comai, 2005). (1) 
Hybrids sometimes exhibit an increase in performance relative to their inbred parents, a 
phenomenon termed heterosis. (2) Gene redundancy occurs, offering the opportunity to 
mask recessive deleterious alleles by dominant wildtype alleles. Also, one member of a 
duplicated gene pair may be silenced, up‐ or down‐regulated in its expression level, or 
regulated in a tissue‐specific manner (Adams and Wendel, 2005; Li et al., 2005). The most 
common fate of duplicated genes is that they become deleted as has been shown in fungi 
(discussed in Chapter 18), the plants Arabidopsis thaliana and Oryza sativa (Thomas et 
al., 2006), and fish (Brunet et al., 2006; Paterson et al., 2006). (3) Self‐fertilization may 
become possible (asexual reproduction).

Another type of chromosomal change that can be fixed in a species is the fusion of two 
chromosomes. For example, acrocentric chromosomes may be subject to Robertsonian 
translocation, in which two centromeres fuse (Slijepcevic, 1998). Human chromosome 2, 
the second largest human chromosome, is derived from two ancestral great ape acrocen-
tric chromosomes (chimpanzee chromosomes 2a and 2b, formerly named 12 and 13; 
Ijdo et al., 1991; Fan et al., 2002; Martin et al., 2002). The human 2q13 band, near the 
centromere, contains telomeric repeats in a head‐to‐head orientation. Over 50 interstitial 
telomeres have been described (Azzalin et al., 2001; Lin and Yan, 2008).

In addition to fusion, chromosomes can split (fission). As an example, human chro-
mosomes 3 and 21 derive from a larger ancestral chromosome (Muzny et al., 2006). 
Chromosomal inversions represent another change that can lead to speciation. There 
are five distinct subtypes of the mosquito Anopheles gambiae having varying kinds of 
paracentric inversions on chromosome 2 (Holt et al., 2002; Ayala and Coluzzi, 2005; 

Paramecium tetraurelia is 
exceptional because most of 
its duplicated genes have not 
been deleted (Aury et al., 2006; 
Chapter 19).

In human trisomy 21 (Down 
syndrome), it is not uncommon 
for a copy of chromosome 21 to 
fuse with another acrocentric 
chromosome.
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Nwakanma et al., 2013), and these inversions may lead to speciation by preventing suc-
cessful chromosomal pairing among members of different subtypes.

The recent availability of sequences from hundreds of eukaryotic genomes has led to 
the reconstruction of many ancestral genomes. For example, Kohn et al. (2006) decribed 
the eutherian karyotype from 100 million years ago, prior to the radiation of mammalian 
species. Murphy et al. (2005) compared the chromosomal architecture of eight species 
(human, horse, cat, dog, pig, cattle, rat, and mouse) and inferred the structure of their 
ancestral chromosomes. They characterized the sites of evolutionary breakages, which 
included subtelomeric and pericentromeric regions in particular.

Large‐scale chromosomal changes may lead to the establishment of a new species 
(speciation). Susumu Ohno (1970) provided an example. The karyotypes of the tobacco 
mouse Mus poschiavinus (2n = 26) and the house mouse Mus musculus (2n = 40) are 
shown (Fig. 8.18a, b). The ancestral M. poschiavinus may have become physically isolated 
from M. musculus and was therefore not able to interbreed. At this time its chromosomes 
underwent Robertsonian translocations, thus forming a new genome with a reduced num-
ber of chromosomes. The F1 progeny form a series of seven trivalents (each from one 
poschiavinus metacentric and two musculus acrocentrics; Fig. 8.18c) which are not com-
patible with survival.

Chromosomal Variation in Individual Genomes

A comparison of closely related species has revealed many chromosomal changes involv-
ing single chromosomes. At the level of the individual organism, many changes to chro-
mosomes occur, sometimes causing disease.

 • An individual may acquire an extra copy of an entire chromosome. For exam-
ple, Down syndrome is caused by a trisomy (triplicated copy) of chromosome 21 
(Fig. 8.1b). We discuss this type of disorder in Chapter 21. Aneuploidy (the pres-
ence of an abnormal number of chromosomal copies) occurs commonly and is often 
caused by nondisjunction (Hassold and Hunt, 2001).

 • Uniparental disomy may occur, in which both homologous chromosomes are inher-
ited from one parent. We discuss this in more detail in “SNP Microarrays” below. 
Uniparental disomy is often associated with disease in humans (Kotzot, 2001, 2008).

 • A portion of a chromosome may be deleted. Deletions may be terminal or intersti-
tial; an example of a terminal deletion of chromosome 11q is shown in Figure 8.1a 
(arrow B).

 • Segmental duplications commonly occur (introduced above; see also Chapter 20).
 • Normal chromosomes from any eukaryotic species can vary between individuals in 
length, number, and position of heterochromatic segments. For example, the ribo-
somal DNA repeat segments on the short arms of the five human acrocentric chromo-
somes vary greatly in length between individuals. A variety of human chromosomes 
show tremendous polymorphisms in the population, such as portions of chromosome 
7 (Chapter 20).

 • Fragile sites often occur, sometimes causing chromosomal breaks (Debatisse et al., 
2012). These fragile sites can be inherited in a dominant Mendelian fashion.

 • Some eukaryotes display chromatin diminution, a form of developmentally pro-
grammed DNA rearrangement. Remarkably, chromosomes in somatic cells can frag-
ment, then lose some chromosomal material. Somatic chromosomes can therefore 
have a different structural organization and a smaller gene number than germline cells. 
Chromatin diminution could represent an unusual gene‐silencing mechanism (Müller 
and Tobler, 2000). This phenomenon has been observed in at least 10 nematode spe-
cies, including the horse intestinal parasite Parascaris univalens (also called Ascaris 
megalocephala) and the hog parasite Ascaris suum.
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Among the many functional changes that chromosomes undergo, dosage compen-
sation of the X chromosome is a prominent example. In human females, one copy of 
each X chromosome is functionally inactivated through the action of an X‐chromosome 
inactivation center (XCI; Latham, 2005). Genomic imprinting, the selective silencing of 
either maternal or paternal copies of genes, is another regulatory mechanism (Morison 
et al., 2005).

(a) Ordinary male house mouse (Mus musculus, 2n = 40)

(b) Male tobacco mouse (Mus poschiavinus, 2n = 26)

(c) Male first meiotic metaphase from an interspecific F1-hybrid

FIGUre 8.18 Robertsonian fusion creates one metacentric chromosome by the fusion of two acro-
centrics. (a) Karyotype of the normal mouse, Mus musculus (2n = 40). (b) Karytoype of the male tobacco 
mouse (Mus poschiavinus, 2n = 26). Its smaller chromosome number derives from Robertsonian fusion 
events. (c) Male first meiotic metaphase from an interspecific F1‐hybrid. Note seven trivalents (indicated 
with arrows). Each represents one poschiavinus metacentric and two musculus acrocentrics.

Source: Ohno (1970). Reproduced with permisson from Springer Science + Business Media.
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Structural Variation: Six types

Structural variation (SV) consists of genomic alterations in DNA copy number, ori-
entation or location (Hall and Quinlan, 2012; Liu et al., 2012). The sizes of struc-
tural variants are typically defined as greater than 1 kilobase, or >100 base pairs for 
insertions/deletions (indels). Six main categories of structural variation are: (1) inser-
tions; (2) deletions; (3) tandem duplications; (4) inversions; (5) translocations; and 
(6) complex structural variants. A structural variation track from UCSC, based on the 
Database of Genomic Variants (Iafrate et al., 2004) currently includes structural varia-
tion data collected from over 50 publications. These include genomic insertions (e.g., 
duplications), deletions, inversions, translocations, and other complex rearrangements 
(Hall and Quinlan, 2012).

Inversions
A.H. Sturtevant (1921), a student of Thomas Hunt Morgan, mapped a series of genes and 
reported that Drosophila simulans has an inversion on chromosome III relative to Dro-
sophila melanogaster. This example highlights another feature of chromosomal plas-
ticity: while 500 unique inversions are known in D. melanogaster (a highly polymorphic 
species), only 14 unique inversions are known in D. simulans (a monomorphic species; 
Aulard et al., 2004). Different species present varying propensities to undergo chromo-
somal changes.

In humans and other species, inversions occur commonly. They can be extraordi-
narily difficult to detect because even DNA sequencing may not reveal changes, and they 
may be undetectable using conventional cytogenetics. Stefansson et al. (2005) described 
an inversion polymorphism of 900 kilobases that occurs on chromosome 17q21.31 (from 
44.1 to 45.0 Mb). This inversion is common in Europeans where it is under positive selec-
tive pressure. Surprisingly, the inverted segment occurs in chromosomes having different 
orientations in two lineages (H1 and H2) which diverged as long as 3 million years ago. 
As another example, an inversion of a single gene causes a severe form of hemophilia 
(Antonarakis et al., 1995).

In an innovative approach, Pavel Pevzner and colleagues have used small inversions 
as evolutionary characters to perform phylogenetic analyses (Chaisson et al., 2006). They 
estimate that one microinversion occurs per megabase per 66 million years of evolution, 
and they developed a method to distinguish microinversions (local alignments between 
orthologous sequences on the reverse strand) from palindromes and inverted repeats. 
This method is limited to analysis of sequences with sufficient conservation to permit 
clear assignment of orthology, but its phylogenetic reconstruction matches traditional 
approaches.

Mechanisms of Creating Duplications, Deletions, and Inversions
In the first half of the twentieth century, a variety of detailed models were proposed to 
explain how genes become duplicated, deleted, or inverted (Darlington, 1932). A major 
current model is non‐allelic homologous recombination mediated by low‐copy repeats 
(i.e., by segmental duplications; Stankiewicz and Lupski, 2002; Bailey and Eichler, 
2006). Repetitive DNA of about 10–50 kilobases that occur in two (or more) distinct 
chromosomal loci can lead to unequal crossing over (Fig. 8.19). These cross‐overs can 
occur intrachromosomally, intrachromosomally, or between sister chromatids (Fig. 8.19, 
columns). The orientation of the low‐copy repeats influences the nature of the rearrange-
ment that occurs; these repeats may occur in a direct orientation, they may be inverted 
repeats, or they may have a complex structure (Fig. 8.19, rows).

We examine the case of direct repeats in Figure 8.19a. The phrase “non‐allelic 
homologous recombination” refers to meiotic recombination between chromosomes. One 

Visit the DGV at  http://dgv.tcag.
ca/dgv/app/home (WebLink 8.40).

You can read about this 
hemophilia at the Online 
Mendelian Inheritance in Man 
(OMIM) site at NCBI (entry 
306700). We describe OMIM in 
Chapter 21.

http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
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chromosome has repeats labeled AB and CD, while the other has ab and cd. The repeats 
can combine even when they are non‐allelic (for example, AB and ab are allelic but AB 
and CD are non‐allelic). Nonetheless, they are homologous and therefore able to pair. 
Following the cross‐over event indicated by the X in Figure 8.19a, one copy contains ab 
cB CD and therefore has a duplication, while the other copy has Ad from the cross‐over 
event and therefore has a deletion.

As indicated in Figure 8.19, many other products can result from unequal exchanges. 
In this way, segmental duplications (low‐copy repeats) have been a major force in shaping 
genome evolution, including the emergence of gene families. In Chapter 21 we present 
six models by which deletions (or duplications or inversions) may cause disease (Lupski 
and Stankiewicz, 2005). In other cases the genomic rearrangements, such as altering the 
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FIGUre 8.19 Mechanisms of creating genomic rearrangements. Non‐allelic homologous recombi-
nation (NAHR) based on low‐copy repeats (LCRs) or segmental duplications cause these changes. The 
orientation of the LCRs may be head‐to‐head (top row), head‐to‐toe (middle row), or complex (bottom 
row) involving DNA exchanges that are interchromosomal (left column), intrachromosomal (middle 
column), or intrachromatid (right column). For each of the nine scenarios the chromosomal config-
uration is shown as well as the products of unequal crossing over. (a) Unequal cross‐overs between 
directly ordered repeats lead to a duplication and a deletion. (b) Mechanism of forming an inversion. (c) 
Interchromosomal exchange between inverted repeats causes inversions and can result in duplications 
and deletions. (d) Mispairing of direct repeats leads to an intrachromosomal deletion/duplication. (e) 
An inversion results from intrachromosomal unequal exchange between inverted repeats. (f) Complex 
repeats lead to an intrachromosomal deletion/duplication. (g) A deletion and an acentric fragment result 
from intrachromatid mispairing due to direct low‐copy repeats. (h) An intrachromatid loop of inverted 
repeats results in an inversion. (i) Complex repeats lead to intrachromatid mispairing and an inversion. 
Redrawn from Stankiewicz and Lupski (2002) with permission from Elsevier.
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dosage of a gene or fusing two genes together, may present an organism with an innova-
tion that is advantageous and selected for.

The boundaries of segmentally duplicated regions often contain Alu repetitive 
sequences (Bailey and Eichler, 2006). Pericentromeric and subtelomeric regions are also 
enriched for segmental duplications, with interchromosomal segmental duplications pres-
ent in 30 out of 42 subtelomeric regions (reviewed in Bailey and Eichler, 2006).

Models for Creating Gene Families
One prominent aspect of genomes is the occurrence of multigene families. Multigene 
families (also called superfamilies) consist of a group of paralogs such as the globins. 
Nei and Rooney (2005) reviewed this topic and described three separate models for their 
evolution.

 1. According to a divergent evolution model, members of a gene family gradually 
diverge as duplicate genes assume new functions (Fig. 8.20a). For example, the alpha 
and beta globin groups each have multiple members as shown in the phylogenetic 
tree of Figure 3.3. Some of these globins are expressed at specific developmental 
stages.

 2. According to a concerted evolution model, all the members of a gene family 
evolve in a concerted manner rather than independently (Fig. 8.20b). An example 
of this scenario is the tandemly repeated ribosomal DNA genes. We describe 
the structure of human rDNA repeats in Chapter  10 (Fig.  10.7). Work by Don-
ald Brown and others showed that intergenic regions of ribosomal DNA clus-
ters were more similar within a species than between two related Xenopus (frog) 

species 1 species 2species 1 species 2species 1 species 2

(a) Divergent evolution (b) Concerted evolution (c) Birth-and-death evolution

FIGUre 8.20 Three models for the creation of duplicate genes in multigene families: (a) divergent 
evolution; (b) concerted evolution; and (c) birth‐and‐death evolution. Open circles refer to functional 
genes; closed circles correspond to pseudogenes.

Source: Nei and Rooney (2005). Reproduced with permission from Annual Reviews.
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species. When one member of such a gene cluster acquires a mutation, that 
change spreads to other members. One mechanism by which this can occur is 
unequal crossing over. Another proposed mechanism is gene conversion. In gene 
conversion, one gene (or other DNA element) serves as a donor and, through a 
form of nonreciprocal recombination, it mediates the conversion of a second gene 
to form a copy of the first gene. Examples of gene families that have evolved by 
concerted evolution include the primate U2 snRNA genes, 5S RNA genes in Xen-
opus (which has 9000 to 24,000 members) or humans (which has ∼500 members), 
and heatshock protein genes in Drosophila. The hsp70Aa and hsp70Ab genes are 
a pair of inverted tandem repeats that are virtually identical in D. melanogaster 
as well as in D. simulans. Their within‐species identity could provide an example 
of gene conversion.

 3. A birth‐and‐death evolution model was proposed by Masatoshi Nei and others 
(reviewed in Nei and Rooney, 2005; Fig.  8.20c). According to this model, new 
genes are created by gene duplication. Some duplicates remain in the genome, 
while others are inactivated (becoming pseudogenes) or deleted. This model 
was proposed to explain the evolution of the major histocompatibility complex 
(MHC) genes. MHC proteins bind foreign or self peptides and present them to 
T‐lymphocytes as part of the immune response. MHC class I genes in particular 
are highly polymorphic due to positive selection on the peptide‐binding region 
(Hughes and Nei, 1989). The birth‐and‐death model presents a mechanism for 
the generation of gene diversity that is distinct from concerted evolution or 
divergent evolution, and explains how new functions can be acquired by dupli-
cate genes.

According to Nei and Rooney, most gene families are subject to birth‐and‐death evo-
lution. In some cases such as histone genes and the ubiquitins, the birth‐and‐death process 
is accompanied by very strong purifying selection that conserves the protein seqences. 
This selective pressure, rather than the homogenizing properties of gene conversion or 
unequal cross‐over, accounts for the tremendous conservation of these proteins. In other 
cases a mixed process of concerted evolution and birth‐and‐death evolution occurs, such 
as in the alpha globin genes in which HBA1 and HBA2 genes encode identical proteins, 
possibly because of gene conversion.

Chromosomal Variation in Individual Genomes: SNps

SNPs represent one of the most commonly occurring forms of variation in all genomes. 
Figure 8.21 shows an example of two SNPs from the beta globin gene at the Entrez data-
base of SNPs (dbSNP) at NCBI. By convention, each of the variants (C or G in these two 
cases) is represented as A or B for the major and minor alleles in the population. Most 
SNPs are biallelic (i.e., there are two rather than three or four variants at a given position) 
with a range of population frequencies. Possible genotype calls for a diploid sample (such 
as human) are AA or BB (homozygous) or AB (heterozygous). In regions of hemizygous 
deletion (where one of two chromosomal copies are deleted), or on the male X chromo-
some which is by its nature hemizygous, the genotypes are A or B but should never be 
heterozygous (Fig 8.21.).

The HapMap project was created to identify SNPs in the human genome. It resulted 
in the determination of over three million SNPs (International HapMap Consortium, 
2005, 2007). This resource, available through a HapMap database, initially focused on 
genotyping of four diverse populations (from northern Europe, Africa, Japan, and China). 
The SNP data are useful to describe variation between and within populations, including 
the structure of shared alleles (haplotypes), to characterize recombination rates and the 
evolution of both nonsynonymous and synonymous SNPs in coding regions.

The DNA and protein RefSeq 
accession numbers for hsp70Aa 
are NM_169441 and NP_731651, 
while for hslp70Ab they are 
NM_080059 and NP_524798.

Web Document 8.10 lists some 
of the gene families cited by Nei 
and Rooney.

The HapMap website is  http://
www.hapmap.org (WebLink 
8.41). Currently (May 2015) 
dbSNP build 42 includes ∼113 
million human RefSNPs; see 

 http://www.ncbi.nlm.nih.gov/
SNP/snp_summary.cgi (WebLink 
8.42).

http://www.hapmap.org
http://www.hapmap.org
http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi
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technIques to measure chromosomal chanGe
For several decades, karyotyping has been the pre‐eminent technique to visualize chro-
mosomes. Today, clinical genetics laboratories routinely use karyotyping to assess the 
occurrence of aneuploidy as well as smaller changes such as microdeletions and micro-
duplications. Typically, deletions that are smaller than about 3 million base pairs are too 
small to detect. Chromosomal inversions can only be detected if they are large enough to 
disrupt the banding pattern. Translocations may be balanced (if two chromosomal regions 
exchange) or unbalanced (if material is gained or lost).

Fluorescence in situ hybridization (FISH) offers greatly increased resolution. A bac-
terial artificial chromosome (BAC) clone, typically consisting of about 200,000 base 
pairs of genomic DNA inserted into a cloning vector of about 10,000 base pairs, can be 
labeled with a fluorescent dye then used to probe a spread of metaphase chromosomes on 
a microscope slide. FISH has been used to refine information about chromosomal anom-
alies such as microdeletions and translocations.

In 1992 Kallioniemi et al. performed comparative genome hybriziation (CGH) in 
which genomic DNA from two samples (such as one diseased and one apparently nor-
mal) is isolated, labeled with a green or red fluorescent dye, and hybridized to a normal 
chromosomal spread. This technique showed regions of gain or loss of DNA sequences, 
including amplifications seen in tumor cell lines.

(a) (b)

del(3) 3

del(3) 3

Possible genotype calls
in a typical euploid locus
AA (homozygous)
BB (homozygous)
AB (heterozygous)
NC (no call)

Possible genotype calls
in a hemizygous 
deletion region
A (interpreted as AA)
B (interpreted as BB)
NC (no call)

FIGUre 8.21 SNP microarray experiments provide information about chromosomal copy number 
(based on the intensity of hybridization) and genotype (based on alleles detected at each SNP position). 
(a) Karyotype of chromosome 3 from a patient with a hemizygous deletion (i.e., loss of a portion of 
one of the two chromosomal copies). The deletion region is indicated with an arrow. (b) Ideogram of 
chromosome 3. Throughout most of the chromosome there are four possible genotype calls: AA or BB 
(homozygous calls), AB (heterozygous), or NC (no call). In the deletion region there are three possible 
calls: an underlying state of A (interpreted by current software packages as a biallelic call, AA), B (inter-
preted as BB), or no call. There can be no AB calls (unless there is a technical failure). Some software 
packages detect stretches of homozygous SNPs which, in the presence of a reduced copy number, corre-
sponds to a hemizygous deletion. Note that the human male X chromosome is by its nature hemizygous, 
and no AB calls are expected other than those that represent genotyping errors.
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array Comparative Genomic hybridization

Array CGH (aCGH) is a high‐throughput extension of the CGH technique to microarrays 
that is useful to detect copy number changes at defined chromosomal loci. It combines the 
high resolution of FISH with the broad chromosome‐wide perspective of karyotyping. An 
aCGH platform may consist of thousands of BAC clones or oligonucleotides immobilized 
on the surface of a glass microarray. Genomic DNA is purified from a test sample (e.g., 
the DNA is isolated from a cell line or blood sample) and a reference sample. If the test 
sample DNA is labeled with a red dye and the reference is labeled with a green dye, then 
upon hybridization the signal intensities are comparable. If an amplification or deletion 
occurs, the log signal intensities deviate from a value of zero. The region of copy number 
gain or loss may be as small as one single probe (e.g., one base pair for a SNP array, or 
about 200,000 base pairs for a BAC array). The change may also extend across an entire 
chromosome arm or entire chromosome. Figure 8.22 shows an example of a microdeletion 
on chromosome 2. This resulted in the hemizygous loss of many genes, and intellectual 
disability in the patient.

A simple approach has been to apply a ratio threshold to define a region of ampli-
fication or deletion. For a gain of one copy, the amount of signal is expected to increase 
1.5‐fold (from 2 copies in the euploid state to 3 copies), while a hemizygous deletion 
reduces the copy number two‐fold (from 2 copies to 1). On a log2 scale, unchanged copy 
number corresponds to a value of 0 (i.e., a 1:1 ratio), while a gain and loss correspond to 
+1 and –1 log2 intensity values, respectively.

Many statistical approaches have been developed to analyze aCGH data. Two 
estimation problems must be addressed: inferring the number of chromosomal alter-
ations and their statistical significance, and locating the boundaries of such events. 
Lai et al. (2005) tested the accuracy of a group of 11 algorithms. Their compara-
tive study included receiver operating characteristic (ROC) curves, plotting the false 
positive rate versus the true positive rate. For many test datasets, the 11 algorithms 
produced dramatically different estimates of copy number changes. The algorithms 
were all better at detecting large‐scale aberrations with a good signal to noise ratio, 
but faltered with smaller aberrations and noisy data. Some algorithms did not detect 
particular amplifications or deletions; others either merged a group of alterations or 
splintered them inappropriately. Overall, one of the best‐performing algorithms in the 
Lai et al. (2005) study and another comparative study (Willenbrock and Fridlyand, 
2005) was the circular binary segmentation method (CBS; Olshen et al., 2004; Ven-
katraman and Olshen, 2007). This method divides the genome into regions of equal 
copy number, assuming that chromosomal gains or losses occur in discrete, con-
tiguous regions. The goal is to identify copy number change‐points which partition 
the chromosome into segments. A likelihood ratio statistic tests the null hypothesis 
that there is no change against the alternative hypothesis that there is one change 
at a given location. The null hypothesis is rejected if the test statistic exceeds some 
threshold; the variance can be estimated from the data by Monte Carlo simulations 
using a permuted reference distribution.

aCGH is one of the techniques that has been used to discover copy number vari-
ants (CNVs) in the human genome. There is an astonishing amount of variation between 
even apparently normal individuals, with large numbers of megabase‐sized deletions and 
duplications. We address this topic in Chapter 20.

SNp Microarrays

There are many applications of SNPs including mapping polymorphisms in genes and 
genomes, selecting markers to identify individuals having alleles of interest in large seg-
regating populations, and finding association between genomic regions and segregating 
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FIGUre 8.22 Array comparative genome hybridization (aCGH) allows detections of chromosomal 
gains and losses. (a) Experimental design. Genomic DNA is isolated from a test sample (e.g., from a 
patient) and a reference (e.g., from a pool of apparently normal controls). The DNA is fragmented then 
labeled with differently colored fluorescent dyes such as Cy3 and Cy5. In a parallel dye swap experi-
ment, the test and reference samples are labeled with opposite dyes. The samples are coincubated on a 
microscope slide containing up to tens of thousands of bacterial artificial chromosome (BAC) clones, 
each of which typically spans 200,000 base pairs and has known chromosomal position. More recently 
arrays contain densely packed oligonucleotides, although this figure depicts BAC clones. Following 
hybridization, washing, and image analysis, most BACs on the array have a comparable amount of Cy3 
and Cy5 dye (indicated as gray spots on the two slides). A deletion in the test sample is associated with 
relatively more Cy5 dye in the reference; see the two red spots in the slide at the left. In the dye swap, 
these two spots appear black, providing an independent validation. An amplification in the test sample 
results in relatively more Cy3 dye (see the black spot in the slide at left, which appears red in the dye 
swap experiment to the right). (b) Example of an aCGH image from a scanner. The output includes a 
spreadsheet that includes quantities of the signal intensities in the Cy3 and Cy5 channels for each BAC 
clone. (c) Example of the output for chromosome 2. The x axis corresponds to chromosome 2 (from the 
p terminus to the q terminus). The y axis corresponds to the Cy3/Cy5 ratio from the initial experiment 
and from the dye swap. There are therefore two sets of data points that are superimposed. The test sample 
is from a patient who has a deletion of about 23 megabases (from 190.5 to 213.8 Mb in chromosome 
2q32.2–q34). This deletion is evident as a reduced signal intensity ratio across a group of adjacent BACs 
(arrow 1). As expected, the dye swap experiment shows a mirror image deviation (arrow 2).

Physical position (Mb)

0 50 100 150 200

R
at

io
 (

cy
3/

C
y5

)

1.00

0.67
0.50

0.22

4.50

1.50
2.00

3.00

0.33

2.50

0.40

1.00

0.67
0.50

0.22

4.50

1.50
2.00

3.00

0.33

2.50

0.40

Test (Cy3) Reference (Cy5) Test (Cy5) Reference (Cy3)

(a)

initial experiment dye swap experiment

(b)

(c)

R
at

io
 (

cy
3/

C
y5

, d
ye

 s
w

ap
)

1

2



Genomewide AnAlysis of dnA, RnA, And PRotein358

traits (Chapter 20). A basic application is to measure chromosomal changes in genomic 
DNA samples. Several technologies exist to measure vast numbers of SNPs on microar-
rays, such as a single‐base extension strategy from Illumina and an oligonucleotide‐based 
hybridization strategy from Affymetrix. An example of a SNP dataset using the Illumina 
platform is shown in Figure 8.23. The experiment provides information on chromosomal 
copy number (based on hybridization intensity measurements) and genotype (based on 
AA, AB, or BB calls). There is a characteristic profile for hemizygous deletions with a 
lack of heterozygous SNPs.

SNP arrays can provide information on a variety of chromosomal changes beyond 
those detectable by aCGH or conventional cytognetics. An example is uniparental disomy 
in which both homologous chromosomes are inherited from one parent. The term disomy 
refers to two copies, as opposed to zero (nullsomy), one (monosomy), three (trisomy), or 
four (tetrasomy). There are two copies of each chromosome, as usual, but the two copies 
of a single chromosome are derived from just one parent (uniparental disomy). Since each 
parent has two copies of a given autosome, the result may be uniparental heterodisomy (in 
which the two copies derived from the mother or the father are different) or uniparental 
isodisomy (in which the two copies are identical). This is also associated with disease 
in humans (Kotzot, 2001). SNP arrays can show regions of homozygosity without copy 
number change. In the absence of copy number change, the cause can be uniparental 
disomy (Ting et al., 2007).
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FIGUre 8.23 SNP profile from chromosome 7 in a patient with a hemizygous deletion. The upper 
panel shows the B allele frequency from thousands of SNPs across the chromosome, including BB calls 
(B allele frequency near 1.0; arrow 1), heterozygous AB calls (arrow 2), or homozygous AA calls (arrow 
3). In some heterochromatic regions such as the centromere (arrow 4), there are no SNPs and the plot 
therefore lacks data points. In the region of a hemizygous deletion on 7p (arrow 5), there are essentially 
no AB calls. The lower panel shows the intensity values corresponding to chromosomal copy number. 
The y axis is log2(Rsub/Rref), corresponding to the log2 ratio of the intensity value for the subject (i.e., 
this patient sample) to the intensity values for a reference set (such as mean intensity values for a large 
set of apparently normal individuals). Log2(Rsub/Rref) tends to have a value near 0.0 (the subject and 
reference data therefore have a one‐to‐one correspondence), but in the deletion region the log2 value 
is –1.0 (see arrow 6). In regions of homozygous deletion (i.e., two copies deleted; not shown), the 
log2 value tends to be close to –5.0. In cases of trisomy (not shown), the extra copy causes the B allele 
frequency to split into four tracks (corresponding to AAA, AAB, ABB, and BBB genotypes) and the 
intensity values are elevated. Data are from an Illumina microarray with 550,000 SNPs.
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Next-Generation Sequencing

It is now possible to sequence an individual’s entire genome (whole‐genome sequenc-
ing) or collection of exons (whole‐exome sequencing) at a relatively modest cost. This 
approach offers the following advantages to karyotyping, aCGH, and SNP arrays:

 • WGS (and WES for coding regions) allow us to assay all alleles. In contrast, almost 
all SNP arrays focus on common variants; WGS and WES are therefore far more 
comprehensive.

 • Unlike SNP arrays and aCGH, WGS and WES provide nucleotide sequences includ-
ing information about single‐nucleotide variants (SNVs, synonymous with SNPs), 
short insertions/deletion events (indels), structural variants, and heterozygosity.

There are also several notable disadvantages:

 • Using WGS (and WES) it is extremely difficult to detect balanced and unbalanced 
chromosomal translocations that are easily detectable by cytogenetics.

 • WGS and WES are less appropriate for the detection of megabase‐scale variants such 
as aneuploidy. By analogy, if you want to understand traffic patterns in a city a traffic 
helicopter can provide a useful overview of major events (aCGH, SNP arrays) while 
a street view of every street and alley in the city provides such dense information that 
it can be hard to see the big picture (WGS, WES).

Some researchers therefore combine next‐generation sequencing with other technol-
ogies such as SNP arrays.

perspectIve
One of the broadest goals of biology is to understand the nature of each species of life: what 
are the mechanisms of development, metabolism, homeostasis, reproduction, and behavior? 
Sequencing of a genome does not answer these questions directly. Instead, we must first 
try to annotate the genome sequence in order to estimate its contents, and then we try to 
interpret the function of these parts in a variety of physiological and evolutionary processes.

The genome sequences of representative species from all major eukaryotic divi-
sions are now becoming available. This will have dramatic implications for all aspects 
of eukaryotic biology. For studies of evolution we will further understand mutation and 
selection, the forces that shape genome evolution.

As complete genomes are sequenced, we are becoming aware of the nature of non-
coding and coding DNA. Major portions of the eukaryotic genomic landscape are occu-
pied by repetitive DNA, including transposable elements. The number of protein‐coding 
genes varies from about 2000 in fungi to tens of thousands in plants and mammals. Many 
of these protein‐coding genes are paralogous within each species, such that the “core 
proteome” size is likely to be on the order of 10,000 genes for many eukaryotes. New 
proteins are invented in evolution through expansions of gene families or through the use 
of novel combinations of DNA encoding protein domains.

pItFalls
A tremendous need in genomics research is the continued development of algorithms 
to find protein‐coding genes, noncoding RNAs, repetitive sequences, duplicated blocks 
of sequence within genomes, and conserved syntenic regions shared between genomes. 
We may then characterize gene function in different developmental stages, body regions, 
and physiological states. Through these approaches we may generate and test hypotheses 
about the function, evolution, and biological adaptations of eukaryotes, and hence extract 
meaning from the genomic data.
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We are now in the earliest years of the field of genomics. Many new lessons are 
emerging:

 • Draft versions of genome sequences are extremely useful resources, but gene annotation 
is an ongoing process that often improves dramatically as a sequence becomes finished.

 • It is extraordinarily difficult to predict the presence of protein‐coding genes in 
genomic DNA. This is especially true in the absence of complementary experimental 
data on gene expression, such as expressed sequence tag information.

 • We know little about the nature of noncoding RNA molecules.
 • Large portions of eukaryotic genomes consist of repetitive DNA elements. Segmen-
tal duplications offer a creative evolutionary opportunity to shuffle DNA within and 
between chromosomes.

 • Comparative genomics is extraordinarily useful in defining the features of each 
eukaryotic genome.

Understandably, there is great enthusiasm for sequencing of thousands of eukaryotic 
genomes. However, a concern is that next‐generation sequence technology (introduced in 
Chapter 9) relies on relatively short reads (often using libraries with insert sizes up to 500 
base pairs). Alkan et al. (2011) compared de novo assemblies of several human genomes, 
based on short read technologies, to deeply characterized references of those genomes. 
They reported that the de novo assemblies were ∼16% shorter than the references and 
were missing >99.1% of validated duplicated sequences (with >2300 coding exons miss-
ing). This chapter introduced the repetitive DNA content and other features of eukaryotic 
chromosomes that must be accounted for in analyzing genome sequences.

advIce to students
There are so many approaches to the study of chromosomes and DNA. Think about the 
problem you are trying to solve in order to choose the appropriate analysis route. I have 
three suggestions for how to approach the material we covered in this chapter. (1) Delve 
deeper into the Ensembl genome browser, the UCSC Genome and Table Browser, or both. 
(2) Become familiar with Galaxy. For example, beginning in Galaxy, import data from 
the UCSC Table Browser or from BioMart, and analyze it to study a set of problems (e.g., 
“how many microRNAs are annotated within exons?”). (3) We introduced the R packages 
biostrings and biomaRt; try to become familiar with these to learn how R pack-
ages work and explore their functionality. Then browse the Bioconductor website to get a 
sense of the hundreds of other R packages that are available.

The ENCODE project has enhanced our understanding of chromosomal features 
including genes and their regulation. One way to begin immersing yourself in this project 
is to read some of the hundreds of ENCODE studies, starting with the Nature portal. It 
helps if you can begin with a specific question of interest, or begin with beta globin. Try 
exploring the ENCODE hub and other tracks at the UCSC Genome Browser.

Web resources
We have presented key resources for many eukaryotic organisms and their genome‐sequenc-
ing websites. An excellent starting point is the Ensembl website (  http://www.ensembl.
org/, WebLink 8.43), which currently includes gateways for the mouse, rat, zebrafish, fugu, 
mosquito, and other genomes. The UCSC Genome Browser includes an excellent user 
guide (  http://genome.ucsc.edu/training/index.html, WebLink 8.44) and many other train-
ing resources. A major gateway for ENCODE resources is at the National Human Genome 
Research Institute (  http://www.genome.gov/10005107, WebLink 8.45). Another useful 
gateway is at the journal Nature (  http://www.nature.com/encode/, WebLink 8.46).

http://www.ensembl.org/
http://www.ensembl.org/
http://genome.ucsc.edu/training/index.html
http://www.genome.gov/10005107
http://www.nature.com/encode/
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Discussion Questions
[8-1] If there were no repetitive DNA of 
any kind, how would the genomes of var-
ious eukaryotes (human, mouse, a plant, 
a parasite) compare in terms of size, gene 

content, gene order, nucleotide composition, or other 
features?

[8-2] If someone gave you 1  Mb of genomic DNA 
sequence from a eukaryote, how could you identify the spe-
cies? (Assume you cannot use BLAST to directly identify 
the species.) What features distinguish the genomic DNA 
sequence of a protozoan parasite from an insect or a fish?

[8-3] The computer lab problems below include the use 
of websites and R. For which problems can you use either 
approach, and for which do you strongly need to use either 
web resources or R but not the other?

prOBLeMS/COMpUter LaB
[8-1] This problem encourages you to explore the UCSC 
Table Browser via Galaxy. How many microsatellites are 
there in the human genome, and which one in the Table 
Browser is longest? (1) Visit the UCSC Table Browser. 
For the group “Variation and Repeats” set the region to 
“Genome,” the output to BED file, and send the query to 
Galaxy (with one BED record per whole gene). (2) In Gal-
axy, use Tools > Text Manipulation > Compute an expres-
sion on every row. Subtract c3–c2 (the end position minus 
the start position with rounding the result). A new column 
(c5) is generated. (3) Under Tools > Filter and Sort > Sort 
in descending order based on column c5. The largest sat-
ellite element (chr19:43,167,386–43,167,883) extends 
almost 500 base pairs, all consisting of a repeating pattern 
of AT residues.

[8-2] This problem uses R to search for patterns in DNA. 
The first 15 nucleotides of the beta globin coding sequence 
(on human chromosome 11; chr11:5,248,237–5,248,251 of 
GRCh37/hg19) are 5′‐ATGGTGCATCTGACT‐3′. (This 
gene is transcribed on the bottom strand, so the top strand 
sequence is 5′‐AGTCAGATGCACCAT‐3′ ). How often 
does that pattern occur on chromosome 11, and where? A 
more detailed version of this exercise is provided as Web 
Document 8.11. (1) Install R and RStudio (as above) and 
set your working directory to your favorite folder. Then 
download the human genome reference sequence and 
install the biostrings package.

> matchPattern(mypattern15rev, Hsapiens$chr11,  
  max.mismatch=2)

> source("http://bioconductor.org/biocLite.R")
> biocLite("BSgenome.Hsapiens.UCSC.hg19")
# this may take about 30 minutes to download.
> biocLite("Biostrings")

> library("BSgenome.Hsapiens.UCSC.hg18") # This  
  loads the required packages BSgenome, IRanges
> installed.genomes()
[1] "BSgenome.Hsapiens.UCSC.hg19" # our package  
  is installed!
available.genomes() # note all the available  
  genomes including hg17 hg18 hg19
BioC_mirror = http://bioconductor.org
Change using chooseBioCmirror().
 [1] "BSgenome.Alyrata.JGI.v1"
 [2] "BSgenome.Amellifera.BeeBase.assembly4"
 [3] "BSgenome.Amellifera.UCSC.apiMel2"
…
> ?available.genomes
# get help on how to install a particular genome
> Hsapiens # this will show us information about  
  the genome we selected and its chromosomes
> seqnames(Hsapiens) # list the various  
  chromosomes and unplaced sequences.
 [1] "chr1"  …
> Seqinfo(Hsapiens)# this also describes the  
  chromosomes
> mypattern15rev <- DNAString("AGTCAGATGCACCAT") 
# We specify a pattern, in this case consisting  
  of 15 bases
> mypattern15rev # Display the bases
 15-letter "DNAString" instance
seq: AGTCAGATGCACCAT
> matchPattern(mypattern15rev, Hsapiens$chr11)
 Views on a 135006516-letter DNAString subject
subject: NNNNNNNNNNNNNNNNNNNNNNNNN…
NNNNNNNNNNNNNNNNNNNNNNNNN
views:
   start   end width
[1] 5248237 5248251  15 [AGTCAGATGCACCAT]
[2] 5255649 5255663  15 [AGTCAGATGCACCAT]

There are therefore two matches. Does the second match 
correspond to a different globin gene? What happens if you 
repeat the search, and tolerate up to two mismatches? Try 
this:

[8-3] The purpose of this problem is to obtain a typical 
dataset (in this case, a table of repetitive DNA elements 
found in a 70,000 base pair region of the globin locus) and 
plot the results in R. (1) Go to the UCSC Table Browser. Set 
the genome and build to human GRCh37/hg19; use group 
“Variation and Repeats,” track “RepeatMasker,” position 
chr11:5,230,001–5,300,000, output format “select fields 
from selected table,” output filename ucsc_chr11_repeats.
txt, and click “get output.” When prompted, select the fol-
lowing fields: swScore (Smith Waterman alignment score), 
genoStart and genoEnd (genomic positions), strand (+ or 
– orientation), repName, repClass, and repFamily (name, 
class, and family of each repeat). Since you specify an 

http://bioconductor.org
http://bioconductor.org/biocLite.R
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output file name, a plain text file is returned which you can 
save to a directory. The output has 91 rows plus a header, 
and while you should obtain this file yourself it is also 
available as Web Document 8.12. Note that the output col-
umns include Smith–Waterman scores (swScore), repeat 
class, and repeat family. (2) Open RStudio, and set your 
working directory to the place you saved your file. Import 
this text file via the workspace panel (specify that there is a 
header row). Inspect some basic properties of this dataset.

> dim(ucsc_chr11_repeats3)
[1] 91 7
> str(ucsc_chr11_repeats3)
'data.frame':  91 obs. of 7 variables:
 $ X.swScore: int 208 1218 189 1691 12383 1530  
  12383 4149 266 797 …
 $ genoStart: int 5230215 5230647 5231331 
5232000  
  5232660 5234055 5234278 5235524 5236584  
  5236631 …
 $ genoEnd : int 5230295 5231194 5231407 5232286  
  5234055 5234278 5235526 5236191 5236624  
  5236773 …
 $ strand  : Factor w/ 2 levels "-","+": 2 1 1 
2 1  
  1 1 2 2 1 …
 $ repName : Factor w/ 51 levels "(A)n","(CA)
n",..:  
  48 29 49 13 38 36 38 38 10 23 …
 $ repClass : Factor w/ 7 levels "DNA","LINE", 
  "Low_complexity",..: 6 2 6 6 2 2 2 2 5 6 …
 $ repFamily: Factor w/ 11 levels "Alu","ERV1", 
  "ERVL",..: 9 6 9 1 6 6 6 6 10 1 …

> plot(x = ucsc_chr11_repeats3$repClass,
   y = ucsc_chr11_repeats3$X.swScore,
   main = "Repeat classes in the human beta  
   globin locus",
   col = "pink",
   xlab = "repeat class",
   ylab = "SW score")

> tapply(ucsc_chr11_repeats3$X.swScore,  
ucsc_chr11_repeats3$repClass, mean) 
> tapply(ucsc_chr11_repeats3$X.swScore,  
ucsc_chr11_repeats3$repClass, range)

at the bioconductor.org website, as well as a user’s guide 
written by Steffen Durinck and James Bullard.

(3) Plot the repeat class as a boxplot.

Which repeat class has the highest mean Smith–Waterman 
scores? You can inspect the plots, or you can invoke the 
tapply command to determine the mean and other 
summary data.

[8-4] In this exercise we will use the R package Genome-
Graphs in RStudio to plot the structure of the beta globin 
gene, and plot the position of this gene on an ideogram of 
chromosome 11. We will extract informaton from Biomart. 
For more information, browse the GenomeGraphs vignette 

> source("http://bioconductor.org/biocLite.R")
> biocLite("GenomeGraphs")
> options(width=50)
> library(GenomeGraphs)
> mart <- useMart("ensembl", dataset="hsapiens_ 
  gene_ensembl")
> gene <- makeGene(id = "ENSG00000244734",  
  type="ensembl_gene_id", biomart = mart)
> gdPlot(gene) # save the output as Rplot1  
  (a .png file)
> transcript <- makeTranscript 
  (id = "ENSG00000244734", type="ensembl_ 
  gene_id", biomart = mart)
> gdPlot(list(gene, transcript)) # save the  
  output as Rplot2 (a .png file)
> minusStrand <- makeGeneRegion(chromosome = 11,  
  start = 5246696, end = 5248301, strand = "-",  
  biomart = mart)
> genomeAxis <- makeGenomeAxis(add53 = TRUE)  
  # Add53 shows 5' and 3' ends
> gdPlot(list(genomeAxis, minusStrand))
# This shows a plot with brown boxes for [exons]  
  and genomic coordinates. Save it as Rplot3.
> minStrand <- makeGeneRegion( chromosome = 11,  
  start = 5200000, end = 5250000, strand = "-",  
  biomart = mart)
> ideogram <- makeIdeogram(chromosome = 11)
> genomeAxis <- makeGenomeAxis(add53=TRUE,  
  add35=TRUE)
> gdPlot(list(ideogram, minusStrand, genomeAxis,  
  minStrand))
# save as Rplot4.png

[8-5]  The purpose of this exercise is to become familiar with 
ENCODE resources at UCSC. Visit the ENCODE Experi-
ment Matrix site (  http://encodeproject.org/ENCODE/data-
Matrix/encodeDataMatrixHuman.html) (WebLink 8.47). This 
includes GM12878 BAM and BAM index (BAI) files; we will 
learn how to view and manipulate BAM files in Chapter 9. 
This matrix site has clickable boxes, for example DNase‐seq 
and many other assays for GM12878 (a HapMap individual). 
Click on such a box and view the data in the UCSC Genome 
Brower. Select a specific gene (such as HBB). What can you 
learn about its regulation from the ENCODE data matrix?

[8-6] Analyze open reading frames in a BAC clone.

(a) Retrieve a typical Mus musculus bacterial artificial 
chromosome (BAC) from Entrez (e.g., choose BAC 
T18A20, GenBank accession AC009324).

•	 Note	the	approximate	size	(in	kilobases).	Is	this	a	
large or a small BAC?

•	 Note	the	approximate	number	of	protein	products	
in it. Bacteria have about one gene per kilobase. 
How many genes are there per kilobase in this 
eukaryotic DNA?

http://bioconductor.org/biocLite.R
http://encodeproject.org/ENCODE/data-Matrix/encodeDataMatrixHuman.html
http://encodeproject.org/ENCODE/data-Matrix/encodeDataMatrixHuman.html
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(b) Go to the ORF Finder at NCBI.

•	 From	 the	 main	 page,	 look	 at	 the	 left	 sidebar.	
Choose “Tools for data mining”; then you will see 
the ORF Finder.

•	 Alternatively,	from	the	main	page,	look	at	the	left	
sidebar at the top. Choose “Site map” and you will 
also find a link to the ORF Finder.

•	 Paste	in	the	accession	number	for	your	BAC.	Click	
OrfFind.

(c) At the ORF Finder at NCBI, Click on the largest ORF.

•	 How	many	amino	acids	long	is	it?

•	 What	is	its	molecular	weight	(in	kilodaltons)?

•	 Is	this	protein	small,	average,	or	large?

•	 From	 which	 strand	 of	 the	 BAC	 is	 this	 putative	
gene transcribed? Overall, are there more ORFs 
on the top or bottom strand or is it about the same?

(d) Using the ORF Finder at NCBI, BLAST search the 
ORF of (c) using the default parameters that are given 
to you.

•	 This	 BLAST	 result	 reveals	 many	 matches	 to	
Mus proteins. However, note that if you perform 
a standard BLASTP search using this ORF as a 
query, you will find matches to many dozens of 
species. You will also see a match to the Conserved 
Domain Database.

[8-7] Human centromeres typically contain several thou-
sand base pairs of a 171 bp repeat called α‐satellite (acces-
sion X07685). First perform a BLASTN search against the 
nonredundant database. What kinds of database matches 
do you observe? Second, restrict your BLAST search to 
nonhumans. Are there matches in primates, rodents, or 
plants? Why might centromeric repeats have this phyloge-
netic distribution; would you expect each species to have 
its own, unique centromeric signature?

[8-8] We further explore human centromeric regions. 
There is an enrichment of segmentally duplicated seg-
ments in pericentromeric regions (e.g., within 5  Mb of 
the centromere; She et al., 2004). How many duplicated 
segments are present near the centromere of chromosome 
11? Is the number in this region greater than that of the 
chromosome‐wide average? (1) Go the UCSC Genome 
Browser, view the human GRCh37/hg19 build, and view 
coordinates chr11:48,000,001–58,000,000 (a span of 
10  Mb). (2) View the segmental duplication data in the 
Table Browser; inspect the summary. This region includes 
3.4 Mb in gaps (because of the centromere), 328 duplica-
tions spanning ∼1.8  Mb (182 duplications per Mb). (3) 

Repeat this Table Browser analysis across all of chro-
mosome 11. There are 1933 segmental duplications per 
135 Mb (14 per Mb).

[8-9] Identify ultraconserved elements that share 100% 
identity between the chicken and human genomes. While 
there are several approaches, try the following. (1) Go to 
the UCSC Genome Bioinformatics site (  http://genome 
.ucsc.edu). Select the Table Browser. Set the clade to 
vertebrate clade, the genome to chicken, the group to 
“Comparative Genomics,” and the track to “Most Con-
served.” Under “region” select whole genome. (2) If you 
obtain the summary statistics at this point, there are over 
950,000 items which includes a range of conservation 
levels. The output format is “all fields from selected 
table.” Click the filter button, and select scores that are 
≥900 (on a scale from 1 to 1000). There are now only six 
items (on chicken chromosomes 1, 2, 5, and 7). These 
are listed in Web Document 8.13 at  http://www.bio-
infbook.org/chapter8. (3) Change the output format to 
“hyperlinks to Genome Browser.” You can now access 
the Genome Browser showing these ultraconserved ele-
ments and, by clicking the annotation tracks, you can 
view multiple sequence alignments of the highly con-
served DNA.

[8-10] Which genes express the greatest extent of 
copy number gains and losses in the human genome? 
(1) Use the UCSC Table Browser DGV Structural 
Variation track (in the Variation and Repeats group), 
setting the region to genome. The summary/statistics 
option shows that there are >200,000 items in hg19. (2) 
Choose the filters option by clicking “create.” Using 
the pull‐down menus select “observedGains” is >100 
and “observedLosses” is >100. Click submit. The sum-
mary/statistics tab shows that there are now 18 results. 
The “Get output” tab allows you to see the 18 entries. 
These include highly polymorphic HLA genes and 
LILRA6 (a leukocyte immunoglobulin‐like receptor 
gene on chromosome 19q). See Web Document 8.14. 
You can also view one of these genes and its DGV track 
in the UCSC Genome Browser to see the dramatic copy 
number variation.

[8-11]  The dinucleotide CG is often referred to as CpG 
(p denotes the phosphate linkage between the two resi-
dues). In the human genome CpG dinucleotides occur 
at a very low frequency (about five‐fold less than other 
dinucleotides). What are the frequencies of all dinucleo-
tides at the human beta globin (HBB) locus on chromo-
some 11? To answer this, obtain this DNA sequence in 
the FASTA format, import it into the R package SeqinR, 
and use the count function. This problem is described in 

http://genome.ucsc.edu
http://genome.ucsc.edu
http://www.bio-infbook.org/chapter8
http://www.bio-infbook.org/chapter8
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an online book by Avril Coghlan available at http://a‐lit-
tle‐book‐of‐r‐for‐bioinformatics.readthedocs.org/en/
latest/src/chapter1.html (WebLink 8.48). See also the 
SeqinR documentation at http://SeqinR.r‐forge.r‐proj-
ect.org/ (WebLink 8.49). (1) Select a region of 60,000 
base pairs on chr11:5,240,001–5,300,000, encompassing 
HBB and other globin genes. You can access the DNA via 
the Table Browser (select output format > sequence) or 
from the Genome Browser (view > DNA). You can also 
view SeqinR documentation for instructions on fetching 

sequences from NCBI in 
R. (2) Open an R session. 
We change our working 
directory to one contain-
ing the FASTA sequence.

You can view this plot as Web 
Document 8.15 at the textbook 
website, http://bioinfbook.org/
chapter8.

Self-test Quiz
[8-1]  The C value paradox is that:

(a)    the nucleotide C is underrepresented in 
some genomes;

(b)    the genome size of various eukaryotes 
correlates poorly with the number of 
protein‐coding genes of the organism;

(c) the genome size of various eukaryotes correlates 
poorly with the biological complexity of the organ-
ism; or

(d) the genome size of various eukaryotes correlates 
poorly with the evolutionary age of the organism.

[8-2] Hundreds or thousands of sequence repeats, each 
consisting of a unit of about 4 to 8 nucleotides, are com-
monly found:

(a) in interspersed repeats;

(b) in processed pseudogenes;

(c) in telomeres; or

(d) in segmentally duplicated regions.

[8-3] You are sequencing the genome of a newly described 
organism (a slime mold). What is likely to happen if you 
use RepeatMasker to assess its repetitive DNA content? 
You set the default setting of RepeatMasker to the settings 
for human DNA.

(a) RepeatMasker should successfully identify essen-
tially all of the repetitive DNA. Various repetitive 
DNA elements are similar enough between organ-
isms to allow this software to work on your slime 
mold DNA.

(b) RepeatMasker should identify most of the repetitive 
DNA. However, because some types of repeats are 
species‐specific, it is likely that there will be many 
false positive and false negative results.

(c) RepeatMasker would fail to identify most of the 
repetitive DNA. Most types of repeats are highly 
species‐specific. It is necessary for you to train the 
RepeatMasker algorithm on your slime mold DNA 
in order for the program to work.

> dir() # Looking at the directory we confirm  
  the sequence file is present
[1] "chr11_60kb"
# Next we install SeqinR and load its library.
> source("http://bioconductor.org/biocLite.R")
> biocLite("SeqinR")
> library("SeqinR")
> globinDNA <- read.fasta(file = "chr11_60kb")

> mydinucleotides <- count(globinseq,2)
> mydinucleotides[["cg"]]
[1] 406
> plot(mydinucleotides)

# we read the FASTA formatted file into an R  
  object called globinDNA
> globinseq <- globinDNA[[1]]
> length(globinseq) # We confirm the length of  
  this sequence is 60 kb
[1] 60000
> count(globinseq,1) # the count function  
  reports the frequency of each nucleotide
  a   c   g   t
18714 12002 11453 17831
> count(globinseq,2) # we specify we want to  
  know the frequency of all dinucleotides
 aa  ac  ag  at  ca  cc  cg  ct  ga  gc  gg  gt  
ta  tc  tg  tt
6470 3103 4271 4870 4443 2932 406 4221 3615 2282 
2660 2896 4186 3685 4116 5843

Note that the frequency of CpG dinucleotides is indeed 
substantially lower than that of all other dinucleotides. 
We can also create a table object with these results (called 
mydinucleotides) and view a particular result. We can plot 
the results.

http://a%E2%80%90lit-tle%E2%80%90book%E2%80%90of%E2%80%90r%E2%80%90for%E2%80%90bioinformatics.readthedocs.org/en/
http://a%E2%80%90lit-tle%E2%80%90book%E2%80%90of%E2%80%90r%E2%80%90for%E2%80%90bioinformatics.readthedocs.org/en/
http://a%E2%80%90lit-tle%E2%80%90book%E2%80%90of%E2%80%90r%E2%80%90for%E2%80%90bioinformatics.readthedocs.org/en/
http://SeqinR.r%E2%80%90forge.r%E2%80%90proj-ect.org/
http://SeqinR.r%E2%80%90forge.r%E2%80%90proj-ect.org/
http://SeqinR.r%E2%80%90forge.r%E2%80%90proj-ect.org/
http://bioinfbook.org/chapter8
http://bioconductor.org/biocLite.R
http://bioinfbook.org/chapter8
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suGGested readInG
Our understanding of eukaryotic chromosomes has been transformed by the sequencing 
and analysis of genomes. The ENCODE Project Consortium papers of 2004 (introducing 
the project) and 2007 (describing an overview of the results of analyzing 1% of the human 
genome) provide background, and Stamatoyannopoulos (2012) provides an important 
overview and perspective on the subsequent phase. The ENCODE Project Consortium 

(d) It is not possible to predict, because repetitive DNA 
may or may not be variable between organisms.

[8-4] What is the definition of a gene? Use a recent defini-
tion introduced as part of the ENCODE project.

(a) A gene is a unit of hereditary information localized 
to a particular chromosome position and encoding 
one protein.

(b) A gene is a unit of hereditary information localized 
to a particular chromosome position and encoding 
one or more protein products.

(c) A gene is a union of genomic sequences encoding 
a coherent set of potentially overlapping functional 
products.

(d) A gene is a unit of hereditary information encoding 
one or more functional products.

[8-5] It is extremely difficult for intrinsic (ab initio) 
gene‐finding algorithms to predict protein‐coding genes in 
eukaryotic genomic DNA. What is the main problem?

(a) exon/intron borders are hard to predict;

(b) introns may be many kilobases in length;

(c) the GC content of coding regions is not always 
differentiated from the GC content of noncoding 
regions; or

(d) all of the above.

[8-6] What are some of the properties of ultraconserved 
elements?

(a) They have variable lengths (from 50 to >1000 base 
pairs) and are nearly perfectly conserved.

(b) They have variable lengths (from 50 to >1000 base 
pairs), are nearly perfectly conserved, and typically 
correspond to protein‐coding regions.

(c) They have lengths ≥200 base pairs and are perfectly 
or nearly perfectly conserved between relatively 
closely related species such as rats and mice.

(d) They have lengths ≥200 base pairs and are per-
fectly or nearly perfectly conserved between rel-

atively distantly related species such as humans 
and rodents.

[8-7] The genomes of two distinct eukaryotic species can 
sometimes merge to create an entirely new species:

(a) true; or

(b) false.

[8-8] According to Ohno’s 2R hypothesis, whole‐genome 
duplication (polyploidy) offers several advantages. Which 
of the following is NOT an advantage?

(a) Hybrids may propagate more successfully than their 
parents.

(b) Genes may become redundant, allowing novel func-
tions to emerge.

(c) Self‐fertilization may become possible.

(d) Self‐fertilizing organisms may become able to inter-
breed.

[8-9] Several mechanisms have been proposed by which 
new gene families are formed. According to the birth‐and‐
death evolution model:

(a) new genes arise by gene duplication followed by 
either functional diversification or inactivation;

(b) genes acquire novel functions as a gradual process 
that follows gene duplication;

(c) members of a gene family evolve in a concerted 
manner; or

(d) new genes arise and acquire new functions in a 
coordinated manner dependent on the death of other 
duplicated genes.

[8-10] Single‐nucleotide polymorphism (SNP) arrays 
can reliably detect all of the following phenomena 
except for:

(a) deletions;

(b) duplications;

(c) inversions; or

(d) uniparental isodisomy.
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et al. (2012) summarize their key findings in a major paper, and ENCODE Project Con-
sortium et al. (2011) also provide a useful user’s guide to the project.

For a review of repetitive DNA from a comparative genomics perspective, see Rich-
ard et al. (2008).
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(b) Descriptions of globulin, haemoglobin, and nuclein from Carpenter (1876)

(c) Adenine and guanine (1891) (d) Description of adenine (1891)

(a) Description of Miescher’s discovery of nuclein by his mentor Felix Hoppe-Seyler (1877)

In this chapter we 
describe how to inter-
pret vast amounts of DNA 
sequence data. Nucleic 
acids were first discov-
ered by Johann Friedrich 
Miescher II (1844–1895), 
a Swiss chemist. During 
1868–1869 he worked 
in the laboratory of the 
famous chemist Felix 
Hoppe-Seyler (1825–
1895) where he studied 
the composition of pus 
cells. He discovered what 
he called “nucleins,” a 
new class of compounds 
that are rich in phospho-
rous and that he thought 
were as important as 
the proteins. Treatment 
of pus cell extracts with 
pepsin led to his identi-
fication of an acid frac-
tion (“pure nuclein,” i.e., 
DNA) and a base fraction 
(“protamine,” which he 
thought was an alkaloid 
but is actually nucleo-
histones). (a) Description 
of nuclein from an 1877 
French translation of a 
book by Hoppe-Seyler 
(p. 309), describing var-

ious sources from which nuclein was purified. Hoppe-Seyler gives the formula 
C29H49N9P3O22. (b) After brief entries on globulin and haemoglobin, Carpenter 
(1876, p. 86) mentions that nuclein is soluble in alkalies. (c) Jules Piccard first iden-
tified guanine as a constituent of nuclein, as well as two oxidized purines (xan-
thine and sarkin, today called hypoxanthine) that are derivatives of adenine. Later, 
Albrecht Kossel identified pyrimidines in nuclein (he discovered thymine in 1883 
and cytosine in 1894). (d) Description of adenine. 

Sources: (a) Hoppe-Seyler (1877). (b) Carpenter (1876). (c, d) Vaughan and Novy (1891), 
pp. 284–285 and p. 283, respectively.
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The ability to sequence complete genomes and the free dissemination of sequence data 
have dramatically changed the nature of biological and biomedical research. Sequence 
and other genomic data have the potential to lead to remarkable improvement in many 
facets of human life and society, including the understanding, diagnosis, treatment and 
prevention of disease; advances in agriculture, environmental science and remediation; 
and our understanding of evolution and ecological systems.

—Revolutionary Genome Sequencing Technologies – The $1000 Genome, RFA-
HG-10-012, National Human Genome Research Institute (  http://www.nhgri.nih.gov)

Children like puzzles, and they usually assemble them by trying all possible pairs of pieces 
and putting together pieces that match. Biologists assemble genomes in a surprisingly simi-
lar way, the major difference being that the number of pieces is larger. For the last 20 years, 
fragment assembly in DNA sequencing mainly followed the “overlap–layout–consensus” 
paradigm (1–6). Trying all possible pairs of pieces corresponds to the overlap step, whereas 
putting the pieces together corresponds to the layout step of the fragment assembly. Our new 
EULER algorithm is very different from this natural approach—we never even try to match 
the pairs of fragments, and we do not have the overlap step at all. Instead, we do a very 
counterintuitive (some would say childish) thing: we cut the existing pieces of a puzzle into 
even smaller pieces of regular shape. Although it indeed looks childish and irresponsible, 
we do it on purpose rather than for the fun of it. This operation transports the puzzle assem-
bly from the world of a difficult Layout Problem into the world of the Eulerian Path Prob-
lem, with polynomial algorithms for puzzle assembly (in the context of DNA sequencing).

—Pavel Pevzner et al. (2001)

LeArNINg ObJeCTIVeS

After studying this chapter you should be able to:
 ■ explain how sequencing technologies generate NgS data;
 ■ describe the FASTQ, SAM/bAM, and VCF data formats;
 ■ compare methods for aligning NgS data to a reference genome;
 ■ describe types of genomic variants and how they are determined;
 ■ explain types of error associated with alignment, assembly, and variant calling; and
 ■ explain methods for predicting the functional consequence of genomic variants in individual 

genomes.

C h a p t e r

9
Analysis of Next-
generation Sequence 
Data
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http://www.wiley.com/go/pevsnerbioinformatics
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IntroductIon
Next-generation sequencing (NGS) technology is revolutionizing biology. Of the many 
applications of NGS technology the following are particularly significant. The central 
dogma of biology has been a remarkably useful model since its introduction in the 1950s, 
and the usefulness of NGS extends to the domains of DNA, RNA, and protein (Shendure 
and Lieberman Aiden, 2012).

 1. NGS technology enables determination of the DNA sequence of genomes across the 
entire tree of life. For any species of organism, through whole-genome sequencing we can 
 determine reference genomes (i.e., prototypic examples that are representative of an entire 
species) as a starting point to catalog genomic features and to evaluate genetic  variation.

 2. Through NGS it is becoming routine to perform re-sequencing of individual genomes. 
We can compare an individual’s sequence to a reference genome (e.g., comparing the 
genomes of 100 people with a disease to a reference human genome). This allows us 
to determine individual genetic variation within members of a species at a genome-
wide scale. Applications range from the 1000 Genomes Project in humans to the 
1000 bull project to the 1001 Genomes Project in plants.

 3. We can compare the genetic differences within an individual across different cell 
types. This allows an assessment of somatic changes – those acquired during devel-
opment sometime after the zygote forms – in contrast to germline changes, many of 
which are inherited from an individual’s parents. Somatic changes are important in 
cancer, in which we can sequence the genome from tumors and from nontumorous 
parts of the body of the same person.

 4. NGS applied to RNA (i.e., RNA-seq) allows the measurement of RNA transcript 
 levels. We introduce RNA in Chapter 10 and then address the RNAseq technology 
and related microarray techniques in Chapter 11.

 5. Most life forms on the planet are single-celled organisms, uncultivatable as single 
species in a laboratory. Through metagenomics it is possible to apply NGS technol-
ogy to environmental samples, in many cases allowing broad, deep surveys of the 
species in ecological niches from the human gut to soil to seawater.

 6. There are many other specialized applications of NGS technology (see the end of this 
chapter). One example is chromatin immunoprecipitation followed by NGS (called 
ChIP-Seq) to identify DNA sequences associated with promoter regions (Park, 2009). 
Another method allows differentially methylated DNA regions to be identified.

In this chapter we first describe NGS technology. We then present a workflow 
 covering the main problems of obtaining raw data, assembly, alignment, variant calling, 
and interpretation. We introduce the major types of file formats (e.g., FASTQ, SAM/
BAM, VCF) and some of the most commonly used software tools for alignment (e.g., 
BWA), variant calling (SAMtools, GATK), analysis of variants (VCFtools), and func-
tional prediction of variants (SIFT, PolyPhen2, Variant Effect Predictor or VEP).

For DNA sequencing studies, we can think of three main types of experiments. First, 
a whole genome may be sequenced. While the human genome is ∼3.2 gigabases, much of 
it is repetitive and typically fewer than 3 billion base pairs are amenable to sequencing. 
Such an experiment will include coverage of the exons that comprise <3% of the genome 
as well as intronic and vast intergenic regions. Second, an exome may be sequenced. 
This is a collection of exons corresponding to most of the ∼20,300 protein-coding human 
genes. There are three commonly used platforms, each of which employs biotinylated 
 oligonucleotides complementary to exonic regions. Exons are “captured” or enriched 
prior to sequencing. Third, a region of interest may be targeted and sequenced. To help 
explain how NGS data analysis works, we study a relatively small dataset generated by 
my laboratory. I collaborated with Illumina, Inc. to develop a targeted autism sequencing 
panel involving the exons corresponding to just 101 genes previously implicated in autism. 

Visit these projects at  
 http://1000genomes.

org/ (WebLink 9.1),  http://
www.1000bullgenomes 
.com/ (WebLink 9.2), and  

 http://www.1001genomes 
.org/ (WebLink 9.3) at  http://
bioinfbook.org.

http://1000genomes.org/
http://www.1000bullgenomes.com/
http://www.1001genomes.org/
http://bioinfbook.org
http://bioinfbook.org
http://1000genomes.org/
http://www.1001genomes.org/
http://www.1000bullgenomes.com/
http://www.1000bullgenomes.com/
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I provide sample files (in the FASTQ, BAM, and VCF formats) on the book’s website. For 
those interested in whole-genome and whole-exome sequences, see the resources of the 
1000 Genomes Project and the major public repositories at the European Bioinformatics 
Institute (EBI) and the National Center for Biotechnology Information (NCBI).

Most bioinformatics experts perform analyses using the Linux operating system or 
the related Mac OS terminal environment. The advantages include: an operating system 
that is appropriate for importing, storing, and analyzing very large data files; a com-
mand-line environment in which the user can execute software programs with control 
over a program’s optional settings; and an architecture in which a cluster can be estab-
lished to optimize storage, analysis, and scheduling of jobs.

Some NGS analyses are possible through websites or graphical user interface (GUI) 
programs including Galaxy, UCSC, the Genome Workbench of NCBI, and VEP at 
Ensembl. We also introduce these web-based tools.

dnA SequencIng technologIeS
Nucleic acids were discovered by Johann Friedrich Miescher (1844–1895) in 1869. He called 
them “nucleins” because they were present in all cell nuclei. The first complete nucleic acid 
sequence of a molecule (an alanine tRNA from yeast) was accomplished by Holley et al. 
(1965), who purified tRNAs then treated them with a series of ribonucleases. Another mile-
stone was reached in 1970 when Ray Wu developed a primer extension strategy to sequence 
nucleotides of DNA; this became the basis of Sanger sequencing. Wu determined the sequence 
of the two cohesive ends of lambda phage DNA in 1971 (Wu, 1970; Wu and Taylor, 1971).

Sanger Sequencing

Sanger and colleagues (1977) introduced the most commonly used technique for 
 sequencing DNA, now called Sanger sequencing or dideoxynucleotide sequencing  
(Fig. 9.1). The principle is to obtain a template of interest (such as a fragment of genomic 
DNA or complementary DNA), denature it to yield single-stranded DNA, and add to it 
an olignonucleotide primer (typically about 20 nucleotides in length and complementary 
to the strand being sequenced). In the presence of DNA polymerase I (Klenow fragment) 
and the four 2′-deoxynucleotides (dNTPs), a second strand is synthesized. This synthesis 
can be inhibited by the addition of a dideoxynucleotide such as  2′,3′-dideoxythymidine 
triphosphate (ddTTP; see Fig. 9.1a). Separate reactions include ddATP, ddGTP, or ddCTP 
accompanying the four dNTPs. Each dideoxynucleotide can be incorporated by a 
 polymerase but lacks a 3′ hydroxyl group on its ribose moiety; it therefore serves as a chain  
terminator preventing any further extension. The reaction with ddTTP contains a series 
of extended fragments, each sharing the same 5′ end but terminating at various positions 
having a T residue. Four reactions are performed, DNA fragments are separated based on 
size, and the sequence is inferred (Fig. 9.1b). Samples travel by capillary electrophoresis to  
a detection area within a DNA sequencing machine where a laser excites the  fluorophores, 
producing fluorescence emissions that correspond to the base calls. Improvements include 
better microfluidic separation devices and superior fluorescence detection (Metzker, 
2005). In their 1977 paper, Sanger et al. reported that they could read as many as 300 
bases in a set of reactions. Current reads can approach 800 or more bases.

From the 1970s through the completion of the human genome sequence in 2003, Sanger 
sequencing was the dominant method for genome sequencing. A typical sequencing facility 
can produce very high-quality reads (having an error rate of less than 1% per base; see below). 
Most large genome sequencing centers still rely on high-throughput Sanger sequencing for 
a variety of customized applications, such as verifying the sequence of a clone of interest.

Figure 9.2 shows a typical Sanger read (corresponding to the human beta globin 
gene). In addition to a FASTA-format nucleotide sequence, each base is assigned a  quality 

Common products for human 
exome enrichment are from 
Agilent (SureSelect at  http://
www.genomics.agilent.com/, 
WebLink 9.4), NimbleGen (SeqCap 
at  http://www.nimblegen.com/
seqcapez/, WebLink 9.5), and 
Illumina (TruSeq at  http://www 
.illumina.com/truseq.ilmn,  
WebLink 9.6).

You can read about a standard 
Sanger sequencing machine, the 
Applied Biosystems 3730, at  

 http://www.3700.com  
(WebLink 9.7).

http://www.genomics.agilent.com/
http://www.genomics.agilent.com/
http://www.nimblegen.com/seqcapez/
http://www.illumina.com/truseq.ilmn
http://www.3700.com
http://www.nimblegen.com/seqcapez/
http://www.illumina.com/truseq.ilmn
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(a) Dideoxynucleotides (ddNTPs)( -OH of dNTP is replaced by -H of ddNTP at the 2’ ribose position)
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(b) Primer elongation, chain termination upon incorporation of ddNTP, separation, detection

Determination of DNA sequence 
inferred by pattern of chain termination

5’ 3’
3’ 5’ DNA template

oligonucleotide primer (hybridizes to template)

polymerase
ddGTP
ddATP
ddTTP
ddCTP

dNTP

5’ 3’

5’ 3’

5’ 3’

5’ 3’

5’ 3’

5’ 3’

5’ 3’
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Chain termination via incorporation of ddGTP

Chain termination via incorporation of ddGTP

Chain termination via incorporation of ddTTP

Chain termination via incorporation of ddTTP

Chain termination via incorporation of ddCTP

Chain termination via incorporation of ddATP

Chain termination via incorporation of ddTTP

Chain termination via incorporation of ddTTP

Chain termination via incorporation of ddATP

Chain termination via incorporation of ddGTP

Capillary gel electrophoresis to separate DNA fragments by size

Laser detection of labeled ddNTPs

FIGUre  9.1 DNA sequencing by the Sanger method. (a) Structures of the four  modified 
dideoxynucleotide (ddNTP) bases: 2′-3′-dideoxyguanosine 5′-triphosphate (ddGTP), 
 2′,3′-dideoxyadenosine-5′-triphosphate (ddATP), 2′,3′-dideoxythymidine 5′-triphosphate (ddTTP), and 
2′,3′-dideoxycytidine 5′-triphosphate (ddCTP). The 2′ and 3′ ribose positions have hydrogen atoms in 
the ddNTPs, while they have a 3′ hydroxyl in DNA. (b) An oligonucleotide primer (in blue) (e.g., a 
22-mer or synthetic nucleic acid of length 22 nucleotides) is hybridized to a single-stranded template 
(red) then extended using a DNA polymerase in the presence of dNTPs and a limited amount of one 
of the four ddNTPs. Chain termination occurs at one of the sites containing the ddNTP. The resulting 
 synthesized fragments can be separated using a method such as capillary electrophoresis, and the products 
can be detected to infer the DNA sequence (bottom). The sequence in this example  (GGTGAATTCT) 
 corresponds to beta globin (Fig. 9.2). Structures are from the NIH PubChem Open Chemistry Database 
at NCBI (  http://pubchem.ncbi.nlm.nih.gov/; compounds 446577, 65304, 65051, and 119119).

http://pubchem.ncbi.nlm.nih.gov/
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(b) Genomic DNA in Trace Archive (NCBI) from beta globin locus: base quality scores

(a) Genomic DNA in Trace Archive (NCBI) from beta globin locus: FASTA format

(c) Sequence traces (region of low quality reads) (d) Sequence traces (high quality reads)

1

2

FIGUre 9.2 Base quality scores from Sanger sequencing. (a) A sequencing read called a trace (acces-
sion ti|981051509) from the Trace Archive repository at NCBI. This archive contains raw data from 
genome sequencing projects; this trace was obtained by searching the archive by megaBLAST with 
human beta globin (NM_000518.4) as a query. The nucleotides are shown, color-coded according to 
quality score. (b) A display of the PHRED-scaled quality scores (the bottom rows were deleted). Each 
nucleotide is assigned a quality score. Sequence traces are shown (c) for the first 21 bases (see arrow 
1 of (a)) and (d) bases in the middle portion having very high-quality scores (see arrow 2 of (a)). (c, d) 
Shown at the same scale. Reads that are ambiguous and difficult to read are associated with low-quality 
base scores.

Source: megaBLAST, NCBI.
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score (see “Topic 2: From Generating Sequence Data to FASTQ” below). For regions 
having low-quality scores, it can be difficult to call nucleotides accurately and the error 
rate is high. For example, at a quality score of 20 (Q20) there is a 10–2 or 1% error rate. 
Base quality scores below Q20 are often considered suspect, whether obtained by Sanger 
sequencing or next-generation sequencing. The software tools described in this chapter 
can filter out bases below a selected threshold.

Next-Generation Sequencing

A group of powerful new sequencing technologies has emerged in recent years. 
 Collectively, these are known as next-generation sequencing. table 9.1 compares several 
properties of five prominent NGS technologies, as well as Sanger sequencing.

 • When first introduced many of these platforms read lengths of just 35–50 base 
pairs, but now it is typical to achieve reads of hundreds of base pairs. The Pacific 
 Biosciences platform is notable for its lengths of thousands of base pairs. This can 
be extraordinarily important in resolving duplicated regions and in genome assembly 
(see “Topic 3: Genome Assembly” below).

 • The number of sequencing reads produced by each platform ranges from millions to 
even billions. This massively parallel output is key to the success of NGS.

 • The time required for a run has become hours to days. Such reasonable time frames 
are helping NGS experiments become more routinely used tools.

 • The cost per megabase of sequence is an outstanding feature of NGS technologies, in 
stark contrast to Sanger sequencing. While the human genome project was estimated 
to have cost US$ 1–3 billion over a 15 year period, the first genome sequence of 
an individual (that of Craig Venter, reported by Levy et al., 2007) was estimated to 
cost US$ 80 million. We can obtain a whole-genome sequence today for well under 
US$ 2000 (Fig. 9.3). This is also reflected in the steep drop in the cost of sequencing 
one megabase of DNA.

 • Each technology introduces different, characteristic types of errors that influence the 
variants that are called at the end of the data analysis pipeline. Mark DePristo et al. 
(2011) show data from this using the GATK package that we will describe. Michael 
Snyder and colleagues (Clark et al., 2011) also show this by also analyzing an exome 
using three different methods for exome enrichment. The capture methods differed in 
features such as target choice, oligonucleotide bait lengths, and bait density.

Cyclic reversible termination: Illumina

Illumina technology can generate one terabase (Tb) of DNA sequence data (1000 gigabases 
or Gb) in a single run of its HiSeq machine. The HiSeq X ten instrument generates up 

Sanger reads and similar data 
based on gel and capillary 
platforms are stored at the Trace 
Archive of NCBI at  http://www 
.ncbi.nlm.nih.gov/Traces/trace 
.cgi (WebLink 9.8). As of  
October 2014 it contains over  
2.1 billion traces. In Chapter 15 
we query the Trace Archive in 
detail using a Perl script.

Next-generation sequencing 
technologies are sometimes 
referred to as “second-
generation sequencing,” 
referring to the technology 
that has followed Sanger 
sequencing. “Third-generation 
sequencing” then refers to the 
currently emerging generation of 
sequencing tools.

table 9.1 Next-generation sequencing technologies compared to Sanger sequencing. adapted from the 
companies’ websites,  http://en.wikipedia.org/wiki/DNa_sequencer, and literature cited for each technology.

Technology Read length (bp) Reads per run Time per run Cost per megabase (US$) Accuracy (%)

Roche 454 700 1 million 1 day 10 99.90

Illumina 50–250 <3 billion 1–10 days ∼0.10 98

SOLiD 50 ∼1.4 billion 7–14 days 0.13 99.90

Ion Torrent 200 <5 million 2 hours 1 98

Pacific Biosciences 2900 <75,000 <2 hours 2 99

Sanger 400–900 N/A <3 hours 2400 99.90

http://en.wikipedia.org/wiki/DNA_sequencer
http://www.ncbi.nlm.nih.gov/Traces/trace.cgi
http://www.ncbi.nlm.nih.gov/Traces/trace.cgi
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to 1.8 Tb of data in each run. My lab has a small sequencing machine (a MiSeq) that 
generates 5 Gb of DNA per run in about 24 hours.

Illumina sequencing works on the principle of cycle reversible termination which 
functions as follows (Fig. 9.4). (a) Genomic DNA is purified and then randomly  fragmented. 
This can be accomplished mechanically by methods such as sonication, shearing, 
or  nebulization, often followed by size selection of the randomly fragmented DNA. 
 Adapters are attached to both ends. (b) Single-stranded DNA fragments are covalently 
attached to the surface of flow cell channels. (c) The addition of DNA  polymerase and 
unlabeled deoxynucleotides creates solid-phase “bridge amplification” in which the tem-
plate DNA makes U-shaped loops with both ends attached to the surface of the  channel. 
(d)   Double-stranded bridges are formed. The double-stranded molecules are denatured 
and then amplified to generate dense clusters of template DNA. (e) Four labeled  reversible 
terminators are added (with primer and DNA polymerase). Only a single reversible ter-
minator will be added to each template in a given cycle. As with Sanger sequencing, 
chain termination will occur at specific bases that cannot elongate. (f) Following laser 
excitation, the identity of the first base is recorded. (g) For the second cycle, the reversible 
terminators are removed (by deprotection). All four labeled reversible terminators and the 
polymerase are again added to the flow cell. The cycles are repeated.

The Illumina system is very fast and generates massive amounts of sequence data. 
Its read lengths are typically 150 bases or longer, making it particularly appropriate for 
resequencing projects (Bentley et al., 2008). Paired end reads spanning 600 base pairs are 
becoming available. The main advantages of this approach relative to Sanger sequencing 
are its scalability and the elimination of the need for gel electrophoresis. The main advan-
tages relative to pyrosequencing (described in the following section) are that all four 
bases are present at each cycle and the sequential addition of dNTPs allows homopolymer 
tracts to be accurately read.

Currently, the Illumina platform accounts for about 80% of all next-generation 
sequence data that are being generated.

You can learn more about the 
Illumina system at  http://www 
.illumina.com/ (WebLink 9.9).
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FIGUre 9.3 The decline of DNA sequencing costs. The cost per megabase (million base pairs) of 
DNA sequence is shown with respect to a minimum quality score of Q20 (or PHRED20). Cost per genome 
refers to a human-sized genome. The y axis is in logarithmic units. Adapted from Kris Wetterstrand, “DNA 
Sequencing Costs: Data from the NHGRI Genome Sequencing Program” (available at  http://www 
.genome.gov/sequencingcosts/).

http://www.genome.gov/sequencingcosts/
http://www.illumina.com/
http://www.genome.gov/sequencingcosts/
http://www.illumina.com/


Genomewide AnAlysis of dnA, RnA, And PRotein384

Samples immobilized on
surface of a flow cell (8 lanes)

Solid phase amplification

• Bridge amplification (inverted U)
  generates clusters on surface of flow cell
• ~Ten million single-molecule 
  clusters per square centimeter 

Sequencing by synthesis

• Each cycle: add polymerase, one labeled 
  deoxynucleoside triphosphate (dNTP)
  at a time (four labeled dNTPs per cycle)
• Image fluorescent dyes
• Call nucleotide 
• Enzymatic cleavage to remove

Randomly fragment genomic DNA

Library preparation

Cluster

FIGUre 9.4 Sequencing by Illumina technology. Genomic DNA is randomly fragmented and fur-
ther processed (e.g., by size selection and addition of adapters). Samples are immobilized on a lane 
on the surface of a flow cell. Solid phase amplification uses bridge amplification to generate a lawn of 
clusters. Flow cell image is from  http://res.illumina.com/documents/products/techspotlights/techspot-
light_sequencing.pdf. Bridge amplification image is from  http://systems.illumina.com/systems/miseq/
system.html. Cluster image is from the NIH Open Image database (  http://openi.nlm.nih.gov/detaile-
dresult.php?img=2734321_btp383f1&req=4; Whiteford et al., 2009).

pyrosequencing

Pyrosequencing is one of the powerful new alternative technologies that has gained promi-
nence (Rothberg and Leamon, 2008). First introduced by Hyman (1988), it forms the core 
of the 454 Life Sciences Corp. technology that has produced dramatic genome sequencing 
results (Margulies et al., 2005). That group sequenced and assembled the entire Myco-
plasma gentialium genome (580,069 bases) with 96% coverage and at 99.96% accuracy 
with a single run of a sequencing machine. Roche Diagnostics Corporation, the company 
that owns 454, will soon phase out this technology, but we present it as a major force in 
sequencing. As of late 2014, over 3000 publications cite the use of this technology.

A key feature of pyrosequencing is that only one dNTP is added into the reaction at 
a time. The principle is outlined in Figure 9.5. DNA is immobilized on beads that capture 
(on average) one single-stranded template that is amplified using the polymerase chain 
reaction (PCR). The template is placed in small (picoliter volume) wells, with 1.6 mil-
lion wells per plate, and one dNTP is added to the wells per cycle. The reaction mixture 

The 454 Life Sciences Corp. 
website is  http://www.454 
.com/ (WebLink 9.10).

http://res.illumina.com/documents/products/techspotlights/techspot-light_sequencing.pdf
http://res.illumina.com/documents/products/techspotlights/techspot-light_sequencing.pdf
http://systems.illumina.com/systems/miseq/system.html
http://openi.nlm.nih.gov/detaile-dresult.php?img=2734321_btp383f1&req=4
http://openi.nlm.nih.gov/detaile-dresult.php?img=2734321_btp383f1&req=4
http://www.454.com/
http://systems.illumina.com/systems/miseq/system.html
http://www.454.com/
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contains the template DNA, a sequencing primer, four enzymes (DNA polymerase I, ATP 
sulfurylase, luciferase, and apyrase) as well as the substrates adenosine 5′ phosphosulfate 
(APS) and luciferin (Fig. 9.5a). In each cycle a single dNTP is added and is incorporated 
into the nascent strand until a different dNTP is required (Fig. 9.5b). Upon incorporation 
of each dNTP, an equimolar amount of pyrophosphate (PPi) is generated. This PPi is con-
verted to ATP by ATP sulfurylase (Fig. 9.5c) and the ATP promotes the luciferase- mediated 
conversion of luciferin to oxyluciferin with the generation of light (Fig. 9.5d). The emitted 
light is detected with a charge coupled device (CCD) camera. The amount of light is 
measured over time (Fig. 9.5e) to indicate at which position a nucleotide was incorporated; 
because of the quantitative nature of this process, the incorporation of two nucleotides 
creates twice the light output. Apyrase degrades both unincorporated dNTPs and excess 
ATP, clearing the system for repeated cycles with low background noise (Fig. 9.5f). In 
this process dNTPs are systematically added across different cycles, but dATPαS is used 
in place of the usual dATP because it is efficiently used by DNA polymerase I but is 
not a substrate for luciferase. A schematic of the output, showing a sequencing read of 
 GACCGTTC, is shown in Figure 9.5g.

Pyrosequencing offers many advantages. (1) It is very fast and the cost per base is 
low relative to Sanger sequencing. (2) One run of an experiment can generate up to 600 
megabases of raw nucleotide sequence data, a massive amount. (3) DNA molecules are 
amplified without the need for bacterial cloning; this is especially helpful for metagenom-
ics and ancient genomics projects. (4) The accuracy of the reads is very high.

There are also several major disadvantages of pyrosequencing technology. The 
sequencing reads are short (several hundred base pairs), making whole-genome assem-
bly extremely challenging. Another disadvantage is that the machine has difficulty in 
sequencing homopolymers (e.g., a string of 10 identical nucleotides). Huse et al. (2007) 
compared about 340,000 sequencing reads to reference templates of known sequence and 
determined the error rates. Errors involved homopolymer effects, insertions, deletions, 
and mismatches. While these errors were distributed along the length of each read, they 
found that 82% of all the reads had no errors while only a small percent had a dispropor-
tionately large number of errors. By identifying and removing such low-quality reads, 
they could improve the overall accuracy of the dataset from 99.5% to 99.75% or higher.

Applications of 454 technology include some of the ancient DNA and metagenomics 
sequencing projects such as the sequencing of the Neanderthal genome and identifying 
the microbial community in parts of a mine in Minnesota (Edwards et al., 2006; see also 
Chapter 15).

Sequencing by ligation: Color Space with abI SOliD

The Applied Biosystems ABI SOLiD™ offers extremely accurate sequencing with 
extremely low error rates. Library preparation is similar to that of other sequencing tech-
nologies. Genomic DNA is sheared, adapters are ligated, and emulsion PCR is performed 
to generate bead clones, each of which contains a single insert sequence. Other technol-
ogies then use DNA polymerases to incorporate labeled dideoxynucleotide chain ter-
minators. SOLiD is dramatically different, performing sequencing by ligation instead 
of sequencing by synthesis. A mixture of degenerate oligonucleotides is added to each 
reaction, having 3–5 Ns (i.e., any residue) followed by one of 16 specific dinucleotides 
adjacent to the 3′ end. Each oligo (with n = 16 possible dinucleotides) is attached to a dye 
(n = 4). Reading a single color does not specify a single base, but rather corresponds to 
any of four possible dinucleotides. By interrogating each base position twice, the base can 
be called unambiguously. This approach is referred to as using “color space.” While color 
space presents a series of data analysis challenges (including problems with assembly; 
Flicek and Birney, 2009), its strength is its very low base-calling error rate.

The symbol N corresponds to any 
nucleotide residue. N may refer to 
a randomly selected residue (e.g., 
during oligonucleotide synthesis), 
to a base position at which a 
nucleotide cannot be determined 
(e.g., because of limitations of a 
sequencing technology), or to any 
base (e.g., the pattern GNNNC 
refers to a motif in which a G and 
a C residue are separated by any 
three nucleotides).

SOLiD technology is described at 
 http://www.appliedbiosystems 

.com (WebLink 9.11).

http://www.appliedbiosystems.com
http://www.appliedbiosystems.com
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(a) Sequencing primer hybridized to single stranded DNA template

(b) Deoxynucleotide incorporation accompanied by generation of pyrophosphate

(c) Conversion of pyrophosphate to ATP (APS is the substrate adenosine 5’ phosphosulfate)

(d) Conversion of ATP to a photon of light

(e) Detection of light

 

5‘ ...GGACATATCG 3’ (primer)
3’ ...GGACATATCCCTGGCAAG... 5’

(DNA)  + dNTP                                    (DNA)       + PPi

DNA
polymerase

n n+1

ATP
sulfurylase

PPi + APS                                    ATP

luciferase
luciferin + ATP                                   oxyluciferin + light

amount
of light

time

(f) Removal of ATP and deoxynucleotides between sequencing cycles

(g) Determining the DNA sequence across a series of cycles

ATP                                   ADP + AMP + phosphate
apyrase

apyrase
dNTP                                   dNDP + dNMP + phosphate

amount
of light

nucleotide added
G   A   T   C  G   A   T   C

G   A   -   CC G   -  TT  C nucleotide read

FIGUre  9.5 Pyrosequencing. (a) A single-stranded DNA template is immobilized on a bead and 
amplified by PCR. After transfer to a small well, primer is added as well as additional enzymes and 
substrates and one of the four deoxynucleotides (dGTP, dCTP, dTTP or, in place of dATP, the modified 
nucleotide dATPγS). (b) DNA polymerase I catalyzes the addition of a single deoxynucleotide, releasing 
pyrophosphate (PPi). If there is a sequence of n nucleotides in a row in the template DNA, an equimolar 
amount of PPi will be released. (c) ATP sulfurylase converts a substrate (APS) and PPi to adenosine 
triphosphate (ATP). (d) Luciferase, in the presence of its substrate luciferin and the ATP, produces a 
product (oxyluciferin) and light. (e) A charge-coupled camera detects the light and provides an intensity 
measurement over time. The y axis is proportional to the amount of deoxynucleotide that was incorpo-
rated, thus specifying whether zero, one, two, or more dNTPs occur in the template DNA in that position. 
(f) Apyrase cleaves ATP, clearing the system for successive cycles. (g) The light patterns emitted from a 
series of cycles allow the DNA sequence of the template to be read. The longest reads with current tech-
nology approach 1000 bases. Because of the massively parallel nature of this process, tens of millions of 
base pairs of high-quality sequence can be generated with this technology.
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Ion torrent: Genome Sequencing by Measuring ph

The idea behind Ion Torrent’s sequencing technology is remarkably simple. When 
a DNA polymerase incorporates a nucleotide into a strand of DNA, a hydrogen ion is 
released. The sequencing machine is essentially a pH meter with 1.2 million wells that 
can  distinguish incorporation of the four bases (Rothberg et al., 2011). It can identify the 
incorporation of two or more bases as a signal with increased voltage, but a limitation of 
this technology is its low accuracy with homopolymer runs. This method involves direct 
detection of the chemical reaction on a semiconductor chip using an ion sensor without 
scanning, cameras, or light sources.

pacific biosciences: Single-Molecule Sequencing with long  
read lengths

Pacific Biosciences enables the real-time sequencing of a DNA molecule using a DNA 
 polymerase and four distinguishable labeled deoxyribonucleoside triphosphates (dNTPs; 
Eid et al., 2009). The activity of the DNA polymerase was measured in this way, directly 
observing processive incorporation of nucleotides (at a rate of 4.7 bases/second). This 
approach relies on a zero-mode waveguide nanophotonic structure: detection of single fluo-
rophores is enabled by attaching a polymerase to the bottom of a well where it can interact 
with a DNA molecule and receive excitation by a laser light in a volume of just zeptoliters 
(10–21 L). In this confined space, dNTP concentrations as high as 10 μM are achieved.

A great advantage of this technology is that read lengths can average 5000 base pairs, 
sometimes exceeding 20 kb. Koren et al. (2013) reported the advantage of using these 
long reads to assemble bacterial and archaeal genomes with very high accuracy; we show 
this in the section “Topic 3: Genome Assembly” below. Another unique strength of Pacific 
Biosciences technology is that it allows epigenomic analyses concurrently with DNA 
sequence determination. For example, it can report adenine and cytosine methylation.

Complete Genomics: Self-assembling DNa Nanoarrays

Complete Genomics introduced a platform that produces highly accurate genome 
sequences (Drmanac et al., 2010). Genomic DNA is fragmented, cloned into circular 
vectors, and single-stranded vectors containing hundreds of copies of insert sequence 
are assembled into self-assembling DNA nanoballs. Sequencing is then performed with 
a ligation chemistry called combinatorial probe anchor ligation sequencing. Complete 
Genomics further extended their technology to sequencing whole genomes from collec-
tions of just 10–20 human cells, permitting accurate haplotyping (Peters et al., 2012).

AnAlySIS of next-generAtIon SequencIng of 
genomIc dnA

Overview of Next-Generation Sequencing Data analysis

Overviews of next-generation sequence data analysis have been presented by Stein (2011) 
and Pabinger et al. (2014). We present a broad outline of sequence analysis in Figure 9.6, 
and examine 11 topics as follows. (1) Experimental design and sample preparation, in 
which it is essential for the biologist to have an intimate role.

The next stages are often performed at a core facility in which experts implement 
a  workflow. However, the biologist can and should understand all the steps that are 
taken, especially since they are fundamental to the outcome of the experiment. (2) The 
 generation of sequence data and FASTQ formatted files, which also includes quality 
assessment of FASTQ data. Are the quality scores above an appropriate threshold (such 

Ion Torrent is sold by Life 
Technologies. You can learn  
more at  http://lifetechnologies 
.com (WebLink 9.12). Note that 
sequence reads generated 
with this technology should use 
mappers that are customized for 
Ion Torrent.

The Pacific Biosciences home 
page is  http://www 
.pacificbiosciences.com/ 
(WebLink 9.13).

Visit  http://www.
completegenomics.com/ (WebLink 
9.14), a BGI company  
(  http://www.genomics.cn/
en/index, WebLink 9.15). The 
Complete Genomics website 
currently offers a series of 
analysis tools and access to data 
from 69 whole human genomes.

http://lifetechnologies.com
http://www.pacificbiosciences.com/
http://www.completegenomics.com/
http://www.genomics.cn/en/index
http://www.genomics.cn/en/index
http://lifetechnologies.com
http://www.pacificbiosciences.com/
http://www.completegenomics.com/
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Laboratory work

Stage Examples/explanation File formats

Next-generation sequencing
Platforms include Illumina, 
SOLiD, Pacific Biosciences, other

Output: FASTQ-Sanger,
FASTQ-Illumina

Trimming, filtering
Software: FastQC

Reference: FASTA
Output: SAM/BAM

Single nucleotide variants (SNVs),
structural variants (e.g. indels)
Software: GATK, SAMTools
Realignment, recalibration

Comparison to public database
(dbSNP, 1000 Genomes); 
functional consequence scores

Visualization
Variant visualization; read depth; 
comparison to other samples
Software: IGV, BEDTools, BigBED

Variant Call Format 
( VCF/BCF)

Experimental design
Library preparation
Enrichment (capture)

Prioritization
Discovery of relevant variants
Software: PolyPhen-2, VEP, VAAST

Software: BWA, Bowtie2
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Quality assessment

Alignment to reference genome

Variant identification

Annotation

VCF

FASTQ

Storage Deposit data in ENA, SRA, dbGaP BAM, VCF

FIGUre 9.6 Workflow for next-generation sequence experiments: from experimental design to data 
analysis. We describe software tools and data formats in this chapter.

as an error rate of 1 in 1000)? (3) Genome assembly (if needed). (4) Sequence alignment 
to a reference genome, including measurement of read depth and alignment of repetitive 
DNA. (5) The SAM/BAM format and SAMtools software: storing and analyzing aligned 
reads. (6) Variant calling for single-nucleotide variants. (7) Variant calling for structural 
variants. Are there insertions/deletions (indels), inversions, or other complex variants? 
(8) Summarizing variation with the variant call format (VCF). (9) Visualizing next-gen-
eration sequence data as well as genomic arithmetic with IGV, BEDTools, and bigBed.

The final steps are often the responsibility of the biologist. (10) Interpreting the bio-
logical significance of variants; this may be followed up by validation studies such as 
targeted sequencing of candidate disease alleles. (11) Depositing (storing and sharing) 
data in repositories.

There are many variations on these 11 topics. For example, some studies involve 
pedigrees, studies of somatic variation, or other genetic topics; some involve related tech-
nologies such as ChIP-Seq, RNA-seq, and methylation studies. We conclude this chapter 
by briefly describing some of these alternate topics.

The outline presented in Figure 9.6 is relatively simplistic. We will use that workflow 
to gain experience with basic data manipulation. A state-of-the-art workflow, used by 
many experts, is the Genome Analysis Toolkit (GATK; McKenna et al., 2010; DePristo 
et al., 2011; Van der Auwera et al., 2013). We show the GATK workflow in Figure 9.7, and 
explain why its approaches are crucial to sensitive, specific analyses of genome sequences.
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FIGUre 9.7 Workflow for variant discovery and genotyping from next-generation DNA sequencing 
using GATK. In the first phase, raw reads (in the FASTQ format) are mapped to a reference genome, 
realigned, duplicate reads are removed, and base quality scores are recalibrated. In the second phase 
variants are identified in the three categories of single-nucleotide polymorphisms (SNPs), insertions/
deletions (indels), and structural variants (SVs). In the third phase, quality scores of variants are recali-
brated and genotypes are refined in the context external data sources that inform the analyses. The steps 
introduced by GATK greatly reduce both false negative and false positive errors. Adapted from DePristo 
et al. (2011), with permission from Macmillan Publishers.
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topic 1: experimental Design and Sample preparation

In order to sequence DNA from a source of interest, genomic DNA must be purified 
and prepared in the form of a library. For whole-genome sequencing (WGS), genomic 
DNA is typically fragmented (through nebulization or mechanical shearing) to produce 
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fragments that are size-selected to some desired range (e.g., 300 base pairs). For targeted 
sequencing, regions of genomic DNA are enriched (“captured”). One popular approach 
is whole-exome sequencing (WES) in which DNA corresponding to exons is selectively 
enriched for sequencing. This is of interest for studies in which coding region variants are 
studied. Another approach is targeted sequencing of particular loci of interest. This may 
be a set of genes you are interested in, such as the panel of 101 autism genes we study in 
this chapter, or 16S ribosomal DNA for metagenomics studies (Chapters 15–17). Another 
application could be targeted sequencing of a region implicated in disease (e.g., from a 
genome-wide association study or GWAS, described in Chapter 21).

One main source of excitement about genome sequencing is that it may solve the 
genetic basis of many diseases. For any research studies involving humans in the United 
States, it is necessary to obtain Institutional Review Board approval. For clinical studies, 
IRB approval is not required, but guidelines for protecting patients’ rights are required 
and laboratories must be accredited for clinical work. There are many essential issues to 
consider, such as:

 • Informed consent: do the participants understand the potential risks and benefits of 
obtaining genetic information?

 • Privacy: if the sequence data are deposited in a repository such as dbGaP at NCBI 
(Chapter  21), can privacy be ensured? Privacy involves limiting others’ access to 
information about a person. It has been suggested that no samples can be adequately 
deidentified.

 • Confidentiality: if genetic information is obtained about a person’s genome, is that 
information protected or misused?

 • Ownership of data: if a child’s genome is sequenced, the parents’ genomes are also 
routinely sequenced. This is done to determine which variants are inherited by the 
child and which variants occur de novo (and are therefore potentially clinically rel-
evant). What happens if there are incidental findings, such as a mutation in a cancer 
gene in a patient with an unrelated condition? What if there are clinically relevant 
findings in the parents’ genomes, when the focus of the study had been on the child’s 
genome?

Once genomic DNA is purified and quantified, it is packaged into a library. Paired-
end libraries are routinely created; in these, DNA inserts are size-selected and sequenced 
from both the 5′ and 3′ ends. (It is possible to make inserts and sequence from only one 
end.) An advantage of paired-end libraries is that paired reads are generated which can 
be mapped to a particular genomic location. If that position is unexpectedly far apart this 
may indicate an insertion has occurred in the sample, while if the reads are closer than 
expected this can be interpreted as a deletion. We discuss structural variant discovery in 
“Topic 7: Variant Calling: Structural Variants” below.

topic 2: From Generating Sequence Data to FaStQ

When genomic DNA is sequenced, raw image files are typically generated that are used to 
interpret which nucleotide is called in a given fragment or “read” (Ledergerber and Dessi-
moz, 2011). For most users, the FASTQ files (rather than the underlying image files) rep-
resent the raw reads from which other analyses are performed. Like the FASTA format, the 
FASTQ format includes a sequence string, consisting of the nucleotide sequence of each 
read. FASTQ also includes an associated quality score for every base. I have supplied two 
FASTQ files (forward and reverse reads) from an experiment sequencing autism genes, 
as well as three other file types which are discussed in “Topic 5: The SAM/BAM Format 
and SAMtools” and “Topic 8: Summarizing Variation: The VCF Format and VCFtools” 
below (.bam, .bam.bai, and .vcf). You can copy them from the textbook website to 

A violation of privacy would 
be visiting someone’s house 
and looking in their private 
clothes drawer. A violation of 
confidentiality would be telling 
others what you saw there.
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This shows that the FASTQ files are each about 570 megabytes (if compressed as 
mysample1_R1.fastq.gz files, they each occupy ∼230 MB). We can use the word 
count program wc –l (where –l specifies lines) to see that each FASTQ file has about 
7.2 million rows. Next we can use head to view the beginning lines of one of the files.

your Linux machine (or Mac or PC) to study them. We first us ls to list the files of our 
directory, with the –lh option to list them fully in human-readable form.

The two FASTQ files are available 
at Web Documents 9.1 and 9.2 at 

 http://bioinfbook.org. To read 
about the FASTQ format see  

 http://maq.sourceforge.net/
fastq.shtml (WebLink 9.16).

$ ls -lh
total 1.5G
-rwxrwxr-x. 1 pevsner pevsner 326M Oct 17 15:52 mysample1.bam
-rwxrwxr-x. 1 pevsner pevsner 3.0M Oct 17 15:52 mysample1.bam.bai
-rwxrwxr-x. 1 pevsner pevsner 574M Oct 17 15:52 mysample1_R1.fastq
-rwxrwxr-x. 1 pevsner pevsner 573M Oct 17 15:52 mysample1_R2.fastq
-rwxrwxr-x. 1 pevsner pevsner 55K Oct 17 15:52 mysample1.vcf

$ head mysample1_R1.fastq
@M01121:5:000000000-A2DTN:1:1101:19726:2176 1:N:0:2
GNGCTAACTCTGGCTGAAGGACTAGCTAACGCTGCTGGGACAGAGGCTTTGAGGGGGCCTGCCCCACTGTTTAT 
TCTCAGAGCTGGCATATGGGGAGAGGTGGGTGA
+
A#>>AAAFFBFFGGGG1EGGFGHHHHHGHHFGGE?EFHGHGAE0BEEFHHF2AGEGCGCFFGHEFFGHHHGHG 
HHGGGHHHHEHFH/GHHGHFEEAE>E/FGEEG</

Each FASTQ file has records that are in blocks four lines long. The first line, begin-
ning with the @ symbol, identifies the record. It may optionally include information about 
the sequence length or the machine used for sequencing. The second line has the sequence 
(in upper case), including the nucleotides G, A, T, C, and (as is the case here in the sec-
ond position) there may be an N for unknown nucleotide. The third line begins with the 
+ symbol and typically contains just that character (as in this case), or it can have more 
information. The fourth line includes the quality scores corresponding to every base. Each 
quality score is assigned a single character, and the entire quality score string must equal 
the length of the sequence string.

Cock et al. (2010) reviewed the three different types of FASTQ file formats: the 
Sanger standard format (which is currently the most commonly used format); a second 
format introduced by Solexa, Inc. (now Illumina, Inc.) in 2004; and an Illumina 1.3+ 
FASTQ format. All three have different meanings because the quality scores are scaled 
differently. The standard Sanger format relies on quality scores Q that are also called 
PHRED scores, defined:

 Q PPHRED e= − ×10 10log ( )  (9.1)

where Pe refers to the estimated probability of a base call error. PHRED scores were 
 introduced in 1988 by Phil Green and colleagues to describe base quality scores from 
Sanger sequencing. This definition is used in the Sanger FASTQ format. Characters are 
stored as ASCII printable characters 33–126 (i.e., with an ASCII offset of 33) so the 
range of possible quality scores is 0 to 93. These are listed in Figure 9.8. A value of 93 
corresponds to a probability of 10–9.3 that a base call occurred by chance, that is, the read 
is extremely likely to be correct. At Q30 there is a 1:1000 (i.e., 10–3) error rate, a threshold 
that is often set as a minimum for high-quality reads. For the first four nucleotides GNGC 
in the example above, the quality scores A#>> correspond to Sanger FASTQ values of 32, 
2, 29, and 29. The N residue therefore has an extraordinarily low-quality score.

The 2004 Solexa definition of a quality score was given as:

 Q
P

PSolexa
e

e

= − ×
−







10
110log .  (9.2)

If you wish to analyze a FASTQ file 
in Linux, be careful because the 
@ and + symbols denote the start 
of lines 1 and 3 of each record 
but they may also denote a base 
quality score within the fourth 
line. A tool such as grep should 
therefore be used with caution in 
extracting information.

ASCII refers to the American 
Standard Code for Information 
Interchange, a character-
encoding scheme that encodes 
128 characters. The first 32 codes 
(numbers 0–31 decimal) are 
reserved control characters that 
were not intended to be printed. 
ASCII 32 is the space character, 
so Sanger FASTQ files use ASCII 
33–126. This corresponds to 
PHRED qualities 0–93. You can 
view an ASCII table that defines 
its one-character symbols at 

 http://www.asciitable.com/ 
(WebLink 9.17).

http://bioinfbook.org
http://maq.sourceforge.net/fastq.shtml
http://www.asciitable.com/
http://maq.sourceforge.net/fastq.shtml
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Dec Char
32 Space
33 ! 0
34 “ 1
35 # 2
36 $ 3
37 % 4
38 & 5
39 ‘ 6
40 ( 7
41 ) 8
42 * 9
43 + 10
44 , 11
45 - 12
46 . 13
47 / 14
48 0 15
49 1 16
50 2 17
51 3 18
52 4 19
53 5 20
54 6 21
55 7 22
56 8 23
57 9 24
58 : 25
59 ; 26
60 < 27
61 = 28
62 > 29
63 ? 30

Dec Char
64 @ 31
65 A 32
66 B 33
67 C 34
68 D 35
69 E 36
70 F 37
71 G 38
72 H 39
73 I 40
74 J 41
75 K 42
76 L 43
77 M 44
78 N 45
79 O 46
80 P 47
81 Q 48
82 R 49
83 S 50
84 T 51
85 U 52
86 V 53
87 W 54
88 X 55
89 Y 56
90 Z 57
91 [ 58
92 \ 59
93 ] 60
94 ^ 61
95 _ 62

Dec Char
96 . 63
97 a 64
98 b 65
99 c 66
100 d 67
101 e 68
102 f 69
103 g 70
104 h 71
105 i 72
106 j 73
107 k 74
108 l 75
109 m 76
110 n 77
111 o 78
112 p 79
113 q 80
114 r 81
115 s 82
116 t 83
117 u 84
118 v 85
119 w 86
120 x 87
121 y 88
122 z 89
123 { 90
124 | 91
125 } 92
126 ~ 93
127 DEL 

Dec Char  
0 Non-printing
1 Non-printing
2 Non-printing
3 Non-printing
4 Non-printing
5 Non-printing
6 Non-printing
7 Non-printing
8 Non-printing
9 Non-printing
10 Non-printing
11 Non-printing
12 Non-printing
13 Non-printing
14 Non-printing
15 Non-printing
16 Non-printing
17 Non-printing
18 Non-printing
19 Non-printing
20 Non-printing
21 Non-printing
22 Non-printing
23 Non-printing
24 Non-printing
25 Non-printing
26 Non-printing
27 Non-printing
28 Non-printing
29 Non-printing
30 Non-printing
31 Non-printing
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FIGUre  9.8 FASTQ quality scores use ASCII coding symbols. The chart shows ASCII symbols 
(Char columns indicate characters) corresponding to decimal notation 1–127. The characters for 0–31 
(which are not used for printing) are not shown. Decimal 31 is a space, and subsequent characters 
 (decimal 33–126) are used to represent base quality scores in the Sanger FASTQ format. For example, 
if base calls GATC have quality scores of 28, 30, 25, and 31 then the symbols for their quality scores are 
=?:@. Adapted from http://www.lookuptables.com.

This format uses an ACII range of 59126 (offset 64) and has a range of values from –5 
to 62. It can be interchanged with the Sanger FASTQ format (Cock et al., 2010):

 Q Q
PHRED

Solexa= × +10 10 110
10log ( )./  (9.3)

Several tools such as Maq (Li et al., 2008) interconvert FASTQ formats. NCBI has 
converted Solexa to Sanger formatted FASTQ files.

Finding and Viewing FASTQ files
It is helpful to look at FASTQ files to learn their format and size, and to learn how to 
manipulate them. You can visit the Sequence Read Archive (SRA) at NCBI to obtain 
FASTQ files from a vast number of experiments. NCBI provides an SRA ToolKit, a pro-
gram to download files, or you can browse for files of interest.

To use SRA Toolkit, follow the download instructions from NCBI. On a Linux or OS 
X computer navigate to the bin directory and use the fastq-dump utility to  download 
data from a typical SRA file, accession SRR390728. Note that there are six SRA  accession 

The SRA website at NCBI is at  
 http://www.ncbi.nlm.nih.gov/sra/ 

(WebLink 9.18). This site includes 
documentation with detailed 
instructions for installing and 
using the SRA ToolKit on a Linux, 
OS X, or Windows machine.

http://www.lookuptables.com
http://www.ncbi.nlm.nih.gov/sra/
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Next, we can add the –fasta argument to output three entries of just FASTA for-
matted data and, with the number 36, we specify that we want 36 bases per line:

types. (1) SRA is an SRA submission accession. This is a virtual container holding objects 
from the other five types. (2) SRP is an SRA study accession containing project metadata, 
that is, a study summary. (3) SRX is an SRA experiment accession, including metadata, 
platform, and experimental details. (4) SRS is an SRA sample accession describing the 
physical sample. (5) SRZ is an historical SRA analysis accession containing a sequence 
data file and metadata. (6) SRR is an SRA run accession having sequencing data such as 
SRR390728 that we will use. A given experiment may have multiple runs (SRR files). We 
will include the argument –X 3 to specify that we want to print just the first three spots, 
and –Z sends them to standard output.

These six filetype accessions 
apply to SRA data. The first 
letter S refers to NCBI-SRA. For 
EMBL-SRA data the first letter 
is E instead of S, for example 
ERR015959 refers to an ENA run 
accession with sequence data. 
For data originating from the DNA 
Database of Japan DDBJ-SRA, 
the first letter is D.

$ fastq-dump -X 3 -Z SRR390728
Read 3 spots for SRR390728
Written 3 spots for SRR390728
@SRR390728.1 1 length=72
CATTCTTCACGTAGTTCTCGAGCCTTGGTTTTCAGCGATGGAGAATGACTTTGACAAGCTGAGAGAAGNTNC
+SRR390728.1 1 length=72
;;;;;;;;;;;;;;;;;;;;;;;;;;;9;;665142;;;;;;;;;;;;;;;;;;;;;;;;;;;;;96&&&&(
@SRR390728.2 2 length=72
AAGTAGGTCTCGTCTGTGTTTTCTACGAGCTTGTGTTCCAGCTGACCCACTCCCTGGGTGGGGGGACTGGGT
+SRR390728.2 2 length=72
;;;;;;;;;;;;;;;;;4;;;;3;393.1+4&&5&&;;;;;;;;;;;;;;;;;;;;;<9;<;;;;;464262
@SRR390728.3 3 length=72
CCAGCCTGGCCAACAGAGTGTTACCCCGTTTTTACTTATTTATTATTATTATTTTGAGACAGAGCATTGGTC
+SRR390728.3 3 length=72
-;;;8;;;;;;;,*;;';-4,44;,:&,1,4'./&19;;;;;;669;;99;;;;;-;3;2;0;+;7442&2/

$ fastq-dump -X 3 -Z SRR390728 –fasta 36
Read 3 spots for SRR390728
Written 3 spots for SRR390728
>SRR390728.1 1 length=72
CATTCTTCACGTAGTTCTCGAGCCTTGGTTTTCAGC
GATGGAGAATGACTTTGACAAGCTGAGAGAAGNTNC
>SRR390728.2 2 length=72
AAGTAGGTCTCGTCTGTGTTTTCTACGAGCTTGTGT
TCCAGCTGACCCACTCCCTGGGTGGGGGGACTGGGT
>SRR390728.3 3 length=72
CCAGCCTGGCCAACAGAGTGTTACCCCGTTTTTACT
TATTTATTATTATTATTTTGAGACAGAGCATTGGTC

You can also access FASTQ files via the European Nucleotide Archive (ENA). Enter 
a text search “1000genomes exome.” (We search for exomes because they are relatively 
small.) Take the first file (sample accession SRS001696) and click the download option 
“Fastq files (galaxy).” This directs you to a Galaxy page with the FASTQ file entered into 
your history. (It has 6.2 million sequences.) Within Galaxy, click the eye icon to view the 
file, and you can use the tools menu to further analyze the data.

Quality Assessment of FASTQ data
Several packages are useful to assess the quality of the sequence data including FastQC 
and ShortRead. There are many types of sequencing errors:

 • Errors typically increase as a function of read length. For example, for Illumina tech-
nology, with each increasing cycle it becomes increasingly difficult to differentiate 
the signal to noise ratio for which nucleotide has been incorporated.

 • Errors occur as a function of GC content.
 • Errors may occur in homopolymer positions. Both pyrosequencing and Ion Torrent 
technologies are susceptible to this.

The ENA homepage at the 
European Bioinformatics Institute 
is  http://www.ebi.ac.uk/ena/ 
(WebLink 9.19). The Galaxy site 
you are directed to is  https://
usegalaxy.org/ (WebLink 9.20).

mailto:@SRR390728.1
mailto:@SRR390728.22length=72AAGTAGGTCTCGTCTGTGTTTTCTACGAGCTTGTGTTCCAGCTGACCCACTCCCTGGGTGGGGGGACTGGGT+SRR390728.22length=72
mailto:@SRR390728.22length=72AAGTAGGTCTCGTCTGTGTTTTCTACGAGCTTGTGTTCCAGCTGACCCACTCCCTGGGTGGGGGGACTGGGT+SRR390728.22length=72
mailto:@SRR390728.22length=72AAGTAGGTCTCGTCTGTGTTTTCTACGAGCTTGTGTTCCAGCTGACCCACTCCCTGGGTGGGGGGACTGGGT+SRR390728.22length=72
mailto:@SRR390728.22length=72AAGTAGGTCTCGTCTGTGTTTTCTACGAGCTTGTGTTCCAGCTGACCCACTCCCTGGGTGGGGGGACTGGGT+SRR390728.22length=72
mailto:@SRR390728.3
http://www.ebi.ac.uk/ena/
https://usegalaxy.org/
https://usegalaxy.org/


Genomewide AnAlysis of dnA, RnA, And PRotein394

Within a few seconds, the analysis is complete. You can use a variety of tools to trim 
(or mask) the sequence reads. It may be necessary to trim if there is evidence that partic-
ular base pairs of your reads have low base quality scores, or if there are contaminating 
primer or adapter sequences that might adversely affect downstream variant calling.

FastQC is also available via Galaxy. On the left sidebar select Tools > NGS: QC > 
FastQC and execute the FASTQ file. A variety of plots are presented in HTML.

FASTG: A Richer Format than FASTQ
The FASTQ format offers a linear representation of genomic sequence. A working group 
has proposed an alternative FASTG format (in which G stands for graph). Unlike FASTQ, 
the FASTG format can represent allelic polymorphism as well as limitations in the assem-
bly in which multiple sequence and/or assembly versions are possible.

An example of a FASTG file format is as follows:

Many dozens of commonly used 
software tools for trimming are 
listed at  http://omictools.com 
(WebLink 9.22; Henry et al., 2014).

The output of a FASTQC analysis 
from a 1000 Genomes exome 
housed at the ENA is saved as 
Web Document 9.3.

The FASTG Format Specification 
Working Group issued a 
document that is available as 
Web Document 9.4. For a FASTG 
website see  http://fastg 
.sourceforge.net/ (WebLink 9.23).

In this FASTG example there 
are begin and end lines; two 
scaffolds (chr1 and chr2); a gap 
of between 4 and 6 bases which 
is assigned a default value of 
5; an ambiguous base that is 
assigned a C but could be a G 
(see [1:alt:allele|C,G]), 
perhaps because there are two 
alleles present in equal amounts; 
a stretch of between 8 and 12 AT 
dinucleotides, given a primary 
representation of 10 repeats (see 
[20:tandem:size= 

(10,8..12)|AT]); and an 
expression [1:alt|A,T,TT] 
indicating the occurrence of 
either A, T, or TT at that location. 
Note that any FASTG string can 
be converted to FASTA, although 
with a loss of information about 
potential ambiguities.

FastQC software provides quality control statistics. Data are imported from FASTQ 
files (or from SAM/BAM; see “Topic 5: The SAM/BAM Format and SAMtools”), and 
are then analyzed in a stand-alone interactive mode (for small numbers of FASTQ files) 
or a non-interactive mode for larger pipelines. The output includes the following:

 • Basic statistics. This includes information such as the range of sequence lengths and 
the percent GC content.

 • Per base sequence quality. This shows quality scores (y axis) versus base position 
(x axis).

 • Per sequence quality scores shows the number of sequences (y axis) versus mean 
sequence quality (Phred score; x axis).

 • Overrepresented sequences. You can copy these sequences and save them to a text file. 
You can then try BLAT (particularly if you know the species of the overrepresented 
sequences), BLASTN (to search for matches across species), batch BLAST, or other tools.

 • k-mer content: this shows data for a series of 5-mers (strings of 5 nucleotides) plot-
ted by relative enrichment (y axis) versus position in read (in base pairs; x axis). 
The expected 5-mer frequency (determined from the base composition of the entire 
sequence) can be compared to the observed frequency. k-mer counts may be reduced 
(e.g., when poor quality reads reduce the counts for duplicated sequences) or enriched 
(e.g., when 5-mers are overrepresented at particular locations along a read, such as in 
the vicinity of a tag added to the 5′ end of sequencing reads).

You can run FastQC on a Linux server. Type the command:

The FastQC website is  http://
www.bioinformatics.babraham 
.ac.uk/projects/fastqc/  
(WebLink 9.21).

$ fastqc mysample1_R1.fastq

#FASTG:begin;
#FASTG:version=1.0:assembly_name=”tiny example”;
>chr1:chr1;
ACGANNNNN[5:gap:size=(5,4..6)]CAGGC[1:alt:allele|C,G]TATACG
>chr2;
4
ACATACGCATATATATATATATATATAT[20:tandem:size=(10,8..12)|AT]TCAGG 
CA[1:alt|A,T,TT]GGAC
#FASTG:end;

topic 3: Genome assembly

Genome assemblies offer a consensus representation of a genome, spanning all the 
 chromosomes (and extrachromosomal elements such as organellar genomes and 
 plasmids). When next-generation sequencing is performed on a previously assembled 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://omictools.com
http://fastg.sourceforge.net/
http://fastg.sourceforge.net/
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genome (e.g., when we sequence a person’s genome) alignment to the reference genome 
is performed, but that human reference has already been assembled so further assembly 
is not required. In contrast, when we sequence the genome of a species that has not previ-
ously been characterized, de novo (“from new”) assembly is required.

Whole-genome assembly involves fragmenting genomic DNA from an organism, 
then constructing libraries of various sizes (often from 2 kb to 50 kb or even >100 kb). 
In one approach the ends of cloned inserts are sequenced (producing mate pair reads). 
As reads are aligned they are organized into contigs such as those found in the Whole- 
Genome Shotgun (WGS) division of NCBI. Contigs can be ordered and oriented to 
assemble scaffolds (also called supercontigs). These may contain gaps whose sizes can 
be estimated. Global statistics for assemblies include: (1) the total number of scaffolds 
(including those with or without known placement or orientation); (2) the scaffold N50 
(the length in base pairs such that scaffolds of this length or longer include 50% of the 
bases in the assembly); (3) the total number of contigs; and (4) the contig N50 (here 
the length such that contigs of this length or longer include 50% of the bases in the 
assembly. N50 is therefore a measure of contiguity, with larger values denoting more 
complete assemblies.

When we examine genomes across the tree of life in Part III of this book, we will 
see N50 statistics which give a sense of how completely a genome has been assembled. 
The Genome Reference Consortium (GRC) which is responsible for human genome 
assemblies lists the N50 for each human chromosome. For chromosome 11 (harboring 
the HBB gene cluster) the N50 is about 41.5 megabases, while in earlier assemblies (such 
as NCBI35) it was millions of base pairs shorter.

Many software tools are available for assembly as reviewed by Flicek and Birney 
(2009), Miller et al. (2010), Li et al. (2012), Paszkiewicz and Studholme (2010), Henson 
et al. (2012), and Nagarajan and Pop (2013). We provide a detailed example (assembling 
the E. coli genome) in Chapter 15 using the Velvet assembler. Assembly tools vary in 
speed, ability to process different types of sequence data, scalability, and results.  Several 
are listed in table 9.2. Performing assembly with relatively short reads generated with 
next-generation sequencing technologies offers particular challenges (Alkan et al., 2011b).

Two main methods are used by assemblers: the overlap/layout/consensus approach 
and de Bruijn graphs. Consider the eight reads shown in Figure 9.9a (from Henson et al., 
2012). An overlap graph represents every read as a node (Fig. 9.9b). Edges correspond to 
overlaps (here k = 5 so overlaps are of 5 or more bases). The edges are transitive: larger 
overlaps can encompass a set of shorter overlaps (see curved arrows). Assemblers using 
the overlap/layout/consensus approach perform pairwise alignments of all the reads to 
determine the overlap.

In a de Bruijn graph (Fig. 9.9c), sequences are all broken into strings of some fixed 
length k. Each node corresponds to a k-mer such as k = 5 in the figure. An edge separates 

The Genome Reference 
Consortium (GRC) homepage is 

 http://www.ncbi.nlm.nih.gov/
projects/genome/assembly/grc/ 
(WebLink 9.24). We discuss GRC in 
Chapter 20 (Fig. 20.5, table 20.4). 
NCBI offers assembly resources 
at  http://www.ncbi.nlm.nih 
.gov/assembly/ (WebLink 9.25), 
including an overview of the topic 
and a glossary of terms. View the 
GRC N50 statistics at  http://
www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/human/
data/?build=37 (WebLink 9.26).

table 9.2. Software for genome assembly.

Assembler Reference URL

ABySS Simpson et al. (2009) http://www.bcgsc.ca/platform/bioinfo/software

ALLPATHS-LG Gnerre et al. (2011) http://www.broadinstitute.org/software/allpaths-lg/blog/

Bambus2 Koren et al. (2011) http://www.cbcb.umd.edu/software

CABOG Miller et al. (2008) http://www.jcvi.org/cms/research/projects/cabog/overview/

SGA Simpson and Durbin (2012) https://github.com/jts/sga

SOAPdenovo Luo et al. (2012) http://soap.genomics.org.cn/soapdenovo.html

Velvet Zerbino and Birney (2008) http://www.ebi.ac.uk/~zerbino/velvet/

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://www.ncbi.nlm.nih.gov/assembly/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data/?build=37
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/data/?build=37
http://www.bcgsc.ca/platform/bioinfo/software
http://www.broadinstitute.org/software/allpaths-lg/blog/
http://www.cbcb.umd.edu/software
http://www.jcvi.org/cms/research/projects/cabog/overview/
https://github.com/jts/sga
http://soap.genomics.org.cn/soapdenovo.html
http://www.ebi.ac.uk/~zerbino/velvet/
http://www.ncbi.nlm.nih.gov/assembly/
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(a) Reads (b) Overlap graph

(c) de Bruijn graph

(d) String graph

1 ACCTGATC
2   CTGATCAA
3    TGATCAAT
4  AGCGATCA
5    CGATCAAT
6     GATCAATG
7       TCAATGTG
8        CAATGTGA

ACCTG CCTGA CTGAT TGATC

GATCA

AGCGA GCGAT CGATC

ATCAA TCAAT CAATG AATGT ATGTG TGTGA

▶ ▶ ▶

▶ ▶ ▶

▶
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1 2 3

4 5

6 7 8

1 2 3

4 5

6 7 8

AC C

AG C

T
GA T

FIGUre 9.9 Methods for genome assembly from short reads. (a) Example of 8 aligned reads (note 
that reads 4 and 5 only partially match reads 1–3). Colored nucleotides are identical for all aligned 
sequences. (b) Overlap graph represents a solution to the assembly. (c) de Bruijn graph breaks the reads 
into units of five nucleotide (k-mers with k = 5 in this example). Colors of nucleotides match (a). Adapted 
from Henson et al. (2012) with permission from Future Medicine.

a pair of k-mers that occur consecutively. Adjacent nodes share k–1 letters (e.g., in our 
example the first two nodes of length 5 share the bases CCTG). The genome assembly 
corresponds to some path through the nodes, and assemblers refine the path. For example, 
the path represented by sequences 4 and 5 might be rejected if it is supported by signifi-
cantly less read depth than occurs for sequences 1 to 3.

The de Bruijn graph approach, championed by Pavel Pevzner (2001) and colleagues, 
is especially useful in the assembly of DNA with repetitive regions, as commonly occurs 
in eukaryotes in particular. Given a region with four unique segments and a repeat that 
occurs three times (Fig. 9.10a), the overlap/layout/consensus approach introduces a node 
for every read (Fig. 9.10b). The repetitive DNA introduces many ways in which two nodes 
can be connected. Pevzner et al. suggest viewing the DNA as a “thread” with repeat 
regions covered in “glue” that binds them (Fig. 9.10c). The corresponding de Bruijn graph 
(Fig. 9.10d) therefore represents each repeat as an edge rather than as a collection of nodes, 
and leads to efficient solutions for identifying the optimal paths.

Genome assembly is facilitated by having longer sequencing reads. Figure 9.11 shows 
three de Bruijn graphs for the assembly of the 4.2 megabase E. coli genome. This is a 
 circular, bacterial genome. At k=50 the graph is severely tangled; at k=1000 it is greatly 
simplified; and at k=5000 the graph is completely resolved into a single contig encom-
passing the entire genome. Such a large k value is made possible through long-read 
sequencing with the Pacific Biosciences technology. When used in combination with the 
Illumina platform (that offers a lower error rate) it has been possible to achieve an extraor-
dinarily high accuracy of bacterial genome assembly (Koren et al., 2013).

Competitions and Critical Evaluations of the Performance of Genome Assemblers
The Assemblathon competition was introduced to compare the performance of  assemblers. 
In Assemblathon 2, 21 teams submitted 43 assemblies for three nonmammalian  vertebrate 
genomes (the bird Melopsittacus undulatus, the fish Maylandia zebra, and the snake 
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(a) DNA sequence with a triple repeat 

(b) layout graph

(c) Construction of de Bruijn graph by gluing repeats (d) de Bruijn graph

repeat repeat repeatunique unique unique unique genomic DNA

sequencing
reads

FIGUre 9.10 Efficient assembly of repetitive DNA regions using a de Bruijn graph. (a) A genomic 
DNA segment is shown having four unique segments and three repeats. (b) The layout graph represents 
these repeats with a complex set of possible paths. (c) The de Bruijn graph is constructed by “gluing” 
repeats. (d) The de Bruijn graph represents repeat regions as edges rather than as a set of vertices in the 
layout graph. 

Source: Pevzner et al. (2001). Reproduced with permission from National Academy of Sciences.

Boa constrictor constrictor; Bradnam et al., 2013). Since the genomes had not been pre-
viously sequenced this study served to compare assembly software methods. The main 
conclusion was that the various assemblers produced vastly different results, lacking con-
sistency within and between species assemblies. The authors proposed 10 metrics for the 
performance of assemblers, including coverage (i.e., determining what portion of a refer-
ence genome was assembled), multiplicity (whether repeats were collapsed), measuring 
how many of a core set of 458 eukaryotic genes were mapped, and relating the assembly 
to optical map data as an approach to defining accuracy.

In an effort to critically evaluate assembly methods, Salzberg et al. (2012) conducted 
a Genome Assembly Gold-standard Evaluation (GAGE). They chose eight leading soft-
ware tools and applied them to four short-read datasets (all involving the Illumina plat-
form): two previously finished bacterial genomes, the bumble bee Bombus impatients 
(for which the true assembly was not previously reported), and human chromosome 14. 
Their main metrics were the contig and scaffold N50 sizes. Their results and conclusions 
included the following:

 • Many published genome sequences, including the human (Lander et al., 2001), mouse 
(Mouse Genome Sequencing Consortium et al., 2002), and panda (Li et al., 2010) 
genomes, and even the Assemblathon project, do not include an assembly workflow 
and are therefore not reproducible. GAGE (Salzberg et al., 2012) includes detailed 
instructions for using each of the eight assemblers they tested.

 • Error correction of the sequence data is a critical step in assembly. Examples of errors 
are k-mers occurring just once or twice in a dataset (these are likely base-calling 
errors) and untrimmed adapter sequences. Following data cleaning, the N50 contig 
size increased 30-fold in one assembly.

The Assemblethon website is  
 http://assemblathon.org/ 

(WebLink 9.27). Bradnam  
et al. (2013) lists 91 authors. We 
describe the 458 genes that are 
part of Core Eukaryotic Genes 
Mapping Approach (CEGMA) in 
Chapter 15.

http://assemblathon.org/
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(a) de Bruijn graph of E. coli K12 (k=50)

(b) de Bruijn graph (k=1,000) (c) de Bruijn graph (k=5,000)

FIGUre  9.11 Improvements in assembly with increasing sequence length. Escherichia coli K12 
MG1655 (having a circular genome of 4.64 megabases) was assembled. Each node is a contig with 
edges indicating relationships that cannot be resolved unambiguously due to the occurrence of repeats. 
de Bruijn graphs are shown for (a) k  =  50 (hundreds of contigs are evident in a complex pattern);  
(b) k = 1000 (the graph is greatly simplified); and (c) k = 5000 (the graph is fully resolved). 

Source: Koren et al. (2013). Licensed under the Creative Commons Attribution License 2.0.

 • If two contigs are erroneously joined, the N50 contig size will appear to be greatly 
improved when in fact the assembly is worse. It is therefore essential to identify and 
correct such errors.

 • Both the degree of contiguity and the correctness of the assembly using the eight 
software packages varied widely (and the correctness was not well correlated with 
the contiguity).

The End of Assembly: Standards for Completion
How can we decide when a genome has been successfully assembled? The National 
Human Genome Research Institute (NHGRI) has established standards for the human 
genome. “Finished sequence” refers to a DNA region of 99.99% or greater accuracy 
(≥Q40), ideally with no gaps. Finished sequence applies particularly to bacterial artifi-
cial chromosomes (BACs). “Finished chromosomes” should have sequence contiguity 
across euchromatic regions, spanning ≥95% of the chromosome. (It is acknowledged that 
sequencing across heterochromatic regions is technically more difficult.) Any gaps must 
be characterized by size and orientation, and annotated.

The NHGRI human genome 
sequence quality standards 
are available online at  http://
www.genome.gov/10000923 
(WebLink 9.28). We survey all the 
finished human chromosomes 
in Chapter 20 on the human 
genome.

http://www.genome.gov/10000923
http://www.genome.gov/10000923
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The grep command-line utility grabs the rows having a character (or characters) of 
interest (in this case, the > symbol which appears at the start of each gene entry), and by 
piping this (with the | symbol) to less we can view the results. By piping the result to 
wc we invoke the word count program which indicates how many lines (i.e., rows) have 
the > symbol (this should be 101 for this example).

There are many popular aligners, including BWA (Li and Durbin, 2009, 2010), 
 Bowtie2, SOAP, MAQ, and Novoalign (table 9.3), which vary in speed and accuracy. 
Two main alignment methods involve hash tables and Burrows–Wheeler compression 
(Chapter 5). A challenge is that sequencing reads are often short (<100–400 base pairs, 
depending on the technology) and they may align to multiple genomic locations. There 
are often repetitive regions, including segmental duplications that often encompass genes 
of interest, and each aligner must adopt a strategy to assign genomic positions. Each 
 technology has some error rate that complicates unambiguous alignment.

We will use Bowtie2, a command-line program (Langmead and Salzberg, 2012). We 
must first build an indexed database, specifying the file having sequences to be indexed, 
and the name of the output file. For a small set of sequences this takes several seconds, 
while for an entire genome the indexing may require hours. Typically this requires a high- 
performance computing environment (e.g., a Linux machine with at least 8 GB of memory 
and many terabytes of storage). First we obtain a reference genome in the FASTA format 

You can view the list of 101 human 
genes in Web Document 9.5,  
and the reference sequences are 
available in Web Document 9.6. 
If you want to download a human 
genome reference, visit the  
UCSC bioinformatics site  
> Downloads > Genome Data  
> Human > chromosomes  
(  http://hgdownload.cse.ucsc 
.edu/downloads.html,  
WebLink 9.29). These files are 
also available concatenated 
into one file (chromosomes 1-22, 
X, Y, mitochondrial NC_012920) 
at  ftp://ftp-trace.ncbi.nih.
gov/1000genomes/ftp/technical/
reference/human_g1k_v37 
.fasta.gz (WebLink 9.30). That 
compressed file is ∼850 MB. 
grep stands for g/re/p (globally 
search a regular expression and 
print).

topic 4: Sequence alignment

Our goal is to align sequences to a reference genome. In the case of whole-genome 
sequencing of a human sample, this entails aligning FASTQ-formatted sequence reads 
to a human genome reference that is given in the FASTA format. You can obtain this 
reference from sources such as Ensembl, NCBI, and UCSC. In the case of whole-exome 
sequencing (WES), this may involve alignment to the entire genome reference or to a 
FASTA file corresponding to exons. For our example of a targeted autism sequencing 
panel, our reference consists of genomic DNA corresponding to the exons from just 101 
genes. We can look at this FASTA file in Linux; the # symbol marks the start of a com-
ment (given in green). The suffix .fa refers to a file in the FASTA format.

table 9.3 alignment software programs that natively generate SaM files.

Program Description URL

BFAST Blat-like Fast Accurate Search Tool for Illumina and SOLiD 
reads.

https://secure.genome.ucla.edu/index.php/BFAST

Bowtie Highly efficient short read aligner. Natively support SAM 
output in recent version. A convertor is also available in 
SAMtools-C.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

BWA Burrows–Wheeler Aligner for short and long reads. http://bio-bwa.sourceforge.net/

LASTZ Aligner for both short and long reads. http://www.bx.psu.edu/miller_lab/

Novoalign An accurate aligner capable of gapped alignment for 
Illumina short reads. Academic free binary. Convertor is also 
available in samtools.

http://novocraft.com/

SNP-o-matic http://snpomatic.sourceforge.net/

SSAHA2 Classical aligner for both short and long reads. http://www.sanger.ac.uk/Software/analysis/SSAHA2/

Source: SAMtools.

$ head targeted101genes.fa # displays the beginning of the file
$ tail targeted101genes.fa # displays the end of the file
$ grep ">" targeted101genes.fa | less
$ grep ">" targeted101genes.fa | wc

http://hgdownload.cse.ucsc.edu/downloads.html
http://hgdownload.cse.ucsc.edu/downloads.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/human_g1k_v37.fasta.gz
https://secure.genome.ucla.edu/index.php/BFAST
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bio-bwa.sourceforge.net/
http://www.bx.psu.edu/miller_lab/
http://novocraft.com/
http://snpomatic.sourceforge.net/
http://www.sanger.ac.uk/Software/analysis/SSAHA2/
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The index facilitates subsequent processing of the reference, which is especially import-
ant for whole-genome alignments. As an alternative, we can download a reference human 
genome from NCBI (using wget) and then build an index to the entire human genome 
(chromosomes 1–22 and X):

(ours is a small file called targeted101genes.fa) and create an indexed database 
(here called targeted101genes.fa.fai).

You can access Bowtie2 from  
 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml 
(WebLink 9.31).

$ bowtie2-build targeted101genes.fa targeted101genes.fa.fai

$ wget ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
human_g1k_v37.fasta.gz
$ bowtie2-build human_g1k_v37.fasta human_g1k_v37indexed

$ bowtie2 -x indexed_autism101 -1 mysample1_R1.fastq -2 mysample1_R2.fastq 
-S sample1.sam

$ bowtie2 -x human_g1k_v37indexed -1 mysample1_R1.fastq -2 mysample1_
R2.fastq -S mysample1g1k.sam

Depending on the processor, this step can take an hour.
Next we are ready to align the FASTQ files to the indexed database.Note that you can obtain 

copies of the human and mouse 
genomes that are pre-indexed 
for use in Bowtie2 at NCBI. 
Pre-indexed genomes from 
dozens of species are available 
at igenomes (  http://support.
illumina.com/sequencing/
sequencing_software/igenome.
html, WebLink 9.32). You should 
always check how recently such 
resources have been updated.

Here the command –x indexed database provides the prefix of the indexed files. 
-1 sample1/B1_S1_L001_R1_001.fastq refers to one set of paired end reads, 
while -2 sample1/B1_S1_L001_R2_001.fastq refers to the other matching set 
of paired end reads. sample2.sam specifies the name for the output file. This output 
consists of a SAM file (our next topic) as well as information regarding the percent of 
reads that aligned to the reference. To align these same FASTQ files to a human genome 
reference, we invoke:

Here the output SAM file is ∼1.4 GB (with 3.6 million lines), whether the alignment is 
to the indexed library from the small set of exons or the entire human genome. By using 
a complete set of human exomes, you can assess whether the reads map to paralogs of 
the 101 genes or other repetitive elements in the genome. In this particular example the 
alignment is returned with statistics including a 99.04% overall alignment rate: about 
1.8 million reads, all of which were paired, and of which 1.6 million (88%) aligned con-
cordantly exactly one time. As we proceed with our analyses we will see why some reads 
do not pair concordantly.

Alignment of Repetitive DNA
We have seen that repetitive DNA is a challenge for assembly. Consider that half 
the human genome consists of repetitive DNA and other genomes have even more; 
 transposable elements span over 80% of the maize genome. Beyond assembly, this 
also leads to a tremendous technical challenge for alignment to a reference genome: 
how should reads that match repetitive elements be aligned? Todd Treangen and Steven 
 Salzberg (2011) discuss how repeats introduce ambiguous assemblies and alignments, 
sometimes  producing biases and errors. They show how two nearly identical repeats 
cannot be mapped with confidence, while tandem repeats (or other repetitive elements) 
can be mapped with more confidence as their similarity decreases (Fig. 9.12a). In another 
 scenario, a given short read may map to one genomic locus with a mismatch, while it 
maps equally well to another locus harboring a deletion (Fig. 9.12b). The choice of how a 
mismatch versus a deletion is weighted may determine where the read aligns, potentially 
leading to a misalignment.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/
http://support.illumina.com/sequencing/sequencing_software/igenome.html
http://support.illumina.com/sequencing/sequencing_software/igenome.html
http://support.illumina.com/sequencing/sequencing_software/igenome.html
http://support.illumina.com/sequencing/sequencing_software/igenome.html
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Genome Analysis Toolkit (GATK) Workflow: Alignment with BWA
One of the most widely used workflows for next-generation sequence analysis involves 
the Genome Analysis Toolkit (GATK; McKenna et al., 2010; DePristo et al., 2011; Van 
der Auwera et al., 2013). GATK uses BWA for alignment instead of Bowtie2 or other 
leading aligners. The BWA workflow is similar, requiring FASTQ files and a reference 
genome in the FASTA format. The reference is indexed, and a sequence dictionary is 
also created using the Picard package. Before performing the alignment, GATK further 
requires read group information which consists of meta-data about your experiment: the 
name of each DNA sample; the platform; the library from which the DNA was sequenced; 
and the particular lane of a flow cell that was used. Read group information is provided 
at the SAM specification. Inclusion of such meta-data is crucial to the ability of GATK 
to call variants with high sensitivity and specificity as we describe below. Whenever you 
work with a SAM/BAM file, you should preserve the header information.

BWA is available from  http://
bio-bwa.sourceforge.net/ 
(WebLink 9.33). Picard is a 
program written in Java, available 
from  http://broadinstitute.
github.io/picard/ (WebLink 9.34), 
used to manipulate SAM files. 
SAM specification is at  http://
samtools.sourceforge.net/SAMv1 
.pdf (WebLink 9.35).

FIGUre 9.12 Ambiguities in mapping repetitive reads. (a) As the relatedness of two copies of a DNA 
repeat decreases, the confidence in the reads increases. Three tandem repeats are shown: one pair sharing 
100% nucleotide identity (X1, X2 in blue), a pair sharing 98% identity (Y1, Y2 in red), and a pair with 
70% identity (Z1, Z2 in green). Left: zooming in on a single read (dashed lines leading to box), the read 
maps equally well to X1 and X2 and thus the mapping confidence is low. Center: an occasional  mismatch 
helps increase confidence that the read aligns to Y1 rather than Y2. Right: multiple mismatches in Z2 
indicate that the correct placement of the read is at repeat copy Z1. (b) A 13 base pair read maps to two 
locations. The position on the left has a single mismatch, while that on the right aligns to a position 
having a deletion. Various alignment and assembly algorithms require decisions as to how to weigh 
 mismatches versus indels, potentially leading to errors. Adapted from Treangen and Salzberg (2011) 
with permission from Macmillan Publishers Ltd.

Read-mapping confidence

100% identity 98% identity 70% identity

X1 X2 Y1 Y2 Z1 Z2

Relatedness of repeat copies

AAGCATAGCT
||||||||||
AAGCATAGCT

X1 X2

AAGCATAGCT
||||||||||
AAGCATAGCT

AAGCATAGCT
||||||||||
AAGCATAGCT

Z1 Z2

AAGCATAGCT
||||||||||
AAGCATAGCT

Y1 Y2? ?
AAGCATAGCT
 | | |||||
GACCTTAGCT

AAGCATAGCT
|||| |||||
AAGCTTAGCT

(a) Read mapping confidence increases as relatedness of repeats decreases

(b) Ambiguity mapping a mismatch versus a deletion

...TTTAGAATGAGCCGAGTTCGCGCGCGGGTAGAAT-AGCCGAGTT...
      ||||| |||||||             ||||| |||||||
      AGAATTAGCCGAG             AGAATTAGCCGAG

location 1 (mismatch) location 2 (deletion)

13 bp read

genomic DNA

13 bp read

http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://broadinstitute.github.io/picard/
http://samtools.sourceforge.net/SAMv1.pdf
http://samtools.sourceforge.net/SAMv1.pdf
http://broadinstitute.github.io/picard/
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topic 5: the SaM/baM Format and SaMtools

In our workflow we have aligned FASTQ reads to a reference sequence, using Bowtie2 
or BWA, to create a SAM file. The SAM (sequence alignment/map) format is commonly 
used to store next-generation sequence alignments. SAM files can be easily converted to 
the BAM (binary alignment/map) format. BAM is a binary representation of SAM, com-
pressed by the BGZF library, and contains the same information as the SAM file. Because 
they are easily interchangeable, we may refer to the SAM/BAM format. This format is 
very popular, with many datasets available in repositories (such as the Sequence Read 
Archive at NCBI, the 1000 Genomes Project, and the Cancer Genome Atlas).

The SAM format includes a header section (having lines beginning with the character 
@) and an alignment section. The file is tab-delimited, and there are 11 mandatory fields 
(table 9.4) which we examine in our autism panel (Fig. 9.13). We use the samtools view 
command to display the first of over a million rows (each row corresponding to a read that 
has been aligned to a reference genome). Twelve fields are shown, including the sequence 
(beginning AATCT…) followed by the corresponding quality scores. The CIGAR string 
refers to a notation system for variants. Here string “148M2S” shows 148 matches and 2 
soft-clipped (unaligned) bases. Standard CIGAR operations are M (match), I (insertion), 
and D (deletion). Extended CIGAR options are N (skipped bases on reference), S (soft 
clipping), H (hard clipping), and P (padding).

SAMtools is a library and a software package (Li et al., 2009). We can use it to ana-
lyze alignments in the SAM/BAM input, accomplishing the following tasks:

 • convert from other alignment formats, or between SAM and BAM formats;
 • sort and merge alignments;
 • index alignments (once sorted, BAM file can be indexed generating a BAI file used 
in downstream analyses);

 • view alignments in the pileup format (as shown below with the samtools view 
command);

 • remove PCR duplicates (this procedure, called duplicate marking or “dedupping,” 
removes reads that are redundant); and

 • call two classes of variants: single-nucleotide polymorphisms (SNPs) and small 
indels.

Visit the SAMtools website  
 http://samtools.sourceforge 

.net/ (WebLink 9.36) for more 
information about all these fields 
including the CIGAR format. 
SAMtools was developed by 
Heng Li and colleagues.

table 9.4. SaM format mandatory fields. there may be additional optional fields.

Number Name Description

 1 QNAME Query NAME of the read or the read pair

 2 FLAG Bitwise FLAG (pairing, strand, mate strand, etc.)

 3 RNAME Reference sequence NAME

 4 POS 1-based left-most POSition of clipped alignment

 5 MAPQ MAPping Quality (Phred-scaled)

 6 CIGAR Extended CIGAR string (operations: MIDNSHP)

 7 MRNM Mate Reference NaMe (‘=’ if same as RNAME)

 8 MPOS 1-based left-most Mate POSition

 9 ISIZE Inferred Insert SIZE

10 SEQ Query SEQuence on the same strand as the reference

11 QUAL Query QUALity (ASCII-33=Phred base quality)

Source: Li et al. (2009). Reproduced with permission from Oxford University Press.

http://samtools.sourceforge.net/
http://samtools.sourceforge.net/
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In that program, type ? to get a help menu; type g to go to a chromosomal location. We 
select chrX:153,296,000 to go to an exon within MECP2 (an X-linked gene that when 
mutated causes Rett syndrome; see Chapter 21). We can view the aligned reads from the 
BAM file, showing base quality scores (Fig. 9.14a) or mapping quality scores (Fig. 9.14b). 
Later when we call a variant this is a convenient way to quickly see the read depth, base 
quality scores, mapping quality scores, and other features at that locus.

In the GATK workflow, before variants are called the BAM file undergoes dupli-
cate marking with Picard rather than SAMtools. GATK also performs local realignment 
around indels. This is an important step because indels are often flanked by mismatches 
that are mapping artifacts but might appear to be authentic single-nucleotide variants.

home/bioinformatics$ samtools view 030c_S7.bam | less
M01121:5:000000000-A2DTN:1:2111:20172:15571     163     chrM    
480     60      148M2S  =       524     195     AATCTCATCAAT
ACAACCCTCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATACCCCGAACC
AACCAAACCCCAAAGACACCCCCCACAGTTTATGTAGCTTACCTCCTCAAAGCAATAACC
TGAAAATGTTTAGACGGG  BBBBBFFB5@FFGGGFGEGGGEGAAACGHFHFEGGAGFFH
AEFDGG?E?EGGGFGHFGHF?FFCHFH00E@EGFGGEEE1FFEEEHBGEFFFGGGG@</0
1BG212222>F21@F11FGFG1@1?GC<G11?1?FGDGGF=GHFFFHC.-  
RG:Z:Sample7    XC:i:148        XT:A:U  NM:i:3  SM:i:37 
AM:i:37 X0:i:1  X1:i:0  XM:i:3  XO:i:0  XG:i:0  MD:Z:19C109C0A17

(1) The query name 
of the read is given 
(M01121…)

(2) The flag value is 163 
(this equals 1+2+32+128)

(3) The reference sequence 
name, chrM, refers to the 
mitochondrial genome

(4) Position 480 is the 
left-most coordinate 
position of this read

(5) The Phred-scaled 
mapping quality is 60 
(an error rate of 1 in 106)

(6) The CIGAR string (148M2S) 
shows 148 matches and 2 soft-
clipped (unaligned) bases

(7) An = sign shows that 
the mate reference matches 
the reference name

(8) The 1-based left 
position is 524

(9) The insert size 
is 195 bases

(10) The sequence begins 
AATCT and ends ACGGG
(its length is 150 bases)

(11) Each base is assigned 
a quality score (from BBBBB 
ending FHC.-)

(12) This read has 
additional, optional 
fields that accompany 
the MiSeq analysis

FIGUre  9.13 Anatomy of a SAM file. The samtools view command was used in Linux to 
view a BAM file, and the | less command sends the output to a single screen of data at a time. (A 
 typical SAM/BAM file has millions of rows.) A single record of the output is shown, with 12 features 
as  indicated. 

Source: SAMtools.

Next let’s convert a SAM file to a BAM file.

$ samtools view -bS sample1_bowtie2.sam > sample1_bowtie2.bam
$ samtools sort sample1_bowtie2.bam sample1_bowtie2_sorted
$ samtools faidx targeted101genes.fa
$ samtools index sample1_bowtie2_sorted.bam

$ samtools tview mysample1.bam

SAMtools view takes an input SAM file, and here the > symbol in Linux specifies that the 
output should be sent to a file called sample1_bowtie2.bam. We then sort and index 
the BAM file. To view it, invoke samtools tview as follows.
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(a) SAMTools tview visualization of reads from a BAM file (base quality view)

(b) SAMTools tview (mapping quality view)

FIGUre 9.14 Using SAMtools to view sequence reads from a BAM file at genomic coordinates 
of interest. By using the samtools tview command you enable a genome-wide view of the reads. 
Using commands accessed via a help menu, you can view the same reads colored by (a) base quality or 
(b) mapping quality. The read depth is relatively low to the left side. The quality scores are colored blue 
(for 0–9), green (10–19), yellow (20–29), or white (≥30). Underlining represents secondary or orphan 
reads. This viewer is useful to quickly assess the quality at genomic loci of interest, such as positions 
having single-nucleotide variants. 

Source: SAMtools.

Once FASTQ files from your sample have been aligned to a reference genome, it may 
be assumed that variants (both single-nucleotide variants and indels) can be called by 
inspecting the alignment and tabulating the differences. The problem with this approach 
is that many sources of errors occur in the process of sequencing and performing align-
ment: bias may occur in how libraries are prepared and amplified; sequencing technol-
ogies all have associated error rates; and mapping has error rates (as shown in Fig. 9.12). 
We mentioned that GATK performs local alignment around indels. GATK further per-
forms base quality score recalibration: even the quality scores associated with each base 
call in a FASTQ file have different types of error. GATK applies an empirically derived 
error model and adjusts the base quality scores. You can compare base quality scores at 
a given genomic position before and after this adjustment and see changes assigned to 
particular bases. DePristo et al. (2011) provide a dramatic example of the effects of the 
GATK pipeline. They sequenced sample NA12878 (a well-characterized DNA from a 
participant in the 1000 Genomes Project) and performed alignment with BWA. They 
found that 15% of the reads spanning homozygous deletions were misaligned. Realign-
ment by GATK corrected many of these reads (6.6 million reads in 950,000 regions 
spanning 21 Mb).
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Finding and Viewing BAM/SAM files
There are two prominent places to obtain BAM/SAM files. First, SRA Toolkit at NCBI 
provides access to BAM files, and the SRA Toolkit software development kit (SDK) 

As we evaluate software it is critical to have a dataset that represents a “gold standard” 
from which we know that the information consists of true positive results. The Genome in 
a Bottle Consortium was launched to develop standards for DNA sequencing. It provides 
datasets such as FASTQ files (from ∼300× sequence coverage) and high-quality variant 
calls from NA12878 and several mother/father/child trios.

Calculating Read Depth
Read depth (or depth of coverage) is a basic design consideration. If a library is sequenced 
more often (e.g., analyzing it on multiple lanes of a flow cell) this will offer greater depth 
and more statistical power to detect variants. At the same time, obtaining deeper coverage 
is relatively expensive. For a typical whole-genome sequence using Illumina technol-
ogy that generates 150 nucleotide paired end reads, coverage of 30× to 50× is obtained, 
meaning that on average any given base in the genome is covered by 30–50 independent 
sequencing reads. For whole-exome sequencing (which often spans ∼50 megabases or 
1–2% of the genome), depth of coverage is often 100× or more. For targeted sequencing, 
such as the autism panel, depth of sequencing ranges from 30× to 300× depending on 
factors such as the number of samples that are run simultaneously. When we performed 
targeted sequencing of a disease-associated mutation that occurs at a low mutant allele 
frequency (1–18%), we used 13,000-fold median depth of coverage (Shirley et al., 2013).

Lander and Waterman (1988) considered the assembly of reads into contigs (contig-
uous sequences). The redundancy of coverage c is a function of the number of reads N, 
the average length of each read L, and the length of the region (e.g., genome G) being 
sequenced (Lander and Waterman, 1988; reviewed by Li et al., 2012):

 c
LN

G
= .  (9.4)

30× coverage of a genome implies that there is an average of 30 reads covering any single base 
in the genome. Of course, there is variability in the distribution of read coverage across the 
genome, and some bases will be covered with a far higher or lower number of reads. Higher 
coverage enables improved statistical power in calling heterozygotes and other variants.

The number of contigs that need to be sequenced to achieve a particular read depth 
depends on the parameters read length L, sequencing depth c, genome size G, and also the 
minimum length of an overlap between reads T. The probability a base is not sequenced 
was derived by Lander and Waterman (1988) and is given by

 P e c
0 = −  (9.5)

from which it is possible to estimate the depth of coverage needed to sequence DNA 
(table 9.5). Next-generation sequencing technologies use relatively short reads. Li et al. 
(2012) note that 30-fold depth of coverage with 50 base pair reads gives an assembly 
equivalent to 10-fold depth of coverage for 500 base pair reads.

We can use SAMtools to calculate read depth from our sorted BAM file. The out-
put of the samtools depth command is a line-by-line readout of the depth at each 
position. Instead of viewing that large output, we can pipe the result (with |) to the awk 
program and specify that we want to calculate the average read depth.

You can visit the Genome in 
a Bottle website at  http://
genomeinabottle.org (WebLink 
9.37). The project was initiated by 
NIST. NA12878 refers to DNA of 
a woman from Utah of northern 
European descent as part of the 
Centre de'Étude du Polymorphism 
Humain (CEPH) project. This 
DNA is available from the Coriell 
Institute for Medical Research 
in Camden, NJ (https://catalog.
coriell.org). GM12878 refers to 
the lymphoblastoid cell line (LCL) 
from which the DNA was purified; 
thousands of DNA samples and 
LCLs are available from Coriell.

$ samtools depth sample1_bowtie2_sorted.bam | awk '{sum+=$3} END
{ print "Average = ",sum/NR}'
Average = 105.838

http://genomeinabottle.org
http://genomeinabottle.org
https://catalog.coriell.org
https://catalog.coriell.org
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table 9.5. probability that a base is sequenced, according to equation (9.5).

Fold coverage P0
Percent not sequenced Percent sequenced

0.25 e–0.25 = 0.78 78 22

0.5 e–0.5 = 0.61 61 39

0.75 e–0.75 = 0.47 47 53

 1 e–1 = 0.37 37 63

 2 e–2 = 0.135 13.5 87.5

 3 e–3 = 0.05 5 95

 4 e–4 = 0.018 1.8 98.2

 5 e–5 = 0.0067 0.6 99.4

 6 e–6 = 0.0025 0.25 99.75

 7 e–7 = 0.0009 0.09 99.91

 8 e–8 = 0.0003 0.03 99.97

 9 e–9 = 0.0001 0.01 99.99

10 e–10 = 0.000045 0.005 99.995

Source: Lander and Waterman (1988). Reproduced with permission from Elsevier.

offers programmatic access to BAM files. Second, the 1000 Genomes Project stores BAM 
files corresponding to whole-genome and whole-exome sequences with a current goal of 
providing data for >2000 individuals.

I have placed a small BAM file (based on sequencing the exons corresponding to 101 
autism-related genes) on the textbook website, as well as the corresponding SAM file that 
can be viewed in a text editor.

Next we can view BAM file data with Integrative Genomics Viewer (IGV) software 
(Robinson et al., 2011; Thorvaldsdóttir et al., 2012). Once you install IGV, upload a 
BAM file and view a genomic region of interest. For targeted autism example we can 
again search for MECP2 (Fig. 9.15a). We then refine our query to chrX:153,295,000–
153,299,000 to view a 4000 base pair window. The MECP2 gene structure is shown 
at the bottom, with exons displayed as thick blue rectangles; two exons are visible. 
We show the BAM file alignments at two levels of resolution. For each, a gray wiggle 
plot shows peaks of coverage centered over the exons, reaching a maximum of about 
1000-fold depth of coverage. (This is excellent coverage for alignment and variant call-
ing.) Figure 9.15a shows the reads (shaded according to forward or reverse strand). Fig-
ure 9.15b shows the single-nucleotide variant at base pair resolution. IGV software is 
highly flexible, using “data tiling” in which data are pre-computed at multiple resolu-
tion scales. This facilitates zooming from whole-genome to single base pair views. IGV 
allows multiple BAM files (or other file types such as VCF; see below) to be viewed 
simultaneously. It can be customized. For example, a text file with the gene symbols for 
all 101 autism-related genes can be uploaded and used to display data from just those 
loci of interest.

Compressed Alignments: CRAM File Format
It is important to compress raw sequence files because of their enormous size. CRAM 
files, developed at the European Nucleotide Archive (EMBL-EBI), represent a  format 
of  compressed BAM-like files offering better lossless compression than BAM and 
full compatibility with BAM (Hsi-Yang Fritz et al., 2011). The JAVA-based cramtools 

The SRA website is  http://
www.ncbi.nlm.nih.gov/sra/ 
(WebLink 9.38). 1000 Genomes 
alignments as BAM files 
are available at  http://
www.1000genomes.org/data 
(WebLink 9.39).

To access autism SAM and BAM 
files, see Web Document 9.7 at  

 http://bioinfbook.org  
(WebLink 9.40).

IGV software is available (upon 
registration) from  https://www 
.broadinstitute.org/igv/ 
(WebLink 9.41).

http://www.ncbi.nlm.nih.gov/sra/
http://www.ncbi.nlm.nih.gov/sra/
http://www.1000genomes.org/data
http://www.1000genomes.org/data
http://bioinfbook.org
https://www.broadinstitute.org/igv/
https://www.broadinstitute.org/igv/
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(a) IGV display of a BAM file (at two resolutions) and a VCF in the MECP2 gene region

(b) IGV display of the variation at base pair resolution 

FIGUre 9.15 The Integrative Genomics Viewer (IGV). (a) Once a data file is loaded, a genomic 
locus can be queried or a gene symbol can be entered (arrow 1). Here two exons of MECP2 on Xq28 are 
shown (arrows 2, 3). A BAM file has been uploaded twice. The coverage is shown (arrow 4), including 
a peak at which the read depth is ∼1000 (exact values are obtained by mousing over the position). Some 
areas have very low depth of coverage (e.g., arrow 6). The BAM file was uploaded twice to display the 
collapsed view (arrow 7) showing all the reads at once, as well as an expanded view (arrow 8) which 
requires scrolling to see all the reads. IGV facilitates exploration of reads such as the single read that 
maps outside an exon (arrow 9). A variant call format (VCF) file is also uploaded (arrow 10), indicating 
a single variant called in this region (arrow 6). That variant is rejected because of an artifact (strand 
bias) and appears to occur at a position of very low read depth. (b) It is possible to zoom in to base pair 
resolution, in this case to assess the called variant in more detail. Courtesy of Integrative Genomics 
Viewer (IGV).
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We therefore create a .bcf file that summarizes single-nucleotide variants and indels 
in our sample. The .bcf is in binary format, and can be processed and then converted to 
nonbinary variant call format (VCF).

package (available from github or from the ENA website at EMBL-EBI) interconverts 
BAM and CRAM files. CRAM files are also read using Picard (see “Genome Analysis 
Toolkit (GATK) Workflow” above).

topic 6: Variant Calling: Single-Nucleotide Variants and Indels

We have preprocessed our BAM file(s) and are now ready to call variants (reviewed in 
Nielsen et al., 2011). These consist of single-nucleotide variants (SNVs; also referred to 
as single-nucleotide polymorphisms or SNPs) and indels. Note that indels are left-shifted 
by convention by various aligners and in software such as SAMtools and GATK, for 
example for a called two base pair deletion:

GGATATATCC (reference)
GG--ATATCC (read with two base deletion)

The indel position is therefore shifted to the left as far as possible. However, an indel can 
be represented at different positions, even while representing the same haplotype. An 
alternative solution is to right-shift an indel, in this case with the same nucleotides (AT) 
deleted, as follows. Note that this choice can have important functional consequences, 
affecting the accuracy of alignment and the nature of the variant call format files (intro-
duced below) that represents variation.

GGATATATCC (reference)
GGATAT--CC (read with same two base deletion)

The SAMtools package can call variants as follows:

The GATK LeftAlignIndels tool 
left-aligns indels within a BAM 
file.

$ samtools mpileup -S -f targeted101genes.fa -g
sample1_bowtie2_sorted.bam > sample1_bowtie2.bcf
$ samtools mpileup -S -f targeted101genes.fa -g
sample2_bowtie2_sorted.bam > sample2_bowtie2.bcf

$ bcftools view -bvcg sample1_bowtie2.bcf > 
sample1_bowtie2raw.bcf
$ bcftools view sample1_bowtie2raw.bcf > sample1variants.vcf

These variants can then be annotated to evaluate their biological significance.
GATK also calls variants using its HaplotypeCaller (Van der Auwera et al., 2013), 

also resulting in a VCF file. The HaplotypeCaller calls SNPs and indels simultaneously, 
and does so by discarding existing mapping information at regions of variation and per-
forming local de novo assembly of haplotypes. Thresholds are used to distinguish high- 
and low-confidence variant calls.

Several groups have assessed variant callers including Liu et al. (2013) and O’Rawe 
et al. (2013). Nielsen et al. (2011) conclude that base calling and quality score  calculation 
should use well-benchmarked methods (such as GATK or SOAPsnp). The aligner is  critical; 
they recommend sensitive tools such as Novoalign and Stampy. SNP calling should use data 
from all individuals in a sample simultaneously, and methods incorporating information 
about linkage disequilibrium (the relationships of neighboring variants on a single haplotype 
block) to improve accuracy. Gholson Lyon and colleagues (O’Rawe et al., 2013) sequenced 
15 human exomes, compared five workflows for variant calling, and observed just 57% 
concordance with up to 5% of variants called as unique to each pipeline. This underscores 
the complexity of variant analysis from genome and exome sequencing  experiments.
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topic 7: Variant Calling: Structural Variants

In Chapter 8 we introduced types of structural variation. Next-generation sequence 
data can be analyzed to identify assorted changes (reviewed in Medvedev et al., 2009; 
Alkan et al., 2011a; Koboldt et al., 2012). Figure 9.16 shows four approaches to structural 
 variation detection at the levels of assembly, paired read analysis, read depth (i.e., depth 
of coverage), and split reads (in which only one read of a mate pair maps to a reference 
genome). With these approaches it is possible to assess six classes of structural variation 
(Alkan et al., 2011a; although additional complex variants may occur; see Medvedev 
et al., 2009):

 1. Deletions. Paired end reads are useful to identify deletions (as well as  insertions) 
because such reads have an expected distance (depending on the size of the library 
inserts) and orientation. A discordant pair can indicate a deletion if the read pairs 
align  closer than expected. While the paired end read approach is powerful, it is 

Alkan et al. (2011a) define an 
indel as up to 50 base pairs and a 
copy number variant as >50 base 
pairs. In previous years insertions, 
deletions, and inversions were 
usually defined as greater 
than 1 kilobase, but the higher 
resolution of next-generation 
sequencing inspires this revised 
definition.

Deletion

Novel
sequence
insertion

Mobile-
element
insertion

Inversion

Interspersed
duplication

Tandem 
duplication

SV class Read pairAssembly Read depth Split read

Not
applicable

Not
applicable

Not
applicable

Contig Assemble

AssembleContig

Contig Assemble

Align to RepBase

AssembleContig

Inversion

AssembleContig

AssembleContig

Annotated transposon

RP1 RP2

Annotated transposon

MEI

Inversion

FIGUre 9.16 Four approaches to identifying structural variants (columns) used to identify six types 
of structural variation (rows). See text for details. In each panel the upper line corresponds to the refer-
ence genome sequence, and the lower line is the contig or scaffold (for assembly) or the aligned reads. 
Red arrows indicate breakpoints. MEI: mobile-element insertion. 

Source: Alkan et al. (2011). Reproduced with permission from Macmillan Publishers Ltd.
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 challenging to apply it to regions of repetitive DNA. Read depth is also a useful 
approach for identifying deletions because the number of reads mapping to a genomic 
locus is expected to follow a Poisson distribution and will be proportional to the copy 
number. Some analysis software accounts for differences in read depth across the 
genome (such as reduced depth in areas of very high or very low GC content). A 
limitation of read depth is that its breakpoint resolution is not as exact as for read pair 
and split read approaches. Split end reads occur when the two reads of a pair align to 
different genomic loci; Pindel is an example of software that identifies such structural 
anomalies (Ye et al., 2009).

 2. Novel sequence insertions. Split read analysis is particularly useful for finding novel 
sequences (when one pair of a read aligns). A limitation of the read pair strategy is that 
insert sizes of a library follow a distribution and are not all exactly the same length.

 3. Mobile element insertion. Read pair approaches can be used to detect mobile element 
insertions, particularly if the read lengths are sufficiently long (e.g., greater than the 
size of a typical Alu element, 300–400 base pairs). Alternatively, split reads are useful 
to characterize such insertions.

 4. Inversions. Inversions can be identified when paired reads unexpectedly map to the 
same strand. The inversion breakpoints may have complex changes, not usually 
detectable by read depth analysis (although many inversions involve small, complex 
rearrangements at the breakpoints that are detectable by copy number change).

 5. Interspersed duplications. An increased read depth at a genomic region indicates that 
an insertion has occurred. It indicates absolute copy number, but provides no infor-
mation about where that extra material maps. Read depth approaches can therefore 
identify interspersed duplications but cannot distinguish between them and tandem 
duplications.

 6. Tandem duplications. Both paired end reads and split reads can identify tandem 
duplications, in some cases resolving breakpoints to single base pair resolution. As 
sequencing technology continues to evolve and offer longer read lengths, such varia-
tion will become easier to identify.

A variety of software tools have been developed to detect structural variation (some 
are reviewed in Koboldt et al., 2012). These include BreakDancer (Chen et al., 2009) 
which includes a read pair approach and identifies indels, inversions, and translocations 
from 10 base pairs to 1 megabase or more.

topic 8: Summarizing Variation: the VCF Format and VCFtools

In our workflow we have now obtained reads (in the FASTQ format), aligned them to a 
reference genome (with files in the SAM/BAM format), and called variants. The variant 
call format (VCF) is a file format for storing DNA variation data such as single-nucleotide 
variants (SNVs; also called single-nucleotide polymorphisms or SNPs), insertions/dele-
tions (indels), structural variants, and annotations. The VCF format and VCFtools have 
been described by Danecek et al. (2011).

We can look at a VCF file from our autism targeted sequence panel (Fig. 9.17). The 
VCF file includes a header (marked on each row with two hash characters, ##) then a field 
definition line (starting with a single # character) that begins the data section. To begin, we 
look at that field definition line and a single row from a data section (type less mydata.
vcf). A VCF file may include data from multiple samples (e.g.,  individuals), but in our 
case it corresponds to a single sample. Each line (row) of the data section  corresponds to a 
variant at one genomic position (or region). There are eight  mandatory tab-delimited fields, 
listed in the field definition line and given in table 9.6. The VCF  format allows variants such 
as SNPs, insertions, deletions, replacements, and large  structural  variants to be represented. 
Examples (adapted from Danecek et al., 2011) are given in Figure 9.17.

The Pindel homepage 
is  http://gmt.genome.
wustl.edu/packages/pindel/ 
(WebLink 9.42).

BreakDancer is available at 
 http://gmt.genome.wustl 

.edu/breakdancer/current/ 
(WebLink 9.43). We mentioned 
Tandem Repeats Finder in 
Chapter 8.

Documentation and downloads 
are available at  http://vcftools 
.sourceforge.net/ (WebLink 9.44).

http://gmt.genome.wustl.edu/packages/pindel/
http://gmt.genome.wustl.edu/breakdancer/current/
http://vcftools.sourceforge.net/
http://vcftools.sourceforge.net/
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table 9.6 Columns of a VCF file.

Column Mandatory Description

CHROM Yes Chromosome

POS Yes 1-based position of the start of the variant

ID Yes Unique identifier of the variant; the dbSNP entry rs1413368 is given in our example

REF Yes Reference allele

ALT Yes A comma-separated list of alternate nonreference alleles

QUAL Yes Phred-scaled quality score

FILTER Yes Site filtering information; in our example it is PASS

INFO Yes A semicolon-separated list of additional information. These fields include the gene identifier 
GI (here the gene is NEGR1); the transcript identifier TI (here NM_173808); and the functional 
consequence FC (here a synonymous change, T296T).

FORMAT No Defines information in subsequent genotype columns; colon separated. For example, 
GT:AD:DP:GQ:PL:VF:GQX in our example refers to genotype (GT), allelic depths for the ref 
and alt alleles in the order listed (AD), approximate read depth (reads with MQ=255 or with 
bad mates are filtered) (DP), genotype quality (GQ), normalized, Phred-scaled likelihoods for 
genotypes as defined in the VCF specification (PL), variant frequency, the ratio of the sum of the 
called variant depth to the total depth (VF), and minimum of {genotype quality assuming variant 
position, genotype quality assuming nonvariant position} (GXQ).

Sample No Sample identifiers define the samples included in the VCF file

VCFtools is a command-line tool (for Unix-based systems). For basic operations, 
you can include ––vcf <filename> or ––gzvcf <filename> to specify whether 
to analyze an uncompressed or gzipped file. Some of the commands in VCFtools require 
that you operate on a compressed VCF file. Given file mydata.vcf, we can compress 
with gzip (and uncompress with gunzip):

$ gzip test.vcf # this creates test.vcf.gz

$ vcftools ––gzvcf mydata.vcf.gz ––depth

$ vcftools ––vcf ~/data/sample1.vcf ––chr 11 ––from-bp 5200000 --to-bp 
5300000
VCFtools - v0.1.12
(C) Adam Auton and Anthony Marcketta 2009
Parameters as interpreted:
––vcf /Users/pevsner/data/sample1.vcf
––chr 11
––to-bp 5300000
––from-bp 5200000
After filtering, kept 1 out of 1 Individuals
After filtering, kept 7 out of a possible 79824 Sites
Run Time = 0.00 seconds

By using the vcf-stats command we can summarize some statistics such as the 
number of each type of SNP (A>C, A>G, A>T, etc.), the number of indels, and the num-
ber of heterozygous and homozygous variants. By invoking

we can obtain the mean depth of coverage for each individual in the VCF. Commands 
can show the read depth at each variant position, genotype data, and  transition/transversion 
statistics. Additional VCFtools commands allow you to merge, query, reorder, annotate, 
and compare VCF files, as described in the online VCFtools manual. What variants occur 
on chromosome 11 in the beta globin region? We can see that there are seven sites (these 
can be listed separately):
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(a) VCF header
##fileformat=VCFv4.1
##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic depths...
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth...
##FORMAT=<ID=GQ,Number=1,Type=Float,Description="Genotype Quality">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=VF,Number=1,Type=Float,Description="Variant Frequency...
##INFO=<ID=TI,Number=.,Type=String,Description="Transcript ID">
##INFO=<ID=GI,Number=.,Type=String,Description="Gene ID">
##INFO=<ID=FC,Number=.,Type=String,Description="Functional Consequence">
##INFO=<ID=AC,Number=A,Type=Integer,Description="Allele count...
##INFO=<ID=DP,Number=1,Type=Integer,Description="Approximate read depth...
##INFO=<ID=SB,Number=1,Type=Float,Description="Strand Bias">
##FILTER=<ID=R8,Description="IndelRepeatLength is greater than 8">
##FILTER=<ID=SB,Description="Strand bias (SB) is greater than than -10">
##UnifiedGenotyper="analysis_type=UnifiedGenotyper input_file=...
##contig=<ID=chr1,length=249250621>
##contig=<ID=chr10,length=135534747>

(b) VCF #field defintion line and first row of body

(c) SNP
Alignment VCF representation
1234  POS REF ALT
ACGT  2 C T
ATGT

(d) Insertion
Alignment VCF representation
12345 POS REF ALT
AC-GT 2 C CT
ACTGT

(e) Deletion
Alignment VCF representation
1234  POS REF ALT
ACGT  1 ACG A
A--T

(g) Large structural variant
Alignment       VCF representation
   100   110       120   290       300 POS REF ALT  INFO
   .     .         .     .         .
ACGTACGTACGTACGTACGT[...]ACGTACGTACGTAC 100 T <DEL> SVTYPE=DEL;END=299
ATGT----------------[...]----------GTAC

(f) Replacement
Alignment VCF representation
1234  POS REF ALT
ACGT  1 ACG AT
A-TT

#CHROM  POS     ID      REF     ALT     QUAL    FILTER  INFO    FORMAT  Sample7
chr1    72058552        rs1413368       G       A       7398.69 PASS    
AC=2;AF=1.00;AN=2;DP=250;DS;Dels=0.00;FS=0.000;HRun=1;HaplotypeScore=3.8533;
MQ=50.89;MQ0=0;QD=29.59;SB=-4337.33;TI=NM_173808;GI=NEGR1;FC=Synonymous_
T296T GT:AD:DP:GQ:PL:VF:GQX   1/1:0,250:250:99:7399,536,0:1.000:99

FIGUre 9.17 Description of a variant call format (VCF) file. Such files contain rows that define 
the position and nature of variants. In addition to mandatory fields, they may include rich functional 
annotation. (a) Header section (a portion of the rows are shown). (b) Field definition line and example 
of a row from the body of the file. Examples of particular variants represented in the VCF including: 
(c) a single-nucleotide polymorphism; (d) an insertion; (e) a deletion; (f) a replacement; and (g) a large 
structural variant. Adapted from Danecek et al. (2011) with permission from Oxford University Press 
and P. Danecek.

What are the differences in variants between the VCF files of two individuals? We 
can specify two VCF files of interest and send the output to a file called diffs.

$ vcftools ––vcf ~/data/sample1.vcf --diff ~/data/sample2.vcf --out diffs

Given a BAM file, the choice of variant calling strategy can produce very different 
VCF files. The GATK philosophy includes calling variants with HaplotypeCaller with 
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very lenient thresholds in order to attain very high sensitivity (i.e., not missing variants 
at a cost of potentially calling false positives). GATK next uses a variant quality score 
recalibration step to assign a probability to each variant call (involving a training model 
in which the log-odds ratio of a variant being a true positive relative to a false positive is 
assessed). It then filters the raw call set, aiming to achieve good specificity and sensitivity 
and yielding high-quality variant calls.

For the training set, variants that occur in the HapMap and 1000 Genomes  projects are 
considered likely to be true (see Chapter 20 for a description of these projects).  Variants 
in dbSNP, many of which have not been validated, are not included in the training set. 
Further annotations used in refining the variant calls include the depth of coverage, the 
variant quality as a function of depth of coverage, the presence of strand bias (which 
typically suggests false positive results), and the distance from the end of the read (where 
false positives occur more often at read ends). Recalibration is performed for both SNPs 
and indels, producing new VCF files. The GATK website and Van der Auwera et al. 
(2013) provide additional details on these methods.

Finding and Viewing VCF files
We can find VCF files at the ENA website. For example, a text search for “1000 genomes” 
includes analysis results (e.g., analysis accession ERZ015345) with links to VCF files 
that can be downloaded or sent to Galaxy. NCBI offers VCF files at its FTP site, as does 
the 1000 Genomes Project. Both the 1000 Genomes Project and Ensembl offer a Data 
Slicer tool allowing you to output a VCF from a particular HapMap individual or pop-
ulation (Chapter 20); this can also be restricted to a chromosomal location. The VCF is 
downloadable for further study.

Earlier we viewed a BAM file in IGV (Fig. 9.15). That figure also includes a 
 corresponding VCF. You can also view VCF data in the UCSC Genome Browser as 
described above for BAM files.

topic 9: Visualizing and tabulating Next-Generation Sequence Data

We have shown that SAMtools and IGV are both excellent tools to visualize genomic 
data. Many other resources are available. For example, Jim Kent and colleagues (2010) 
 introduced the BigWig and BigBed formats to enable visualization and analysis of large 
datasets on the UCSC Genome Browser. BigWig and BigBed are compressed binary 
indexed files (as are BAM files), and they are viewable at multiple resolutions (as with 
IGV).

You can also view BAM and VCF files at the UCSC site by posting the data on an 
http, https, or ftp location and then pointing to it. I have placed indexed BAM and VCF 
files on the textbook’s website. To view them, visit the UCSC Genome Browser and 
 create a custom track. Enter the text:

As an example of a large set of 
human VCF files at NCBI, visit 

 ftp://ftp.ncbi.nih.gov/snp/
organisms/human_9606/VCF/ 
(WebLink 9.45). For a set of human 
VCFs, see  http://www.ncbi.nlm 
.nih.gov/variation/docs/human_
variation_vcf/ (WebLink 9.46). That 
page lists VCFs for dbSNP, ClinVar 
(a clinical variation resource 
described in Chapter 21), common 
variation, and other categories. 
For 1000 Genomes Project VCFs 
visit  http://www.1000genomes 
.org/data (WebLink 9.47).

Instructions for creating BigBed 
files are available at  http://
genome.ucsc.edu/goldenPath/
help/bigBed.html (WebLink 
9.48). BigWig files are described 
at  http://genome.ucsc.edu/
goldenPath/help/bigWig.html 
(WebLink 9.49).

track type=bam name="My BAM" 
bigDataUrl=http://bioinfbook.org/chapter9/WebDoc9-1/mysample1.bam

 You can then view the data on the genome browser.
BEDtools is described as a Swiss army knife of tools to enable “genome arithmetic.” 

It allows you to compare, intersect, and summarize genomic features in a variety of com-
mon formats (BED, BAM, GTF, GFF, VCF) (Quinlan and Hall, 2010).

BEDtools takes a BED, BAM, or other file and allows you to determine information 
or perform tasks such as the following:

 • Use bedtools intersect to find the base pair overlap between a set of 
sequence alignments and a feature you are interested in such as genes, repeats, 
microRNAs, etc.

Many file formats are defined 
at the UCSC website  http://
genome.ucsc.edu/FAQ/FAQformat 
.html (WebLink 9.50). We 
described the BED format in 
Chapter 2.

ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/
http://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/
http://www.1000genomes.org/data
http://genome.ucsc.edu/goldenPath/help/bigBed.html
http://genome.ucsc.edu/goldenPath/help/bigBed.html
http://genome.ucsc.edu/goldenPath/help/bigWig.html
http://bioinfbook.org/chapter9/WebDoc9-1/mysample1.bam
http://genome.ucsc.edu/FAQ/FAQformat.html
http://genome.ucsc.edu/FAQ/FAQformat.html
http://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/
http://www.1000genomes.org/data
http://genome.ucsc.edu/goldenPath/help/bigWig.html
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 • Use bedtools bamtobed to convert BAM alignments to the BED format or vice 
versa.

 • Use bedtools window to find all genes that are within some distance upstream 
or downstream of genes, CNVs, or other features of interest.

 • Use bedtools closest to find the closest Alu sequence (or any other feature of 
interest) to each gene in your BED file.

 • Use bedtools subtract to remove features such as a BED file specifying 
introns.

 • Use bedtools coverage to calculate the read depth in windows of various 
sizes that span the genome; this tool can also create a BEDGraph for viewing at 
UCSC.

 • Use bedtools shuffle to randomly place all discovered variants in the genome 
(with options to avoid placing them in locations such as gaps or repeats).

 • Use bedtools slop to mask all regions in the genome except those of interest, 
such as the exons corresponding to the 101 genes related to autism.

To learn about BEDtools, complete the following steps: (1) download and install; 
(2) obtain BED files to study; (3) intersect; (4) closest features; (5) merge; (6) calculate 
genome coverage; and (7) window. We'll use BED files for these examples, but these 
approaches are relevant to analyses with BAM, GTF/GFF, VCF and other files.

 1. Download and install BEDtools.

The BEDtools homepage is 
 https://github.com/arq5x/

bedtools2 (WebLink 9.51) and 
documentation is at  http://
bedtools.readthedocs.org/en/
latest/ (WebLink 9.52). It was 
created by Aaron Quinlan.

$ mkdir bedtools # Working on a Mac laptop, let's start by making a  
# directory called bedtools
$ mv ~/Downloads/bedtools2-2.19.1/ ~/bedtools/ # we'll move the  
# downloaded directory from Downloads
$ cd bedtools/ # navigate into the directory called bedtools
$ ls # Look inside our directory; it has the bedtools directory we just  
# downloaded and copied
bedtools2-2.19.1
$ cd bedtools2-2.19.1/
$ ls # Here are the files
LICENSE README.md
bin docs genomes scripts test
Makefile RELEASE_HISTORY data genome obj src
$ make # this command compiles the software

$ sudo cp bin/* /usr/local/bin/

$ pwd # “Print working directory” shows current location
/Users/pevsner/bedtools/bedtools2-2.19.1/data
$ cp ~/Downloads/chr11* . # We copy into the current directory
$ ls # We list files in the current directory
chr11_hg19_UCSC_codingexons.bed
chr11_hg19_RefSeqCodingExons.bed
chr11_hg19_hg38diff.bed
chr11_hg19_RepeatMasker.bed
chr11_hg19_SegmentalDups.bed

We can use sudo to obtain administrator privileges and copy the binaries from 
bin/ to /usr/local/bin directory. This will allow us to invoke BEDtools 
 commands without needing to specify a path to the binaries directory.

 2. BEDtools can operate on several file types including BED, GFF, BAM, and VCF. For 
these examples we will use only BED files obtained from the UCSC Table Browser. 
For each, download a BED file. Then copy those BED files to your bedtools/
data directory.

https://github.com/arq5x/bedtools2
http://bedtools.readthedocs.org/en/latest/
http://bedtools.readthedocs.org/en/latest/
https://github.com/arq5x/bedtools2
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For our example we will look for the overlap between all RefSeq coding exons 
on chromosome 11 and the file listing differences between a GRCh37 (a popular 
human genome assembly sometimes called hg19) and GRCh38 (sometimes called 
hg38, it is a newer assembly that was released in December 2013).

 3. Next, we use the BEDtools intersect function. The general format is:

$ bedtools intersect -a reads.bed -b genes.bed

$ bedtools intersect -a chr11_hg19_RefSeqCodingExons.bed -b 
chr11_hg19_hg38diff.bed | head -5
chr11 369803 369954 NM_178537_cds_0_0_chr11_369804_f 0 +
chr11 372108 372212 NM_178537_cds_1_0_chr11_372109_f 0 +
chr11 372661 372754 NM_178537_cds_2_0_chr11_372662_f 0 +
chr11 372851 372947 NM_178537_cds_3_0_chr11_372852_f 0 +
chr11 373025 373116 NM_178537_cds_4_0_chr11_373026_f 0 +
$ bedtools intersect -a chr11_hg19_RefSeqCodingExons.bed -b 
chr11_hg19_hg38diff.bed | wc -l # This shows the number of exons  
# having differences
 9586
$ wc -l chr11_hg19_* # We can list the number of entries in various BED 
# files
 21352 chr11_hg19_RefSeqCodingExons.bed
 239924 chr11_hg19_RepeatMasker.bed
 1933 chr11_hg19_SegmentalDups.bed
 31523 chr11_hg19_UCSC_codingexons.bed
 366 chr11_hg19_hg38diff.bed

$ bedtools intersect -a chr11_hg19_UCSC_codingexons.bed -b 
chr11_hg19_RefSeqCodingExons.bed -v | head
chr11 130206 131373 uc009ybr.3_cds_0_0_chr11_130207_r 0 -
chr11 131466 131469 uc009ybr.3_cds_1_0_chr11_131467_r 0 -
chr11 130206 131373 uc001lnw.3_cds_0_0_chr11_130207_r 0 -
chr11 131466 131469 uc001lnw.3_cds_1_0_chr11_131467_r 0 -
chr11 130206 131087 uc001lnx.4_cds_0_0_chr11_130207_r 0 -
$ bedtools intersect -a chr11_hg19_UCSC_codingexons.bed -b 
chr11_hg19_RefSeqCodingExons.bed -v | wc -l
 421

chr11 0 10000
chr11 10000 60000
chr11 1162759 1212759
chr11 50783853 50833853
chr11 50833853 51040853
chr11 51040853 51090853
chr11 51594205 51644205
chr11 51644205 54644205
chr11 54644205 54694205
chr11 69089801 69139801
chr11 69724695 69774695
chr11 87688378 87738378
chr11 96287584 96437584
chr11 134946516 134996516
chr11 134996516 135006516

UCSC Genes encompass more gene models than the more conservative RefSeq 
genes. We have downloaded BED files having all coding exons from each source. We 
now report those entries that are in UCSC but have no overlap with RefSeq coding exons.

There are therefore 421 such UCSC coding exons along chromosome 21 that are not 
in RefSeq coding exons.

 4. Use the closest program. For every RefSeq coding exon we find the closest gap 
on the chromosome. The entire BED file of gaps looks like:
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 5. The BEDtools merge command is widely useful. Our RepeatMasker BED file has 
many overlapping entries that we can merge as follows. We return the number of 
entries that are merged.

Here are the first entries showing which gap each RefSeq coding exon is closest to.

$ bedtools closest -a chr11_hg19_RefSeqCodingExons.bed -b 
chr11_hg19_gaps.bed
chr11 193099 193154 NM_001097610_cds_0_0_chr11_193100_f 0 +
chr11 10000 60000 # this ends the first record
chr11 193711 193911 NM_001097610_cds_1_0_chr11_193712_f 0 +
chr11 10000 60000 # end of second record
chr11 194417 194450 NM_001097610_cds_2_0_chr11_194418_f 0 +
chr11 10000 60000
chr11 193099 193154 NM_145651_cds_0_0_chr11_193100_f 0 +
chr11 10000 60000
chr11 193711 193911 NM_145651_cds_1_0_chr11_193712_f 0 +
chr11 10000 60000
chr11 194417 194450 NM_145651_cds_2_0_chr11_194418_f 0 +
chr11 10000 60000

$ bedtools merge -i chr11_hg19_RepeatMasker.bed -n | head
chr11 60904 61254 1
chr11 61314 61346 1
chr11 61405 61671 1
chr11 61674 61908 1
chr11 62074 62151 1
chr11 62157 62320 1
chr11 62346 62931 1
chr11 62966 64003 2
chr11 64053 64794 1
chr11 64828 67807 4

$ bedtools genomecov -i chr11_hg19_gaps.bed -g ../genomes/human.hg19.
genome
chr11 0 131129516 135006516 0.971283
chr11 1 3877000 135006516 0.0287171
genome 0 3133284264 3137161264 0.998764
genome 1 3877000 3137161264 0.00123583

$ bedtools genomecov -i chr11_hg19_RefSeqCodingExons.bed -g ../genomes/
human.hg19.genome
chr11 0 133031219 135006516 0.985369

 6. Genome Coverage lets us ask questions such as “How much of chromosome 11 is 
spanned by gaps?” We use the -g argument to specify the human genome build 
we  were using (several are included in the genomes directory of the bedtools 
 download).

The answer is 2.87% of the chromosome, and 0.1% of the genome is spanned by gaps. 
The Genome Coverage output includes five columns: (1) the chromosome or entire 
genome; (2) the depth of coverage from the features in the input file, that is, 0 or 1 in 
this example; (3) the number of bases on the chromosome (or across genome) with a 
depth equal to column 2; (4) the size of chromosome (or entire genome) in base pairs, 
that is, ∼135 Mb for chromosome 11 or 3137 Mb for the entire genome; and (5) the 
fraction of bases on chromosome (or entire genome) with depth equal to column 2.

How much of chromosome 11 does not include RefSeq coding exons? We now 
use a BED file of exons. The answer is 98.5% as we see from the first line of output 
of this command:
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The answer is 16. We can see the first three of them:

 7. With BEDtools window we can determine how many RefSeq coding exons are 
 positioned within 40,000 base pairs of a gap on chromosome 11.

$ bedtools window -a chr11_hg19_RefSeqCodingExons.bed -b 
chr11_hg19_gaps.bed -w 40000 | wc -l
 16

$ bedtools window -a chr11_hg19_RefSeqCodingExons.bed -b chr11_hg19_
gaps.bed -w 40000 | head -3
chr11 1244353 1244423 NM_002458_cds_0_0_chr11_1244354_f 0 +  
chr11 1162759 1212759
chr11 1246910 1246967 NM_002458_cds_1_0_chr11_1246911_f 0 +  
chr11 1162759 1212759
chr11 1247434 1247506 NM_002458_cds_2_0_chr11_1247435_f 0 +  
chr11 1162759 1212759

 The Genome Workbench from NCBI offers another way to visualize next-generation 
sequence data. We introduced it in Chapter 2. You can obtain a BAM file and its asso-
ciated BAM index file then load them into Genome Workbench using the File > Open 
pull-down (Fig. 9.18a). (Alternatively, under the Project Tree View click the BAM option 
to load a BAM file.) This generates a coverage graph that you can view graphically. There 
are hundreds of track options. Figure 9.18b shows a region  including two exons of the HBB 
gene, along with tracks for associated variants, RefSeq accessions for the gene, mRNA, 
and protein, a bar graph showing the depth of coverage, and aligned reads. The bottom 
portion includes tracks showing the regions that are captured by the Agilent, NimbleGen, 
Illumina, and 1000 Genomes Project workflows (note their differences). This example 
highlights how versatile and accessible the Genome Workbench is, and how you can work 
with any indexed BAM file to explore and analyze any genomic region of interest.

topic 10: Interpreting the biological Significance of Variants

A typical human genome harbors about 3.5 million single-nucleotide variants, 600,000 
indels, and a variety of other variants. Which of these are neutral (not affecting  phenotype), 
and which are deleterious (possible disease-causing)? Several main strategies have been 
developed and are closely related to the topics we covered in Part I of this book: scoring 
matrices, pairwise and multiple sequence alignment, and sequence conservation.

One approach to finding disease-associated mutations is to focus on nonsynonymous 
variants (those which alter the specified amino acids) as opposed to synonymous vari-
ants (those in coding regions that do not specify changes in the amino acids). A major 
 premise is that synonymous variants are neutral, although it is possible that such changes 
are  deleterious (e.g., they could affect splicing accuracy, mRNA structure, translation, 
and protein folding; Sauna and Kimchi-Sarfaty, 2011). Approximately 25–30% of all 
 nonsynonymous SNPs are predicted to disrupt protein function; consequently, those 
SNPs tend to be eliminated by purifying selection and are rare in human populations 
(Ng and Henikoff, 2006). The major human disease databases are Online  Mendelian 
 Inheritance in Man (OMIM) and the proprietary Human Gene Mutation Database 
(HGMD) (see Chapter 21); in these databases about half the disease-associated variants 
are nonsynonymous. Furthermore, disease-associated amino acid substitutions occur 
preferentially at evolutionarily conserved amino acid positions (Miller and Kumar, 2001).

We begin by describing two prominent software tools which were developed 
before the era of next-generation sequencing: Sorting Tolerant from Intolerant (SIFT) 
and  Polymorphism Phenotyping-2 (PolyPhen) (Flanagan et al., 2010). Although they 

You can access Genome 
Workbench from  http:// 
www.ncbi.nlm.nih.gov/tools/
gbench/ (WebLink 9.53). For this 
example we downloaded the file 
NA19240.chrom11.SLX.maq 
.SRP000032.2009_07.bam (i.e., a 
BAM file containing aligned reads 
from chromosome 11 of HapMap 
individual NA19240 sequenced by 
Illumina technology). This BAM 
file is 7.6 GB, and its associated 
BAI (BAM index) file is ∼400 kB. 
Both files are available at 
Web Document 9.8 at  http://
bioinfbook.org. They can also 
be downloaded from  ftp://
ftp.1000genomes.ebi.ac.uk/vol1/
ftp/pilot_data/data/NA19240/
alignment/ (WebLink 9.54).

http://www.ncbi.nlm.nih.gov/tools/gbench/
http://www.ncbi.nlm.nih.gov/tools/gbench/
http://bioinfbook.org
http://bioinfbook.org
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA19240/alignment/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA19240/alignment/
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(a) Genome WorkBench: Project Tree View for BAM file import

(b) Genome Workbench view of alignments (in HBB region)
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FIGUre 9.18 Genome Workbench from NCBI is useful to view and analyze BAM files. (a) BAM 
files can be uploaded using File > Open or by clicking the BAM link (arrow 1). (b) Large numbers of 
user-selected tracks are available using menus at the bottom (arrow 2) or at the upper right of each 
track (not shown). The BAM file includes alignments spanning human chromosome 11 in individual 
NA19240. This view includes a six-frame translation of the region (arrow 3), SNPs (arrow 4), clinically 
associated variants (arrow 5), two exons of the HBB gene with associated RefSeq identifiers (arrow 6), a 
histogram of read depth (arrow 7), packed reads (arrow 8), and annotations of the exome capture regions 
for several technologies. Hundreds of other annotation tracks are available. 

Source: Genome Workbench, NCBI.

 continue to be popular and have prominent roles in bioinformatics analyses, we see that 
newer tools offer dramatically better sensitivity and specificity.

SIFT, first introduced in 2001, offers a web server (Kumar et al., 2009; Sim et al., 
2012). Given a protein query it performs a PSI-BLAST search (Chapter 5), builds a mul-
tiple sequence alignment, and calculates normalized probabilities of occurrence of each 
amino acid at each position. Positions with  normalized probabilities below a threshold 
(typically 0.05) are predicted to be deleterious; values ≥0.05 are called tolerated. SIFT 
also calculates a conservation value ranging from 0 (all 20 amino acids are observed at 
that position) to log220 (=4.32) when just one amino acid is observed at a given position 
without substitutions.

PolyPhen (Ramensky et al., 2002) has a similar approach and also incorporates 
 structural information, using empirically derived rules to predict whether  nonsynonymous 
variants are possibly or probably damaging (two separate prediction categories). 
 PolyPhen-2 extends this method using eight sequence-based predictive features and three 
structure-based features (Adzhubei et al., 2010, 2013). It reports the naïve Bayes  posterior 
probability that a mutation is damaging and reports true and false positive rates.
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We can view both SIFT and PolyPhen results at the Ensembl genome browser. For 
the human HBB gene there are currently ∼6800 annotated variants (viewable using the 
Variation Table) including over 700 missense variants (Fig. 9.19). This highlights the 
accessibility of variant annotation results at Ensembl, and also the great discrepancy that 
often occurs between SIFT and PolyPhen scores. A study introducing a third software 
tool involving a likelihood ratio test found just 5% of predictions were shared by the three 
tools, while 76% of predictions were unique to one of the tools (Chun and Fay, 2009).

Many software tools accept genomic variants (typically from a VCF file) and  provide 
functional annotation. ANNOVAR is a prominent package (Chang and Wang, 2012) that 
includes gene-based and region-based annotations. Ensembl offers a Variant Effect Predictor 
(VEP) that reports the location of variants (e.g., coding exons, introns) and their predicted 
effects. NCBI’s Variation Reporter accepts VCF files. Exomiser is a Java program that uses 
ANNOVAR code and UCSC KnownGene transcript definitions. Its output conveniently 
includes information on relevant mouse models. Each of these packages is available as 
a web-based or command-line tool. As a specific example, I analyzed a VCF file from 
a whole-exome sequencing experiment using the NCBI Variation Reporter. There were 
∼80,000 variant alleles, including ∼1100 novel alleles at known locations and ∼4700 novel 
alleles at novel locations. A total of ∼1900 variant alleles have clinical information (such 
as an Online Mendelian Inheritance in Man or OMIM allelic variant; see Chapter 21). The 
entire data file (of ∼355,000 rows and 30 columns) is available as Web Document 9.9. This 
type of file is most easily studied in a UNIX-like operating system where tools such as 
grep can be used to extract information of interest.

There are at least 40 software packages that call variants neutral or deleterious 
 (Tchernitchko et al., 2004; Hicks et al., 2011; Jaffe et al., 2011; Thusberg et al., 2011; 

ANNOVAR, developed by Kai 
Wang, can be accessed from 

 http://www.openbioinformatics.
org/annovar/ (WebLink 9.55). 
Ensembl’s VEP is available at 

 http://www.ensembl.org/Homo_
sapiens/Tools/VEP (WebLink 9.56), 
the NCBI Variation Reporter is at 

 http://www.ncbi.nlm.nih.gov/
variation/tools/reporter (WebLink 
9.57), and Exomiser from the 
Wellcome Trust Sanger Institute 
is at  http://www.sanger.ac.uk/
resources/databases/exomiser/ 
(WebLink 9.58). In addition to VCF, 
these tools sometimes accept 
BED, GVF, HGVS (Human Genome 
Variation Society), or other 
formats.

FIGUre 9.19 SIFT and PolyPhen scores are provided in the Variation Table of the Ensembl genome 
browser. A portion of the entry for human beta globin (HBB) is shown. Each row represents a variant; 
columns indicate dbSNP (or other) identifier, chromosome and position of the variant, reference and 
alternate alleles, database source, reference and alternate alleles, amino acid position in the beta globin 
protein, and SIFT and PolyPhen predictions. Several rows have been removed for clarity, and addi-
tional columns of information may be added at the website. Note the lack of agreement with SIFT and 
 PolyPhen predictions. A well-known mutation, known since the 1960s as E6V (glutamate at position 
6 substituted by valine), is correctly listed as E7V (blue rectangle) but note that it is listed as neutral by 
both SIFT and PolyPhen even though it is a cause of sickle-cell anemia (see Chapter 21). 

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.

http://www.openbioinformatics.org/annovar/
http://www.ensembl.org/Homo_sapiens/Tools/VEP
http://www.ncbi.nlm.nih.gov/variation/tools/reporter
http://www.sanger.ac.uk/resources/databases/exomiser/
http://www.openbioinformatics.org/annovar/
http://www.ensembl.org/Homo_sapiens/Tools/VEP
http://www.sanger.ac.uk/resources/databases/exomiser/
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Lopes et al., 2012; Liu and Kumar, 2013; Shihab et al., 2013). How can we decide which 
is best? As with any bioinformatics software, the key is to assess error rates. We can ask 
whether a software tool calls a variant deleterious if that variant is derived from OMIM or 
HGMD (presumably constituting a true positive finding). We can ask if it calls a variant 
neutral if it derives from the 1000 Genomes Project, dbSNP, or other sources of appar-
ently normal individuals; false positive results occur when a software tool calls such 
neutral variants deleterious. (It has been noted that dbSNP contains an unknown mixture 
of neutral and deleterious variants, and even participants in the 1000 Genomes Project 
who are defined as apparently normal also harbor some number of deleterious variants.) 
For PolyPhen-2, at a false positive rate of 20% (e.g., 2 of every 10 variants that are 
called deleterious are actually neutral), the true positive prediction rate is 92% (Adzhubei  
et al., 2010). This involves analysis of a dataset including >3100 variants from UniProt 
(Chapter  2) that are annotated as causing Mendelian disease. PolyPhen-2 has a 73% 
true  positive prediction rate in another dataset that includes all ∼13,000 UniProt variants 
 annotated as disease-causing, as well as ∼9000 variants not annotated as disease-causing.

We turn to VAAST, a software package that offers greatly improved sensitivity and 
specificity (Yandell et al., 2011; Hu et al., 2013). Four files are required to begin: a VCF 
(or the related GVF format) for both the target (case) variants and the background (control) 
variants; a list of genes or other features to be scored (e.g., a file called genes.gff3) in 
the GFF format; and a reference genome in the FASTA format (e.g., mygenome.fasta). 
There are three steps to using VAAST.

 1. A variant annotation tool (VAT) annotates variants based on functional effects such 
as introducing missense mutations or splice site mutations. These annotations are 
 introduced in a new column in the output file (e.g., patientvariants.vat.
gvf). A typical VAT command is as follows:

Visit the VAAST homepage from 
the group of Mark Yandell at 

 http://www.yandell-lab.org/
software/vaast.html (WebLink 
9.59).

$ VAT -f genes.gff3 -a mygenome.fasta patientvariants.gvf > 
patientvariants.vat.gvf

$ VST –ops ‘U(0..2)’ patientvariants.vat.gvf file2.vat.gvf 
file3.vat.gvf > my_vst_output.cdr

$ VAAST –mode lrt –outfile myoutput genes.gff3 background.cdr 
my_vst_output.cdr

 2. Next a variant selection tool (VST) generates “condenser” files (.cdr extension) 
for the target and background sets. The .cdr files are analogous to the query of a 
BLAST search. VST can perform operations such as finding the union of all variants, 
or the intersection or complement of genomic variants in a series of .vat.gvf files. 
For example, we can produce an output containing the union of variant loci present in 
three files:

Different .vat.gvf files are used for the target and background sets. A Perl script 
allows a quality check to confirm that the allele frequencies are not significantly 
different between these two. If they do differ, the analysis may be flawed because 
many differences will be called due to the underlying genetic differences in these 
two groups.

 3. Variant analysis is then performed with VAAST. For example, we can run:

Here the option ––mode lrt specifies a composite-likelihood ratio test. This 
scores features according to the difference in frequencies of variants in the target 
and background genomes. According to a null model the frequency of a variant is 
the same in a control population and a case population of interest (e.g., the genome 

http://www.yandell-lab.org/software/vaast.html
http://www.yandell-lab.org/software/vaast.html
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of a patient or set of patients). According to an alternative model these frequencies 
differ. VAAST further considers the likelihood that a substitution does not contribute 
to disease (by using amino acid substitution data drawn from neutral sources such as 
BLOSUM62), while it assesses the likelihood of deleterious amino acid substitutions 
by incorporating a model of disease-associated changes from OMIM.

A receiver operator curve (ROC) is shown for six methods in Web Document 9.10, 
indicating the better performance by VAAST. At a given false positive rate of 5%, the 
true positive rate for VAAST 2.0 (and VAAST 1.0; Hu et al., 2013) is far better than for 
MutationTaster (Schwarz et al., 2010), SIFT, and PolyPhen-2.

VAAST offers improved accuracy because of its use of a composite likelihood ratio 
test. VAAST is also able to score variants in both coding and noncoding regions and, in 
contrast to SIFT and PolyPhen-2 (which are restricted to regions of aligned phylogenet-
ically conserved amino acids), it can score variants at any coding or noncoding position. 
(SIFT scores 60% of the protein-coding portion of the genome, PolyPhen-2 scores 81%, 
while VAAST scores essentially all of it.) The current version of VAAST includes phylo-
genetic conservation in the form of PhastCons scores (Chapter 6) to weight estimates of 
amino acid changes being deleterious or neutral. The output of VAAST includes a list of 
variants ranked by lowest probability value.

topic 11: Storing Data in repositories

Next-generation sequencing experiments can generate many hundreds of gigabases of 
DNA sequence in a single day. This may correspond to terabytes of image data. For many 
sequencing centers, it has become routine to need storage on the scale of petabytes.

There are four main options for the storage of large datasets.

 1. An investigator who receives data from a core facility (often in the form of an  external 
drive) can maintain the data on a local server.

 2. Raw data can be deposited in a repository, similar to the way gene expression  datasets 
are routinely stored at ArrayExpress (at EBI) or the Gene Expression Omnibus (GEO 
at NCBI). The National Institutes of Health introduced the Sequence Read Archive 
(SRA) for this function. In many cases the data are submitted by investigators as 
sorted BAM files (which can be converted back to FASTQ files if needed). In some 
cases FASTQ files are made available. Other large-scale resources that summarize 
human variation are The  Cancer Genome Atlas (TCGA), the 1000 Genomes Project, 
the National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project 
(ESP), and the Exome  Aggregation Consortium (ExAC).

 3. Cloud computing can be used to provide access to data. Cloud computing refers 
to the fee-based use of servers that are owned by a company (such as Amazon or 
 Google).

 4. Raw data can be discarded. Some have suggested that the expense of storing large 
amounts of data on a computer server has become more expensive than maintain-
ing the DNA and re-running the sequencing experiment if needed. According to this 
model, processed data (e.g., BAM files) are maintained.

SpecIAlIzed ApplIcAtIonS of next-generAtIon 
SequencIng
Next-generation sequencing data in repositories offer a treasure trove of information. 
As one example, many exome and targeted sequencing experiments incidentally capture 
highly abundant mitochondrial DNA. MitoSeek software (Guo et al., 2013) allows you 
to easily extract mitochondrial sequences. It also reports mitochondrial copy number, 

MutationTaster offers a web 
server at  http://www 
.mutationtaster.org/  
(WebLink 9.60). It uses a Bayes 
classifier to assign a probability 
as to whether an alteration is a 
disease mutation or a neutral 
polymorphism. Its training 
set includes >390,000 disease 
mutations from HGMD and >6.8 
million neutral SNPs and indels 
from the 1000 Genomes Project.

The ROC curve in Web Document 
9.10 shows the results for a set of 
common and rare variants from 
HGMD and the 1000 Genomes 
Project; for rare variants (having 
minor allele frequency far less 
than 1%), the ROC curve shows 
even better performance by 
VAAST.

The TCGA website is  http://
cancergenome.nih.gov/ (WebLink 
9.61). The NHLBI ESP website 
is  http://evs.gs.washington.
edu/EVS/ (WebLink 9.62). The 
ExAC browser at  http://exac.
broadinstitute.org/ (WebLink 9.63) 
currently provides variation data 
from >63,000 exomes.

http://www.mutationtaster.org/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
http://www.mutationtaster.org/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
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heteroplasmy (presence of varying mitochondrial genomes within an individual), somatic 
mutations, and structural variants.

There are many other ways useful information can be extracted from archived DNA 
sequence data (reviewed in Samuels et al., 2013). Some pathogenic eukaryotes have 
endosymbionts such as the obligate endobacterium Wolbachia (an alpha-proteobacterium 
that inhabits parasitic filarial nematodes as well as spiders, insects, and mites). These bac-
terial endosymbionts are often uncultivatable and are therefore difficult to study. Salzberg 
et al. (2005) searched an NCBI database housing Drosophila genomic DNA and discov-
ered three Wolbachia strains, assembling one genome to 95% completion.

In addition to DNA sequencing, dozens of new applications of next-generation 
sequencing have emerged (Shendure and Lieberman Aiden, 2012). These include:

 • RNA sequencing (RNA-seq) allows measurement of steady-state RNA levels, as 
described in Chapters 10 and 11.

 • Chromatin immunoprecipitation sequencing (ChIP-Seq) is used to measure protein–
DNA interactions (Park, 2009). Protein bound to genomic DNA is cross-linked with 
formaldehyde. The DNA is sheared; protein–DNA complexes are immunoprecip-
itated with antisera directed specifically against protein targets of interest (such as 
DNA-binding transcription factors). The genomic DNA fragments are then isolated, 
sequenced, and mapped to a reference genome.

 • MicroRNAs (introduced in Chapter 10) are small noncoding RNAs that are essential 
regulators in a variety of pathways. (Over half the human transcriptome is thought 
to be regulated by miRNAs.) To identify the endogenous messenger RNAs that are 
targeted by miRNAs, a recent approach is ultraviolet cross-linking and immunopre-
cipitation coupled to next-generation sequencing (CLIP-seq; Chi et al., 2009).

 • Many cytosine residues in the eukaryotic genome are methylated, particularly at CpG 
dinucleotides. Methylation sequencing (methyl-seq) has been applied to  characterize 
such changes genome-wide (Huss, 2010; Ku et al., 2011). When a sample is treated 
with bisulfite, cytosine residues are deaminated to uracil. By comparing the sequences 
of samples with and without bisulfite treatment, it is possible to infer methylation 
status. There are many related approaches such as treatment of genomic DNA with 
methylation-sensitive restriction enzymes, or the study of other epigenetic markers 
such as 5-hydroxymethylcytosine (Branco et al., 2011).

 • DNase-seq and Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-
seq) allow the sequencing of nucleosome-depleted genomic regions, which is then 
used to map regulatory regions of chromatin (Song et al., 2011).

perSpectIve
Next-generation sequencing (NGS) technology is revolutionizing biology. We are now 
able to catalog genetic variation at unprecedented depth. Studies of human diseases now 
routinely include hundreds of pedigrees, and in some cases thousands. Studies such as 
the 1000 Genomes Project catalog variation across geographic populations worldwide. 
NGS has been applied to sequencing genomes across the tree of life, enabling a deeper 
understanding of myriad biological principles.

In this chapter we outlined 11 topics in sequence analysis. For those who have never 
performed these analyses it should be straightforward to obtain files containing data in 
the main formats (FASTQ, BAM/SAM, VCF) and explore them. For this it is especially 
helpful to work in the Linux operating system, essential for detailed analyses. For those 
who are less familiar with Linux it is still possible to work with web-based tools (such as 
Galaxy, UCSC) as well as resources at Ensembl and NCBI (e.g., Genome Workbench can 
manipulate and display BAM files).

 We discuss the human 
mitochondrial genome in 
Chapter 20. MitoSeek is 
available from  https://
github.com/riverlee/MitoSeek 
(WebLink 9.64). We describe it 
in Chapter 21 in the context of 
mitochondrial disease.

https://github.com/riverlee/MitoSeek
https://github.com/riverlee/MitoSeek
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In the future it is likely that the pace of sequencing will continue to increase, as 
there is no end in sight to the kinds of questions about biological principles that can be 
addressed with sequenced genomes, exomes, or targeted regions. Technological break-
throughs are on the immediate horizon that will likely enable much longer read lengths at 
reduced costs. This will facilitate sequencing across regions of repetitive DNA, improve 
the ability to detect structural variation, and continue to expand the number of species and 
individuals whose genomes are analyzed. It is commonly said that the greatest bottleneck 
in applying this technology is bioinformatics analysis. While hundreds of software tools 
are introduced each year and there is no single “best practice” for data analysis, there is 
still tremendous opportunity for students to master this fascinating field.

pItfAllS
There are many applications of NGS technology. One interest is in identifying rare vari-
ants in individuals, and further determining which of these cause disease. The steps we 
outlined in this chapter (including base call quality assessment, alignment of sequence 
reads to a reference genome, calling variants, and interpreting their significance) are 
extraordinarily complex and the methods are in flux. Various software packages (such as 
aligners) are based on dramatically different assumptions about issues such as thresholds 
for quality scores and how repetitive sequences are mapped to the genome. There is not 
one simple reference genome, and when you sequence a genome (or exome or targeted 
region of interest) there are many workflows you can apply to your data. It is likely that if 
you begin with the same raw FASTQ data and apply two reasonably popular workflows, 
the final list of variants you obtain will differ substantially. To summarize, it is appropriate 
to develop your workflow carefully and analyze your results critically.

AdvIce for StudentS
In my experience, many graduate students (and others) who have backgrounds in  biology 
design next-generation-sequencing-based experiments, whether this involves DNA 
sequencing, ChiP-seq, RNA-seq, or related high-throughput techniques. In my opinion 
it is essential to consult a biostatistician regarding experimental design. Do you have 
 adequate sample size? Have you balanced and randomized the design to help minimize 
batch effects that can destroy your experiment? Data are typically generated in a core 
facility or at a company, and in some cases data analysis is also performed on your behalf. 
Once the data arrive, many biologists who are new to bioinformatics prefer to receive 
a list of results of interest. I feel that it is critical for you to understand the entire data 
analysis workflow from beginning to end. Even if you are not yet an expert in performing 
these analyses, you should become educated enough to understand how the data were 
 processed, what assumptions were made (assuming someone else has done the main 
analyses for you), and how to interpret the results. Take ownership of the project! This 
includes reading the primary literature which almost always includes benchmarks that 
explain the performance of one particular set of tools relative to existing software. If they 
have been generated in a core, or even by someone else in your lab, obtain and study the 
raw FASTQ files, the BAM files, and the VCF files. Galaxy provides an excellent web-
based environment to learn about next-generation sequence analysis tools, and it can be a 
stepping-stone to working in a command-line environment in Linux.

If you are not currently acquiring this type of dataset, go to the 1000 Genomes  website 
where you can download all these various files as well as extensive  documentation. Define 
a question or a set of questions (e.g., “what is the extent of variation at the beta globin 
locus?”), and then obtain practical experience working with the data. Keep in mind the 
many places you can go for help (see Web Resources for this chapter).



Genomewide AnAlysis of dnA, RnA, And PRotein424

Web reSourceS
Several forums are dedicated to discussing issues related to next-generation sequencing. 
These include Biostars (  https://www.biostars.org/, WebLink 9.65) and Seqanswers (  
http://www.seqanswers.com, WebLink 9.66). At Biostars be sure to explore the various sec-
tions such as CHiP-seq and Assembly as well as the tutorials on a variety of next-generation 
sequencing topics. For popular resources such as UCSC, Ensembl, NCBI, and Galaxy, as 
well as a variety of software tools, you can join user’s groups to share information, ques-
tions, and answers. This can help you to learn and to keep pace with ongoing developments. 
Over 4000 software tools, including many dedicated to next-generation sequence analysis, 
are listed at  http://omictools.com (WebLink 9.22; Henry et al., 2014).

Discussion Questions
[9-1] It was suggested in 2013 that 
90% of the world’s information has 
been accumulated in the past two years. 
Assuming that is correct, and consider-

ing NGS in particular, what is the likely change in that rate 
in the coming years?

[9-2] What categories of error are associated with a 
sequencing experiment? What approaches does GATK 
take to account for error? What tradeoffs does GATK make 
between sensitivity and specificity? Suppose you perform 
a study sequencing the exomes of affected individuals and 
their family members from 10 pedigrees. If you conduct a 
simplified sequence analysis workflow without the kinds of 
adjustments made by GATK, what do you think the conse-
quence would be?

[9-3] In the future, public repositories will have 100,000 
and then 1 million human genome sequences. What impact 
will such resources have on the study of variation and dis-
ease? Will there be a “human knockout collection” describ-
ing the phenotypes of many individuals who have homozy-
gous deletions of each particular gene?

prObleMS/COMpUter lab
[9-1] This exercise focuses on FASTQ files on the Mac, 
Windows, or Linux platforms. Obtain a set of FASTQ files 
from a repository. (1) Visit the Sequence Read Archive 
(SRA) at NCBI (  http://www.ncbi.nlm.nih.gov/sra/, 
WebLink 9.18). (2) Click “Browse samples.” Enter the 
search query “1000genomes”; currently there are over 
400 samples. To focus on one, select NA19240 (  http://
www.ncbi.nlm.nih.gov/biosample/SRS000214, WebLink 
9.67). (3) Examine the quality statistics of these FASTQ 
files using FASTQC either on the command line or with 
FASTQC at Galaxy. Note that the Tools panel of Galaxy 
includes an option to upload FASTQ files from Get Data > 
“Upload file from your computer.” You can also download 
FASTQ files from the European Nucleotide Archive (ENA) 

as mentioned in this chapter. (4) Align the FASTQ files to a 
reference using Bowtie or BWA.

[9-2] Analyze BAM files using IGV. Explore viewing a 
chromosome (e.g., the beta globin region) at broad res-
olution then zoom into base pair resolution. Explore the 
options for coloring the reads. Select a list of any five gene 
symbols, upload them as a custom list, and simultaneously 
view the reads for those five regions.

[9-3] What is the frequency of variants in the HBB gene 
relative to the HLA locus? Consider using the UCSC 
Genome/Table Browser (build GRCh37) at positions 
chr6:29,570,005–33,377,699 (from GABBR1 to KIFC1) 
and chr11:5,240,001–5,300,000 (including HBB). For 
more information on the MHC haplotype project visit 

 http://www.ucl.ac.uk/cancer/medical-genomics/mhc 
(WebLink 9.68).

[9-4] We described a series of BEDtools examples. Obtain 
your own BED files (e.g., from the UCSC Table Browser) 
and further explore its tools. The BEDtools website offers 
many other suggestions for creatively exploring the genome.

[9-5] Perform variant annotation using SIFT and 
 PolyPhen-2. (You may also use VAAST; because of 
its licensing restrictions a public tool is not available, 
although a license is freely available for academic use.) 
Select variants that are known to occur in HBB, or select 
another gene of interest. Of the publicly available individ-
ual human genome sequences, which have HBB variants 
that are predicted to be deleterious? As one approach, visit 
a region of interest at the UCSC Genome Browser and 
select the Variant Annotation Integrator. This provides 
data from SIFT, PolyPhen-2, Mutation Taster, GERP, and 
other resources.

[9-6] Explore the Ensembl annotation resources. Use the 
Variant Effect Predictor (in Linux) to predict the conse-
quences of variants. Use the Data Slicer to create VCF files 
from various individuals and/or ethnic populations.

https://www.biostars.org/
http://www.seqanswers.com
http://omictools.com
http://www.ncbi.nlm.nih.gov/sra/
http://www.ncbi.nlm.nih.gov/biosample/SRS000214
http://www.ncbi.nlm.nih.gov/biosample/SRS000214
http://www.ucl.ac.uk/cancer/medical-genomics/mhc
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Self-test Quiz
[9-1] A notable limitation of pyrosequenc-
ing is that:

(a) its read lengths tend to be short;

(b) its error rate can be high for 
homopolymers;

(c) its error rate can be high for pyrimidines; or

(d) it takes an extremely long time to complete a run.

[9-2] Most sequencing technologies produce raw data in 
what format?

(a) FASTA;

(b) FASTG;

(c) FASTQ; or

(d) FASTX.

[9-3] FASTQ files include information on the quality of:

(a) each run;

(b) each read group;

(c) each base; or

(d) each alignment.

[9-4] As genome assemblies improve,

(a) the scaffolds tend to invert;

(b) the FASTQ base quality scores increase;

(c) the contig N50 size decreases; or

(d) the contig N50 size increases.

[9-5] Two repeats can be aligned to a genome with more 
accuracy if they are:

(a) inverted;

(b) somewhat similar;

(c) extremely similar; or

(d) GC rich.

[9-6] SAM/BAM files store:

(a) FASTA records;

(b) sequence alignments;

(c) assemblies; or

(d) VCF data.

[9-7] BEDtools is designed for:

(a) “genome arithmetic,” for example to compare two 
genomic regions;

(b) variant calling;

(c) variant prioritization; or

(d) alignment to a reference genome.

[9-8] IGV

(a) calls single-nucleotide variants and indels;

(b) views SAM files but not VCF;

(c) views BAM files and VCF files; or

(d) views FASTQ files and BCF files.

[9-9] A VCF file

(a) stores single-nucleotide variants (SNVs) only;

(b) stores SNVs and insertions/deletions (indels);

(c) stores SNVs, indels, and structural variants (SVs); or

(d) stores SNVs, indels, SVs, and inversion strand 
monomorphisms.

SuggeSted reAdIng
Lincoln Stein (2011) has written a succinct overview of next-generation sequencing 
workflows, while Paul Flicek and Ewan Birney (2009) provide an excellent review of 
alignment and assembly. Koboldt et al. (2010) describe next-generation sequencing of 
human genomes, including quality assessment and production issues. Pabinger et al. 
(2014) surveyed 205 tools in the categories of quality assessment, alignment, variant 
identification, variant annotation, and visualization.
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Miller and colleagues (1970, p. 394) 
visualized gene expression, depicting 
Escherichia coli chromosomal DNA (ori-
ented vertically as a thin strand in each 
figure) in the process of transcription and 
translation. As mRNA is transcribed from 
the genomic DNA and extends off to the 
side, polyribosomes (dark objects) appear 
like beads on a string, translating the 
mRNA to protein.

Source: Miller et al. (1970). Reproduced with 
permission from AAAS.
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When dealing with molecular sequences an evolutionist feels a sense of liberation; he is 
no longer confined to the world of “higher forms.” From the vantage point provided by 
molecular data, he now gazes over the Cambrian “wall” that had obstructed his tem-
poral perspective. He can now scan the full panorama of Earth’s four-billion-year evo-
lutionary history. Color has been added to his monochromic, morphocentric view of the 
evolutionary process, as physiological and molecular characters take on phylogenetic 
significance. The static and relatively superficial paleontological link between biology 
and geology becomes engulfed by the far more interesting long-term interplay between 
the evolution of the physical planet and that of the organisms inhabiting it. This great bur-
geoning of our evolutionary perspective has been brought about largely through sequence 
characterizations of one molecular species, ribosomal RNA (rRNA).

— Gary Olsen and Carl Woese (1993), p. 113

LeARNiNg objectiveS

After studying this chapter you should be able to:
 ■ describe the major categories of coding and noncoding RNA;
 ■ compare and contrast techniques for measuring steady-state RNA levels; and
 ■ compare and contrast the use of microarrays and RNA-seq for measuring mRNA levels.

C h a p t e r

10
bioinformatic 
Approaches to 
Ribonucleic Acid (RNA)

IntroductIon to rnA
The word “gene” was introduced by Johannsen in 1909 to describe the entity that deter-
mines how characteristics of an organism are inherited. Classic studies by Beadle and 
Tatum (1941) in the fungus Neurospora showed that genes direct the synthesis of enzymes 
in a 1:1 ratio. As early as 1944, Oswald T. Avery demonstrated that deoxyribonucleic acid 
(DNA) is the genetic material. Avery et al. (1944) showed that DNA from bacterial strains 
with high pathogenicity could transform strains with low to high pathogenicity. Further 
experiments involving bacterial transformation, performed by Frederick Griffith, Avery, 
McLeod, McCarthy, Hotchkiss, and Hershey confirmed that DNA is the genetic material.

James Watson and Francis Crick (1953) proposed the double helical nature of DNA in 
1953 (Fig. 10.1). Soon after, Crick (1958) could formulate the central dogma of molecular 

You can learn about some of the 
original discoveries concerning 
nucleic acids by reading about 
their Nobel Prize awards. Albrecht 
Kossel was awarded the Nobel 
Prize in 1910 for characterizing 
nucleic acids (  http://nobelprize 
.org/nobel_prizes/medicine/
laureates/1910/, WebLink 10.1). 
Beadle and Tatum were awarded 
Nobel Prizes in 1958 for their one 
gene-one enzyme hypothesis (see 

 http://nobelprize.org/nobel_
prizes/medicine/laureates/1958/, 
WebLink 10.2). Severo Ochoa and 
Arthur Kornberg shared a 1959 
Nobel Prize “for their discovery of 
the mechanisms in the biological 
synthesis of ribonucleic acid and 
deoxyribonucleic acid” (  http://
nobelprize.org/nobel_prizes/
medicine/laureates/1959/, 
WebLink 10.3). Although Oswald 
Avery was the first to show that 
DNA is the genetic material, he 
did not receive a Nobel Prize.

http://nobelprize.org/nobel_prizes/medicine/laureates/1910/
http://nobelprize.org/nobel_prizes/medicine/laureates/1910/
http://nobelprize.org/nobel_prizes/medicine/laureates/1910/
http://nobelprize.org/nobel_prizes/medicine/laureates/1958/
http://nobelprize.org/nobel_prizes/medicine/laureates/1959/
http://nobelprize.org/nobel_prizes/medicine/laureates/1959/
http://nobelprize.org/nobel_prizes/medicine/laureates/1959/
http://www.wiley.com/go/pevsnerbioinformatics
http://nobelprize.org/nobel_prizes/medicine/laureates/1958/
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biology that DNA is transcribed into RNA then translated into protein. Crick wrote (1958, 
p. 153) that the central dogma:

states that once ‘information’ has passed into protein it cannot get out again. In more 
detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid 
to protein may be possible, but transfer from protein to protein, or from protein to nucleic 
acid is impossible. Information means here the precise determination of sequence, either 
of bases in the nucleic acid or of amino acid residues in the protein.

In this article Crick further postulated the existence of an adaptor molecule to convert 
the information from codons in RNA to amino acids in proteins; transfer RNA (tRNA) 
was indeed later identified.

During the 1960s the genetic code was solved (e.g., Nirenberg, 1965), showing the 
relationship between messenger RNA codons and the amino acids that are specified. This 
completed a detailed model for the flow of genetic information from DNA to RNA to 
protein. However, even by the 1950s, this model was called into question by the nature of 
RNA. Why did hybridization experiments suggest that only a minute fraction of RNA was 
complementary to DNA of genes? RNA could be purified away from DNA and proteins, 
and then shown to separate into discrete bands on density gradients having sedimentation 
coefficients of 23S, 16S, and 4S. The 23S and 16S species were found to localize to ribo-
somes and constituted about 85% of all RNA in bacteria. tRNA was found to constitute 

Francis Crick, James Watson, 
and Maurice Wilkins shared the 
1962 Nobel Prize in Physiology or 
Medicine “for their discoveries 
concerning the molecular 
structure of nucleic acids and 
its significance for information 
transfer in living material.” See 

 http://nobelprize.org/nobel_
prizes/medicine/laureates/1962/ 
(WebLink 10.4).

RNA
(composed of

G, A, U, C)

DNA
(composed of

G, A, T, C)

sugar
phosphate
backbone

base pair

nitrogenous
bases

FIGUre  10.1 Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). While DNA usually 
adopts a double helical conformation, RNA tends to be single stranded. A notable exception is the dou-
ble-stranded base pairing of many noncoding RNAs to form stem-loop structures, described in this chap-
ter. Adapted from National Human Genome Research Institute (  http://www.genome.gov/glossary/).

http://www.genome.gov/glossary/
http://nobelprize.org/nobel_prizes/medicine/laureates/1962/
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FIGUre 10.2 The nucleotide bases include the purines guanine and adenine and the pyrimidines thy-
mine, uracil (which substitutes for thymine in RNA), and cytosine. These nitrogenous bases are attached 
to ribose sugars and triphosphate groups. In the case of DNA, the ribose lacks an oxygen side group 
(arrow 1) that is present in RNA. Redrawn and modified from the National Human Genome Research 
Institute talking glossary of genetic terms (http://www.genome.gov/glossary/?id=143).

about 15% of all RNA. Surprisingly, mRNA was found to represent only a small percent-
age of total RNA (about 1–4%).

DNA consists of the four nucleotides adenine, guanine, cytosine, and thymidine (A, 
G, C, T). It can be transcribed into ribonucleic acid (RNA), consisting of the nucleotides 
A, G, C, and U (uracil; Fig. 10.2). RNA has a backbone consisting of the five-carbon sugar 
ribose with a purine or pyrimidine base attached to each sugar residue. A phosphate group 
links the nucleoside (i.e., the sugar with base) to form a nucleotide.

The process of transcription of DNA results in the formation of RNA molecules 
in two broad classes. The first class is coding RNA, formed when DNA is transcribed 
into messenger RNA (mRNA). This mRNA is subsequently translated into protein 
on the surface of a ribosome in a process mediated by transfer RNA (tRNA) and 
ribosomal RNA (rRNA) as well as by proteins. A second class is noncoding RNA, 
in which RNA products are transcribed from DNA function without being further 
translated into protein. We next discuss noncoding and coding RNA from a bioin-
formatics perspective. There is considerable excitement about many recent advances 
in our understanding of all classes of RNAs, as we begin to recognize their diverse 
functional properties. By the 1980s the extraordinary versatility of RNA begain to 
be appreciated when, in addition to the three major RNAs (rRNA, tRNA, mRNA), 
RNAs with catalytic properties were discovered. Previously, nucleic acids had been 
considered molecules underlying heredity while proteins functioned as enzymes or 
other modulators of cellular processes (see Chapter 12). The discovery of ribozymes 
is consistent with a model of the early evolution of life on Earth in which RNA was 
the first genetic material, prior to the emergence of DNA. Another implication is that 
RNA has many potential functional roles in the cell beyond serving as an intermedi-
ary between DNA and protein. For example, rRNA catalyzes peptide bond formation 
during translation.

The 1968 Nobel Prize in 
Physiology or Medicine was 
awarded to Robert Holley, Har 
Khorana, and Marshall Nirenberg 
“for their interpretation of the 
genetic code and its function in 
protein synthesis.” Visit  http://
nobelprize.org/nobel_prizes/
medicine/laureates/1968/ 
(WebLink 10.5).

The purines include adenine and 
guanine, and the pyrimidines 
include cytosine, thymine, and 
uracil. To view their structures, 
visit the NCBI website, enter their 
names into a search of Entrez, and 
view the results in the PubChem 
database.

http://www.genome.gov/glossary/?id=143
http://nobelprize.org/nobel_prizes/medicine/laureates/1968/
http://nobelprize.org/nobel_prizes/medicine/laureates/1968/
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Throughout this chapter we use human chromosome 21 to demonstrate the nature of 
various RNAs. This is among the smallest human chromosomes (about 48 million base 
pairs) and one of the five human chromosomes having ribosomal DNA clusters that pro-
duce rRNA. We also use the globins as examples.

noncodIng rnA
The major classes of noncoding RNAs are tRNA and rRNA, which together account 
for approximately 95% of all RNAs in a given eukaryotic cell. Other noncoding 
RNAs, discussed in the following sections, include small nuclear RNA (snRNA), 
small nucleolar RNA (snoRNA), microRNA, and short interfering RNA (siRNA). 
Beyond tRNA and rRNA, relatively few noncoding RNAs have had their functions 
defined. A prominent example of a functionally characterized noncoding RNA is Xist 
(X (inactive)-specific transcript) encoded by the XIST gene. This RNA is located 
in the X inactivation center of the X chromosome and functions in X chromosome 
inactivation. While males have one copy of the X chromosome (with XY sex chromo-
somes), females have two copies of which one is inactivated in every diploid cell of 
mammalian and some other species. Xist is expressed from the inactive X and binds 
to its chromatin, facilitating chromosome inactivation (Borsani et al., 1991). Another 
functional noncoding RNA is Air which functions at the Igf2R locus (Sleutels et al., 
2002). Some genes that are present in two copies are imprinted, that is, expressed 
selectively from an allele of one parent. In mouse, noncoding Air RNA is required 
to suppress expression of three genes (Igf2r, Slc22a2, Slc22a3) from the paternal 
chromosome. It is notable that many noncoding RNAs are very poorly conserved 
between species, and we explore this for XIST and Air in problem (10.1) at the end 
of this chapter.

The abundant and well-characterized noncoding RNAs (tRNA, rRNA, and 
mRNA) have central roles in translation. The smaller and relatively more poorly 
characterized noncoding RNAs have been proposed to have a broad variety of func-
tions in the regulation of gene expression, development, and assorted physiological 
and pathophysiological processes. In the following sections we introduce several 
prominent databases that collect information about noncoding RNAs. These include 
Rfam (discussed in the following section), MirBase (Kozomara and Griffiths-Jones, 
2011), and RNACentral (Bateman et al., 2011). We also introduce two main methods 
for predicting noncoding RNA structures: a comparative method that is based on 
multiple sequence alignments of RNAs, and the thermodynamic approach that seeks 
the minimum free energy of a structure (Hofacker and Lorenz, 2014). Analysis of 
noncoding RNAs is reviewed by Washietl (2010), Washietl et al. (2012), and Naw-
rocki and Eddy (2013).

Noncoding rNas in the rfam Database

We introduced the Pfam database for protein families in Chapter 6 as an important bioin-
formatics resource. The Rfam database serves a comparable role in characterizing RNA 
families (Nawrocki et al., 2015). Rfam includes RNA alignments, consensus secondary 
structures, and covariance models (discussed in the following). Each Rfam family has a 
covariance model that is a statistical model of that family’s sequence and structure.

The contents of Rfam permit a survey of all currently known noncoding RNAs 
(Fig. 10.3). These include several well-characterized families that span all three domains 
of life: tRNAs, rRNAs, SRP RNA (responsible for protein export) and RNaseP (necessary 
for tRNA maturation). Table 10.1 lists the most abundant RNA families in Rfam for all 
species.

Sidney Altman and Thomas Cech 
shared the 1989 Nobel Prize in 
Chemistry “for their discovery 
of the catalytic properties of 
RNA.” See  http://nobelprize.
org/nobel_prizes/chemistry/
laureates/1989/ (WebLink 10.6). 
Altman characterized RNA 
enzymes (ribozymes) in the 
bacterium Escherichia coli, 
while Cech studied ribozymes 
in Tetrahymena thermophila. 
An example of a human gene 
encoding a noncoding RNA 
with enzymatic activity is RNA 
component of mitochondrial RNA 
processing endoribonuclease 
(RMRP, accession NR_003051.3, 
assigned to chromosome 
9p21-p12).

The RefSeq accession for the 
human Xist is NR_001564.2, 
spanning 19,296 base pairs. The 
accession for murine “antisense 
Igf2r RNA” (Air) on chromosome 
17 is NR_002853.2 (1,176 base 
pairs).

In addition to Rfam and MirBase 
there are many other excellent 
noncoding RNA databases such 
as RNAdb (Pang et al., 2007) at 

 http://research.imb.uq.edu 
.au/rnadb/ (WebLink 10.7). See 
Washietl and Hofacker (2010) for 
a review of databases.

You can access the Rfam 
database at  http://www.
sanger.ac.uk/resources/
databases/ (WebLink 10.8) 
or  http://rfam.janelia.org/ 
(WebLink 10.9). Release 12.0 
(July 2014) has >2400 families of 
noncoding RNA genes and over 
19 million regions.

http://nobelprize.org/nobel_prizes/chemistry/laureates/1989/
http://research.imb.uq.edu.au/rnadb/
http://www.sanger.ac.uk/resources/databases/
http://rfam.janelia.org/
http://nobelprize.org/nobel_prizes/chemistry/laureates/1989/
http://research.imb.uq.edu.au/rnadb/
http://www.sanger.ac.uk/resources/databases/
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FIGUre 10.3 The Rfam database noncoding RNAs. (a) Types of noncoding RNAs. The number of 
families is proportional to color. The number of annotated regions is proportional to the size of the rect-
angles. (b) Taxonomic coverage of Rfam families across the three domains of life (bacteria, archaea, and 
eukaryotes) and viruses. Families are categorized according to the taxa covered by the seed sequences. 
Adapted from Burge et al. (2013), with permission from Oxford University Press.
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When you search a sequence against the Rfam database, the results include a bit score 
in the familiar log-odds ratio format:

 =






P

P
bit score log .2

CM

null
 (10.1)

That is, a positive bit score indicates a significant match in which the query sequence 
given the covariance model is more likely than the query sequence given the null 
model.

We can survey typical noncoding RNAs by viewing an Rfam summary of those pres-
ent on human chromosome 21 (Fig. 10.4). The Rfam site offers a general feature format 
(GFF) file of queries such as chromosome 21 entries. This has 22 distinct families in 65 
regions. These include a tRNA gene, an rRNA gene, small nuclear genes involved in 
splicing, small nucleolar genes, and microRNAs. We will next examine these various 
noncoding RNA types.

transfer rNa

Transfer RNA molecules carry a specific amino acid and match it to its corresponding 
codon on an mRNA during protein synthesis. tRNAs occur in 20 amino acid accep-
tor groups corresponding to the 20 amino acids specified in the genetic code. tRNA 
forms a structure consisting of about 70–90 nucleotides folded into a characteristic 
cloverleaf. Key features of this structure include a D loop, an anti-codon loop which 
is responsible for recognizing messenger RNA codons, a T loop, and a 3′ end to 
which aminoacyl tRNA synthetases attach the appropriate amino acid specific for 
each tRNA.

Chromosome 21p (the short arm 
of chromosome 21) is about 
12 million base pairs in length 
and contains rDNA clusters 
(described below) and a total 
of three RefSeq coding genes 
(TEKT4P2, TPTE, and BAGE) in 
assembly GRCh37. Chromosome 
21q (the long arm) extends for 
about 35 million base pairs and 
has 553 RefSeq genes. Web 
Document 10.1 at  http://
bioinfbook.org shows the results 
of a search for Rfam entries 
from chromosome 21, performed 
using BioMart at Ensembl. Web 
Document 10.2 shows a more 
inclusive GFF file downloaded 
from the Rfam site at Janelia 
Farm. GFF files are also suitable 
for analysis with BEDTools and 
related software (Chapter 9).

table 10.1 a list of the 13 rfam entries with the largest number of members. No. full: number of members of the 
rfam family (for the full dataset rather than the seed alignment of representative members), rounded to the nearest 
thousand; Id: the average percent identity of the full alignments.

Name Accession No. full Ave. len. (full) Id Type Description

5_8S_rRNA RF00002 376,000 152 69 Gene; rRNA 5.8S ribosomal RNA

tRNA RF00005 298,000 73 46 Gene; tRNA tRNA

5S_rRNA RF00001 229,000 116 60 Gene; rRNA 5S ribosomal RNA

UnaL2 RF00436 101,000 54 78 Cis-reg UnaL2 LINE 3′ element

HIV_POL-1_SL RF01418 83,000 113 77 Cis-reg HIV pol-1 stem loop

U6 RF00026 72,000 105 77 Gene; snRNA; splicing U6 spliceosomal RNA

mtDNA ssA RF01853 62,000 104 67 Gene; antisense Mitochondrial DNA control region 
secondary structure A

Intron_gpI RF00028 60,000 365 36 Intron Group I catalytic intron

Intron_gpII RF00029 51,000 87 54 Intron Group II catalytic intron

Hammerhead_1 RF00163 49,000 59 70 Gene; ribozyme Hammerhead ribozyme (type I)

RRE RF00036 44,000 337 97 Cis-reg HIV Rev response element

HIV_GSL3 RF00376 39,000 84 82 Cis-reg HIV gag stem loop 3 (GSL3)

SNORA7 RF00409 26,000 140 79 Gene; snRNA; snoRNA; 
HACA-box

Small nucleolar RNA SNORA7

Source: Rfam 11.0. Reproduced under the Creative Commons Zero licence, CC0.

http://bioinfbook.org
http://bioinfbook.org
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We demonstrate a computational approach to identifying tRNAs using the tRNA-
scan-SE program (Lowe and Eddy, 1997) via its webserver (Schattner et al., 2005). As 
an input, we use a tRNA known to be assigned to human chromosome 21. The output 
includes the anticodon counts (Fig. 10.5a), listing the anticodons that have been identified 
corresponding to the 20 amino acids as well as stop codons and the modified amino acid 
selenocysteine. In this example, the isotype is GCC indicating that this is a glycine tRNA 
(in the genetic code glycine is encoded by GGG, GGA, GGT, or GGC; the GCC antico-
don matches the GGC codon). Other information in the output shows the predicted tRNA 
secondary structure in a bracket notation (Fig. 10.5b) as well as a model of its structure 
(Fig. 10.5c).

tRNAscan-SE produces just one false positive per 15 billion nucleotides of random 
DNA sequence. It achieves high sensitivity and specificity by combining the output of 
three separate methods of tRNA identification (Lowe and Eddy, 1997). There are three 
stages. First, it runs two programs that find tRNAs in DNA (or RNA) sequences. One pro-
gram identifies conserved intragenic promoter sequences found in prototypic tRNAs, and 
also requires base pairings that occur in tRNA stem-loop “cloverleaf” structures (Fichant 
and Burks, 1991). The other program searches for signals that occur in eukaryotic RNA 
polymerase III promoters and terminators (Pavesi et al., 2004). The results of these two 
programs are merged. In the second stage, tRNAscan-SE analyzes the sequences using a 
covariance model or stochastic context-free grammar (SCFG; Eddy and Durbin, 1994). 
A covariance model or SCFG is a probabilistic model of RNA secondary structure and 
sequence consensus, allowing insertions, deletions, and mismatches (Box  10.1). The 
covariance model includes a training step based on over 1000 previously characterized 
tRNAs. In the third stage tRNAscan-SE performs a secondary structure prediction and 
identifies the anticodon of the tRNA. tRNAs with introns and tRNA pseudogenes are 
further identified.

The approach adopted by tRNAscan-SE involves the alignment of multiple RNA 
sequences in order to infer a common structure of each family based on the two interrelated 

The tRNAscan-SE server is 
available at  http://lowelab.
ucsc.edu/tRNAscan-SE/ (WebLink 
10.11),  http://selab.janelia.org/
tRNAscan-SE/ (WebLink 10.12) 
or  http://mobyle.pasteur.fr/
cgi-bin/portal.py?#forms::trnascan 
(WebLink 10.13). You can also 
visit Todd Lowe’s site to download 
tRNAscan-SE and run it locally. 
The human chromosome 21 tRNA 
is given in Web Document 10.3 at 

 http://www.bioinfbook 
.org/chapter10. (This 71-base-
pair sequence also matches 
nucleotides 84511 to 84581 of 
clone AP001670.1.) In Chapter 3 
we introduced Dotlet for pairwise 
alignments. Try using it (  http://
myhits.isb-sib.ch/cgi-bin/dotlet, 
WebLink 10.14) with the human 
tRNA as a query against itself, 
employing a small window size to 
find the internally matching stem-
loop structures.

You can explore the properties 
of covariance models from Rfam 
using the CMCompare webserver 
(Eggenhofer et al., 2013).

FIGUre 10.4 Noncoding RNA families in the Rfam database that are assigned to human chromo-
some 21. Only a portion of the entries is shown.

Source: Rfam (  http://www.sanger.ac.uk/Software/Rfam/index.shtml). Reproduced with permission from Genome 
Research Ltd.

http://www.sanger.ac.uk/Software/Rfam/index.shtml
http://lowelab.ucsc.edu/tRNAscan-SE/
http://selab.janelia.org/tRNAscan-SE/
http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::trnascan
http://www.bioinfbook.org/chapter10
http://myhits.isb-sib.ch/cgi-bin/dotlet
http://myhits.isb-sib.ch/cgi-bin/dotlet
http://lowelab.ucsc.edu/tRNAscan-SE/
http://www.bioinfbook.org/chapter10
http://selab.janelia.org/tRNAscan-SE/


Genomewide AnAlysis of dnA, RnA, And PRotein440

(a)

(b)

(c)
1

2

anticodon loop

D loop

acceptor

variable loop

TψC loop

FIGUre 10.5 Identification of tRNAs using the tRNAscan-SE server. 71 base pairs of DNA were 
input corresponding to a known human chromosome 21 tRNA. (a) Anticodon counts. These indicate 
that the input sequence includes a single tRNA having an anticodon that pairs with glycine codons GGC. 
(b) The predicted secondary structure of the tRNA. (c) Graphic of the predicted secondary structure 
showing the characteristic cloverleaf pattern of tRNAs. Note that the RNA nucleotides (A, G, C, U) 
are used, while in panel (b) the DNA nucleotides (A, G, C, T) are used. The first nucleotide is indicated 
(arrow 1), as is the anticodon GCC (arrow 2).

Source: tRNAscan-SE server (  http://lowelab.ucsc.edu/tRNAscan-SE/). Courtesy of T. Lowe, Lowe Lab.

http://lowelab.ucsc.edu/tRNAscan-SE/
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properties of primary sequence and secondary structure. Such an approach is motivated 
by the fact that noncoding RNAs may diverge over time in a way that preserves each 
molecule’s base-paired structure while conserving only a limited amount of sequence 
similarity between homologous RNAs.

A distinct approach to determining RNA structures is to estimate the minimum free 
energy of folding. This thermodynamic approach was pioneered by Zuker and Stiegler 
(1981). It is implemented in a variety of programs including the Vienna RNA package 
(Hofacker, 2003; Lorenz et al., 2011) which incorporates several folding algorithms. A 
sample output using the Vienna RNA webserver, using a chromosome 21 tRNA sequence 
as input, is shown in Figure 10.6.

In sequencing complete genomes it is of interest to identify all the tRNA genes which 
are often among the largest gene families. In the human genome, there are over 600 tRNA 
genes. The reason for so many genes is the necessity for large amounts of tRNAs to enable 
protein synthesis to occur in all cells throughout life. Two major database resources are 
the Genomic tRNA Database (GtRNAdb; Chan and Lowe, 2009) and TFAM (Tåquist et 
al., 2007). A summary of the number of tRNA genes in selected organisms is presented 
in table 10.2.

ribosomal rNa

Ribosomal RNA molecules form structural and functional components of ribosomes, 
the subcellular units responsible for protein synthesis. rRNA constitutes approxi-
mately 80–85% of the total RNA in a cell. In eukaryotes, synthesis of rRNA occurs in 
the nucleolus, a specialized structure within the nucleus. Purified ribosomes include 
particles that migrate at characteristic sedimentation coefficients upon centrifugation 
through a gradient (table 10.3). In bacteria these include the 70S ribonucleoprotein 
particle that is composed of 30S and 50S subunits, further containing three major 
rRNA forms (16S, 23S, and 5S). In eukaryotes the 80S ribonucleoprotein particle 
consists of a 40S and 60S ribosomal RNA subunits that are further processed to gen-
erate 18S, 28S, and 5.8S subunits.

The Vienna RNA package is 
available at  http://www.tbi.
univie.ac.at/RNA/ (WebLink 10.15).

The Genomic tRNA Database 
(G~tRNA~db) from the laboratory 
of Todd Lowe is available at  
http://lowelab.ucsc.edu/GtRNAdb/ 
(WebLink 10.16) and contains 
tRNA identifications of many 
genomes made using tRNAscan-
SE. TFAM is available at  http://
tfam.ucmerced.edu (WebLink 
10.17) and is especially useful for 
classifying tRNAs having unusual 
modifications. Another very useful 
resource is the tRNA database of 
Mathias Sprinzl and Konstantin 
Vassilenko available at  http://
trnadb.bioinf.uni-leipzig.de/ 
(WebLink 10.18).

Box 10.1 StochAStIc context-Free grAmmArS, or covArIAnce modelS

Hidden Markov models (HMMs) are probabilistic models that are useful in many areas of bioinformatics to identify features in 
sequences such as conserved residues that define a particular protein family (Chapter 5), or nucleotide residues that constitute the 
structure of a gene. Stochastic context-free grammars (SCFG; Sakakibara et al., 1994) or covariance models (Eddy and Durbin, 1994) 
constitute another class of probabilistic models that account for long-range correlations along a sequence that occur because of base 
pairing of noncoding RNA sequences that is required to form appropriate secondary structure such as a stem. Eddy and Durbin (1994) 
introduced a covariance model in which an RNA sequence is described as an ordered tree in which there are states M (including match 
states, insert states, and delete states), symbol emission probabilities (these are assigned to specific bases according to the 16 possible 
pairwise nucleotide combinations or the four unpaired nucleotides), and state transition probabilities (scores assigned to changing states 
such as entering an insert state). They found that the information content in the secondary structure of tRNA molecules is comparable 
to that of the primary sequences.
 SCFGs are comparable to covariance models. The input of a SCFG is a multiple sequence alignment of noncoding RNAs (such as 
tRNAs; Sakakibara et al., 1994). The SCFG models how to derive the observed sequences based on a set of “production rules.” Produc-
tion rules and their associated probabilities define a grammar. The advantages of a SCFG are that its parameters are derived from known 
RNA sequences and structures, and its probabilistic framework yields confidence estimates on its predictions. SCFGs (like HMMs) 
originate from the field of language processing (speech recognition).
 The Rfam covariance models generated by software called Infernal do not provide expect (E) values, but they do offer bit scores. 
These are derived from log-odds ratios of the probability that a sequence matches a covariance model divided by the probability that the 
sequence was generated by a random model.

http://www.tbi.univie.ac.at/RNA/
http://lowelab.ucsc.edu/GtRNAdb/
http://tfam.ucmerced.edu
http://tfam.ucmerced.edu
http://trnadb.bioinf.uni-leipzig.de/
http://trnadb.bioinf.uni-leipzig.de/
http://www.tbi.univie.ac.at/RNA/
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FIGUre  10.6 RNA structure 
prediction based on the min-
imum free energy of folding. 
A chromosome 21 sequence 
known to encode a tRNA (see 
Fig. 10.5 and Web Document 
10.3) was analyzed using the 
Vienna RNA web server. (a) 
Optimal predicted structure of 
RNA using bracket notation. 
Unpaired nucleotides are repre-
sented as dots, while base-paired 
nucleotides are represented by 
a pair of matching parentheses. 
The minimum free energy was 
–35.96  kcal/mol. (b) Predicted 
structure of the RNA including 
stems (double-stranded regions 
with base pairing) and loops (sin-
gle-stranded regions). (c) Plot of 
the minimum free energy (mfe) 
and a positional entropy measure 
(pf; y  axis) versus the nucleo-
tide position of the input DNA 
sequence (x axis).

Source: Vienna RNA web server, 
2014. Reproduced with permission 
from I. Hofacker.
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table 10.2 Summary of the number of trNa genes in selected organisms. the 
“other” category refers to selenocysteine trNas (tCa), suppressor trNas (Cta,tta), or 
trNas with undetermined or unknown isotypes. additionally, some organisms have 
trNas with introns (e.g., human, 32; P. falciparum, 1; Arabidopsis, 83). 

Organism Common name

No. tRNAs decoding 

the 20 amino acids

No. predicted 

pseudogenes Other Total

Homo sapiens Human 506 110 9 625

Pan troglodytes Chimpanzee 456 0 3 459

Mus musculus Mouse 432 0 3 435

Canis familiaris Dog (Canfam1) 898 0 8 906

Drosophila melanogaster Fruit fly 298 4 2 304

Saccharomyces cerevisiae Baker’s yeast 286 6 3 295

Arabidopsis thaliana Plant 630 8 1 639

Plasmodium falciparum Malaria parasite  35 0 0  35

Methanococcus jannaschii Archaeon  36 0 1  37

Escherichia coli K12 Bacterium  86 1 1  88

Mycobacterium leprae Bacterium  45 0 0  45

Source:  http://genome.ucsc.edu, courtesy of UCSC.

rRNA derives from a multicopy ribosomal DNA (rDNA) gene family. In humans 
these families are localized to the p arms (i.e., short arms) of the five acrocentric chro-
mosomes (13, 14, 15, 21, and 22; Henderson et al., 1972). The rDNA loci consist of 
a repeat unit, about 43 kilobases in length, of which 13 kilobases are transcribed and 
the remainder are nontranscribed spacers (Fig. 10.7). The rDNA genes are identified as 
RNR1 (mitochondrially encoded 12S RNA), RNR2 (mitochondrially encoded 16S RNA), 
RNR3, RNR4, and RNR5. In the human genome, there are typically ∼400 copies of the 
rDNA repeat. These loci share a high degree of sequence conservation in a process of 
homogenization that involves both concerted evolution through recombination and gene 
conversion.

Ribosomal RNA genes have a complex repetitive structure, tremendous conser-
vation across loci on different chromosomes, and enormous variability in the size of 

We discussed the structure of 
the chromosome in Chapter 8, 
including explanations of 
mechanisms for conserving 
sequence identity across 
chromosomal loci such as 
concerted evolution and gene 
conversion. The five acrocentric 
chromosomes have a centromere 
positioned near an end of the 
chromosome rather than in the 
center.

table 10.3 Major forms of rrNa in bacteria and eukaryotes. S: sedimentation coefficient; MW: molecular weight. 
accession numbers are provided for E. coli and human rrNas. adapted from NCbI and Dayhoff et al. (1972, p. D352).

Domain RN MW

Ribosomal 

subunits

rRNA 

species Function

Accession 

number

No. base 

pairs

RFAM 

accession

Bacteria 70S 2.6×106 30S (small) 16S Binding mRNA M25588.1 1504 RF00177

50S (large) 23S Peptide bond 
formation

M25458.1  542 RF02541

5S M24300.1  120 RF00001

Eukaryotes 80S 4.3×106 40S (small) 18S Binding mRNA NR_003286.2 1869 RF01960

60S (large) 28S Peptide bond 
formation

NR_003287.2 5070 RF02543

5.8S NR_003285.2  156 RF00002

5S NR_023363.1  121 RF00001

http://genome.ucsc.edu
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distal
non-rDNA terminal rDNA unit

18S 28S5′ETSt-p53 3′ETS IGSDJU ψ28 ψIGStelomere 18S 28S5′ETSi-p53 3′ETS IGS

internal rDNA repeat

FIGUre 10.7 Structure of a eukaryotic ribosomal DNA repeat unit. A region of an acrocentric chromosome is depicted from the telomere 
(left side, denoted by an end of the chromosome) to a distal non-rDNA region (containing sequences DJU and two pseudogene regions), then 
a distal junction (vertical dotted line). To the right (3′ end) of this distal junction a terminal rDNA unit is shown; this unit is repeated internally 
many times, with each unit sharing identical or nearly identical DNA sequence. This region is found in GenBank accession U67616 (8353 
base pairs including a variety of repetitive DNA elements and 28S rDNA pseudogenes) and U13369 (42,999 base pairs including transcribed 
spacers, DNA encoding 18S, 5.8S, and 28S rRNA, and various repetitive DNA elements). IGS: intergenic spacer (also called nontranscribed 
spacer); ITS: internal transcribed spacer. Adapted from Gonzalez and Sylvester (2001), with permission from Elsevier.

the loci between individuals. They are therefore not currently incorporated into the 
reference human genome at NCBI, UCSC, or Ensembl. To identify human rRNA 
RefSeq sequences from GenBank, follow the following steps. (1) From the home 
page of NCBI, navigate to  NCBI Nucleotide and restrict the search to human using 
the search builder. (2) Currently (May 2015) there are nearly 11 million entries. 
Click “rRNA” under the “molecule types” filter. (3) There are now 30 RefSeq 
entries corresponding to 5.8S rRNA (e.g., NR_003285; 156 base pairs), 28S rRNA 
(NR_003287; 5070 base pairs), 18S rRNA (NR_003286; 1869 base pairs), and 45S 
rRNA (NR_046235; 13,357 base pairs). For each, the chromosomal assignment is to 
the acrocentric p-arms.

rDNA sequences are particularly important for phylogenetic analyses across life 
forms (including the three domains of bacteria, archaea, and eukaryotes). They are 
uniquely useful because they are closely conserved enough to permit trusted multiple 
sequence alignments, while they are specific enough to each species that they permit 
accurate classification. Furthermore, rDNA can be sequenced from environmental sam-
ples such as soil or water from which vast numbers of species exist but cannot be cultured 
(see Chapter 15). Further, rDNA genes are generally not subject to lateral gene transfer 
(discussed in Chapter 17); that is a form of inheritance in which genes are transmitted 
horizontally across species rather than being inherited through generations within a spe-
cies, and it can confound phylogenetic analyses.

Currently there are over 150,000 16S rRNA sequences in GenBank (see Schloss and 
Hanelsman, 2004). There are several major databases of rRNA sequences including the 
Ribosomal Database Project (RDB; Cole et al., 2007). RDP includes millions of aligned 
and annotated rRNA sequences, one-third from cultivated bacterial strains and two-thirds 
from environmental samples. Alignment is performed against a bacterial rRNA alignment 
model using a stochastic context-free grammar (Box 10.1) as described by Sakakibara et 
al. (1994).

The ARB project is another major resource for RNA studies (Ludwig et al., 2004). It 
includes a UNIX-based program with a graphical interface that provides software tools 
to analyze large rRNA databases (such as those imported from the RDP). The related 
SILVA database includes small subunit (16S, 18S) and large submuit (23S, 28S) rRNA 
from bacteria, archaea, and eukaryotes. Sequences are downloadable from a browser in 
the FASTA or other formats.

RNAmmer is a hidden Markov model approach to identifying rRNA genes, particu-
larly in newly sequenced genomes (Lagesen et al., 2007). It is useful for searching with 
large amounts of DNA (e.g., up to 20 million nucleotides) to identify the genomic loci of 
rRNA genes.

RefSeq accession numbers 
having the format NR_123456 
consist of noncoding transcripts 
including structural RNAs and 
transcribed pseudogenes. Four 
human RefSeq accessions 
for rRNA are given in Web 
Document 10.4 at  http://www 
.bioinfbook.org/chapter10 along 
with a 43-kilobase sequence 
from which they are derived.

RDP is online at  http://rdp 
.cme.msu.edu/index.jsp (WebLink 
10.19). Release 11 (September 
2014) contains over 3 million 
16S rRNA sequences. For an 
example of human genomic 
DNA sequence that you can use 
as an input to search Rfam or 
RDP for rRNA families, see Web 
Document 10.5 at  http://www 
.bioinfbook.org/chapter10.

You can access the ARB project 
at  http://www.arb-home 
.de/ (WebLink 10.20). It was 
developed by Wolfgang Ludwig 
and colleagues at the Technical 
University, Munich. ARB refers to 
arbor (Latin for tree) while silva 
is Latin for forest. The SILVA 
website (including a browser) 
is  http://silva.mpi-bremen.de/ 
(WebLink 10.21).

http://www.bioinfbook.org/chapter10
http://rdp.cme.msu.edu/index.jsp
http://www.bioinfbook.org/chapter10
http://www.arb-home.de/
http://silva.mpi-bremen.de/
http://www.bioinfbook.org/chapter10
http://rdp.cme.msu.edu/index.jsp
http://www.bioinfbook.org/chapter10
http://www.arb-home.de/
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Small Nuclear rNa

Small nuclear RNA (snRNA) is localized to the nucleus and consists of a family of RNAs 
that are responsible for functions such as RNA splicing (in which introns are removed 
from genomic DNA to generate mature mRNA transcripts) and the maintenance of telo-
meres (chromosome ends). snRNAs associate with proteins to form small nuclear ribo-
nucleoproteins (snRNPs).

The spliceosome is a nuclear complex that includes hundreds of proteins and the five 
snRNAs U1, U2, U4, U5, and U6 (Valadkhan, 2005). Properties of several of these snR-
NAs are given in table 10.4. In humans there are about 100 copies of the U4 gene (Bark 
et al., 1986; Rfam family RF00015) and there are about 1200 copies of the U6 snRNA, 
including many pseudogenes (nonfunctional genes; Rfam family RF00026). Pseudogenes 
of protein-coding genes are relatively straightforward to detect because the interruption of 
an open reading frame can be recognized (see Chapter 8). The identification of nonfunc-
tional, noncoding RNAs presents a far greater challenge because there are no landmarks 
such as open reading frames, and functional noncoding RNAs are routinely found to have 
divergent sequences.

Small Nucleolar rNa

In eukaryotes, ribosome biogenesis occurs in the nucleolus. This process is facilitated by 
small nucleolar RNAs (snoRNAs), a group of noncoding RNAs that process and modify 
rRNA and small nuclear spliceosomal RNAs. The two main classes of snoRNAs are C/D 
box RNAs, which methylate rRNA on a 2′-O-ribose position, and H/ACA box RNAs, 
which convert uridine to pseudouridine in rRNA. table 10.5 presents several online data-
bases that list snoRNAs.

Computational approaches have facilitated the discovery of snoRNAs. For example, 
after the genome of the yeast Saccharomyces cerevisiae was completely sequenced (see 
Chapter 18), snoRNAs remained challenging to identify. Lowe and Eddy (1999) used 
a covariance model to identify 22 snoRNAs whose function in methylating rRNA they 
subsequently confirmed.

MicrorNa

MicroRNAs (miRNAs) are noncoding RNA molecules of approximately 22 nucleotides 
that have been identified in animals and plants. Since their discovery in the 1990s there 

You can access RNAmmer at 
 http://www.cbs.dtu.dk/services/

RNAmmer/ (WebLink 10.22).

77 snoRNAs have currently 
been annotated in S. cerevisiae 
(Saccharomyces Genome 
Database,  http://www 
.yeastgenome.org, WebLink 
10.23).

table 10.4 examples of human noncoding spliceosomal rNas.

Name Accession Chromosome Length (base pairs)

RNU2-1 NR_002716.3 17 q12-q21 188

RNU4-1 NR_003925.1 12q24.31 144

RNU5F-1 NR_002753.5 1p34.1 116

RNU6-2 NR_002752.2 10p13 107

table 10.5 Small nucleolar rNa (snorNa) resources.

Database Focus URL

Plant snoRNA database Arabidopsis snoRNAs http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/home

Yeast snoRNA database H/ACA and C/D box snoRNAs http://people.biochem.umass.edu/fournierlab/snornadb/main.php

SnoRNABase human H/ACA and C/D box snoRNAs https://www-snorna.biotoul.fr//

http://www.cbs.dtu.dk/services/RNAmmer/
http://www.yeastgenome.org
http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/home
http://people.biochem.umass.edu/fournierlab/snornadb/main.php
https://www-snorna.biotoul.fr//
http://www.cbs.dtu.dk/services/RNAmmer/
http://www.yeastgenome.org
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has been tremendous interest because of their potential functional roles in regulating 
gene expression (Pasquinelli, 2012). The earliest members of this family to be identified 
were the lin-4 and let-7 gene products of the worm Caenorhabditis elegans (Pasquinelli 
and Ruvkun, 2002). Those genes were identified through positional cloning in a forward 
genetics strategy: a worm mutant having a defective cell lineage was identified, and a 
mutation in the lin-4 RNA was shown to account for the phenotype (Lee et al., 1993). 
Subsequently, many other miRNA candidates have been identified by complementary 
DNA (cDNA) cloning of size-selected RNA samples. More recently, next-generation 
sequencing has been applied in the form of miRNA-seq (for examples of analysis tools 
see Cho et al., 2013; Humphreys and Suter, 2013). The major function of microRNAs 
appears to be the downregulation of protein function by inhibiting the translation of pro-
tein from mRNA or by promoting the degradation of mRNA.

We can examine a typical microRNA by visiting miRBase, a repository of miRNA 
data (Kozomara and Griffiths-Jones, 2011). It is possible to browse by organism and 
find a group of microRNAs assigned to human chromosome 21. Currently, these include 
hsa-let-7c, hsa-mir-99a, hsa-mir-125b-2, hsa-mir-155, and hsa-mir-802. The entry for 
let-7c includes the predicted stem-loop structure, the results of next-generation sequenc-
ing (including the number of reads per million, in this case across >70 experiments), 
the genomic coordinates on chromosome 21, a description of neighboring microRNAs 
(e.g., hsa-mir-99a is less than 10 kilobases away), and database links (e.g., to the Euro-
pean Molecular Biology Laboratory, Rfam, and the Human Genome Organization official 
nomenclature).

MiRBase also provides links to predicted targets of each microRNA. These targets 
are RNA transcripts that are potentially regulated by a given microRNA (Rajewsky, 2006; 
Ritchie et al., 2013). The main approaches to predicting targets include:

 • Sequence-based approaches matching complementarity between the ∼8 nucleotide 
seed region of an miRNA and the 3′ untranslated region of potential targets. Since 
this potentially includes gaps, mismatches, and G/U base pairing, the number of pos-
sible targets may be extremely large.

 • Sequence conservation of 3′ UTR target sites across species.
 • Analysis of miRNA and messenger RNA (mRNA) expression data. In most cases, 
increased expression of an miRNA is associated with decreased expression of its 
target.

 • Analysis of thermodynamic stability of the microRNA:mRNA duplex.

Predictions in miRBase are linked from six databases: Diana (predicting ∼1000 target 
genes for the case of has-let-7c; Paraskevopoulou et al., 2013); microRNA (predicting 
∼5400 target genes; Betel et al., 2008); MiRanda (210 predicted targets; Wang, 2008); 
RNA22 (>15,000 predictions; Miranda et al., 2006); TargetScan (>1000 predictions; 
Friedman et al., 2009); and Pictar (∼600 predicted targets; Krek et al., 2005). These pre-
dictions serve as useful guides to potential targets, although most have not been experi-
mentally validated.

It can be challenging to distinguish an authentic microRNA from other classes of 
noncoding (or coding) RNA. Ambros et al. (2003) proposed a series of definitions of 
microRNAs based on two criteria regarding their expression:

1. microRNAs consist of an RNA transcript of about 22 nucleotides based on hybridiza-
tion of the transcript to size-fractionated RNA. Typically, this is accomplished by a 
Northern blot in which total RNA is purified from a sample such as a cell line, electro-
phoresed on an agarose gel, transferred to a membrane, and probed with a radioactively 
labeled form of the candidate miRNA. This experiment shows the size of the RNA, its 
abundance, and whether the probe hybridizes to multiple RNA species in a sample.

miRBase is available at  http://
www.mirbase.org/ (WebLink 
10.24). Release 21 (June 2014) 
includes 29,000 entries for 
precursors including from 
>200 species. Chromosome 21 
microRNAs are available in Web 
Document 10.6 at  http://www 
.bioinfbook.org/chapter10. We 
can download a GFF3 format file 
of all human miRNAs (or miRNAs 
from over 200 other species) 
from  ftp://mirbase.org/pub/
mirbase/CURRENT/genomes/ 
(WebLink 10.25). This currently 
includes >24,000 hairpin 
precursor miRNAs expressing 
>30,000 mature miRNA 
products. For target predictions, 
databases include MiRanda 
(part of MiRBase); TargetScan at 

 http://www.targetscan 
.org (WebLink 10.26); Pictar 
at  http://pictar.mdc-berlin.
de/ (WebLink 10.27); DIANA at 

 http://diana.pcbi.upenn.edu/
cgi-bin/micro_t.cgi/ (WebLink 
10.28); and RNAHybrid at 

 http://bibiserv.techfak.
uni-bielefeld.de/rnahybrid/ 
(WebLink 10.29).

http://www.mirbase.org/
http://www.mirbase.org/
http://www.bioinfbook.org/chapter10
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/
http://www.targetscan.org
http://pictar.mdc-berlin.de/
http://diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi/
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
http://www.bioinfbook.org/chapter10
ftp://mirbase.org/pub/mirbase/CURRENT/genomes/
http://www.targetscan.org


bioiNfoRMAtic AppRoAcheS to RiboNucLeic AciD (RNA) 447

2. The ∼22 nucleotide candidate should be present in a library of cDNAs that is prepared 
from size-fractionated RNA.

Ambros et al. (2003) proposed three additional criteria concerning miRNA biogenesis:

3. The miRNA should have a precursor structure (typically 60–80 nucleotides in animals) 
that potentially folds into a stem (or hairpin) with the ∼22 nucleotide mature miRNA 
located in one arm of the hairpin. Such a structure is predicted by RNA-folding pro-
grams such as mfold (Mathews et al., 1999).

4. Both the ∼22 nucleotide miRNA sequence and its predicted fold-back precursor sec-
ondary structure must be phylogenetically conserved.

5. Dicer is a protein that functions as a ribonuclease and is involved in processing small 
noncoding RNAs. There should be increased precursor accumulation in organisms 
having reduced Dicer function.

Ideally, a putative miRNA meets all five of these criteria, although in practice a subset 
(such as 1 and 4) may be sufficient.

Short Interfering rNa

In 1998 Andrew Fire, Craig Mello and colleagues reported that double-stranded RNA 
introduced into the nematode Caenhorhabditis elegans can suppress the activity of a 
gene (Fire et al., 1988). This process is called RNA interference (RNAi). They found 
that gene silencing occurred when they injected annealed, double-stranded RNA, but 
not either sense or antisense RNA alone. The silencing was specific to each target gene 
they studied (such as unc-22), and depended upon the injection of double-stranded 
RNA corresponding to exons rather than introns or promoter sequences. Messenger 
RNA that is targeted by RNAi is degraded prior to translation, with double-stranded 
RNA targeting homologous mRNAs in a catalytic manner. This process depends on 
an RNA-inducing silencing complex (RISC) that includes an endonuclease (to cleave 
mRNA) and the nuclease Dicer that converts large double-stranded RNA precursors to 
short interfering RNA.

It is now recognized that RNA interference has many functional implications for 
eukaryotic cells. RNAi can protect plant and animal cells against infection by sin-
gle-stranded RNA viruses. RNAi further protects cells from the harmful action of endog-
enous transposons. These are mobile genetic elements that comprise portions of the 
human and other genomes. The RNAi mechanism also offers an experimental approach 
to systematically inhibit the function of genes in mammalian systems; we consider this 
approach in Chapter 14 (functional genomics).

long Noncoding rNa (lncrNa)

In the course of the past decade long noncoding RNAs (lncRNAs) have emerged as the 
targets class of transcripts in mammalian genomes, with proposed roles in silencing or 
activating target genes (Lee, 2012; Kornienko et al., 2013). Xist and Air, described above, 
are prominent examples. The ENCODE project consortium characterized lncRNAs as 
part of the GENCODE effort (Djebali et al., 2012), and Derrien et al. (2012) defined them 
according to their location relative to protein-coding genes:

 • Antisense RNAs include transcripts that overlap an exon on its opposite strand.
 • Large intergentic noncoding RNAs (lincRNAs) have lengths >200 base pairs.
 • Sense overlapping transcripts consist of a coding gene within an intron on the same 
strand.

 • Sense intronic transcripts are localized within introns (but do not intersect exons).
 • Processed transcripts do not contain an open reading frame (ORF).

We describe cDNA libraries in 
“Analysis of Gene Expression in 
cDNA Libraries”.

A RefSeq accession for 
the human Dicer protein is 
NP_085124.2.

Andrew Fire and Craig Mello 
were awarded the 2006 Nobel 
Prize in Physiology or Medicine 
“for their discovery of RNA 
interference - gene silencing 
by double-stranded RNA.” 
See  http://nobelprize.org/ 
nobel_prizes/medicine/
laureates/2006/ (WebLink 10.30).

A human lincRNA catalog 
described by Cabili et al. (2011) 
is available at  http://www 
.broadinstitute.org/genome_bio/
human_lincrnas/ (WebLink 
10.31). As of February 2015 it 
includes over 14,000 lincRNAs. 
Derrien et al. (2012) note that their 
ENCODE project catalog has just 
39% overlap with that of Cabili 
et al., leading to the question of 
how to evaluate error rates in 
noncoding RNA annotation.

The ENCODE project hosts a 
human gene annotation catalog  
at  http://www.gencodegenes 
.org/ (WebLink 10.32). Version 18 
(2013) includes >13,000 lncRNAs. 
Another resource is lncRNome 
(Bhartiya et al., 2013), a database 
of human lncRNAs (  http://
genome.igib.res.in/lncRNome/, 
(WebLink 10.33).

http://nobelprize.org/nobel_prizes/medicine/laureates/2006/
http://www.broadinstitute.org/genome_bio/human_lincrnas/
http://www.gencodegenes.org/
http://genome.igib.res.in/lncRNome/
http://genome.igib.res.in/lncRNome/
http://nobelprize.org/nobel_prizes/medicine/laureates/2006/
http://www.broadinstitute.org/genome_bio/human_lincrnas/
http://www.gencodegenes.org/
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The ENCODE findings from Derrien et al. (2012) included the following:

 • The majority of human lncRNA transcripts are intergenic (and therefore correspond 
to lincRNAs).

 • Most lncRNAs lack coding potential (as expected).
 • 98% of lncRNAs are spliced, and 42% of them have two exons. Introns tend to be 
longer than those of protein-coding genes (median 2.3 versus 1.6 kilobases).

 • lncRNAs are under modest purifying selection (more than for neutrally evolving 
ancestral repeats, but less than for protein-coding genes).

 • lncRNA genes have transcription start site histone profiles that are similar to those of 
protein-coding genes. Their expression tends to be highly cell-type specific.

Other Noncoding rNa

Noncoding RNAs have been named according to size (e.g., lncRNA, microRNA), cellu-
lar localization (rRNA, snRNA, snoRNA), function (mRNA, tRNA), or position and ori-
entation (antisense RNA) (Guenzl and Barlow, 2012). PIWI-interacting RNAs (piRNAs) 
represent another class of nconcoding RNAs, in this case named by their interacting 
partners. These noncoding RNAs mediate silencing of genes encoding PIWI proteins 
(Luteijn and Ketting, 2013). Studies in Drosophila remarkably show that a protein-coding 
gene can be converted into a piRNA-producing locus which transcribes piRNAs which 
silence that gene. This effect may be maintained over generations, and could involve 
altered chromatin structure and/or recruitment of protein machinery needed for piRNA 
processing.

Noncoding rNas in the UCSC Genome and table browser

As the human genome and and other vertebrate genomes continue to be sequenced and 
analyzed in increasing depth, the Ensembl and UCSC Genome Browsers have emerged 
as essential tools for visualizing genomic data (introduced in Chapter 2). For noncoding 
RNAs we can view human chromosome 21 and display a series of user-selected annota-
tion tracks. The following tracks are visible at the resolution of the entire chromosome 21 
(48 million base pairs; Fig. 10.8):

 • A tRNAscan-SE track shows the two chromosome 21 tRNAs we discussed in “Trans-
fer RNA” above.

 • A track from miRBase and snoRNABase shows: (1) precursor forms of microRNAs 
(pre-miRNAs); (2) C/D box small nucleolar RNAs (C/D box snoRNAs); (3) H/ACA 
box snoRNAs; and (4) small Cajal body-specific RNAs (scaRNAs) (Lestrade and 
Weber, 2006). There are 11 such noncoding RNA genes on this chromosome, includ-
ing 10 pre-miRNAs and one snoRNA (ACA67).

 • Evofold (Pedersen et al., 2006) shows RNA secondary structure predictions based on 
phylogenetic stochastic context-free grammars.

 • A lincRNA track shows RNA-seq data from 22 tissues encompassing over 450 anno-
tated lincRNAs (Cabili et al., 2011). The expression abundances can be displayed, or 
the presence of lincRNA and transcripts of uncertain coding potential (TUCP).

 • The TargetScanS miRNA Regulatory Sites track shows putative miRNA binding sites 
in the 3′ untranslated region of RefSeq genes. These sites are predicted by the Target-
ScanS program (Lewis et al., 2005).

 • Noncoding gene predictions from the H-Invitational Gene Database are shown.
 • We also display data on expressed coding genes (discussed below).

As we have seen, the UCSC Table Browser is complementary to the Genome 
Browser. Suppose we want to know the exact number of EvoFold entries that occur on 

The miRNA data are from  
 http://www.mirbase 

.org/ (WebLink 10.34). The 
snoRNABase is available online 
at  http://www-snorna.biotoul 
.fr/ (WebLink 10.35).

http://www.mirbase.org/
http://www-snorna.biotoul.fr/
http://www.mirbase.org/
http://www-snorna.biotoul.fr/
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chromosome 21. From the full view of chromosome 21 click the “Table Browser” link 
on the top bar. Choose the table of interest (e.g., EvoFold) and click “summary/statistics” 
to see that there are 306 EvoFold items. For sno/miRNAs there are 11 items; by click-
ing “get output” you can obtain their genomic coordinate positions. How many RefSeq 
genes overlap these Evofold regions on chromosome 21? To answer this, simply click 
the “intersection” button and, from the Genes and Gene Prediction Tracks group, select 
RefSeq genes; at the time of writing (February 2015), using the GRCh37/hg19 genome 
build the answer is 133.

1

tRNA

EvoFold

lincRNA

lincRNA 
and TUCP

TargetScan 
miRNA
regulatory sites

H-Inv nc

C/D and H/ACA
box snoRNAs,
scaRNAs, miRNAs

MGC
mRNAs
ESTs
H-Inv

FIGUre 10.8 Viewing the genomic landscape of noncoding RNAs on human chromosome 21. To 
recreate this display, visit  http://genome.ucsc.edu and select Genome Browser. Set the clade to verte-
brate, the genome to human, the assembly to GRCh37/hg19 (different assemblies have varying annota-
tion tracks available), the position to chr21, and click submit. All of chromosome 21 is displayed (about 
48.1 million base pairs). You can specify which annotation tracks to select using a series of pull-down 
menus; under the Genes and Gene Prediction Tracks category select Refeq genes, tRNA Genes, Evo-
Fold, sno/miRNA, lincRNA, H-Inv, and Mammalian Gene Collection (MGC) Genes. Additional tracks 
from the mRNA and EST Tracks group are human mRNAs, human expressed sequence tags (ESTs), and 
H-Inv. The TargetScan miRNA sites track is from the Regulation group.

Source:  http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
http://genome.ucsc.edu
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IntroductIon to meSSenger rnA
Gene expression occurs when DNA is transcribed into RNA. Each eukaryotic cell con-
tains a nucleus with some 2000–60,000 protein-coding genes, depending on the organism. 
However, at any given time the cell expresses only a subset of those genes as mRNA tran-
scripts. The set of genes expressed by a genome is sometimes called the transcriptome. A 
conventional view that emerged since the “one gene, one enzyme” hypothesis of Beadle 
and Tatum, which continued through the establishment of the central dogma of molecular 
biology, is that genes correspond to discrete loci and are transcribed to mRNA in order 
to make a protein product. We now appreciate that the situation is vastly more complex 
because of the existence of noncoding RNAs, the interruption of genes by introns, the 
existence of alternative splicing to generate different mRNA transcripts that often pro-
duce distinct protein products, and the pervasive transcription of most nucleotide bases 
in the genome. We discuss these topics below. Furthermore, while humans, chimpanzees, 
and mice all have an extremely closely related set of about 20,000 protein-coding genes 
per genome, what distinguishes the phenotypic expression of each species may depend on 
the intricacies of the regulation of gene expression. Gene expression is typically regulated 
in several basic ways:

 • by region (e.g., brain versus kidney);
 • in development (e.g., fetal versus adult tissue);
 • in dynamic response to environmental signals (e.g., immediate–early response genes 
that are activated by a drug);

 • in disease states; or
 • by gene activity (e.g., mutant versus wildtype bacterium).

The comparison of gene expression profiles has been used to address a variety of 
biological questions in an assortment of organisms. For viruses and bacteria, studies 
have focused both on viral and bacterial gene expression and also on the host response 
to pathogenic invasion. Among eukaryotes, gene expression studies, and in particular 
microarrays, have been employed to address fundamental questions such as the iden-
tification of genes activated during the cell cycle or throughout development. In mul-
ticellular animals cell-specific gene expression has been investigated, and the effect of 
disease on gene expression has been studied in rodents and primates (including humans). 
In recent years, gene expression profiling has become especially important in the anno-
tation of genomic DNA sequences. When the genome of an organism is sequenced, one 
of the most fundamental issues is to determine which genes it encodes (Chapters 15–19). 
Large-scale sequencing of expressed genes, such as those isolated from cDNA libraries 
(described in “Analysis of Gene Expression in cDNA Libraries” below), is invaluable in 
helping to identify gene sequences in genomic DNA.

mrNa: Subject of Gene expression Studies

Consider what is measured in gene expression studies. In most cases, total RNA is iso-
lated from cells of interest. (Sometimes, polyadenylated RNA is isolated.) This RNA is 
readily purified using chaotropic agents that separate RNA from DNA, protein, lipids, 
and other cellular components. In this way steady-state RNA transcript levels can be 
measured, reflecting the activity of a gene. Gene expression is regulated in a set of com-
plex steps that can be divided into four categories: transcription, RNA processing, mRNA 
export, and RNA surveillance (Maniatis and Reed, 2002) (Fig. 10.9).

1. Transcription. Genomic DNA is transcribed into RNA in a set of highly regulated steps. 
In the 1970s, sequence analysis of genomic DNA revealed that portions of the DNA 
(called exons) match the contiguous open reading frame of the corresponding mRNA, 

For the range of gene content 
in eukaryotic genomes see 
Chapters 18–20.

In addition to viewing gene 
expression as a dynamically 
regulated process, we can also 
view proteins and metabolites as 
regulated dynamically in every 
cell. See Chapter 12.



bioiNfoRMAtic AppRoAcheS to RiboNucLeic AciD (RNA) 451

while other regions of genomic DNA (introns) represent intervening sequences that are 
not present in mature mRNA.

2. RNA Processing. Introns are excised from pre-mRNA by the spliceosome, a complex 
of five stable small nuclear RNAs (snRNAs) and over 70 proteins. Alternative splic-
ing occurs when the spliceosome selectively includes or excludes particular exons 
(Modrek and Lee, 2002). Pre-mRNA also is capped at the 5′ end. (Eukaryotic mRNAs 
contain an inverted guanosine called a cap.) Mature mRNA has the unique property 
among nucleic acids of having a long string of adenine residues attached to its 3′ end. 
This tract is typically preceded by the polyadenylation signal AAUAAA or AUUAAA, 
located 10–35 nucleotides upstream. Polyadenylation of mRNA is extremely conve-
nient from an experimental point of view, because an oligonucleotide (consisting of a 
string of thymidine residues attached to a solid support, oligo(dT) resin) can be used to 
rapidly isolate mRNA to a high degree of purity. In some cases gene expression studies 
employ total RNA, while many others employ mRNA.

3. RNA Export. After splicing occurs, RNA is exported from the nucleus to the cytoplasm 
where translation occurs. Note that the phrase “gene expression profiling” is com-
monly used to describe the measurement of steady-state cytoplasmic RNA transcript 
levels, but may not be precisely correct. “RNA transcript level profiling” is what is per-
formed, and the actual expression of genes is an activity that is not directly measured.

4. RNA Surveillance. An extensive RNA surveillance process allows eukaryotic cells to 
scan pre-mRNA and mRNA molecules for nonsense mutations (inappropriate stop 
codons) or frame-shift mutations (Maquat, 2002). This nonsense-mediated decay 
mechanism is important in the maintenance of functional mRNA molecules. Addi-
tional mechanisms control the half-life of mRNAs, targeting them for degradation and 
therefore regulating their availability.

Let us consider human α2 globin mRNA as an example of a transcript. The func-
tion of the globin genes has been characterized in detail. The two alpha globin genes, 
HBA1 and HBA2, encode proteins sharing 100% identical amino acid sequence. How-
ever, the HBA2 mRNA transcript and protein are expressed at levels about three-fold 
higher than the mRNA and protein products of the HBA1 gene (Liebhaber et al., 1986). 
We can view the HBA2 gene using the UCSC Genome Browser. There are three exons as 
shown in Figure 10.10a. The exons are interrupted by introns; to view this, try performing 
a BLASTN search of the RefSeq DNA sequence for HBA2 against the corresponding 
region of genomic DNA (Fig. 10.10b). (We also see this by using HBA2 protein as a BLAT 
query.) Matches to the exons are evident as pairwise alignments, but the introns (absent 
from the mature mRNA and therefore not part of the NM_000517 entry) do not match 
the genomic reference. By zooming in on the first exon of HBA2, we can see that it is 
transcribed along the top strand (from left to right beginning at the short arm of chromo-
some 16; Fig. 10.10c). The RefSeq track shows the portion of the first exon that is at the 5′ 
untranslated end (left side), then the coding portion of the exon is displayed with a thick-
ened bar (Fig. 10.10c). Here the third or bottom reading frame begins with a methionine 
and continues to correspond to the protein sequence encoded by HBA2.

The HBA2 gene locus includes portions corresponding to the coding region as well 
as 5′ and 3′ untranslated regions (UTRs). These UTRs typically contain regulatory sig-
nals such as a ribosome binding site near the start methionine and a polyadenylation 
signal (often AATAAA) in the 3′ UTR. In the case of alpha 2 globin, the 3′ UTR contains 
three cytosine-rich (C-rich) segments that are critical for maintaining the stability of the 
mRNA (Waggoner and Liebhaber, 2003). Specific RNA-binding proteins interact with 
the 3′ UTR which adopts a stem-loop structure. Mutations that disrupt this region can 
lead to destabilization of α-globin mRNA, causing a form of the disease α-thalassemia 
(Chapter 21).

A molecule in Drosophila provides 
an extraordinary example of 
alternative splicing. The Down 
syndrome cell adhesion molecule 
(DSCAM) gene product potentially 
exists in more than 38,000 distinct 
isoforms (Schmucker et al., 2000; 
Celotto and Graveley, 2001). The 
gene contains 95 exons (e.g., 
NM_001273835.1). Functionally, 
multiple DSCAM proteins may 
confer specificity to neuronal 
connections in Drosophila.

Richard J. Roberts and Phillip A. 
Sharp received the 1993 Nobel 
Prize in Physiology or Medicine 
for their discovery of “split 
genes.” See  http://www.nobel 
.se/medicine/laureates/1993/ 
(WebLink 10.36).

Some alignments of RNA-derived 
sequences and the corresponding 
genomic DNA have mismatches. 
These discrepancies may 
reflect polymorphisms or errors 
associated with either the 
sequencing of genomic DNA or 
cDNA. One way to decide which 
sequence has an error is to 
look for consistency. If multiple, 
independently derived genomic 
DNA clones or expressed 
sequence tags have the identical 
nucleotide sequence in a region 
of interest, you can be more 
confident that sequence is 
correct. See Chapter 15 for a 
further discussion.

http://www.nobel.se/medicine/laureates/1993/
http://www.nobel.se/medicine/laureates/1993/
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low- and high-throughput technologies to Study mrNas

We focus on three techniques for the study of mRNAs: complementary DNA (cDNA) 
libraries, microarrays using the Affymetrix platform, and RNA-seq.

In recent decades, gene expression has been studied using a variety of techniques such 
as Northern blotting, the polymerase chain reaction with reverse transcription (RT-PCR), 
and the RNase protection assay. Each of these approaches is used to study one transcript 
at a time. In Northern blotting, RNA is isolated, electrophoresed on an agarose gel, and 
probed with a radioactive or fluorescently labeled cDNA derived from an individual gene. 
Quantitative RT-PCR (qRT-PCR) employs specific oligonucleotide primers to exponen-
tially amplify specific transcripts as cDNA products. RNase protection is used to quan-
titate the amount of an RNA transcript in a sample based upon the ability of a specific 
in vitro transcribed cDNA to protect an endogenous transcript from degradation with a 
ribonuclease. Gene expression may be compared in several experimental conditions (such 
as normal versus diseased tissue, cell lines with or without drug treatment). The signals 
may be quantitated. Signals are also normalized to a number of housekeeping genes or 
other controls that are expected to remain unchanged in their expression levels.

From one point of view, low-throughput techniques such as Northern blotting and 
quantitative RT-PCR are laborious and do not give as much information as high-throughput 

The enzyme reverse 
transcriptase, present in 
retroviruses, is an RNA-
dependent DNA polymerase (i.e., 
it converts RNA to DNA).
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FIGUre 10.9 RNA processing of eukaryotic genes. Genomic DNA contains exons (corresponding to 
the mature mRNA) and introns (intervening sequences). After DNA is transcribed, pre-mRNA is capped 
at the 5′ end and splicing removes the introns. A polyadenylation signal (most commonly AAUAAA) is 
recognized, the RNA is cleaved by an endonuclease about 10–35 nucleotides downstream, and a polyA 
polymerase adds a polyA tail (typically 100–300 residues in length). Polyadenylated mRNA is exported 
to the cytoplasm where it is translated on ribosomes into protein. An RNA surveillance system involving 
nonsense-mediated decay degrades aberrant mRNAs; a dashed line indicates that RNA surveillance 
machinery can also degrade pre-mRNAs.
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FIGUre 10.10 The HBA2 mRNA in the context of the corresponding genomic DNA. (a) The adja-
cent HBA2 and HBA1 genes of human chromosome 16 are displayed using the UCSC Genome Browser. 
The ideogram (chromosomal diagram) shows that the region zoomed in on is at the telomeric region of 
the p arm of chromosome 16. A window size of 8000 base pairs is displayed. The RefSeq Genes track 
shows the three exons of HBA2. Additional tracks show human mRNAs and expressed sequence tags 
(ESTs), and the result of a BLAT search using alpha globin protein (NP_000508.1) as a query. (b) To 
compare the mRNA sequence of HBA2 to its corresponding genomic DNA sequence, megaBLAST was 
performed at NCBI (Chapter 5). The sequences were NM_000517.4 and a chromosome 16 genomic con-
tig (RefSeq accession NT_010393.16, nucleotides 162,000–164,000) that spans the HBA2 gene locus. 
Note that the graphic shows three red bars (exons) separated by gaps corresponding to introns. Similarly, 
the dotplot shows 100% identity for the three exons and gaps at the site of introns. (c) A detailed view 
of the first exon of HBA2, including the beginning of the protein-coding sequence (the start methionine 
is highlighted in green at the bottom of the three reading frames and matches the start of the protein 
sequence from BLAT).

Sources: (a), (c)  http://genome.ucsc.edu, courtesy of UCSC and Regents of the University of California. 
(b) MegaBLAST, NCBI.

(a) HBA1 and HBA2 gene region on human chromosome 11

(b) MegaBLAST of HBA2 coding sequence to genomic DNA reveals introns

(c) Exon 1 of HBA2 (including nucleotides encoding protein amino terminus)

exon 2

intron 1

intron 2

exon 1

exon 1 exon 3exon 2

exon 3

http://genome.ucsc.edu
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technologies. From another point of view they remain “gold standards” and provide 
trusted confirmation of results from high-throughput experiments.

In contrast to these approaches, several high-throughput techniques have emerged 
that allow a broad survey of gene expression. A global approach to gene expression offers 
two important advantages over the study of the expression of individual genes:

 • A broad survey may identify individual genes that are expressed in a dramatic fash-
ion in some biological state. For example, global comparisons of gene expression 
in assorted human tissues can reveal which individual transcripts are expressed in a 
region-specific manner.

 • High-throughput analyses of gene expression can reveal patterns or signatures of 
gene expression that occur in biological samples. This may include the coordinate 
expression of genes whose protein products are functionally related. We examine 
tools for the analysis of gene expression data (such as clustering trees) in Chapter 11.

Several high-throughput approaches to gene expression are displayed in Figure 10.11. 
In each case, total RNA or mRNA is isolated from biological samples obtained from two 

cDNA cDNA

Condition A (e.g. cells from a normal human brain) Condition B (e.g. cells from a diseased human brain)

make cDNA library (ESTs)

RNA-seq

DNA microarray

comparisons

RNA proteinDNA RNA proteinDNA

biological replicates

FIGUre 10.11 Gene expression can be measured with a variety of high-throughput technologies. 
In most cases, two biological samples are compared such as a cell line with or without drug treatment, 
cells with or without viral infection, or aged versus neonatal rat brain. RNA can be converted to cDNA, 
allowing broader surveys of transcription in a cell. In this chapter and the next we examine several 
approaches to gene expression. cDNA libraries can be constructed, generating expressed sequence tags 
(ESTs). These can be electronically compared in UniGene. Complex cDNA mixtures can be labeled 
with a fluorescenct molecule and hybridized on DNA microarrays, which contain cDNA or oligonucle-
otide fragments corresponding to thousands of genes. High-throughput sequencing of cDNA libraries 
(RNA-seq) represents a powerful approach to comparing transcripts in two samples.



bioiNfoRMAtic AppRoAcheS to RiboNucLeic AciD (RNA) 455

(or more) conditions that are compared. The RNA is typically converted to cDNA using 
reverse transcriptase. Complementary DNA is inherently less susceptible to proteolytic 
or chemical degradation than RNA, and cDNA can readily be cloned, propagated, and 
sequenced. cDNA may be packaged into libraries and studied (see the following section). 
RNA may also be labeled to measure transcripts on microarrays, and cDNA libraries may 
be sequenced by next-generation sequencing (RNA-seq).

analysis of Gene expression in cDNa libraries

The sequencing of cDNA libraries allows the location and quantity of RNA transcripts to 
be measured. RNA is expressed from some region at some location. One purifies RNA 
from sources such as the roots, stem, and leaves of a plant at various developmental 
stages, or human brain at autopsy from those diagnosed with a disesase or controls. RNA 
is converted to cDNA and packaged into a library. The cDNA inserts, called expressed 
sequence tags (ESTs), may then be sequenced. dbEST is a database of ESTs at NCBI; 
currently it contains tens of millions of ESTs from a variety of organisms. The UniGene 
database further partitions these ESTs into nonredundant clusters that generally corre-
spond to expressed genes (Sayers et al., 2012).

Each cluster has some number of sequences associated with it, from one (singletons) 
to almost 50,000 (table 10.6). Of the 130,000 clusters in table 10.6, half are singletons 
suggesting that these may be genes expressed so rarely that they have only been observed 
once. These singletons may represent portions of the genome that are transcribed with-
out representing functional genes (see “The Pervasive Nature of Transcription” below). 

There are many other techniques 
to study gene expression, such as 
serial analysis of gene expression 
(see Web Document 10.7).

Web Document 10.8 provides a 
diagram showing how a cDNA 
library is constructed. A summary 
of the number of ESTs in GenBank 
is available at  http://www.ncbi 
.nlm.nih.gov/genbank/dbest/
dbest_summary/ (WebLink 10.37). 
UniGene is accessed via  http://
www.ncbi.nlm.nih.gov/unigene/ 
(WebLink 10.38).

table 10.6 Cluster sizes for human entries in UniGene (build 236, homo sapiens). 
GapDh: glyceraldehyde-3-phosphate dehydrogenase.

Cluster size

Number of 

clusters Example(s) of genes in cluster

1 64,371

2 12,760

3–4 10,859 Transcribed locus, strongly similar to NP_032247.1 
hemoglobin subunit epsilon-Y2 [Mus musculus]

5–8 10,637 Transcribed locus, strongly similar to NP_001077424.1 
hemoglobin alpha, adult chain 2 [Mus musculus]

9–16 7,177 Hemoglobin, theta 1; hemoglobin, beta pseudogene 1

17–32 4,815 Hemoglobin, mu; neuroglobin

33–64 4,557 Hemoglobin, zeta

65–128 4,117 Hemoglobin, delta

129–256 3,889 Hemoglobin, epsilon 1; cytoglobin

257–512 3,858

513–1024 1,982

1,025–2,048 729 Hemoglobin, alpha 1; myoglobin; hemoglobin, gamma A

2,049–4,096 224 Hemoglobin, beta; hemoglobin, gamma G

4,097–8,192 56 Hemoglobin, alpha 2

8,193–16,384 20 Albumin, GAPDH; ubiquitin C; tubulin, alpha 1b; 
ferritin, light polypeptide

16,385–32,768 4 Actin, beta; myelin basic protein; Eukaryotic translation 
elongation factor 1 alpha 1; Uncharacterized LOC100507412

32,769-65,536 1 EEF1A1

Source: UniGene, NCBI.

http://www.ncbi.nlm.nih.gov/genbank/dbest/dbest_summary/
http://www.ncbi.nlm.nih.gov/unigene/
http://www.ncbi.nlm.nih.gov/unigene/
http://www.ncbi.nlm.nih.gov/genbank/dbest/dbest_summary/
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Other genes (such as actin and tubulin) are expressed at very high levels. Even some EST 
clusters that do not correspond to known, annotated genes are highly represented. The 
largest cluster sizes represented in UniGene are described in table 10.7 for humans and in 
table 10.8 for nonhuman organisms.

Web Document 10.9 provides more detailed background on cDNA libraries and Uni-
Gene, including tools to extract libraries in UniGene. As an example, we can use the 
Digital Differential Display (DDD) tool at UniGene to compare cDNA libraries from 
different regions of the body or different conditions. Figure 10.12 shows an example in 

table 10.7 ten largest cluster sizes in UniGene for human entries. Values are 
rounded to the nearest 1000.

UniGene Identifier Cluster size Gene symbol Gene name

Hs.586423 48,000 EEF1A1 Eukaryotic translation 
elongation factor 1 alpha 1

Hs.535192 27,000 EEF1A1 Eukaryotic translation 
elongation factor 1 alpha 1

Hs.520640 26,000 ACTB Actin, beta

Hs.551713 21,000 MBP Myelin basic protein

Hs.426704 20,000 LOC100507412 Uncharacterized 
LOC100507412

Hs.520348 16,000 UBC Ubiquitin C

Hs.418167 16,000 ALB Albumin

Hs.524390 16,000 TUBA1B Tubulin, alpha 1b

Hs.510635 16,000 IGHG1 Immunoglobulin heavy 
constant gamma 1 (G1m 
marker)

Hs.544577 15,000 GAPDH Glyceraldehyde-3-
phosphate dehydrogenase

Hs.180414 15,000 HSPA8 Heat shock 70kDa protein 8

Hs.370247 15,000 APLP2 Amyloid beta (A4) 
precursor-like protein 2

Source: UniGene, NCBI.

table 10.8 ten largest cluster sizes in UniGene for nonhuman entries. Cluster size is the number of sequences 
rounded to the nearest thousand.

UniGene Identifier Species Cluster size Gene Name

Cin.19067 Ciona intestinalis (vase tunicate; 
yellow sea squirt)

48,000 Clone:citb001e24, full insert sequence

Bfl.2106 Branchiostoma floridae (Florida 
lancelet)

31,000 Transcribed locus, strongly similar to NP_007768.1 NADH 
dehydrogenase subunit 1

Bt.107724 Bos taurus (cow) 22,000 Chymotrypsinogen B1-like

At.46639 Arabidopsis thaliana (thale cress) 16,000 Ribulose bisphosphate carboxylase small chain 1A

Cin.30513 Ciona intestinalis 15,000 ATP-binding cassette sub-family D member 2-like

Dr.31797 Danio rerio (zebrafish) 13,000 Eukaryotic translation elongation factor 1 alpha 1, like 1

Dr.75552 Danio rerio 13,000 Actin, alpha, cardiac muscle 1b

Rn.202968 Rattus norvegicus (Norway rat) 13,000 Albumin

Ta.11048 Triticum aestivum (bread wheat) 13,000 Small subunit

Ssc.6512 Sus scrofa (pig) 12,000 Mitochondrial ATPase 6 mRNA, L transcript, partial sequence

Source: UniGene, NCBI (using the search query 11700:65536[sequence count] NOT txid9606[organism]).
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FIGUre 10.12 Digital differential display (DDD) is used to compare the content of expressed sequence tags (ESTs) in cDNA libraries from 
UniGene. Thousands of libraries have been generated by isolating RNA from a tissue source (such as pancreas, heart, or brain), synthesizing 
cDNA, packaging the cDNA in a cDNA library, and sequencing up to thousands of cDNA clones (ESTs) from each library. The clones in 
each library (or in pools of libraries) may be compared using DDD. This site is accessed from the NCBI UniGene site; choose Homo sapiens, 
then select “Library digital differential display.” At this site, click boxes corresponding to any library (or set of libraries) then select a second 
library (or second set of libraries) for comparison. Result of an electronic comparison of cDNA libraries using the DDD tool of UniGene. The 
results are displayed as a list of genes (with UniGene accession numbers) for genes that are preferentially expressed in one or the other pool of 
libraries. Here, transcripts expressed preferentially in heart are shown (e.g., albumin and a cardiac muscle ATP synthase). Other transcripts (e.g., 
those encoding the glial proteins myelin basic protein and glial fibrillary acidic protein) are more highly represented in brain-derived libraries.

Source: UniGene, NCBI.

table 10.9 Fisher’s 2×2 exact test used to test null hypothesis that a given gene 
(gene 1) is not differentially regulated in two pools. adapted from Claverie (1999).

Gene 1 All other genes Total

Pool A (e.g., brain) Number of sequences 
assigned to gene 1 
(g1A)

Number of sequences in this 
pool NOT gene 1 (NA–g1A)

NA

Pool B (e.g., pancreas) Number of sequences 
assigned to gene 1 (g1B)

Number of sequences in this 
pool NOT gene 1 (NB – g1B)

NB

Total c = g1A +g1B C = (NA – g1A) + (NB – g1B)
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which 13 libraries from human brain are shown to selectively expressed transcripts such 
as myelin basic protein and glial fibrillary acidic protein (glial proteins not expected to be 
expressed in heart), while heart preferentially expresses albumin. A probability value is 
associated with each transcript using a Fisher’s exact test (Box 10.2). This test does not 
require the number of clones being compared to be identical.

Some pitfalls involved in analyzing expression data in cDNA libraries include the 
following:

 • Investigators choose which libraries to construct, and there is likely to be bias toward 
familiar tissues (such as brain and liver) and bias away from more unusual tissues. 
The rat nose contains over two dozen secretory glands, almost all of which are of 
unknown function, but for most of these glands cDNA libraries have never been 
constructed.

 • The depth to which a library is sequenced affects its ability to represent the contents 
of the original cell or tissue. A cDNA library is expected to contain a frequency 
of clones that faithfully reflects the abundance of transcripts in the source material. 
By sequencing only 500 clones, it is unlikely that many low-abundance transcripts 
will be represented when the contents of the entire library are analyzed. In practice, 
cDNA libraries are sequenced to varying depths. An advantage of RNA-seq is its 
potentially extreme depth of coverage.

 • Another source of bias is in library construction. Many libraries are normalized, a 
process in which abundant transcripts become relatively underrepresented while rare 
transcripts are represented more frequently. The goal in normalizing a library is to 
minimize the redundant sequencing of highly expressed genes and to therefore dis-
cover rare transcripts (Bonaldo et al., 1996). It would be inappropriate to compare 
normalized and nonnormalized libraries directly using a tool such as UniGene’s dif-
ferential display. For RNA-seq and microarrays, it is also essential to prepare RNA 
under identical conditions between the sources being compared.

 • ESTs are often sequenced on one strand only, rather than thoroughly sequenc-
ing both top and bottom strands. There is therefore a substantially higher error 
rate than is found in finished sequence. (We discussed sequencing error rates in 
Chapter 9.)

 • Chimeric sequences can contaminate cDNA libraries. For example, two unrelated 
inserts are occasionally cloned into a vector during library construction.

In UniGene, click statistics, 
Homo sapiens, then “library 
browser” to see the range of 
clones that are sequenced 
in typical libraries. Currently 
(February 2015), there are 
∼8700 human cDNA libraries in 
UniGene having at least 1000 
sequences and ∼8000 smaller 
libraries.

Box 10.2 FISher’S exAct teSt

Fisher’s exact test is used to test the null hypothesis that the number of sequences for any given gene in the two pools (e.g., insulin in 
pancreas versus brain) is the same in either pool (table 10.9).

The p value for a Fisher’s exact test is given by

 p
N N c C

N N g N g N g
=

+ − −
A B

A B B A A B B

! ! ! !

( )! !( )!( )!
.

1 1 1  (10.1)

The null hypothesis (that gene 1 is not differentially regulated between brain and muscle) is rejected when the probability value p is 
less than 0.05/G, where 0.05 is the nominal threshold for declaring significance and G is the number of UniGene clusters analyzed (G is 
therefore a conservative Bonferroni correction; see Chapter 11).

While the NCBI website employs Fisher’s exact test, other statistical approaches to cDNA library comparison have been described. In 
particular, Stekel et al. (2000) developed a log-likelihood procedure to assess the probability that gene expression differences observed 
in a comparison of two or even multiple cDNA libraries are due to genuine transcriptional differences and not sampling errors.

We perform a Fisher’s exact test in R using the fisher.test function in the stats R package in Chapter 11.
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Full-length cDNa projects

While UniGene is an example of a database that incorporates information on ESTs and 
protein-coding genes, it is also of interest to catalog, characterize, and make available 
collections of cDNAs. There are two main forms of cDNAs: those having full-length 
protein-coding sequences (typically including some portions of the 5′ and 3′ untrans-
lated regions), and expression clones in which the protein-coding portion of the cDNA is 
cloned into a vector that permits protein expression in the appropriate cell type (Temple 
et al. 2006). There are many important resources for obtaining cloned, high-quality, full-
length cDNAs. We will next introduce four of the many available cDNA resources.

1. The Functional Annotation of the Mouse (FANTOM) project provides functional 
annotation of the mammalian transcriptome (Maeda et al., 2006). Currently, over 
100,000 full-length mouse cDNAs have been annotated including both coding and 
nonprotein-coding transcripts. These have been mapped to genomic loci using BLAT, 
BLASTN, and other search tools. The annotation categories included artifacts (such 
as contaminants from other species or chimeric mRNAs) and coding sequences (com-
plete, 5′- or 3′ truncated, 5′ or 3′ untranslated regions only, immature, with or with-
out insertion/deletion errors, stop codons, coding for selenoproteins, or mitochondrial 
transcripts). Upon analyzing transcription start and stop sites, the 5′ and 3′ boundaries 
of over 180,000 transcripts were identified (Carninci et al., 2005). This study lead to 
the identification of over 5000 previously unidentified mouse proteins. Another aston-
ishing conclusion of the FANTOM project is that antisense transcription, in which 
clustered cDNA sequences on one strand at least partially match to the opposite strand, 
occurs for 72% of all genome-mapped transcriptional units (Katayama et al., 2005).

2. The H-Invitational Database provies an integrative annotation of human genes includ-
ing gene structures, alternative splicing isoforms, coding as well as noncoding RNAs, 
single-nucleotide polymorphisms (Chapter 8), and comparative results with the mouse 
(Takeda et al., 2013). A total of 21,037 human gene candidates were analyzed, cor-
responding to 41,118 full-length cDNAs. We saw H-Invitational UCSC tracks in 
Figure 10.8.

3. The Mammalian Gene Collection (MGC) is an NIH project that originally aimed to 
gather full-length cDNA clones for all human and mouse genes, but has subsequently 
expanded to include rat, cow, frog, and zebrafish (MGC Project Team et al., 2009). 
Its site can be searched by BLAST, and its database contents can be viewed at UCSC 
(Fig. 10.8). MGC clones are distributed through the Integrated Molecular Analysis of 
Genomes and their Expression (IMAGE) consortium.

4. Another important cDNA resource is the Kazusa mammalian cDNA set, called “KIAA” 
genes (Nagase et al., 2006). This project focuses on characterizing full-length cDNAs 
that encode particularly large genes. Clones are described and distributed through the 
HUGE database (Kikuno et al., 2004).

bodyMap 2 and Gtex: Measuring Gene expression across the body

Two prominent projects have emerged for the study of tissue-specific gene expression 
across the human body. The Genotype-Tissue Expression (GTEx) project focuses on gene 
expression and regulation including information on genetic variation (allowing the mea-
surement of expression quantitative trait loci or e-QTLs; see “e-QTLs” below). Human 
Body Map 2.0, a project lead by Illumina, Inc., measures gene expression across 16 tis-
sues using RNA-seq. You can view the expression of any human gene of interest starting 
from its NCBI Gene entry. For example, for the HBB Gene entry navigate to the genome 
browser on that page. Select the option to “Configure Tracks,” select the Expression cat-
egory, and choose from dozens of BodyMap 2 display options.

You can access the FANTOM 
project at  http://fantom.gsc.
riken.go.jp/ (WebLink 10.39).

The H-invitational database is 
available at  http://www 
.h-invitational.jp/ (WebLink 10.40). 
Hosted by the Japan Biological 
Information Research Center 
(JBIRC), this site features a highly 
informative genome browser.

The Mammalian Gene Collection 
(MGC) website is  http://mgc 
.nci.nih.gov/ (WebLink 10.41). 
It includes ∼30,000 human 
clones (corresponding to 
∼17,500 nonredundant genes) 
as of February 2015. The IMAGE 
consortium website (  http://
www.imageconsortium.org/, 
WebLink 10.42) can be queried for 
clones from a number of species.

The HUGE database is at  
 http://www.kazusa.or.jp/huge/ 

(WebLink 10.43). You can see 
examples of Northern blots at the 
HUGE database (e.g.,  http://
www.kazusa.or.jp/huge/gfimage/
northern/html/KIAA0012.html, 
WebLink 10.44).

You can access the GTEx portal 
at  http://www.gtexportal.org/ 
(WebLink 10.45). Its data are 
released through dbGaP at NCBI 
(e.g., accession phs000424.v4.p1). 
Human Body Map 2.0 data can be 
accessed via  http://www.ebi 
.ac.uk/arrayexpress/experiments/
E-MTAB-513/ (WebLink 10.46) or 
as Series GSE30611 from the Gene 
Expression Omnibus at NCBI  
(  http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc 
=GSE30611, WebLink 10.47).

http://fantom.gsc.riken.go.jp/
http://www.h-invitational.jp/
http://mgc.nci.nih.gov/
http://www.imageconsortium.org/
http://www.imageconsortium.org/
http://www.kazusa.or.jp/huge/
http://www.kazusa.or.jp/huge/gfimage/northern/html/KIAA0012.html
http://www.kazusa.or.jp/huge/gfimage/northern/html/KIAA0012.html
http://www.gtexportal.org/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30611
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30611
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30611
http://fantom.gsc.riken.go.jp/
http://www.h-invitational.jp/
http://mgc.nci.nih.gov/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
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mIcroArrAyS And rnA-Seq: genome-WIde 
meASurement oF gene expreSSIon
By 2000 DNA microarrays had emerged as a powerful technique to measure mRNA 
transcripts (gene expression). They have been used more than any other technique to 
assess differences in mRNA abundance in different biological samples. The use of 
microarrays has increased rapidly since the pioneering work of Patrick Brown and col-
leagues at Stanford University, Jeffrey Trent and colleagues at the NIH, and others 
(De Risi et al., 1996).

By 2010 RNA-seq had arrived as an even more powerful technique (McGettigan, 
2013; Mutz et al., 2013). Many consider it likely that RNA-seq may soon supplant 
microarrays as the method of choice for gene expression profiling. Since they have the 
common main purpose of identifying steady-state mRNA levels in biological samples, 
we introduce them together here and explain how to analyze array and RNA-seq data in 
Chapter 11.

A microarray is a solid support (such as a glass microscope slide) on which DNA of 
known sequence is deposited in a regular grid-like array. The DNA may take the form 
of cDNA or oligonucleotides, although other materials (such as genomic DNA clones; 
Chapter 8) may also be deposited. Typically, several nanograms of DNA are immobilized 
on the surface of an array. RNA is extracted from biological sources of interest, such as 
cell lines with or without drug treatment, tissues from wildtype or mutant organisms, or 
samples studied across a time course. The RNA (or mRNA) is often converted to cDNA 
(or cRNA in the case of the popular Affymetrix platform), labeled with fluorescence, 
and hybridized to the array. During this hybridization, cDNAs or cRNAs derived from 
RNA molecules in the biological starting material can hybridize selectively to their corre-
sponding nucleic acids on the microarray surface. Following washing of the microarray, 
image analysis and data analysis are performed to quantitate the signals that are detected. 
Through this process, microarray technology allows the simultaneous measurement of 
the expression levels of thousands of RNA transcripts (genes) represented on the array.

RNA-seq applies the same next-generation sequencing technology we described in 
Chapter 9 to the sequencing of cDNAs derived from RNA sources of interest. The result-
ing reads are mapped to the transcriptome (e.g., to a set of all exons). The two main 
measurements are the amount of each transcript present in a sample and the quantitation 
of exons to infer alternative splicing events. Compared to microarrays, RNA-seq offers 
additional features (Ozsolak and Milos, 2011; Costa et al., 2013):

 • While microarrays depend on prior selection of transcripts for which RNA levels 
are measured, RNA-seq makes no prior assumptions about which RNA species are 
present in the samples being assayed. New transcripts may therefore be identified.

 • RNA-seq offers a far broader dynamic range, spanning six orders of magnitude for 
polyadenylated mRNA (and four orders of magnitude for nonpolyadenylated RNAs; 
Djebali et al., 2012).

 • RNA-seq experiments are scalable: deeper sequencing coverage yields improved 
power to detect variants (such as mutations) and to detect transcript expressed at low 
levels.

 • RNA-seq is used to map transcription start sites (TSSs) at base pair resolution.
 • RNA-seq is useful to define patterns of alternative splicing, including previously 
unannotated fusions between expressed transcripts, and quantitative assessment of 
the differences in expression of particular exons.

 • RNA-seq may be adapted to characterizing small noncoding RNAs (by size-selecting 
small RNA for analysis).

 • It may be possible to isolate RNA from hosts and pathogens together to simultaneously 
identify RNA changes in both (called “dual RNA-seq” by Westermann et al., 2012).
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Both microarrays and RNA-seq also come with particular disadvantages. Both are 
expensive enough that many biologists analyze too few replicates (see Stage 1 below). Both 
are subject to artifacts that destroy the usefulness of the experiment. For example, if RNA 
is extracted from a set of control samples on a Monday and a set of experimental samples 
on a Tuesday, then any observed differences could be due to condition (experimental versus 
control) or date. This situation is called a perfect confound. Another concern is that the final 
product of gene expression is protein (for coding genes), and changes in RNA levels may 
have little biological significance; we discuss the relatively poor correlation between RNA 
and protein levels in “The Relationship between DNA, mRNA and Protein Levels” below.

An overview of the procedures used in microarray and RNA-seq experiments is 
depicted by Figure 10.13, divided into five stages. We consider each of these stages in the 
following sections.

Stage 1: experimental Design for Microarrays and rNa-seq

In the first stage, total RNA or mRNA is isolated from samples. Notably, experiments have 
been performed for organisms as diverse as viruses, bacteria, fungi, and humans. The amount 
of starting material that is required is typically several hundreds of milligrams (wet weight) or 
several flasks of cells. For many available microarray or RNA-seq experiments, about 1–3 μg 
of total RNA is required. With the amplification of RNA or cDNA products it is possible to 
use substantially less starting material, and even single-cell RNA profiling is feasible. How-
ever, the amplified population may not faithfully represent the original RNA population.

The experimental design of a microarray experiment includes biological replicates, 
technical replicates, and array design (Churchill, 2002). Different sources of variation are 
associated with each of these three areas.

1. First, the biological samples are selected for comparison, such as a cell line with or with-
out drug treatment. If multiple biological samples are used, these are called “biological 
replicates.” When experimental subjects are selected for treatment, it is appropriate to 
assign them to groups randomly. It is critical to have adequate sample size of biological 
replicates, such as n = 3 to 5 samples for the experimental group and a similar number for 
the control group. Many experiments are performed with just one biological replicate. 
Hansen et al. (2011) stress the need for biological replicates in RNA-seq studies, noting 
that the biological variability in datasets generated with microarrays is comparable to 
that in RNA-seq. For either technology, results with too few replicates are liable to be 
nonreproducible and not generalizable to the conditions being studied.

2. Second, RNA is extracted and labeled (typically as complementary DNA) with a flu-
orescent tag (for microarrays). When two RNA extractions are obtained from a bio-
logical sample and analyzed, these are called “technical replicates.” Some researchers 
perform multiple RNA isolations from a single sample (e.g., three independent RNA 
isolations from a single cultured cell line or a single rat heart). These are not consid-
ered biological replicates because they do not capture the variability in expression 
levels between independent samples.

3. A third aspect of microarray experimental design is the arrangement of array elements 
on a slide. Ideally, the array elements are arranged in a randomized order on the slide. 
In some cases, array elements are spotted in duplicate (see Fig. 10.14). Artifacts can 
occur based on the arrangement of elements on an array or because a microarray sur-
face is not washed (or dried) evenly.

Stage 2: rNa preparation and probe preparation

RNA can be readily purified from cells or tissues using reagents such as TRIzol (Invitro-
gen). For some microarray applications, further purification of RNA to mRNA (poly(A)+ 

For microarrays from Affymetrix, 
RNA is converted to cDNA and 
transcribed to make biotin-labeled 
complementary RNA (cRNA).

We discuss experimental design 
further in Chapter 11.

Web Document 10.10 decribes 
competitive microarray 
hybridization.
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Experimental design
Compare normal vs diseased tissue, 

cells +/- drug, early vs late development

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

RNA preparation: isolate total RNA or mRNA 
Microarrays: fluorescently label cRNA samples 
RNA-seq: make cDNA library for each sample

Microarrays: Preprocessing (normalization, scatter plots);
RNA-seq: Align reads to genome or gene models; assemble transcripts  

(1) Inferential statistics (identify significantly regulated transcripts e.g. using ANOVA); 
(2) Exploratory analyses (scatter plots, principal components analysis);

(3) Other analyses (classification, co-regulated genes)

Biological confirmation
Independently confirm that genes 
are regulated e.g. by RT-PCR

Deposit data in a database
(e.g. GEO, ArrayExpress, ENA, SRA)

Biological insight

5′5′

Microarrays: hybridize samples,
image analysis, quantitate intensities

RNA-seq

Data acquisition

RNA-seq: obtain FASTQ files,
obtain reference genome (optional)

Data analysis

FIGUre 10.13 Overview of the process of generating high-throughput gene expression data using 
microarrays or RNA-seq. In stage 1, biological samples are selected for a comparison of gene expres-
sion. In stage 2, for microarrays RNA is isolated, converted and labeled, often with fluorescent dyes. For 
RNA-seq, RNA is converted to cDNA and packaged into a library. In stage 3 data are acquired: samples 
are hybridized to microarrays, which are solid supports containing complementary DNA or oligonucle-
otides corresponding to known genes. For RNA-seq, next-generation sequencing is performed. In stage 
4, data analysis is performed. Microarray expression data are analyzed to identify differentially regulated 
genes (e.g., using ANOVA (see Chapter 11) and scatter plots; stage 4, at left) or clustering of genes and/
or samples (right). For RNA-seq raw reads are mapped to a reference transcriptome (or genome) and 
assembled; in some workflows assembly precedes alignment. Read counts are used to infer expression 
levels of exons and/or transcripts. Based on these findings, independent confirmation of microarray- or 
RNA-seq-based findings is performed (stage 5). The data (e.g., Affymetrix .cel files or RNA-seq FASTQ 
and BAM files) are deposited in a database so that data can be shared and further large-scale analyses 
can be performed.
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FIGUre 10.14 Example of a microarray experiment using radioactive probes. While radioactivity 
is only rarely used today, this figure illustrates the nature of microarrays in which RNA transcripts may 
be observed at a range of abundances from high (dark spots) to low or absent (corresponding to genes 
not expressed in this particular body region and/or developmental stage). A total of 588 genes are repre-
sented on each array and are spotted in adjacent pairs. The filters were hybridized, washed, and exposed 
to a phosphorimager screen for 6 hours. The output includes a quantitation (in pixel units) of the signals. 
(a) Clontech Atlas Neurobiology array probed with cDNA derived from the post-mortem brain of a girl 
with Rett syndrome; and (b) the profile from a matched control. The arrows point at an RNA transcript 
(β-crystallin) that is up-regulated in the disease. Note that overall the RNA transcript profiles appear 
similar in the two brains.

(a)

(b)
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RNA) is necessary. (Purification kits typically remove >95% of ribosomal RNA, and such 
depletion is essential to detect low-abundance mRNA transcripts or other noncoding RNA 
transcripts in RNA-seq.) In comparing two samples (e.g., cells with or without a drug), 
it is essential to purify RNA under closely similar conditions. For example, for cells in 
culture conditions such as days in culture and percent confluence must be controlled for.

The purity and quality of RNA should also be assessed spectrophotometrically (by 
measuring the a260/a280 ratio) and by gel electrophoresis. Fluorescent dyes such as 
RiboGreen (Molecular Probes) can be used to quantitate yields. Purity of RNA may also 
be confirmed by Northern analysis or PCR. RNA preparations that are contaminated with 
genomic DNA, rRNA, mitochondrial DNA, carbohydrates, or other macromolecules may 
be responsible for impure probes that give high backgrounds or other experimental arti-
facts.

For microarrays, the RNA is converted to cDNA or to complementary RNA, then 
labeled with fluorescence to permit detection.

In an effort to provide a reference set of RNA transcripts that can serve as a “gold 
standard,” the External RNA Controls Consortium has been established. This project 
includes the goals of providing access to clones, protocols, and bioinformatics tools 
(Baker et al., 2005).

For RNA-seq, the RNA is converted to cDNA and packaged into libraries. For an 
example of experimental protocols see Nagalakshmi et al. (2010).

Stage 3: Data acquisition

Hybridization of Labeled Samples to DNA Microarrays
The immobilized DNA on a microarray sometimes consists of approximately 5 ng of 
cDNA (length 100–2000 base pairs) arrayed in rows and columns. In other cases, oligo-
nucleotides rather than cDNAs are immobilized (Lipshutz et al., 1999). This has been 
accomplished by Affymetrix using a modified process of photolithography (Fodor et 
al., 1991). Depending on the nature of the solid support used to immobilize DNA, the 
microarray is often called a blot, membrane, chip, or slide. The DNA on a microarray 
is referred to as “target DNA.” In a typical microarray experiment, the gene expression 
patterns from two samples are compared. RNA from each sample is labeled with fluores-
cence or radioactivity to generate a “probe.”

After RNA is converted into cDNA or cRNA labeled with fluorescence, the efficient 
labeling of probe must be confirmed. This is followed by hybridization of the probe over-
night to the filter or slide and washing of the microarray. Image analysis is then performed 
to obtain a quantitative description of the extent to which each mRNA in the sample 
is expressed (Duggan et al., 1999). For experiments using radioactive probes (typically 
using [33P] or [32P] isotopes), image analysis is performed by quantitative phosphorimag-
ing (Fig. 10.14). Image analysis involves aligning the pixels to a grid and manually adjust-
ing the grid to align the spots. Each spot represents the expression level of an individual 
transcript. The intensity of a spot is presumed to correlate with the amount of mRNA in 
the sample. However, many artifacts are possible. The spot may not have a uniform shape. 
An intense signal may “bleed” to a neighboring spot, artifactually lending it added signal 
intensity. Pixel intensities near background levels may lead to spuriously high ratios. For 
example, if a control value is 100 units above background levels and an experimental 
value is 200 units, the experimental condition is up-regulated twofold. However, if the 
pixel values are 50,100 versus 50,200, then no regulation is described.

For fluorescence-based microarrays, the array is excited by a laser and fluorescence 
intensities are measured. Data for Cy5 and Cy3 channels may be sequentially obtained 
and used to obtain gene expression ratios, or a single dye may be used as in the Affyme-
trix technology.

You can read about the progress 
of the External RNA Controls 
Consortium at  http://www.nist 
.gov (WebLink 10.48).

Photolithography is a technique 
with many applications, 
including the microelectronics 
industry, in which substances 
are deposited on a solid 
support. For microarray 
technology, oligonucleotides 
are synthesized in situ on a 
silicon surface by combining 
standard oligonucleotide 
synthesis protocols with 
photolabile nucleotides that 
permit thousands of specific 
oligonucleotides to be 
immobilized to a chip surface.

Many researchers refer to the 
DNA on a microarray as the 
probe and the labeled DNA 
derived from a biological sample 
as the target. There are therefore 
opposite definitions of probe 
and target, and the research 
community has not reached a 
consensus. We call the labeled 
material derived from RNA or 
mRNA the “probe.” For an image 
of the density of oligonucleotides 
on the surface of a chip, see 
Web Document 10.11.

http://www.nist.gov
http://www.nist.gov
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Data acquisition for RNA-seq
Libraries are generated for RNA-seq studies, sometimes including barcoded samples, 
then sequencing is performed as described in Chapter 9.

Stage 4: Data analysis

Analysis of microarray data is performed to identify individual genes that have been dif-
ferentially regulated. It is also used to identify broad patterns of gene expression. In some 
experiments groups of genes are coregulated, suggesting functional relatedness. Samples 
(rather than genes) may be analyzed and classified into discrete groups. The analysis of 
microarray data is described in Chapter 11.

In an effort to standardize microarray data analysis, Alvis Brazma and colleagues 
(2001) at 17 different institutions proposed a system for storing and sharing microar-
ray data. Minimum Information About a Microarray Experiment (MIAME) provides a 
framework for researchers to describe information in six areas: the experimental design; 
the microarray design; the samples (and how they are prepared); the hybridization pro-
cedures; the image analysis; and the controls used for normalization. Notably the meta-
data for RNA-seq experiments are very similar to those for microarray experiments, and 
MINSEQE (minimum information about a high-throughput nucleotide sequencing exper-
iment) has also been proposed. These efforts are intended to promote research data qual-
ity, appropriate annotation, and useful data exchange.

Stage 5: biological Confirmation

Microarray experiments result in the quantitative measurement of thousands of mRNA 
transcript values. Data analysis typically reveals that dozens or hundreds of genes are 
significantly regulated, depending on the particular experimental paradigm and the 
statistical analysis approach. A list of regulated transcripts may include true positives 
(those that are authentically regulated) as well as false positives (transcripts reported 
as significantly regulated even though they were found by chance). It is important to 
independently confirm the differential regulation of at least some of the most regulated 
transcripts.

Microarray and rNa-seq Databases

Raw as well as processed microarray data are routinely deposited in public reposito-
ries upon publication. The main public repositories are ArrayExpress and the European 
Nucleotide Archive (ENA) at the European Bioinformatics Institute and the Gene Expres-
sion Omnibus (GEO; Barrett et al., 2013) and Sequence Read Archive (SRA) at NCBI. 
We describe how to acquire data from these databases in Chapter 11.

While databases of gene expression have been established, it is important to con-
trast them with DNA databases. A DNA database such as GenBank contains information 
about the sequence of DNA fragments, ranging in size from small clones to entire chro-
mosomes or entire genomes. The error rate involved in genomic DNA sequencing can 
be measured (Chapter 9), and independent laboratories can further confirm the quality 
of DNA sequence data. In general, DNA sequence does not change for an individual 
organism across time or in different body regions. In contrast, gene expression is context 
dependent. A database of gene expression contains some quantitative measurement of the 
expression level of a specified gene. If two laboratories attempt to describe the expression 
level of beta globin from a cell line, the measurement may vary based on many variables 
such as: the source of the cell line (e.g., liver or kidney); the cell culture conditions (e.g., 
cells grown to subconfluent or confluent levels); the cellular environment (e.g., choice of 
growth media); the age of the cells; the type of RNA that is studied (total RNA versus 

The MIAME project is described 
at the Microarray Gene 
Expression Database Group 
website, which merged with the 
Functional Genomics Data Society 
(FGED Society;  http://www.fged 
.org/, WebLink 10.49).

ArrayExpress is available 
at  http://www.ebi.ac.uk/
arrayexpress/ (WebLink 10.50), 
while GEO is at  http://www 
.ncbi.nlm.nih.gov/geo/ 
(WebLink 10.51).

http://www.fged.org/
http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
http://www.fged.org/
http://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
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mRNA, each with varying amounts of contaminating biomaterials); the measurement 
technique; and the approach to statistical analysis. While it has been possible to create a 
project such as RefSeq or VEGA to identify high-quality representative DNA sequences 
of genes, any similar attempt to describe a standard expression profile for genes must 
account for many variables related to the context in which transcription occurs.

Further analyses

Eventually, it is likely that uniform standards will be adopted for all microarray and RNA-
seq experiments (as promoted by the Functional Genomics Data Society). The greatest 
variables in these studies are likely to be the quality of the RNA isolated by each inves-
tigator and the nature of the microarray or short-read alignment that is used to generate 
data. An ongoing trend in the field of bioinformatics is the unification and cross-refer-
encing of many databases, such as that which has occurred for databases of molecular 
sequences and for databases of protein domains. In the arena of gene expression, the lack 
of acceptable standards may limit the extent to which an integrated view of gene expres-
sion is obtained. Nonetheless, it is likely that each gene in each organism will be indexed 
so that in addition to “stable” data on molecular sequence and chromosomal location, 
“dynamic” information on the mRNA corresponding to each gene will be cataloged. This 
information will include the abundance level of each transcript, the temporal and regional 
locations of gene expression, and other information on the behavior of gene expression 
in a variety of states.

InterpretAtIon oF rnA AnAlySeS
We began this chapter with a description of noncoding RNA, then described coding (mes-
senger) RNA. We conclude with several issues regarding the nature and interpretation of 
RNA, including insights from large-scale RNA-seq projects.

the relationship between DNa, mrNa, and protein levels

Many human diseases are associated with changes in the number of chromosomes (termed 
aneuploidy); the most well-known of these is Down syndrome, associated with a third 
copy of chromosome 21. Many diseases are caused by the duplication or deletion of a 
small chromosome region (e.g., several million base pairs), and copy number changes are 
also commonly associated with cancers. A variety of evidence suggests that an increase 
in copy number (i.e., of genomic DNA) is associated with a corresponding increase in 
mRNA transcript levels. My laboratory (Mao et al., 2003, 2005) and others have shown 
this for Down syndrome brain and heart, and similar findings have been reported in can-
cers.

Once mRNA levels are present at elevated or reduced levels, are the corresponding 
proteins differentially expressed in a similar manner? Perhaps surprisingly, there appears 
to be only a weak positive correlation between mRNA and protein levels. At present, 
high-throughput protein analyses are technically more difficult to perform (especially 
protein arrays) than transcriptional profiling studies. We discuss several high-throughput 
approaches to protein identification and quantitation (e.g., mass spectrometry) in Chap-
ter 12.

Several groups have reported a weak positive correlation between mRNA levels and 
levels of the corresponding proteins in the yeast Saccharomyces cerevisiae and other sys-
tems (Futcher et al., 1999; Greenbaum et al., 2002). Greenbaum et al. (2002) performed a 
meta-analysis of gene expression and protein abundance datasets and suggested that there 
is a broad agreement between mRNA and protein levels.Waters et al. (2006) reviewed 
eight studies and described correlation coefficients that were relatively high when highly 
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abundant proteins were considerd (e.g., r = 0.935, r = 0.86 in two studies) but lower when 
highly abundant proteins were excluded (e.g., r = 0.36, r = 0.49, r = 0.21, r = 0.18). Maier 
et al. (2009) reviewed the methods used to mesure mRNA and protein levels. They dis-
cuss various mechanisms that could account for poor correlations including RNA struc-
tural effects, regulatory noncoding RNAs, codon bias, variable protein half-lives, and 
experimental error.

One conclusion from these studies is that it might be appropriate to determine experi-
mentally whether observed changes in RNA correspond to changes in the levels of the cor-
responding proteins. At present, it is common in the scientific literature for changes in RNA 
transcripts, derived from genes encoding a category of proteins such as those involved in 
glycolysis, to be said to provide evidence that glycolysis has changed in the system being 
studied. Such a finding represents a hypothesis that can be tested experimentally.

the pervasive Nature of transcription

In recent decades, the transcription of DNA to mRNA has been conceptualized in terms 
of a relatively straightforward model in which protein-coding genes are transcribed into 
mRNA precursors which are then spliced (to remove introns) and processed (to facilitate 
export) into mature mRNA. The number of distinct mRNA transcripts was assumed to 
approximate the number of protein-coding genes, and the exons have been estimated 
to occupy less than 3% of the human genome. More recently, compelling evidence has 
emerged that the majority of the genomic DNA (comprising the genome) is transcribed.

Strong evidence for pervasive transcription comes from the ENCODE project 
(ENCODE Consortium, 2007; Djebali et al., 2012). Transcrptional activity was measured 
using a series of technologies:

 1. Total RNA or poly(A) RNA was hybridized to tiling microarrays. Tiling arrays con-
tain oligonucleotides or PCR products that correspond to positions along each chro-
mosome that are regularly spaced at extremely short intervals such as 5 or 30 base 
pairs. This contrasts with conventional expression arrays that are targeted to previ-
ously annotated exons. Genomic tiling arrays do not depend on prior genome anno-
tations, and they also offer good sensitivity.

 2. Cap-selected RNA was tag sequenced at the 5′ or joint 5′/3′ ends. 5′ cap analysis 
gene expression (CAGE) is a method of enriching for full-length cDNA by priming 
the first strand cDNA synthesis with an oligo-dT primer (to capture the 3′ end of a 
polyadenylated transcript) or a random primer, and “trapping” the cap that commonly 
occurs at the 5′ end of mRNAs.

 3. EST and cDNA sequences were annotated using computational, manual, and experi-
mental approaches.

 4. The most recent studies have relied on RNA-seq (Djebali et al., 2012).

The most recent ENCODE conclusions include the following:

 • 62.1% and 74.7% of the human genome is spanned by processed or primary tran-
scripts, respectively;

 • genes express 10–12 isoforms per cell line;
 • coding RNA transcripts tend to be cytosolic, while noncoding transcripts are local-
ized to the nucleus; and

 • ∼6% of annotated coding and noncoding transcripts overlap small noncoding RNAs.

A clear conclusion from the ENCODE project and other studies is that much of the 
genome is transcribed. Some of this transcription is certain to be biologically relevant, 
while in other cases it is likely to represent biological “noise” associated with low levels 
of transcription. We discuss the definitions of function and the meaning of functional 

The correlation coefficient 
r ranges from +1 (perfectly 
positively correlated) to –1 
(negatively correlated), with r = 0 
indicating that the two variables 
are uncorrelated.

You can learn more about CAGE 
at the FANTOM website (  http://
fantom3.gsc.riken.jp/, WebLink 
10.52), including access to CAGE 
databases.

http://fantom3.gsc.riken.jp/
http://fantom3.gsc.riken.jp/
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elements in Chapter 14. In Chapter 8 we discussed the proposals by the ENCODE proj-
ect to propose a novel definition of the gene. Gerstein et al. (2007) proposed a novel 
definition of a gene as “a union of genomic sequences encoding a coherent set of poten-
tially overlapping functional products,” while Djebali et al. (2012) proposed the transcript 
rather than the gene as the “atomic unit of inheritance.”

eQtls: Understanding the Genetic basis of Variation in Gene expression 
through Combined rNa-seq and DNa-seq

One of the outstanding problems in biology is the relationship between genotype and 
phenotype (see Chapter 14). It is commonly thought that variation in mRNA (or other 
RNA) levels may have key consequences for disease susceptibility. mRNA expression 
is a quantitiative trait that can be described for a given cell type and physiological state 
in an organism. Furthermore, variants in genomic DNA may impact mRNA expression. 
Expression quantitative trait loci (eQTLs) are genomic loci that control expression lev-
els (Cookson et al., 2009; Majewski and Pastinen, 2011; Wright et al., 2012). Studies 
in yeast, plants and humans have explored eQTLs. Initially these approaches relied on 
SNP arrays to measure DNA variation and microarrays to measure gene expression, 
with subsequent functional analysis applied to determine whether eQTLs are relevant to 
human disease (Fig. 10.15). Two main types of control regions were found: (1) cis-eQTLs 
are genomic loci that influence the expression of transcripts expressed from neighbor-
ing genes within some distance (such as 1 Mb or less), and may undergo allele-specific 
expression; and (2) Trans-eQTLs act on transcripts expressed from genes that are farther 
away or on another chromosome. eQTLs could affect transcription directly or indirectly, 
for example by altering the sequence of a transcription factor binding site that controls a 
gene’s expression proximally or distally.

Several studies have analyzed eQTLs by using RNA-seq (e.g., Pickrell et al., 2010), 
using genotypes from the HapMap project and expression data from lymphoblastoid cell 
lines (LCLs, which are immortalized cell lines derived from lymphocytes). In a large-
scale project led by the GEUVADIS group, researchers measured mRNA and small RNA 
transcript levels in 462 individuals from five populations (Lappalainen et al., 2013). 
Almost all individuals also had whole-exome and/or whole-genome sequencing as part of 
the 1000 Genomes Project. This effort is significant because of its scale and its integration 
of DNA and RNA sequencing results. They reported eQTLs affecting gene expression in 
∼3700 genes; ∼7800 genes with an eQTL that affected both gene expression and splicing 
variation; and 5700 cis-eQTLs for repetitive elements (retrotransposon-derived elements) 
outside genes. For the most significant eQTLs, the regulatory variants themselves tended 
to be enriched for indels rather than single-nucleotide variants and often occurred in tran-
scription factor loci, enhancers, and DNaseI hypersenstitive sites. Lappalainen et al. fur-
ther evaluated the differences in expression between the two haplotypes of an individual, 
known as allele-specific expression. They report that genetic regulatory variation is a 
major determinant of allele-specific expression.

These studies catalog variation in expression and catalog associated genomic varia-
tion. Understanding variation that occurs outside of gene coding regions will be essential 
to interpret the findings of genome-wide association studies (GWAS; Chapter 21). This 
is because the vast majority of disease-associated variants mapped with that approach are 
localized to intergenic regions. Lactose intolerance provides one of the best-studied exam-
ples of this type of genetic variation. Reduced expression of lactase-phlorizin hydrolase 
(LPH) is associated with lactase nonpersistence (and lactose intolerance). A variant that 
resides ∼14,000 base pairs upstream of the LCT gene is able to bind the transcription fac-
tor Oct-1 and is responsible for regulating expression of that gene (Lewinsky et al., 2005).

We discuss the HapMap 
and 1000 Genomes Projects 
in Chapter 20. The Genetic 
European Variation in Health and 
Disease (GEUVADIS) consortium 
homepage is  http://www 
.geuvadis.org (WebLink 10.53). 
‘t Hoen et al. (2013) describe the 
quality control meaures used for 
RNA sequencing in this project.

http://www.geuvadis.org
http://www.geuvadis.org
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perSpectIve
Genes in all organisms are expressed in a variety of developmental, environmental, or 
physiological conditions. The field of functional genomics includes the high-throughput 
study of gene expression. Before the arrival of this new approach, the expression of one 
gene at a time was typically studied. Functional genomics may reveal the transcriptional 
program of entire genomes, allowing a global view of cellular function.

Three major shifts have occurred in recent years in our understanding of genes and 
their expression. First, complementary DNA microarrays and oligonucleotide-based 
microarrays were introduced in the mid-1990s, and have emerged as a powerful and 
popular tool for the rapid, quantitative analysis of RNA transcript levels in a variety 
of biological systems. The use of microarrays has now been complemented by RNA-
seq which promises a broad range of new applications. Second, recent studies includ-
ing those of the ENCODE project have indicated that much of the genome is tran-
scribed, although the biological significance of this is not yet understood. Third, since 
the 1990s many small noncoding RNAs such as microRNAs have been identified and 

Microarray or RNA-seq
analysis of transcript

levels in tissue of interest

Gene expression

Genome-wide genotyping 
(or sequencing) of SNPs 

and other variants

Genotyping

eQTLs

Association of genetic
markers with gene

expression

Epigenetic
modi�cations

Integration with
genome-wide

association studies
Network analysis

Disease
susceptibility

Non-genetic e�ects
Environmental stimuli

FIGUre 10.15 Expression quantitative trait loci (eQTLs). Gene expression and genotype (includ-
ing DNA sequencing) data are collected from multiple individuals. The association of DNA variants 
with expression levels of individuals is determined to infer eQTLs. Other forms of variation, such as 
epigenetic modifications (e.g., CpG methylation or histone modification patterns) may also be mapped. 
Susequent network analysis explores connections between transcripts (such as those encoding proteins 
that participate in a common pathway). eQTLs can be used to identify variants affecting expression, par-
ticularly those variants occurring in noncoding regions that are implicated by genome-wide association 
studies (GWAS; Chapter 21). Nongenetic effects also influence disease susceptibility.

Source: Cookson et al. (2009). Reproduced with permission from Macmillan Publishers.
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are beginning to be functionally classified. Together, these discoveries and techno-
logical advances are leading to a new appreciation of the tremendous structural and 
functional diversity of RNAs.

pItFAllS
The recent discovery of the pervasive nature of transcription leads to the question of how 
many mRNA transcripts have functional roles. For small noncoding RNAs we are only 
beginning to appreciate the range of possible biological functions. The computational 
challenge of noncoding RNA identification is great, and many more are likely to be iden-
tified.

For studies of gene expression with techniques such as EST analysis, microarrays, 
or RNA-seq there are many basic concerns. The mRNA molecules are not directly mea-
sured; rather, they are converted to cDNA, and that cDNA is analyzed by sequence 
analysis or by visualization of fluorescent tags. It is important to assess whether the 
amount of substance that is actually measured corresponds to the amount of mRNA in 
the biological sample.

 • When RNA (or mRNA) is isolated, is it representative of the entire population of 
mRNA molecules in the cell?

 • If two conditions are being compared, was the RNA isolated under exactly the same 
conditions? Any variations in the experimental protocol may lead to artifactual dif-
ferences.

 • Has degradation of the RNA occurred in any of the samples?
 • For microarrays, most researchers cannot confirm the identity of what is immobi-
lized on the surface of a microarray. For RNA-seq there are tremendous data analysis 
challenges.

One response to these assorted concerns about microarrays and RNA-seq is that, 
with appropriate experimental design, results can be obtained with confidence. When 
data analysis results in the identification of significantly regulated genes (Chapter 11), 
it is important to perform independent biochemical assays (such as RT-PCR) to validate 
the findings.

AdvIce to StudentS
We have described RNA as being expressed in a context-dependent manner (at some 
time and location and physiological state). Try to get a feel for this by browsing UniGene 
(or other repositories) to get an idea of the diversity of libraries that have been made 
and sequenced. Find examples of biological samples (e.g., HapMap or 1000 Genomes 
cell lines) that have been characterized by microarrays and/or RNA-seq, and decide 
how reproducible RNA transcript measurements are across replicates and between 
laboratories.

WeB reSourceS
The RNA World Website (  http://www.rna.uni-jena.de/rna.php, WebLink 10.54) 
organizes many links related to RNA and is an excellent starting point. RNAcentral 
(  http://rnacentral.org/, WebLink 10.55) is a new, major portal to RNA sequences. Visit 
the RNA-seq Blog (  http://www.rna-seqblog.com/, WebLink 10.56) for a variety of use-
ful resources.

http://www.rna.uni-jena.de/rna.php
http://rnacentral.org/
http://www.rna-seqblog.com/
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Discussion Questions
[10-1] There has been an explosion of 
interest in small noncoding RNAs in plant, 
animal, and other genomes. Why were 
these small RNAs not identified and studied 
in earlier decades?

[10-2] If you have a human cell line and you want to 
measure gene expression changes induced by a drug treat-
ment, what are some of the advantages and disadvantages 
of using RNA-seq versus microarrays? How are your 
answers different if you want to study gene expression in a 
less-well-characterized organism such as a parasite?

[10-3] When you use a microarray, how can you assess 
what has been deposited on the surface of the array? How 
do you know the DNA is of the length and composition 
that the manufacturer of the array specifies? Suppose your 
colleague is performing an experiment with four control 
samples and four experimental samples, and tells you that 
two of the RNA samples (one control, one experimental) 
were possibly mixed together by accident. Could you use 
microarray data or RNA-seq data to figure out whether the 
mix-up had occurred or not?

prObleMS/COMpUter lab
[10-1] We introduced the noncoding RNAs Xist and Air. 
We also discussed how many noncoding RNAs are poorly 
conserved. Perform a series of BLAST searches to try to 
identify human, mouse, and other homologs of Xist and 
Air. Try searching the RefSeq, nonredundant, or other 
nucleotide databases.

[10-2] Choose a human rRNA sequence, then perform 
BLASTN searches against human genomic DNA data-
bases. How many matches do you find, and to what chro-
mosomes are the rDNA sequences assigned?

[10-3] How many noncoding RNAs are in the vicinity of 
the human beta globin gene? To assess this, go to the UCSC 
bioinformatics site (  http://genome.ucsc.edu), select the 
Genome Browser, set the organism to human, and choose 
a particular genome build; then enter the search term hbb 
to find that gene on chromosome 11. Then display annota-
tion tracks related to noncoding RNAs, and set the view to 
10 million base pairs surrounding the HBB gene.

[10-4] Telomerase is a ribonucleoprotein polymerase that 
in humans maintains active telomere ends by adding many 
copies of the repetitive sequence TTAGGG. The enzyme 
(which is a protein) includes an RNA component that 
serves as a template for the telomere repeat. To what chro-
mosome is this noncoding RNA gene assigned? As one 
approach, find the entry in Entrez Nucleotide at NCBI. 
As another approach, search Rfam with the keyword 
telomerase.

[10-5] Perform digital differential display:

 • Go to UniGene (  http://www.ncbi.nlm.nih.gov/
UniGene/).

 • Go to Homo sapiens.
 • Click library differential display.
 • Click some brain libraries, then “Accept changes.”
 • Choose a second pool of libraries to compare.

Self-test Quiz
[10-1] Which are the most abundant RNA 
types?

(a)   rRNA and tRNA;

(b)   rRNA and mRNA;

(c) tRNA and mRNA; or

(d) mRNA and microRNA.

[10-2] MicroRNAs may be distinguished from other 
RNAs because of the following properties:

(a) they are localized to the nucleolus;

(b) each microRNA is thought to regulate a small num-
ber of homologous target messenger RNAs;

(c) they are coding RNAs, each of which is thought to 
regulate the function of a large number of messenger 
RNAs to which they are homologous; or

(d) they have a length of about 22 nucleotides, derived 
from a larger precursor, and regulate messenger 
RNA function.

{10-3] The stages of mRNA processing include all of the 
following except:

(a) splicing;

(b) export;

(c) methylation; or

(d) surveillance.

http://genome.ucsc.edu
http://www.ncbi.nlm.nih.gov/UniGene/
http://www.ncbi.nlm.nih.gov/UniGene/
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SuggeSted reAdIng
Alex Bateman and 29 colleagues introduce RNAcentral, a relatively new RNA database 
that centralizes data from many sources. In that paper, Bateman et al. (2011) provide 
brief, excellent overviews of RNA databases and of the relevance of RNA to many disci-
plines. Washietl et al. (2012) and Nawrocki and Eddy (2013) describe methods for iden-
tifying functional noncoding RNA elements, and their clearly written reviews describe 
the benefits of combining structural and sequence information. The Washietl et al. paper 
further explains the use of RNA-seq to identify noncoding RNAs and novel transcripts. 
For an excellent description of the structure, function, evolution, and phylogenetic distri-
bution of miRNAs, see Berezikov (2011).

Next-generation sequencing of cDNA derived from RNA (RNA-seq) has had a dra-
matic impact on our ability to characterize many classes of noncoding RNAs, as well as 
coding RNAs. Morozova et al. (2009) and Wang et al. (2009) review the impact of this 
technology.

{10-4] Digital differential display (DDD) is used to com-
pare the content of expressed sequence tags (ESTs) in 
UniGene’s cDNA libraries. ESTs are also represented on 
microarrays. Which statement best describes ESTs?

(a) clusters of nonredundant sequences (approximately 
500 base pairs in length);

(b) stretches of DNA sequence that are repeated many 
times throughout the genome;

(c) sequences corresponding to expressed genes that are 
obtained by sequencing complementary DNAs; or

(d) a “tag” (i.e., a fragment of DNA) derived from com-
plementary DNA (cDNA) that corresponds to a tran-
script that has not been identified.

[10-5] UniGene has cluster sizes from very small (e.g., 1) 
to very large (e.g., >10,000). What does it mean for there to 
be a cluster of size 1?

(a) one sequence has been identified that has a very 
large number of EST transcripts (e.g., over 10,000) 
associated with it;

(b) one sequence has been identified that corresponds to 
a gene that has been expressed one time;

(c) one sequence has been identified (presumably it is 
an EST) that matches one other known sequence 
(allowing it to be identified as a UniGene cluster); or

(d) one sequence has been identified (presumably it is 
an EST) that is thought to correspond to a known 
gene, but it matches no other known sequences in 
UniGene (i.e., it does not align to any other ESTs).

[10-6] In analyzing cDNA libraries, a pitfall is that the 
libraries:

(a) may be derived from different tissues;

(b) may contain thousands of sequences;

(c) may have been normalized differently; or

(d) may contain many rarely expressed transcripts.

[10-7] Most microarrays consist of a solid support on 
which is immobilized:

(a) DNA;

(b) RNA;

(c) genes; or

(d) transcripts.

[10-8] The purpose of the MIAME project is to provide a 
unified system for:

(a) the description of microarray manufacture;

(b) the description of microarray experiments from 
design to hybridization to image analysis;

(c) the description of microarray probe preparation 
including fluorescence- and radioactivity-based 
approaches; or

(d) microarray databases including standards for data 
storage, analysis, and presentation.

[10-9] RNA-seq offers several advantages over DNA 
microarrays. Which of the following is NOT an advantage 
for RNA-seq?

(a) the dynamic range is superior;

(b) the reproducibility is better, so fewer biological rep-
licates are needed;

(c) it can be used to characterize previously unannotated 
transcripts; or

(d) it can be used to characterize varieties of noncoding 
RNAs.
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The main idea behind microarrays is that one nucleic acid 
(DNA) is immobilized on a solid support on a solid surface 
in a predefined location, and then another nucleic acid 
(RNA or a derivative such as fluorescently labeled com-
plementary DNA) is hybridized to the surface. Microar-
rays were first developed in the 1990s by the laboratories 
of Patrick Brown at Stanford University and Jeffrey Trent, 
then at the National Institutes of Health (NIH). Beginning 
in 1950s, Sol Spiegelman (1914–1983) pioneered the study 
of RNA hybridization to DNA (see  http://profiles.nlm.nih 

.gov/PX/). By the early 1960s several groups immobilized DNA on a solid support 
then hybridized a variety of purified RNA molecules under a variety of conditions. 
This figure shows electron micrographic images of circular DNA-RNA hybrids by 
Spiegelman and colleagues (Bassel et al., 1964). The bacteriophage φX174 was 
shown to transcribe RNA which bound to DNA in a ribonuclease-resistant complex. 
Studies such as these established the mechanisms by which DNA is transcribed to 
RNA, and ultimately led to the development of hybridization-based assays includ-
ing microarrays. The scale bar is 0.1 μm. 

Source: Bassel et al. (1964).

http://profiles.nlm.nih.gov/PX/
http://profiles.nlm.nih.gov/PX/
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C h a p t e r

11
Gene Expression: 
Microarray and RNA-seq 
Data Analysis
A handful of luck is worth six assloads of learning.

— Arabic proverb

IntroductIon
Two powerful experimental approaches have emerged for the large-scale analysis of 
gene expression (i.e., mRNA transcript levels): microarrays and next-generation 
 sequencing-based transcriptional profiling (RNA-seq). Microarrays became commonly 
used by the year 2000, and RNA-seq became prominent a decade later. In each case, 
RNA is extracted from a source of interest (e.g., human fetal brain), and some compar-
ison is sought (e.g., what RNA transcript changes occur across developmental stages, 
or across brain regions, or in euploid versus trisomic samples). For microarrays, RNA 
samples are converted to some stable form (complementary DNA or complementary 
RNA for the Affymetrix  platform we focus on), labeled with a fluorescent dye, and 
hybridized to a microarray surface containing thousands (or millions) of pre-selected 
DNA elements. For RNA-seq, RNA is converted to cDNA, packaged into libraries, and 
millions of short reads are obtained by next-generation sequencing.

The main purpose of both technologies is to identify which genes were significantly 
up- or down-regulated (differential expression is therefore measured). RNA-seq offers the 
advantage that transcripts to be analyzed are not pre-selected but instead the sequencing 
determines (in a relatively unbiased manner) all the RNA species that are present in each 
sample.

RNA-seq is more useful than microarrays for additional purposes:

 • measuring transcript abundance;
 • identifying transcripts to improve annotation of genes; and
 • de novo transcript assembly.

LEARNING oBJEcTIvES

After completing this chapter you should be able to:
 ■ explain what preprocessing is and how normalization of microarrays is accomplished;
 ■ define a t-test and probability values;
 ■ describe different kinds of exploratory statistics (clustering, principal compenents analysis) 

and explain how they are used to visualize gene expression data; and
 ■ analyze both microarray and RNA-seq datasets.

http://www.wiley.com/go/pevsnerbioinformatics


Genomewide AnAlysis of dnA, RnA, And PRotein480

The workflow for experiments measuring RNA starts with experimental design 
(Fig. 11.1, lavender-shaded boxes). For biologists it is an excellent idea to collaborate with 
a biostatistician at the outset for two main practical reasons: to try to ensure there are 
enough biological replicates in the design to allow meaningful conclusions to be drawn 
regarding significantly regulated transcripts; and to minimize the interference of inevita-
ble nuisance factors. RNA can be purified in a biology lab or at a core facility. Because 
of the nature of RNA (it is labile, and its expression varies due to many factors) there 
are always batch effects in which RNA changes may be attributed to unwanted random 
variables (such as the date or time of RNA isolation, the method of RNA isolation, the 
number of people handling the RNA during purification, or whether the samples were 
processed under comparable conditions). Jeff Leek and colleagues (2010) have reviewed 
batch effects in high-throughput datasets including microarrays, DNA methylation arrays, 
and even DNA sequencing from the 1000 Genomes Project. Proper experimental design 
helps to address these issues, allowing later analyses that identify and correct for different 
sources of variation, and focus on the changes in RNA transcript levels due to biological 
causes that the investigator is most interested in identifying.

Data analysis for these two technologies is quite different. In this chapter we perform 
three workflows for microarrays, then one for RNA-seq. Once transcript levels are quantified 
and normalized, several main analyses are performed (Fig. 11.1, blue-shaded boxes). Explor-
atory statistics allow us to determine whether any samples are outliers (suggesting they might 
need to be discarded), and techniques such as clustering and principal components analysis 
are used to search for patterns in the data. Hypothesis testing helps us determine the statis-
tical significance of differentially regulated transcripts: for each individual transcript that 
appears to be differentially regulated in comparisons of two or more groups, how often are 
these observations likely to have occurred by chance? Classification can be used to determine 
how useful the expression patterns of a particular subset of transcripts are, in order to predict 
whether unknown samples segregate into groups such as disease versus control.

Microarray and RNA-seq experiments typically involve the measurement of the expres-
sion levels of tens of thousands of genes in only a few biological samples. There are usually 
no technical replicates (i.e., measuring gene expression with the same starting material on 
independent arrays) due to the relatively high cost of performing microarray experiments. 
There are also few biological replicates (e.g., measuring gene expression from multiple cell 
lines, each of which has been given an experimental treatment or a control treatment) relative 
to the large number of transcripts whose expression levels are quantitated. The challenge 
to the biologist is to apply appropriate statistical techniques to determine which changes 
are relevant. There is unlikely to be a single best approach to microarray or  RNA-seq data 
 analysis, and the tools applied to these workflows are evolving rapidly.

We begin with the analysis of a trisomy 21 (Down syndrome) dataset based on Affy-
metrix microarrays (a leading platform). In euploid cells each autosome is present in two 
copies, one from each parent. In trisomy 21 there are three copies of chromosome 21 (in 
>90% of cases the extra copy is maternal). We select this experiment because we can look 
to see if the group of RNA transcripts chromosome 21 is present at elevated levels relative 
to euploid controls. Indeed this is the case, a result published by researchers from my lab 
(Mao et al., 2003, 2005).

This chapter is organized as follows. We use three methods to analyze the microar-
ray data:

 1. The web-based GEO2R tool at NCBI can be run in a matter of minutes, although 
its capabilities are limited. We use it to introduce basic concepts such as probability 
values, t-tests, the normalization of microarray data, accuracy, and precision. GEO2R 
uses R scripts so we also introduce those, although the main point of GEO2R is the 
implementation of these complicated scripts in a simple web-based form.
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Biological question

Experimental design

Exploratory statisticsHypothesis testing Classification

Biological confirmation

Biological insight Diagnostics Therapeutics

Inferential statistics:
assign confidence to the
discovery of regulated genes
(e.g. t-test, ANOVA)

Define distances between
genes (and/or samples).
Perform unsupervised
analyses (clustering, PCA).

Perform supervised analyses
(e.g. linear discriminants,
support vector machines)

Isolate RNA

Make library

RNA-seq MicroarrayNext-generation
sequencing

Map reads to genome,
quantitate expression levels

Label, hybridize,
wash, scan

Image analysis

Normalization

Figure 11.1 Overview of methods for assessing RNA changes (“gene expression” analysis). Purple-shaded boxes: first, a biological 
question is formulated and then experimental design is created. After RNA is isolated we consider two technologies. For microarrays (peach 
boxes) the sample is converted to a set of fluorescently tagged molecules that are hybridized to a solid support, washed, and scanned. Image 
analysis is performed to provide the raw data of quantified expression levels, typically for >20,000 transcripts. Preprocessing involves nor-
malization and removal of outliers. For Affymetrix arrays, an additional preprocessing step is summarization in which the expression value 
of a given gene (mRNA transcript) is summarized based on the results from a series of hybridizations to olignonucleotides corresponding to 
that gene. For RNA-seq (brown boxes), RNA is converted to complementary DNA, packaged into a library, sequenced, and reads are mapped 
to a genome (or set of DNA regions corresponding to transcripts) to quantitate expression levels of genes including alternatively spliced 
transcripts. For microarrays or RNA-seq, hypothesis testing is performed (blue boxes) in which t-tests, ANOVA or other statistical tests are 
applied to determine which transcripts were significantly up- or down-regulated in the experiment. Exploratory (descriptive) statistics may be 
applied such as clustering of genes (or samples). For supervised approaches, samples (or genes) are associated with labels from a pre-existing 
classification (such as normal versus diseased tissue) and gene expression measurements are used to predict which unknown samples are dis-
eased. Finally, after microarray or RNA-seq data analysis is performed, biological confirmation experiments (green boxes) may be performed. 
This may lead to insight about biological processes, or to outcomes relevant to disease such as identifying diagnostic markers or strategies for 
therapeutic intervention. Adapted in part from Brazma and Vilo (2000).
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 2. We use the commercial software package Partek® Genomics Suite, demonstrating 
some of its versatile analysis and plotting features. In this section we introduce scat-
ter plots, volcano plots, and ANOVA.

 3. We use the R packages affy and limma. These are free and open source, and 
are popular in the biostatistics and bioinformatics communities. They may require a 
substantial effort to master, but to some these and other R packages are essential for 
a range of bioinformatics applications from microarrays to proteomics, methylation 
studies, and next-generation sequence data analysis.

Exploratory analyses (descriptive statistics) of microarray data are our next topic. 
This area includes hierarchical clustering and principal components analysis (PCA).

We then turn to RNA-seq data and use the Linux operating system to analyze 
a  Drosophila dataset with the very popular software tools TopHat, Cufflinks, and the 
R package cummeRbund. The chapter concludes with a brief discussion of the func-
tional annotation of expression data.

MIcroarray analysIs Method 1: Geo2r at ncBI
We now analyze a gene expression dataset using a simple web-based workflow that calls 
a variety of tools (including R scripts) and databases. First, choose a dataset from GEO. 
We use a set of human trisomy 21 (TS21, associated with Down syndrome) and euploid 
(normal chromosome copy number) samples from heart, brain, and astrocytes. The series 
accession is GSE1397. Enter that accession into a search at the home page of NCBI. 
There is a single link to BioProjects, leading to a single link to the GEO DataSets. (You 
can also follow the Entrez search engine result to the GEO DataSets page directly.) Select 
the option “Analyze with GEO2R.”

geO2r executes a Series of r Scripts

GEO2R performs analyses using well-known libraries (Biobase, GEOquery, limma), 
provides the accompanying R scripts, and generates plots and tables. First, choose the 
“define group” option to define TS21 (n = 11) and euploid (n = 11) groups (Fig. 11.2a).

It is quick and easy to click the “top 250” button to see which transcripts were signifi-
cantly regulated in this experiment. Before we do that, let’s look at the R script provided 
by GEO2R. It is not essential to understand this script for users who simply want a quick 
answer. For biologists who are unfamiliar with R and trying to learn how it works how-
ever, the script provides an excellent introduction to the strength of R (as a tool offering 
libraries and commands that implement advanced software tools in a precise, flexible, 
validated process) and the limitations of R (these commands are not intuitive and using 
R packages involves a substantial learning curve). The commands that follow are in blue. 
Comments are in green, preceded by a hash (#) indicating comments introduced by NCBI 
(my comments appear with triple hashes).

The relevant page for GSE1397 
is  http://www.ncbi.nlm.
nih.gov/gds/?term=GSE1397 
(WebLink 11.1). In the analyses 
below we will not use the three 
trisomy 13 datasets or their 
matched controls. This study 
was performed primarily by Rong 
Mao, who at the time was a 
graduate student in the Pevsner 
lab.

# Version info: R 2.14.1, Biobase 2.15.3, GEOquery 2.23.2, limma 3.10.1
# R scripts generated Thu Apr 3 13:47:04 EDT 2014

################################################################
# Differential expression analysis with limma
library(Biobase)
library(GEOquery)
library(limma)
### To load a library in R you will need to first install it, e.g.:
### > source("http://bioconductor.org/biocLite.R")
### > biocLite("Biobase")
### > library(Biobase)
### > biocLite("limma")

http://www.ncbi.nlm.nih.gov/gds/?term=GSE1397
http://bioconductor.org/biocLite.R
http://www.ncbi.nlm.nih.gov/gds/?term=GSE1397
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### > library(limma)
### You can then get information about various functions in these
### packages, e.g., > limmaUsersGuide()
# load series and platform data from GEO
### Note that the getGEO command of the GEOquery library is useful to
### extract GEO datasets

gset <- getGEO("GSE1397", GSEMatrix =TRUE)
if (length(gset) > 1) idx <- grep("GPL96", attr(gset, "names")) else idx 
<- 1
gset <- gset[[idx]]

# make proper column names to match toptable
fvarLabels(gset) <- make.names(fvarLabels(gset))

# group names for all samples
### Here the object sml will concatenate (abbreviated c) the samples.
### The trisomy 13 samples and controls (n=6) are marked “X”.
sml <- c("G0","G0","G0","G0","G1","G1","G1","G1","G1","G1","G1","G0","G0", 
"G0","G1","G1","G0","G0","G1","G1","G0","G0","X","X","X","X","X","X");

# eliminate samples marked as "X"
sel <- which(sml != "X")
sml <- sml[sel]
gset <- gset[ ,sel]

# log2 transform
### We will discuss the rationale for log2 transformation below
ex <- exprs(gset)
qx <- as.numeric(quantile(ex, c(0., 0.25, 0.5, 0.75, 0.99, 1.0), na.rm=T))
LogC <- (qx[5] > 100) ║
 (qx[6]-qx[1] > 50 && qx[2] > 0) ║
 (qx[2] > 0 && qx[2] < 1 && qx[4] > 1 && qx[4] < 2)
if (LogC) { ex[which(ex <= 0)] <- NaN
 exprs(gset) <- log2(ex) }

# set up the data and proceed with analysis
fl <- as.factor(sml)
gset$description <- fl
design <- model.matrix(~ description + 0, gset)
### model.matrix (from the stats package) creates a design matrix as
### specified.
colnames(design) <- levels(fl)
fit <- lmFit(gset, design)
### we will discuss lmFit when we perform analyses with limma (below).
### lmFit (from the limma package) fits a linear model to the log-
### transformed expression values for each probe in a series of
### arrays.
cont.matrix <- makeContrasts(G1-G0, levels=design)
### makeContrasts determines fold change between groups of samples
fit2 <- contrasts.fit(fit, cont.matrix)
fit2 <- eBayes(fit2, 0.01)
### eBayes (from the limma package) uses empirical Bayes statistics to
### determine differential expression. For usage, details, references, and 
### examples use > ?eBayes
tT <- topTable(fit2, adjust="fdr", sort.by="B", number=250)
### topTable (from the limma package) extracts a table of the top-
### ranked genes from a linear model fit that has been processed by
### eBayes.

# load NCBI platform annotation
gpl <- annotation(gset)
platf <- getGEO(gpl, AnnotGPL=TRUE)
ncbifd <- data.frame(attr(dataTable(platf), "table"))

# replace original platform annotation
tT <- tT[setdiff(colnames(tT), setdiff(fvarLabels(gset), "ID"))]
tT <- merge(tT, ncbifd, by="ID")
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Then click “top 250.” This reports the most regulated transcripts, ranked by smallest 
p value (Fig. 11.2b). By default, the values have been log2 transformed.

(a) GEO2R: defining groups for analysis

(b) GEO2R: limma results for differentially expressed transcripts (chromosome 21 genes indicated by        )

Figure 11.2 GEO2R at NCBI. GEO Datasets may be analyzed using this web-based tool. (a) Two or more groups are defined, and each 
row is assigned to a group. We enter TS21 (for 11 trisomic samples) and euploid (also n = 11). (b) GEO2R produces a list of significantly, 
 differentially expressed transcripts based on results from the limma R package. Arrows indicate regulated transcripts expressed from genes on 
chromosome 21. ID: Affymetrix probeset identifier; adj.P.Val: adjusted probability value (see text); P.Value: probability value; B: B-statistic, that 
is, log-odds that the transcript is differentially expressed; logFC: log2 fold change between two experimental conditions. Courtesy of GEO2R.

tT <- tT[order(tT$P.Value), ] # restore correct order

tT <- subset(tT, select=c("ID","adj.P.Val","P.Value","t","B","logFC","Gene.
symbol","Gene.title","Chromosome.location"))
write.table(tT, file=stdout(), row.names=F, sep="\t")
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While the “top 250” button gives a convenient view of the most significantly regulated 
transcripts, you can also choose an option to download all the data. For this experiment 
there are 22,283 transcripts (available as Web Document 11.1). Of these, 68 have probe 
names beginning AFFX and are controls you may wish to remove. A total of 37 of these 
have gene symbols such as SEPT2 that are irreversibly and inappropriately converted to 
dates by Microsoft® Excel (it is therefore critical that you work with a text editor rather 
than Excel or Word). Typical of many microarray platforms, 1207 of these entries lack 
both gene symbols and gene titles although they do have probeset identifiers.

geO2r identifies the Chromosomal Origin of regulated transcripts

Which of the regulated transcripts are derived from chromosome 21 genes? Using the “select 
column” option we add the chromosome location. Note that of the top entries having unique 
gene symbols, 10 out of 15 are from genes assigned to chromosome 21 (Fig. 11.2b, arrows). 
This tremendous overrepresentation can be explained by the presence of an extra copy of 
chromosome 21 (consisting of three copies rather than the usual two), leading to increased 
levels of chromosome 21 RNA transcripts relative to euploid controls (Mao et al., 2005).

GEO2R gave us the option to show the chromosome location. An alternative approach 
would be to export a file of the gene symbols of interest, then upload that to BioMart (or 
use biomaRt in R) to determine the chromosomal origins of the regulated transcripts.

Is the occurrence of 10 chromosome 21-derived transcripts out of 15 statistically sig-
nificant? Try using a Fisher exact test on a two-by-two matrix. There are 12 chromosome 
21-derived transcripts, and 29 non-chromosome 21 transcripts (the total is 41 genes). 
There are 671 chromosome 21 genes and 53,834 non-chromosome 21 genes in GRCh38. 
We use the fisher.test program in the stats R package to evaluate whether the 12 
transcripts from chromosome 21 are more than we expect by chance.

> mychr21data <- matrix(c(10,5,671,53834),2,2)
> mychr21data
 [,1]  [,2]
[1,]  10   671
[2,]  5   53834
> fisher.test(mychr21data, alternative = "two.sided")
 Fisher's Exact Test for Count Data
data: mychr21data
p-value = 2.458e-16
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 49.72036 589.80298
sample estimates:
odds ratio
 159.9635

> mychr21data2 <- matrix(c(2,13,671,53834),2,2)
> fisher.test(mychr21data2, alternative = "two.sided")
 Fisher's Exact Test for Count Data
data: mychr21data2
p-value = 0.01436
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 1.349511 54.636938
sample estimates:
odds ratio
 12.34114

The p value is very small (2 × 10−16), indicating that we can reject the null hypothesis. 
Would the finding have been significant if 2 (instead of 12) out of 15 regulated transcripts 
had been assigned to chromosome 21?
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Yes, the p value is 0.01, so this difference is significant. Our test is two-sided: we 
specify that we look for a difference but we do not say the direction of the effect. Since 
there is an extra copy of chromosome 21 it would be reasonable to perform a one-sided 
test, yielding more statistical power.

geO2r Normalizes Data

We can view a values distribution plot in the form of a boxplot (Fig. 11.3a). This displays 
the samples (x axis) and the distribution of values (y axis). These are fairly well normal-
ized across their medians, indicating that they are appropriate for comparisons between 
groups. (When we use R packages directly we’ll see boxplots before and after normaliza-
tion in “Reading CEL Files and Normalizing with RMA” below.) The R script tab shows 
the commands used to generate this boxplot in R:

(b) GEO2R: profile of normalized expression data for SOD1 transcripts across 22 samples

(a) GEO2R: boxplot of normalized expression data for trisomy 21 (n=11) and euploid (n=11) samples

Figure 11.3 GEO2R results. (a) GEO2R invokes R scripts that generate a boxplot, here showing 
that the samples (x axis) have been normalized to have comparable intensity values (y axis). The box-
and-whisker plot has upper and lower hinges (at the first and third quartile) and whiskers (corresponding 
to outlier data points). (b) A gene is selected (SOD1). GEO2R displays the expression values for this 
probeset across trisomy 21 and euploid samples. As a group the TS21 samples have elevated levels of 
SOD1 mRNA relative to euploid samples. Courtesy of GEO2R.
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These R commands are available as a text file in Web Document 11.2. You can enter 
them into R and modify them to change the properties of the boxplot (e.g., which samples 
are plotted or which colors are used), and you can obtain documentation on the libraries 
and commands that were used. For example, after you load > library(GEOquery) 
enter > ?getGEO for help on that function.

We say that the data are “normalized” by GEO2R; what does this mean? Normaliza-
tion refers to the process of correcting two or more datasets prior to comparing their gene 
expression values.

As an example of why it is necessary to normalize microarray data, dyes are incor-
porated into cDNA (or cRNA) samples with different efficiencies. There may also be 
differences in amounts of input RNA, in DNA quality, washing efficiency, or signal detec-
tion. Without normalization, it would not be possible to accurately assess the relative 
expression of samples. Genes that are actually expressed at comparable levels would 
have a ratio different from 1 (when considering unlogged data) or different from 0 (for 
logged data; see below). Normalization is also essential to allow the comparison of gene 
expression across multiple microarray experiments. Normalization is therefore required 
for one-channel microarray experiments such as the Affymetrix platform which uses one 
sample per microarray (chip). Normalization is also needed for two-channel arrays which 
typically involve separate labeling of samples with Cy3 and Cy5 dyes (interpreted as 
green and red), then cohybridization on the surface of an array.

There are many approaches to normalization. A simple idea is to measure the back-
ground intensity and subtract that from the signal for each probeset (or other element on 
the surface of a microarray). This background may be constant across the surface of an 
array or it may vary locally. Another idea is to apply a global normalization to raw array 
element intensities so that the average ratio for gene expression is 1. The main assumption 
of microarray data normalization is that the average gene does not change in its expres-
sion level in the biological samples being tested. The procedure for global normalization 
can be applied to two-channel datasets (e.g., Cy3- and Cy5-labeled samples) or one-chan-
nel datasets (e.g., Affymetrix chip data). As an example, if the mean expression value for 
samples in the green channel is 10,000 arbitrary units and the mean value for samples in 

# Boxplot for selected GEO samples
library(Biobase)
library(GEOquery)
# load series and platform data from GEO
gset <- getGEO("GSE1397", GSEMatrix =TRUE)
if (length(gset) > 1) idx <- grep("GPL96", attr(gset, "names")) else idx <- 1
gset <- gset[[idx]]
# group names for all samples in a series
sml <- c("G0","G0","G0","G0","G1","G1","G1","G1","G1","G1","G1","G0","G0", 
"G0","G1","G1","G0","G0","G1","G1","G0","G0","X","X","X","X","X","X")
# eliminate samples marked as "X"
sel <- which(sml != "X")
sml <- sml[sel]
gset <- gset[ ,sel]
# order samples by group
ex <- exprs(gset)[ , order(sml)]
sml <- sml[order(sml)]
fl <- as.factor(sml)
labels <- c("TS21","euploid")
# set parameters and draw the plot
palette(c("#dfeaf4","#f4dfdf", "#AABBCC"))
dev.new(width=4+dim(gset)[[2]]/5, height=6)
par(mar=c(2+round(max(nchar(sampleNames(gset)))/2),4,2,1))
title <- paste ("GSE1397", '/', annotation(gset), " selected samples", sep 
='')
boxplot(ex, boxwex=0.6, notch=T, main=title, outline=FALSE, las=2, col=fl)
legend("topleft", labels, fill=palette(), bty="n")
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the red channel is 5000, then the expression value for each gene in the red channel would 
be multiplied by 2. If the data are not log transformed, the mean ratio is then 1. Once the 
data are log transformed, the mean ratio is 0.

Another possible approach is to normalize all expression values to a set of “house-
keeping genes” that are represented on the array. Housekeeping genes might include 
β-actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and dozens of others. 
Each gene expression value in a single array experiment is then divided by the mean 
expression value of these housekeeping genes. A major assumption of this approach is 
that such genes do not change in their expression values between two conditions. In many 
cases, this assumption fails.

Affymetrix introduced the MAS5 normalization method which normalizes each array 
independently. Perfect match (PM) probesets consist of oligonucleotides affixed to the array 
surface that bind the fluorescently labeled sample if transcripts corresponding to particular 
probesets are expressed. Mismatch (MM) oligos are designed with an intentional mismatch 
and are used to define background signal. MAS5 calculates the difference PM – MM to 
obtain a robust average, summarizing the signal from a set of probesets that span a gene.

Robust multiarray analysis (RMA) is a method of performing background subtrac-
tion, normalization, and averaging of probe-level feature intensities extracted from .CEL 
files using the Affymetrix platform (Irizarry et al., 2003). It includes steps for background 
correction, quantile normalization across arrays, a probe-level model fit to each probeset 
across multiple arrays, and quality assessment.

Quantile normalization is a nonparametric approach that produces the same overall 
 distribution for all the arrays within an experiment (Bolstad et al., 2003). Parametric tests 
are applied to datasets that are sampled from a normal (Gaussian) distribution; common 
parametric tests include the t-test and ANOVA (discussed in “Performing ANOVA in 
Partek”). Nonparametric tests do not make assumptions about the population distribution. 
They rank the outcome variable (here, gene expression measurements) from high to low and 
analyze the ranks. In quantile normalization, for each array each signal intensity value is 
assigned to a quantile. We then consider a pooled distribution of each probe across all chips: 
for each probe, the average intensity is calculated across all the samples. Normalization is 
performed for each chip by converting an original probeset value to that quantile’s value.

The RMA background correction step includes a convolution model in which the 
observed signal for each probeset is broken into components of true signal and noise. 
GCRMA further introduces an adjustment for the presence of nonspecific hybridization 
that improves accuracy (relative to RMA) while maintaining large gains in precision (rel-
ative to other preprocessing techniques). You can use RMA and GCRMA on a trisomy 
21 dataset using the affy Bioconductor package we introduce in “Microarray Analysis 
Method 3” below.

geO2r uses rMa Normalization for accuracy and precision

RMA has accuracy comparable to MAS 5.0 software (Affymetrix; Fig. 11.4a), while its 
precision is far greater (Fig. 11.4b). We define accuracy and precision next.

Preprocessing steps are designed to improve accuracy of gene expression measure-
ments by lowering bias, and to improve precision by lowering the variance. Accuracy is 
estimated two ways: by using spike-in samples of known concentrations of RNA, or by 
diluting known concentrations of RNA. These methods allow an objective assessment of 
the true positive measurements. A more accurate normalization method produces results 
that are closer to the “gold standard” truth. The precision is estimated by using replicate 
measures of the same sample. Samples with great precision have little variance.

We can think of accuracy and precision in terms of a series of arrows hitting a target: 
accuracy refers to how close the arrows are to the bull’s-eye, while precision refers to how 

RMA was introduced by Terry 
Speed, Rafael Irizarry and 
colleagues. Affymetrix arrays 
include both perfect match 
oligonucleotide probes, as well 
as mismatch probes containing 
a single base mismatch that are 
used to estimate background. 
RMA considers only perfect 
match values, because mismatch 
values contributed noise and can 
have values greater than perfect 
match probes across as much as 
one-third of a microarray.

RMA is available through the 
affy package of BioConductor, 
and has also been incorporated 
into a variety of commercial 
microarray data analysis 
packages. GCRMA was 
developed by Zhijin Wu and 
Rafael Irizarry.

Sometimes variance present 
in gene expression data is not 
constant across the range 
of element signal intensities. 
This variation represents an 
artifact that can be addressed 
by global and also local 
normalization processes, which 
correct bias and variance that 
are nonuniformly distributed 
across absolute signal intensity. 
Many software packages can 
correct for such variance. One 
of these, Standardization and 
Normalization of Microarray 
Data (SNOMAD), was written 
by Carlo Colantuoni when he 
was a graduate student in the 
Pevsner lab. SNOMAD is a 
web-based tool written in R and 
available at  http://pevsnerlab.
kennedykrieger.org (WebLink 
11.2); see Colantuoni et al. 
(2002a, b).

http://pevsnerlab.kennedykrieger.org
http://pevsnerlab.kennedykrieger.org


GENE EXPRESSIoN: MIcRoARRAy AND RNA-SEq DATA ANALySIS 489

reliably the arrows hit the same spot (Fig. 11.5; Cope et al., 2004). Irizarry et al. (2006) 
performed a benchmarking study using 31 algorithms for the analysis of Affymetrix probe 
sets. They concluded that background correction has a large effect on performance, and 
tends to improve accuracy but worsen precision. The RMA and GCRMA algorithms have 
consistently performed well in terms of both accuracy and precision and have emerged 
as leading approaches for the preprocessing of Affymetrix gene expression data. RMA is 
employed within GEO2R.

Skewing sometimes reflects 
experimental artifacts such as the 
contamination of one RNA source 
with genomic DNA or rRNA. 
(Such contaminating nucleic 
acid could bind to elements on 
the microarray.) Another source 
of artifact is the use of unequal 
amounts of fluorescent probes on 
the microarray.
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Figure 11.4 Improvements in accuracy and precision using RMA (relative to MAS 5.0 soft-
ware from Affymetrix). (a) Accuracy is measured by plotting known concentrations of RNA (x axis) 
versus observed concentrations (y axis). The two methods are comparable. RMA performs slightly 
worse at low concentrations, a situation that is improved by the GCRMA algorithm. (b) Precision 
is measured by plotting the average log expression value (x axis) versus the log expression standard 
deviation (y axis). MAS 5.0 software yields a high standard deviation, particularly for transcripts 
expressed at low levels, while RMA has a dramatically improved measurement across a broad range 
of signal intensities.
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Fold Change (expression ratios)

Let’s return to our GEO2R results. The top 250 results are sorted by probability value. 
Fold change is also reported, reflecting the magnitude of the difference in RNA transcript 
levels between the mean of our group of euploid samples and the mean of the group of 
trisomic samples. We can click on any of the top 250 results and see a bar chart showing 
the expression levels for all 22 samples in two groups. For SOD1 transcripts, the set 
of  trisomy 21 samples clearly have higher overall expression values than the euploid 
 samples (Fig. 11.2b, 11.3b).

Some investigators apply an arbitrary minimum fold change to the list of significantly 
regulated transcripts such as 1.5-fold or 2-fold. This has the benefit of allowing you to 
focus on the most dramatic changes (in terms of magnitude). It may also make sense 
from a biological point of view to avoid focusing on expression changes that are minor 
(e.g., a 1.1-fold up- or down-regulation) even if statistically significant based on proba-
bility values. Keep in mind that p values offer a popular approach to defining statistical 
significance, but fold change does not. Given a large fold change (even 10-fold) between 
two groups, there may or may not be statistical significance (depending on the variability 
in the measurements; see “GEO2R Performs >22,000 Statistical Tests” below; Fig. 11.6). 
Given a statistically significant difference for a given gene, the fold change may be of any 
magnitude from large to trivially small.

geO2r performs >22,000 Statistical tests

The goal of inferential statistical analysis of microarray data is to test the hypothesis that 
some genes are differentially expressed in an experimental comparison of two or more 
conditions. For each gene (or probeset) on a microarray we perform a statistical test.

Consider our trisomy 21 versus euploid experiment. There are >22,000 transcripts 
represented on the array. For each transcript there are 11 measurements in the experimen-
tal group and 11 measurements in the control group. For each of the >22,000 transcripts, 
we formulate a null hypothesis H0 that there is no difference in signal intensity across the 
two conditions being tested. The alternative hypothesis H1 is that there are differences in 
transcript levels. We define and calculate a test statistic which is a value that characterizes 
the observed gene expression data. We accept or reject the null hypothesis based on the 
results of the test statistic. The probability of rejecting the null hypothesis when it is true 
is the significance level α, which in science is typically set at p < 0.05. Under the null 
hypothesis, for a set of gene expression intensity values in two conditions the data are nor-
mally distributed with mean 0 and standard deviation σ equal to 1. The standard deviation 
σ can be estimated using the sample standard deviation s.

(a) Good precision, low accuracy (b) Good accuracy, low precision (c) Good accuracy and precision

Figure 11.5 Accuracy and precision. (a) Good precision is characterized by reproducible results. 
It is assessed by repeated measurements of samples (technical replicates). (b) Good accuracy is charac-
terized by measurements that correspond to an independently known result. It can be assessed by mea-
surement of known (“spiked in”) concentrations of RNA to an experiment, or by measuring dilutions of 
known concentrations of RNA. (c) A goal of preprocessing algorithms is to achieve both accuracy and 
precision.



GENE EXPRESSIoN: MIcRoARRAy AND RNA-SEq DATA ANALySIS 491

The mean and standard deviation for the expression of each gene represented on 
the microarray can be calculated. A t-test is performed to test the null hypothesis that 
there is no difference in gene expression levels, considered one gene at a time, between 
the two populations. The approach is to compute the average expression value for each 
gene from control (x1) and experimental (x2) conditions and take the absolute value of the 
difference, providing as a numerator the magnitude of the expression change, We also 
need to estimate the variance (σ), providing as a denominator the amount of noise in the 
measurements. The average for each sample (e.g., x1  ) is given by:
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The t-test essentially measures the signal-to-noise ratio in your experiment by dividing the 
signal (difference between the means) by the noise (variability estimated in the two groups).
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From the t-statistic we can calculate a p value. This allows us to either reject or accept the 
null hypothesis that the control and experimental conditions have equal gene expression 
values (i.e., the null hypothesis is that there is no differential expression). For a t-test that 
provides a p value of 0.01, this means that one time in 100 the observed difference between 
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Figure 11.6 Transcript-specific variance is addressed by a t-test. For five hypothetical transcripts 
the log expression values are plotted (y axis). Transcript 1 has a low absolute expression level and low 
variance upon repeated measurements in biological replicate samples, while transcript 2 has a low expres-
sion level and relatively high variance. Transcript 3 is expressed at intermediate levels, while transcripts 
4 and 5 are expressed at high levels, with transcript 3 having low variance and transcript 4 having high 
variance. Each RNA transcript has a characteristic property of its expression level (although this may 
vary dramatically across body regions and across developmental stages, or even between experimental 
conditions). When we compare expression levels for two transcripts, a t-test accounts for the difference in 
mean between the two measurements, and also provides an analysis of the variation in expression levels.
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the control and experimental groups will be observed by chance, and we can safely reject 
the null hypothesis. Figure 11.2b presents the results of t-tests having the smallest p val-
ues in our study. For example, SOD1 having a p value of 0.00008342 (close to 0.0001) 
indicates that the observed difference in expression levels between trisomic and euploid 
samples will occur by chance only 1 time in 10,000. This might lead us to reject the null 
hypothesis. (There is also an adjusted p value of 0.3545, explained in “GEO2R Offers 
Corrections for Multiple Comparisons” below, which would suggest there is no significant 
difference between SOD1 expression levels in our trisomy and euploid groups.)

We can think about the usefulness of the t-test by considering hypothetical RNA 
transcripts for which we have gene expression measurements from 11 samples (Fig. 11.6). 
Genes 1 and 2 are expressed at low levels, and there is considerable “noise” (variability) 
in the measurement of gene 2. In a comparison of genes 1 and 2, both the mean values 
(which may differ) and the variability in the measurement (which shows overlap) are 
accounted for in a t-test. The difference between sample 3 (with its elevated expression 
level and moderate variability) and sample 1 might be significant, but sample 3 is not 
likely to be significantly, differentially regulated in comparison to  sample 2 with its 
higher variance. For genes expressed at high levels, the variance may also be small (gene 
4) or large (gene 5). For any sample displaying large variance, a relatively large sample 
size will be necessary to achieve sufficient statistical power to reject the null hypothesis. 
Here are three t-tests made with the t.test program in the stats package of R. The 
first one compares two groups with means of 10 and 20, and the p value is very small:

> t.test(c(8,12,9,11), y = c(18,22,19,21))
  Welch Two Sample t-test
data: c(8, 12, 9, 11) and c(18, 22, 19, 21)# use c to concatenate
# several numbers
t = -7.746, df = 6, p-value = 0.0002433
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -13.15895 -6.84105
sample estimates:
mean of x mean of y
 10 20

> t.test(c(8,12,9,11), y = c(12,12,12))
# Note that we selected n=4 in one group and n=3 in the other
  Welch Two Sample t-test
data: c(8, 12, 9, 11) and c(12, 12, 12)
t = -2.1909, df = 3, p-value = 0.1162
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.9051627 0.9051627
sample estimates:
mean of x mean of y
 10 12

> t.test(c(8,12,9,11), y = c(14,14,14))
  Welch Two Sample t-test
data: c(8, 12, 9, 11) and c(14, 14, 14)
t = -4.3818, df = 3, p-value = 0.02201
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -6.905163 -1.094837
sample estimates:
mean of x mean of y
 10 14

The second t-test involves a second group with a mean of 12 but, because of the  variability 
in the first group, the p value is not significant.

Finally, in the last set the group means are 10 and 14 and the p value is significant.
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The power of a statistical test is the fraction of true positives that will be detected. 
This is a value between 0 and 1 defined as 1–β; β is the probability of concluding there 
is no significant difference between two means, when in fact the alternative  hypothesis 
is true. (β is the same as the probability of making a type II error.) The larger the sample 
size, the larger the power. The R package pwr produces power estimates for  microarray 
(or other) experiments, as does the power.t.test function in the stats package. 
One  parameter is set to null and is determined from the other input parameters. Given a 
 sample size of 11 in each group and a difference in the means of 1, at a significance level 
of 0.05, what is the power of a t-test?

> power.t.test(n = 11, delta = 1 , sig.level = 0.05)
 Two-sample t test power calculation
 n = 11 # note that n is the number in each group
 delta = 1
 sd = 1
 sig.level = 0.05
 power = 0.6070844
 alternative = two.sided

> power.t.test(power = .90, delta = 1)
 Two-sample t test power calculation
 n = 22.0211
 delta = 1
 sd = 1
 sig.level = 0.05
 power = 0.9
 alternative = two.sided

To achieve a power of 0.9 in a t-test, how many samples are needed per group? The 
answer is 22.

An assumption of parametric tests such as the t-test approach is that gene expression 
values are normally distributed. If so, the t-statistic follows a distribution that allows us 
to calculate a set of p values. (An alternate assumption is that, for very large numbers of 
replicates, the t-statistic is normally distributed with mean 0 and standard deviation of 
1, and again we can compute p values. In practice, very larger numbers of replicates are 
rarely available for microarray studies.)

Nonparametric tests rank the outcome variables and do not assume a normal distri-
bution. These tests, such as the Mann–Whitney and Wilcoxon, are less influenced by 
data points that are extreme outliers. Such tests are not commonly applied to microarray 
data. Other approaches have been implemented such as Bayesian analysis of variance 
(Ishwaran et al., 2006; see also the limma package in “Microarray Analysis Method 
3” below).

The test that is used depends on the experimental paradigm. Some examples of 
experimental designs are shown in Figure 11.7. For a between-subject design (Fig. 11.7a) 
there are two groups. In this experimental design it is necessary to control for confound-
ing factors such as differences in age, gender, or weight between individuals in the two 
groups. For a within-subject design (Fig. 11.7b), a paired t-test would be used to test 
for the differences in mean values between two sets of measurements on paired sam-
ples. An example of this is a study measuring gene expression in cancer biopsy samples 
before and after drug treatment. Here the covariates (“nuisance variables”) such as age 
and gender are internally controlled. A biostatistician can help a biololgist to choose an 
appropriate design before an experiment is conducted. The statistician Ronald Fisher 
(1890–1962) famously stated: “To consult the statistician after an experiment is finished 
is often merely to ask him to conduct a post-mortem examination. He can perhaps say 
what the experiment died of.”
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geO2r Offers Corrections for Multiple Comparisons

What p value cutoff is appropriate to establish statistical significance? If you measure the 
expression values for 20,000 transcripts, you can expect to find differences in 5% of them 
(1000 transcripts) purely by chance that are nominally significant at the p < 0.05 level. If 
you hypothesized a priori that one specific gene was significantly regulated, then this α 
level would be appropriate. However, for 20,000 measurements it is necessary to apply 
some conservative correction to account for the thousands of repeated, independent mea-
surements you are making. There are two problems we want to avoid. Type I errors (false 
positive results) involve concluding that a transcript is differentially expressed when it is 

(a) Between-subject design

Treatment group (B)

Subject B1
Subject B2

...
Subject BN

(b) Within-subject design

Control condition (A)

Subject 1 (before)
...

Subject AN (before)

Treatment condition (B)

Subject 1 (after)
...

Subject BN (after)

(c) Factorial design: between-subject

(d) Factorial design: within-subject

(e) Mixed factorial design

Male

control  treatment

Female

control  treatment

Treatment A

Subject A1: time 1 time 2 ... time n
...
Subject AN: time 1 time 2 ... time n

Treatment B

Subject B1: time 1 time 2 ... time n
...
Subject BN: time 1 time 2 ... time n

Normal

Subject A1: time 1 time 2 ... time n
...
Subject AN: time 1 time 2 ... time n

Diseased

Subject B1: time 1 time 2 ... time n
...
Subject BN: time 1 time 2 ... time n

Control group (A)

 Subject A1
 Subject A2

 ...
 Subject AN

Figure 11.7 Examples of experimental design for microarray experiments involving gene expres-
sion profiling. Most such microarray experiments are designed to test the hypothesis that there are sig-
nificant biological gene expression differences between samples as a function of factors such as tissue 
type (normal versus diseased or brain versus liver), time, or drug treatment. (a) A between-subject design 
must control for confounding factors such as age, gender, or weight. (b) A within-subject design removes 
genetic variability and can be used to measure gene expression before then after some treatment. (c) A 
two-way between-subject design allows the measurement of differences between both treatment and 
control conditions, and another factor such as gender. (d) A within-subject factorial design might be used 
to study two treatments over time. (e) In a mixed factorial design there is both a between-subject design 
(e.g., normal versus diseased tissue) and a within-subject design (e.g., gene expression measurements 
over time).
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not; the null hypothesis is true but is inappropriately rejected. Type II errors (false nega-
tive results) involve failing to identify a truly regulated transcript; the null hypothesis that 
is actually false is not rejected as it should be. A p value is defined as the minimum false 
positive rate at which an observed statistic is categorized as significant.

There are several approaches to accounting for the problem of multiple comparisons. 
At one extreme, some researchers apply a conservative Bonferroni correction in which 
the α level for statistical significance is divided by the number of measurements taken 
(e.g., p < 0.05/20,000 is set as the criterion for significance). This correction is consid-
ered too severe. A more commonly used approach to the multiple comparisons correction 
problem is to adjust the false discovery rate (FDR), defined:

FDR
# false positives

# called significant
.=  (11.4)

The FDR represents the rate at which genes identified as significantly regulated are not. 
For an FDR of 0.05, 5% of those transcripts that are called significant are false positives. 
For 100 significantly regulated genes and an FDR of 8%, 8 genes out of 100 are expected 
to represent false positive results.

GEO2R offers several multiple test corrections. The Benjamini and Hochberg 
(1995) FDR is the default: it is the most commonly used adjustment method, and limits 
the number of false positives while finding true positives (statistically significant tran-
scripts). Five other multiple comparison correction methods are available, including the 
Bonferroni correction. This divides the threshold for significance α by the number of 
measurements k; for a microarray experiment with 10,000 measurements α would be 
adjusted from 0.05 to 5 × 10−6. The equation relating a BLAST expect value to a score 
(see Chapter 4) includes the equivalent of a Bonferroni correction because E is divided 
by mn (i.e., the sizes of the query and the database, corresponding to the number of mea-
surements) to obtain the score.

Note that it is not appropriate to filter by fold change before performing a statistical 
test such as ANOVA. This may reduce the multiple testing penalty, but it introduces bias 
(van Iterson et al., 2010). At the same time, if using fold change as a criterion for ranking 
genes along with a nonstringent p value cutoff, lists of differentially expressed genes 
become more reproducible across laboratories. This is the conclusion of Shi et al. (2008) 
who analyzed datasets from the MicroArray Quality Control (MAQC) project, introduced 
in the following section below.

MIcroarray analysIs Method 2: Partek
For our second method we introduce a commercial software package, Partek Genomics 
Suite. This is a package that requires an annual license, and may be compared to R pack-
ages (described in this chapter): some researchers prefer to use free, open-source software 
such as R. Such software is often designed by academic experts in bioinformatics and/or 
biostatistics. Advantages of Partek include:

 • a minimal learning curve (in contrast to R which most scientists concede has a very 
steep learning curve);

 • packaging of a suite of tools into a user-friendly graphical user interface (GUI), 
including guided workflows for various tasks such as microarray analysis; and

 • dedicated customer support (it should be noted that the culture of the R user com-
munity is that authors of software packages tend to be highly responsive to users’ 
queries, and users’ forums are available offering excellent support).

In the following analysis of the Down syndrome dataset we select a gene expres-
sion workflow within Partek Genomics Suite that provides step-by-step guidance on 

Partek software (both Partek 
Genomics Suite that we describe 
next and Partek Flow for NGS 
data) is available from  http://
www.partek.com (WebLink 11.3). 
Other prominent commercial 
packages include Nexus 
Expression and ImaGene from 
BioDiscovery® ( http://www 
.biodiscovery.com, WebLink 11.4), 
GeneSpring ( http://www.chem 
.agilent.com/, WebLink 11.5), 
GeneTraffic ( http://www.iobion 
.com/, WebLink 11.6), and Avadis 
from Strand Life Sciences  
( http://www.avadis-ngs.com/, 
WebLink 11.7).

http://www.partek.com
http://www.partek.com
http://www.biodiscovery.com
http://www.biodiscovery.com
http://www.chem.agilent.com/
http://www.chem.agilent.com/
http://www.iobion.com/
http://www.iobion.com/
http://www.avadis-ngs.com/
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how to import data, perform quality control, then perform a series of analyses (Fig. 11.8, 
arrow 1).

importing Data

Partek Genomics Suite can accept over a dozen data formats, ranging from text files and 
Excel spreadsheets to GEO data (e.g., a GSE series or GSM samples). It also supports 
next-generation sequence data such as BAM files. For gene expression analysis we will 
import a set of Affymetrix CEL files.

We browse to a folder containing CEL files, select the ones we wish to ana-
lyze, and import them using either RMA or GCRMA for normalization (introduced 
above). Library files are required, containing annotation information for this particular 
microarray platform, and Partek identifies whether they are available in a specified 
library file folder. If not, it automatically downloads and stores the required files from 
the internet.

Quality Control

Once CEL files are imported, a postImportQC spreadsheet provides quality control 
metrics (Fig. 11.9a) including a series of boxplots similar to that shown in Figure 11.3a. 
The QC data are included in a child spreadsheet (Fig. 11.8, arrow 3). The main data 
sheet has 25 rows (one per sample) and 22,289 columns (6 with information about 
these samples and then 22,283 columns containing log2 expression values measured 
from the microarray). The first three columns include .CEL file pseudo chip images. 
By double-clicking one, the image enlarges showing the surface of the array for that 

The CEL files are provided at  

http://bioinfbook.org/chapter11. 
When available at NCBI GEO, 
you can import them directly 
using the NCBI GEO download 
option. CEL files contain 
measured expression levels for 
a series of probe sets, each of 
which corresponds to a gene 
or portion of a gene. CEL files 
also contain locations for these 
measurements.

1

2 3

4

5

6

Figure 11.8 A Partek spreadsheet includes rows (here there are 25 rows each with data from a 
sample) and columns (the first columns include information about each sample, followed in this case by 
>22,000 columns each corresponding to a microarray probeset). The cells in this spreadsheet consist of 
log2 expression values that correspond to the amount of detected signal, interpreted as expression levels. 
A workflow for gene expression is shown (arrow 1). The main spreadsheet may be selected (arrow 2) 
or another spreadsheet such as the quality control data (arrow 3). A principal components analysis plot 
(Fig. 11.10) may be invoked (arrow 4). Images of the microarray surface are clickable (arrow 5; see 
Fig. 11.9b). Additional functions may be accessed by clicking row or column headers (e.g., arrow 5), 
such as plotting or annotating row or column elements. Courtesy of Partek Inc.

http://bioinfbook.org/chapter11


GENE EXPRESSIoN: MIcRoARRAy AND RNA-SEq DATA ANALySIS 497

sample (Fig. 11.9b). This can be useful to explore outliers in the QC step, poten-
tially identifying regions of an array that have defects (e.g., scratches or hybridization 
errors).

adding Sample information

When we used GEO2R we specified which samples are euploid or trisomic. We do the 
same with Partek, and can merge a spreadsheet having critical sample information with 
another spreadsheet with gene expression values. From the gene expression workflow 
select “Add sample attributes” and specify the type (Trisomy21 or euploid), tissue (astro-
cyte, cerebellum, cerebrum, heart), and subject (individual). Each column has a header 
that can be clicked to specify its properties (Fig. 11.8). We can make the subject a random 
effect (the particular individuals used in this study are a random draw from the total pop-
ulation of trisomy 21 and euploid). The type and the tissue are fixed rather than random 
effects (those type and tissue categories are invariant in this study).

(a) Quality control plot (b) Pseudo image of microarray from CEL file

(c) Histogram of intensity values

3109
Type Down Syndrome Euploid
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1
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(d) MA plot
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Figure  11.9 Visualization of quality control data from Partek. (a) Quality control plots include 
log2 expression (y axis) across samples (x axis) for spike-in controls. (b) Pseudo image of a microar-
ray  surface from a CEL file. Artifacts (“squashed bug phenomenon”) may be identified visually and 
when necessary samples may be discarded. (c) Histogram of intensity values may also reveal outli-
ers. (d) MA plot shows mean intensity values of log2 transformed data (x axis) and expression change 
(y axis). Courtesy of Partek Inc.
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Sample histogram

A sample histogram plots the intensity of the probes (x axis) and the frequency of the 
probe intensity (y axis; Fig. 11.9c). This allows us to visually confirm that the samples have 
been normalized appropriately (or not if there are outliers). Later we will plot histograms 
using R packages for microarrays (“Reading CEL Files and Normalizing with RMA” 
below) or RNA-seq data (“CummeRbund to Visualize RNA-seq Results” below).

Scatter plots and Ma plots

The scatter plot is a common visualization method for microarray data. This shows the 
comparison of gene expression values for two samples. Most data points typically fall on 
a 45° line, but transcripts that are up- or down-regulated are positioned off the line. The 
scatter plot displays which transcripts are most dramatically and differentially regulated 
in the experiment.

The MA plot is a type of scatter plot also displaying all expression values from two 
samples. The average log2 expression value is shown on the x axis, ranging from tran-
scripts expressed at low levels (to the left) to high levels (to the right; Fig. 11.9d).

 M I Ilog ( ) log ( ),2 1 2 2= −  (11.5)

 A I I
1

2
log ( ) log ( ) .2 1 2 2( )= + (11.6)

The y axis displays difference. For log2 transformed data, a value of zero is obtained 
for two samples with equal expression levels, while up-regulated transcripts are shown 
higher on the y axis and down-regulated samples lower.

Working with Log2 transformed Microarray Data

We routinely log2-transform microarray data, as is done by both GEO2R and Partek. 
For scatter plots this creates a more centered distribution in which the properties of 
the dataset are easier to analyze. Also, it is far easier to describe the fold regulation 
of genes. Consider three transcripts that are unchanged, up-regulated two-fold, and 
down-regulated two-fold. The ratios are 1:1, 2:1, and 0.5:1. In log2 space, the data 
points are however conveniently symmetric about 0: for two transcripts expressed at the 
same level log2 (x/x) = 0, while the values are +1 and –1 for the up- and down-regulated 
cases. Another feature of logarithmic transformations is that, in addition to providing 
symmetry in expression ratios, they stabilize the variance across a wide range of inten-
sity measurements.

We review some of the basic values and properties of logarithms in table 11.1.

exploratory Data analysis with principal Components analysis (pCa)

Exploratory analyses are valuable to visualize the relatedness of samples. Principal com-
ponents analysis (PCA) is a technique to reduce and visualize high-dimensional data in 
plots having two or three dimensions (Ma and Dai, 2011). The central idea behind PCA is 
to transform a number of variables into a smaller number of uncorrelated variables called 
principal components. The variables that are operated on by PCA may be the expression 
of many genes (e.g., 20,000 gene expression values), or the results of gene expression 
across various samples. In a typical microarray experiment, PCA detects and removes 
redundancies in the data (such as genes whose expression values do not change and are 
therefore not informative about differences in how the samples behave).

We create a PCA plot and note 25 balls (one per sample) appearing in several clus-
ters (Fig. 11.10a). These are colored by type and, as expected, there is no major difference 

PCA is also called singular-value 
decomposition (Alter et al., 2000). 
It is a linear projection method; 
this means that the data matrix 
you start with is “projected” 
or mapped onto lower 
dimensional space. Projection 
methods related to PCA include 
independent components 
analysis, factor analysis, 
multidimensional scaling, and 
correspondence analysis.
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between samples labeled Down syndrome or euploid. A total of 56.9% of the variance is 
explained in in this plot. Principal component (PC) axis #1, which is the x axis, accounts 
for 24.0% of the variance, while PC #2 (the y axis) and PC #3 (the z axis) account for 
22% and 11%, respectively. (By definition, each axis accounts for successively less of 
the variance.) Since we know that gene expression varies across tissue type, we can label 
the data points by tissue (Fig. 11.10b). Here we see a clear explanation for the position of 
the data points in the PCA plot: astrocyte samples are grouped together (bottom left) as 
are heart samples (bottom right), while the brain regions (cerebrum and cerebellum) are 
in separate, adjacent clusters. The position of the data points is identical in our two PCA 
plots (Fig. 11.10a, b) and only the labeling has changed. In the latter plot we include the 
feature of an ellipse which extends two standard deviations beyond the centroid of each 
tissue group.

The position of the data points in PCA reflects the relatedness of the objects (sam-
ples) in the underlying data matrix. To illustrate this concept, we can return to the data 
matrix and select Transform > Create transposed spreadsheet. This creates a new spread-
sheet having 26 columns (probsets and then the 25 samples) and 22,283 rows. A PCA 
plot of this dataset shows 22,283 data points each corresponding to a single probeset. We 
can select a group of three data points (arbitrarily selected based on points that are close 
together; Fig. 11.10c, arrow). In the main spreadsheet we can click the row number and 
plot the profile (e.g., refer to Fig. 11.8 arrow 6). These three data points have very similar 
profiles in terms of expression levels observed across 25 samples (Fig. 11.10d). It is pre-
cisely because they have similar profiles that the PCA plot of Figure 11.10c grouped them 
close together.

The starting point for PCA is any matrix of m observations (gene expression values) 
and n variables (experimental conditions). The goal is to reduce the dimensionality of 
the data matrix by finding r new variables (where r < n). These r variables account for as 
much of the variance in the original data matrix as possible. The first step of PCA algo-
rithms is to create a new matrix of dimensions n × n. This may be a covariance matrix 
or a correlation matrix. (In a study of 25 samples and >22,000 genes there is a 25 × 25 
covariance matrix.) The principal components (called eigenvectors) are selected for the 
biggest variances (called eigenvalues). What this means practically for our example data-
set is that, if the expression values of a gene do not vary across the samples, it will not 
contribute to the formation of the principal components.

tabLe 11.1 Common values of logarithms in base 2 and base 10. recall that for any 
positive number b (where b ≠ 1), logb y = x when y = bx. thus log2 8 = 3 and 23 = 8. Note 
also that logb b = 1; logb1 = 0; logb x y = logb x + logb y; and logb (x/y) = logb x – logb y.

Value Log10 Log2

1000 3.00 9.97

100 2.00 6.64

50 1.70 5.64

10 1.00 3.32

5 0.70 2.32

2 0.30 1.00

1 0.00 0.00

0.5 –0.30 –1.00

0.2 –0.70 –2.32

0.1 –1.00 –3.32

0.01 –2.00 –6.64

0.001 –3.00 –9.97
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How is the first principal component axis related to our raw data? Take the three-di-
mensional plot of the raw data and redraw the x, y, z coordinate axes so that the origin 
(“centroid”) is at the center of all the data points (Fig. 11.11). Find the line that best fits 
the data; this corresponds to the first principal component axis. By rotating this axis, it 
becomes the x axis of the plots in Figure 11.10. The second principal component axis must 
also pass through the origin of the graph in Figure 11.11, and it must be orthogonal to the 
first axis. In this way, it is uncorrelated. Each axis accounts for successively less of the 
variability in the data.

(a) PCA of 25 samples annotated by type (b) PCA annotated by tissue and type

(c) PCA of 22,000 transcript level values (d) Profile of three transcripts across 25 samples

select any
neighboring
data points...

...their profiles across
25 samples are similar

PC #1 (24.8%) PC #1 (24.8%)

P
C

 #
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Figure 11.10 Principal components analysis (PCA) plots. (a) Each dot represents a sample having 
>20,000 gene expression values. The method is unsupervised, that is, the 25 data points (one per sample) 
are placed in PCA space based on transformation of the intial data matrix. There is no apparent sepa-
ration based on type (trisomy 21 versus euploid). (b) The same PCA plot as (a) is annotated by tissue 
showing separation of heart samples, astrocyte samples, and two brain regions. (c) The data matrix (25 
samples, >22,000 expression values) was transposed. The PCA plot shows 22,283 data points (probe-
sets). Most of the variance (93.4%) is explained in this plot along PC #1, corresponding to the level of 
expression. We select three arbitrary, neighboring data points (arrow). (d) Expression data for these three 
probesets (y axis) are plotted across the 25 samples. The profiles are closely similar. This illustrates that 
any closely neighboring data points in PCA space have similar properties in the original data matrix. 
Data analysis performed using Partek software. Courtesy of Partek Inc.
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performing aNOVa in partek

We can perform ANOVA to generate a list of transcripts there are differentially regulated. 
Note how analyses in Partek (as in BioConductor R packages described in “Microarray 
Analysis Method 3” below) offer vastly more flexibility and depth than an online tool 
such as GEO2R.

It is typical to explore the data with PCA or other visualization methods to decide 
which factors should be included in an ANOVA model (Fig. 11.12a).

 • We include type, tissue, and subject as factors.
 • We select a type*tissue interaction. These are both fixed effects. If we include a ran-
dom effect (such as subject), this becomes a mixed-model ANOVA.

 • Partek identifies that some tissue samples (e.g., cerebrum, heart) came from the same 
subject. Subject is therefore nested within type (in contrast to a situation in which 
each tissue sample was from a unique individual). The ANOVA model is automati-
cally adjusted for nested relationships.

Fold-change calculations are called contrasts. We can select contrast within the 
ANOVA dialog box to establish Down syndrome (group 1) and euploid (group 2) 
(Fig. 11.12a). We then perform the ANOVA to generate a spreadsheet of 22,283 rows. 
Columns include probeset IDs, annotation (such as NCBI Gene identifiers, gene symbols, 
and RefSeq transcript identifiers), and p values according to type, tissue, and the interac-
tions or any other factors selected for the ANOVA.

There are several sources of variation that lead to changes in RNA transcript levels. 
We can view these with a plot (Fig. 11.12b). This analysis may inform which particular 
ANOVA models we would like to perform. Adding factors (such as scan date) or factor 
interactions can offer the benefit of improving the ability of ANOVA to identify changes 
we are interested in, but at the cost of a loss of power.

ANOVA results include transcripts that are ranked based on probability value. It is 
common to filter these based on the criterion of some minimal fold change (such as < –1.5 
or >1.5). The rationale for filtering is that statistically significant changes having only a 
subtle fold change (such as 1.1) are unlikely to be biologically meaningful. Within Partek 
we can use a list manager to create such filtered lists.

A volcano plot presents information about fold change (on the x axis) and p value 
(y  axis) (Fig. 11.12c). Transcripts present in the upper left and upper right sectors have 

ANOVA is available within a Stat 
pull-down menu.

x-axis

y-axisz-axis

principal 
component 
axis #1

Figure 11.11 Principal components analysis. The first principal component axis may be thought of 
as the best-fit line that traverses the geometric origin of the dataset, accounting for most of the variability 
in the data. The second principal component (not shown) also passes through the origin and is orthogonal 
to the first component. Cumulatively, all the principal component axes account for 100% of the variance, 
with each axis accounting for a successively smaller percentage. A large percentage accounted for by the 
first and/or second principal component axes indicates that the importance of this axis should be given 
when inspecting the PCA plot.
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particularly low p values and large fold changes, and are therefore usually of the greatest 
interest. In Partek, data points in any sector of the plot can be highlighted and dumped to 
a separate spreadsheet or plot.

What is the appropriate p value threshold for a volcano plot, or for an ANOVA? You can 
choose one or more FDRs. For example, in our ANOVA (above) we can select three FDR 
levels. At an FDR of 0.01, which is quite stringent, there are two transcripts that are signifi-
cantly regulated (i.e., having p values below the cutoff value of 8.9 × 10−7), and only 1 in 100 

(b) ANOVA sources of variation
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Figure 11.12 Identification of significantly regulated genes. (a) Select experimental factors to be used 
in analysis of variance (ANOVA), as well as interacting factors. You can also select “contrasts” to report 
fold change. Once the ANOVA is executed >22,000 tests are performed: for each probeset on the microar-
ray the mean values of the trisomy 21 and euploid groups are compared, also accounting for the noise in 
the data measurements. The ANOVA result includes a table of >22,000 genes ranked by lowest probability 
value. (b) Once the ANOVA is performed, sources of variation may be assessed. The signal-to-noise ratio 
is shown for all the selected factors (x axis) based on mean F ratio from ANOVA (y axis). Tissue (e.g., heart 
versus cerebrum) is the dominant factor in this experiment. Type (trisomy 21 versus euploid) accounts for a 
relatively small effect size. (This outcome is expected since in general the experimental condition does not 
induce a massive change in RNA transcript levels). (c) A volcano plot depicts fold change (x axis) versus 
p value (y axis). The green bar is placed at a p value threshold, indicating significant values above the bar 
and nonsignificant values below. This employs a false discovery rate (FDR) of 0.05 at which 1 in 20 of the 
results called true positives are actually false positives. You can select different FDR thresholds: at a more 
lenient threshold you will obtain more positive results, but an increased proportion of them will be false 
positives. Data analysis performed using Partek software. Courtesy of Partek Inc.
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such results are likely to be false positives. At an FDR of 0.05 we expect 1 in 20 results to be 
false positives, and 10 transcripts have p values below the cutoff value (2.2 × 10−5). At FDR 
0.1 there are now 26 regulated transcripts, 2 or 3 of which are likely to be false positives. An 
investigator must decide which FDR is preferable: would you rather see more results, some 
of which are false positives, or fewer results, most of which are trusted?

From t-test to aNOVa

A variety of test statistics may be applied to microarray data (e.g., Olshen and Jain, 2002); 
some of these are listed in  table 11.2. These tests are all used to derive p values that 
help assess the likelihood that particular genes are regulated. For more than two condi-
tions (e.g., analyzing multiple time points or measuring the effects of several drugs on 
gene expression), the analysis of variance (ANOVA) method is appropriate rather than a 
t-test. The ANOVA identifies differentially expressed genes while accounting for variance 
that occurs both within groups and between groups (Zolman, 1993; Ayroles and Gibson, 
2006). ANOVA is particularly appropriate when a microarray experiment has multiple 
classes of treatment (e.g., control samples are compared to two different disease states or 
to five different time points) or multiple factors for each treatment (e.g., gender, age, date 
of RNA isolation, hybridization batch) (Fig. 11.13).

tabLe 11.2 test statistics for microarray data. adapted from Motulsky (1995) with 
permission from Oxford university press.

Paradigm Parametric test Nonparametric test

Compare one group to a hypothetical value One-sample t-test Wilcoxon test

Compare two unpaired groups Unpaired t-test Mann–Whitney test

Compare two paired groups Paired t-test Wilcoxon test

Compare three or more unmatched groups One-way ANOVA Kruskal–Wallis test

Compare three or more matched groups Repeated-measures ANOVA Friedman test

(a) (b)

signal

noise

genderRNA
isolation

date
batch

signal

noise

age

Figure 11.13 Signal-to-noise ratios in t-test and ANOVA. (a) In a t-test, the values from a microar-
ray experiment can be thought of as having components of signal (i.e., intensity measurements that 
reflect a difference between the means of the two groups being compared) and noise (variations in signal 
intensity that are not attributable to differences in the means of the two groups). If the RNA from control 
samples is purified on a Monday, and the RNA from experimental samples is purified on a Tuesday, 
then there is a perfect confound between date and condition. Some or even all of the observed differ-
ence between control and experimental samples could be due to date rather than to treatment. (b) In an 
ANOVA, fixed and/or random effects can be accounted for. The variable due to factors such as date and 
gender can be analyzed, as well as the main effect of interest (control versus experimental conditions). 
By partitioning the signal into multiple components, ANOVA improves the signal-to-noise ratio.
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ANOVA is a statistical model called a general linear model. This takes the form:

1 1 2 2Y x x xj jµ β β β ε= + + +… +

where Y is a linear function of X with slope β and intercept μ, and x1, x2, …, xj is a series 
of independent variables; ε is an error term. For expression data, a commonly used sta-
tistical model is:

Yijk i ij ijkθ φ ε= + +

where Yijk represents a pre-processed probe intensity measurement k (in the log2 scale) 
of transcript i measured by platform j; if there are 20,000 transcripts represented on a 
microarray, there will be that many Yijk values. The terms φ and θ are independent vari-
ables associated with expression measurement and probe effects. θi is the absolute gene 
expression value in the log2 scale, φij is a platform-specific probe effect, and εijk represents 
a term for measurement error (residual, unexplained variance). As noted by Irizarry et al. 
(2005), a large probe effect φij (with a large associated variance) tends to inflate the large 
correlations that have been reported when comparing absolute gene expression measure-
ments within a given platform, while yielding lower correlations between two platforms 
that differ in their probe effects. A solution is to evaluate relative (rather than absolute) 
expression within a platform to cancel the φij terms.

Both fixed and random factors are independent variables accounted for in the lin-
ear model. Fixed factors involve treatment effects systematically selected by the experi-
menter (such as gender or age) that would remain the same if the experiment were repli-
cated. Fixed factors account for the main conditions that an investigator is interested in, 
such as the change in signal intensity due to a sample coming from trisomy 21 rather than 
control individuals. Random factors provide a model of independent variables that are 
selected randomly or unsystematically from a population. Examples are biological repli-
cates, because when we select a group of 11 trisomy 21 samples we are drawing them in 
an unbiased manner from the overall population of individuals with trisomy 21. Similarly, 
array effects are random factors because each microarray is randomly selected from the 
group of all available arrays.

The idea of ANOVA is that differences in gene expression may be due to main effects 
(e.g., normal versus diseased sample), while other sources of variation (e.g., gender or 
age) can be identified and accounted for. Analagous to the t-statistic of a t-test, the F-sta-
tistic of an ANOVA consists of a signal-to-noise ratio (Fig. 11.13). However, the ANOVA 
includes a more detailed estimate of the sources of variation. By partitioning the signal 
to account for fixed and random effects in the data the ANOVA boosts the signal-to-noise 
ratio, often allowing you to more effectively identify regulated transcripts.

MIcroarray analysIs Method 3: analyzInG a Geo 
dataset wIth r
The BioConductor project has emerged as a collection of over 1000 bioinformatics 
software packages that are run in R. There is tremendous enthusiasm for R and BioCon-
ductor, especially in the biostatistics community.

Setting up the analyses

Let’s begin by creating a directory (in PC, Mac, or Linux environments) and placing the 
same 25 CEL files there that we used earlier. You should install R and (optionally) install 
the excellent user interface RStudio.

Start R, and either use a pull-down menu to browse to your working directory or set 
working directory with the setwd() command. While we used $ to indicate the symbol 
for Linux (or Unix) commands, > indicates the prompt for R commands.

Visit the Bioconductor website 
at  http://bioconductor.
org/ (Weblink 11.8). There 
are many excellent books 
and online guides to using R 
and BioConductor packages 
including Gentleman et al. 
(2005) and Zuur et al. (2009). 
Sean and Meltzer (2007) 
describe GEOquery, an R tool 
that facilitates the import and 
analysis of data files from GEO.

The CEL files are available 
at  http://bioinfbook.org/
chapter11. You can download 
R from  http://www.r-project.
org/ (Weblink 11.9) and RStudio 
from  https://www.rstudio.com/ 
(Weblink 11.10).

http://bioconductor.org/
http://bioinfbook.org/chapter11
http://www.r-project.org/
https://www.rstudio.com/
http://bioconductor.org/
http://bioinfbook.org/chapter11
http://www.r-project.org/
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We describe the affy and limma libraries below. To get help on these (or any other) 
R packages, consider the following:

 • There is extensive documentation on the BioConductor website. This usually includes 
vignettes and R code.

 • You can join the BioConductor mailing list.
 • Get help on any function within a package (e.g., lmFit within limma) by typing in 
R > ?lmFit or equivalently > help(“lmFit”).

 • Biostars features questions and answers from the bioinformatics community.

Loading affy automatically results in the download of the required CEL definition file 
(CDF). We need to load the phenotype data to specify what type each file corresponds to (tri-
somy 21 or euploid) and what region (cerebrum, cerebellum, heart, or astrocyte). This infor-
mation is written in a tab-delimited text file for this example. If you create such a file in Mic-
rosoft Excel or Word be careful because these programs may reformat your data, introducing 
errors. Alternative text editors include NotePad or Crimson Editor (for PC) or TextEdit (Mac).

Join the Bioconductor mailing list 
by contacting bioconductor@stat.
math.ethz.ch.

Visit Biostars at  http://www 
.biostars.org (WebLink 11.11).

The phenotype data are 
available as pheno.txt at Web 
Document 11.3.

> getwd()
[1] "/Users/pevsner/Documents/#3e/3ech11_RNA/ch11_R"
> source("http://bioconductor.org/biocLite.R")
> biocLite("affy")
> biocLite(“limma”)
# Next we load the affy and limma libraries.
> library(affy)
> library (limma)

> phenoData <- read.AnnotatedDataFrame("pheno.txt", header=TRUE, sep="\t")

> x <- 2 + 2
> x
[1] 4
> show(x) # Equivalent way to display x
[1] 4
> 3*x
[1] 12

> phenoData
An object of class 'AnnotatedDataFrame'
 rowNames: Down Syndrome-Astrocyte-1478-1-U133A.CEL Down
  Syndrome-Astrocyte-748-1-U133A.CEL …
 Normal-Heart-1411-1-U133A.CEL (25 total)
 varLabels: diagnosis tissue
 varMetadata: labelDescription
> dim(phenoData) # report the dimensions of the file
  rowNames columnNames
  25  2
> summary(phenoData)
  Length  Class    Mode
  1  AnnotatedDataFrame  S4

We create the object phenoData by using the function read.AnnotatedDataFrame.  
This reads our text document pheno.txt and creates an object of the class  
AnnotatedDataFrame. We specify that the file does have a header and its separator 
is tab. The <- symbols indicate an object we will create; for example we can create the 
variable x as the sum of 2 + 2, then type x to output its result.

Now let’s look at information about the contents of phenoData.

This confirms that there are 25 rows (samples) and 2 columns (diagnosis and tissue).

http://bioconductor.org/biocLite.R
http://www.biostars.org
http://www.biostars.org
mailto:bioconductor@stat.math.ethz.ch
mailto:bioconductor@stat.math.ethz.ch
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reading CeL Files and Normalizing with rMa

Expression data are represented as a matrix of rows (corresponding to probes) and columns 
(corresponding to samples on separate arrays). As one option the affy package (Gautier et 
al., 2004) incudes justRMA, a function that reads CEL files, performs RMA, and computes 
expression measures. Its arguments include phenoData. Optionally, widgets can be used 
to facilitate data input; in our workflow we will instead read in CEL files from our working 
directory. Type > ?justRMA for a help page describing the arguments and usage details.

We will use the ReadAffy function of the affy package to read the CEL files and 
phenoData in our working directory. (It can also read MIAME data (Chapter 10); further-
more, it can read zip and gzip compressed CEL files.) For more details, type

> ?read.affybatch
> MyBioinfData <- ReadAffy()

> MyBioinfData
AffyBatch object
size of arrays=712x712 features (28 kb)
cdf=HG-U133A (22283 affyids)
number of samples=25
number of genes=22283
annotation=hgu133a
notes=</p><p>> rownames(MyBioinfData)[1:10]
 [1] "1007_s_at" "1053_at" "117_at" "121_at" "1255_g_at"
 [6] "1294_at" "1316_at" "1320_at" "1405_i_at" "1431_at"</p><p>> 
colnames(MyBioinfData)[1:5]
[1] "Down Syndrome-Astrocyte-1478-1-U133A.CEL"
[2] "Down Syndrome-Astrocyte-748-1-U133A.CEL"
[3] "Down Syndrome-Cerebellum-1218-1-U133A.CEL"
[4] "Down Syndrome-Cerebellum-1389-1-U133A.CEL"
[5] "Down Syndrome-Cerebellum-1478-1-U133A.CEL"
> summary(MyBioinfData)
 Length   Class   Mode
  25   AffyBatch   S4

> eset <- rma(MyBioinfData)
Background correcting
Normalizing
Calculating Expression

> hist(MyBioinfData)
> hist(eset)
> boxplot(MyBioinfData)
> boxplot(eset)
> MAplot(MyBioinfData)
> MAplot(eset)
> MAplot(Dilution,pairs=TRUE,plot.method="smoothScatter")

What is in the MyBioinfData object?

Typing its name shows that there are 22,283 genes, 25 samples, and annotation from 
the Affymetrix U133a microarray. We can further look at the first few rows and columns. 
For additional information try dim(MyBioinfData) (showing the dimensions of the 
rows and columns) and str(MyBioinfData) for the structure of the file.

We then employ rma, a function that converts an AffyBatch object into an 
ExpressionSet object.

Note that a briefer, alternative 
workflow could use justRMA:
> eset <- justRMA 
(phenoData=phenoData)

See the affy package 
documentation on the 
BioConductor website for more 
details.

The rma function implements RMA by: (1) probe-specific correction of perfect match 
probes; (2) normalization of corrected perfect match probes by quantile normalization  (Bolstad 
et al., 2003); and (3) calculation of expression measures using median polish. We can view 
the effects of these steps before and after normalization for three kinds of plots (Fig. 11.14).
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A strength of R is its versatility as a plotting tool. Beyond making a simple boxplot 
we can add colors and labels. For example, we can define the first 11 (trisomy 21) samples 
in sienna and the remaining 14 euploid samples in dark green. We then add a title, label, 
and notches to the boxplot:

Notches can be drawn in the 
sides of a boxplot. They extend 
±1.58 interquartile range/sqrt(n). 
See boxplot in the Graphics 
package for details, or begin with 
?boxplot.

(a) Histogram (R package affyPLM) (b) Histogram after normalization with RMA

(c) Boxplot (d) Boxplot after normalization with RMA

(e) MA plot (f) MA plot after normalization with RMA
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Figure 11.14 Plotting microarray analyses in R. The R packages affy and limma are used to 
import, preprocess, and analyze Affymetrix CEL files. Plots show (a, b) histograms, (c, d) boxplots, and 
(e, f) MA plots before and after normalization. 

Source: R.

> colors = c(rep("sienna",11),rep("darkgreen",14))
> boxplot(eset, ylab = "log2 intensities", col=colors)
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When we imported CEL files into Partek, several quality control plots were generated. We 
can create many similar plots within the affy package such as measures of RNA degradation:

> deg <- AffyRNAdeg(MyBioinfData)
> names(deg)
> summaryAffyRNAdeg(deg)
> mean(mm(MyBioinfData)>pm(MyBioinfData))

> design <- model.matrix(~diagnosis, phenoData(eset))
> fit <- lmFit(eset, design) # fit each probeset to model

> dim(fit) # dim shows us dimensions in rows and columns
[1] 22283 2
> colnames(fit)
[1] "(Intercept)" "diagnosisEuploid"
# We next look at the first 10 rows of fit.
# Without this limit all 22,283 rows would be printed.
> rownames(fit)[1:10]
 [1] "1007_s_at"  "1053_at"   "117_at"   "121_at"   "1255_g_at"
 [6] "1294_at"  "1316_at"   "1320_at"   "1405_i_at""1431_at"
# We can use tail to display the last rows of the file.
> tail(rownames(fit))
[1] "AFFX-ThrX-3_at" "AFFX-ThrX-5_at" "AFFX-ThrX-M_at"
[4] "AFFX-TrpnX-3_at"  "AFFX-TrpnX-5_at"  "AFFX-TrpnX-M_at"
> names(fit)
 [1] "coefficients" "rank"    "assign"
 [4] "qr"  "df.residual"   "sigma"
 [7] "cov.coefficients"  "stdev.unscaled"  "pivot"
[10] "Amean"  "method"   "design"
> summary(fit)
  Length   Class   Mode
coefficients   44566   -none-   numeric
rank   1   -none-   numeric
assign   2   -none-   numeric
qr   5   qr   list
df.residual   22283   -none-   numeric
sigma   22283   -none-   numeric
cov.coefficients   4   -none-   numeric
stdev.unscaled   44566   -none-   numeric
pivot   2   -none-   numeric
Amean   22283   -none-   numeric
method   1   -none-   character
design   50   -none-   numeric

> efit <- eBayes(fit) # empirical Bayes adjustment
> tt <-topTable(efit, coef=2)
> fix(tt)

identifying Differentially expressed genes (Limma)

Next we use the limma package to analyze gene expression (Smyth, 2004, 2005). limma 
requires a design matrix representing the different RNA targets that have been hybridized to 
the array, and a contrast matrix that allows analysis of contrasts of interest based on coeffi-
cients defined by the design matrix. We use model.matrix (from the stats package) to 
create a design matrix from the description given in eset. Then we use lmFit to fit a linear 
model for each gene (i.e., probeset) across our series of microarrays .

limma was developed by 
Gordon Smyth.

Let’s take a look at the fit object.

We next use eBayes from the limma package to make an empirical Bayes adjustment. 
Given a linear model fit, eBayes will compute moderated t-statistics. A series of ordi-
nary t-statistics are generated and then the standard erors are moderated across all genes 
(shrunk using a Bayesian model).
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topTable generates a table of differentially expressed probesets. The fix 
 command lets us view the results by calling a data editor for a data frame (table 11.3). We 
can also export these results, or annotate them for further analysis.

What are the gene symbols and chromosome locations of these top 10 hits? Let’s use 
biomaRt to find out.

tabLe 11.3 results of topTable (limma analysis of differential gene expression). 
log FC: log2 fold change; ave.expr: average expression; t: moderated t-statistic 
(available when two groups of samples are defined); p.value: raw p value; adj.p.value: 
p value after adjustment for multiple testing; b: b-statistic or log-odds that the gene is 
differentially expressed.

Row names log FC Ave.expr t P.value Adj.P.value B

200818_at −0.71 10.16 −6.95 2.85×10−7 0.0063 5.95

206777_s_at 0.81 6.42 6.60 6.58×10−7 0.0073 5.29

200642_at −0.84 10.12 −6.23 1.63×10−6 0.0080 4.57

201123_s_at 1.80 7.06 6.22 1.70×10−6 0.0080 4.54

202217_at −0.60 8.63 −6.20 1.80×10−6 0.0080 4.50

221677_s_at −0.60 4.90 −6.02 2.78×10−6 0.0103 4.15

201086_x_at −0.45 9.01 −5.84 4.34×10−6 0.0135 3.79

202325_s_at −0.86 9.02 −5.80 4.86×10−6 0.0135 3.70

203635_at −0.35 6.17 −5.69 6.49×10−6 0.0142 3.47

216954_x_at −0.41 7.46 −5.68 6.59×10−6 0.0142 3.45

We introduced biomaRt in 
Chapter 8.

> source("http://bioconductor.org/biocLite.R")
> biocLite("biomaRt")
> library("annotate")
> library("biomaRt")
> ensembl=useMart("ensembl")
> ensembl = useDataset("hsapiens_gene_ensembl",mart=ensembl)

> affyids = c("200818_at","206777_s_at","200642_at","201123_s_at","202217_
at","221677_s_at","201086_x_at","202325_s_at","203635_a","216954_x_at")
> getBM(attributes=c('affy_hg_u133_plus_2', 'hgnc_symbol', 'chromosome_
name','start_position','end_position', 'band'), filters = 'affy_hg_u133_
plus_2', values = affyids, mart = ensembl)
affy_hg_u133_plus_2 hgnc_symbol chromosome_name start_position end_position 
band
1   202325_s_at   ATP5J   21   27088815   27107984   q21.3
2   200642_at   SOD1   21   33031935   33041244   q22.11
3   206777_s_at   CRYBB2   22   25615489   25627836   q11.23
4   206777_s_at   CRYBB2P1   22   25844072   25916821   q11.23
5   201086_x_at   SON   21   34914924   34949812   q22.11
6   221677_s_at   DONSON   21   34931848   34961014   q22.11
7   200818_at    21   34956993   35284635   q22.11
8   201123_s_at   EIF5AP4   10   82006975   82007439   q23.1
9   201123_s_at   EIF5AL1   10   81272357   81276188   q22.3
10   200818_at   ATP5O   21   35275757   35288284   q22.11
11   202217_at   C21orf33   21   45553487   45565605   q22.3
12   201123_s_at   EIF5A   17   7210318   7215774   p13.1

We have installed biomaRt and specified the mart and the dataset we want to use. 
Next we define the object affyids as the concatenation of the ten Affymetrix identifiers 
from the top table list of table 11.3.

Seven of the top 10 regulated genes are assigned to chromosome 21. (In the biomaRt 
output probeset 201123_s_at maps to three EIF5A-related genes at three loci on two 

http://bioconductor.org/biocLite.R
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chromosomes, and we count that as one of 10 total genes on the output list.) Most of the 
same probesets are in the top 12 list from GEO2R (this is expected since both use limma, 
although with different settings).

We saw a volcano plot produced by Partek (Fig. 11.12c); you can also generate one in 
R using > volcanoplot(fit).

Microarray analysis and reproducibility

The same raw microarray dataset can yield entirely different results based on the anal-
ysis method, spanning all steps such as normalization and implementation of ANOVA. 
The same basic experiment (such as defining differentially regulated transcripts in the 
post-mortem brains of individuals with schizophrenia versus controls) may yield substan-
tially different results between laboratories. Tan et al. (2003) compared gene expression 
measurements from three commercial platforms (Affymetrix, Agilent, and Amersham) 
using the same RNA as starting material, and included both biological and technical rep-
licates. They reported that there was only limited overlap in the RNA transcripts identi-
fied by the three platforms, with an average Pearson’s correlation coefficient r for mea-
surements between the three platforms of only 0.53 (see Box 11.1). Others have raised 
concerns about microarray data reproducibility and broader issues regarding data analy-
sis (Draghici et al., 2006; Miron and Nadon, 2006; Shields, 2006), with accompanying 
responses (Quackenbush and Irizarry, 2006).

Box 11.1 Pearson correlatIon coeffIcIent r 

When two variables vary together they are said to correlate. The Pearson correlation coefficient 
r has values ranging from –1 (a perfect negative correlation) to 0 (no correlation) to 1 (perfect 
 positive correlation). It is possible to state a null hypothesis that two variables are not correlated, 
and an  alternative hypothesis that they are correlated. A probability p value can be derived to 
test the  significance of the correlation. The Pearson correlation coefficient is perhaps the most 
common metric used to define similarity between gene expression data points. It is used by 
tree-building  programs such as Cluster. For any two series of numbers X = {X1, X2, …, XN} and 
Y = {Y1, Y2, …, YN},
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 where X  is the average of the values in X and σx is the standard deviation of these values. For a 
scatter plot, r describes how well a line fits the values. The Pearson correlation coefficient always has 
a value between +1 (two series are identical) and –1 (two sets are perfectly uncorrelated).
 The square of the correlation coefficient, r2, has a value between 0 and 1. It is also smaller 
than r; r2 ≤ |r|. For two variables having a correlation coefficient r = 0.9 (such as two microarray 
datasets measured in different laboratories using the same RNA starting material), r2 is 0.81. This 
means that 81% of the variability in the gene expression measurements in the two datasets can be 
explained by the correspondence of the results between the two laboratories, while just 19% can 
be explained by other factors such as error.
 Correlation coefficients have been widely misused (Bland and Altman, 1986, 1999). r measures 
the strength of a relation between two variables, but it does not measure how well those variables 
agree. Picture a scatter plot showing the correlation of two measures; a perfect correlation occurs 
if the points fall on any straight line, but perfect agreement occurs only if the points fall on a 45° 
line. See Bland and Altman (1986, 1999) for additional caveats in interpreting r values. 

Source: Motulsky (1995).
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An optimistic assessment was provided by the MicroArray Quality Consortium 
(MAQC et al., 2006). This project was established to evaluate the performance of a broad 
set of microarray platforms and data analysis techniques using identical RNA samples. 
A total of 20 microarray products and three technologies were evaluated for 12,000 RNA 
transcripts expressed in human tumor cell lines or brain. There was substantial agreement 
between sites and platforms for regulated transcripts, with various measures of concor-
dance ranging from 60% to over 90% and a median rank correlation of 0.87 for compara-
bility across platforms based on a log ratio measurement. Microarray data were also val-
idated using polymerase chain-reaction-based methods, again showing a high correlation 
(Canales et al., 2006). MAQC has been extended to problems of classification (Shi et al., 
2010) and RNA-seq technology (Mane et al., 2009).

Many in the community appreciate the demonstrated ability of microarray experi-
ments to produce reproducible results. Many factors can strongly influence the results, 
however. These factors include appropriate experimental design (e.g., avoiding con-
founding variables), consistent approach to preparation of RNA through the hybridiza-
tion steps, appropriate image analysis (in which it is determined which pixels are part of 
the transcript-associated features), preprocessing (including global and local background 
signal correction), identification and removal of batch effects, appropriate identification 
of differentially expressed transcripts, application of multiple comparison correction, and 
other downstream analyses.

MIcroarray data analysIs: descrIPtIve statIstIcs
One of the most fundamental features of microarray experiments is that they generate 
large amounts of data. There are far more measurements (gene expression values) than 
samples. How can we evaluate the results of an experiment in which 20,000 gene expres-
sion values are obtained in (at most) several dozen samples? Each gene expression value 
can be conceptualized as a point in 20,000-dimensional space. The brain is not equipped 
to visualize highly dimensional space, and so we need to apply mathematical techniques 
that reduce the dimensionality of the data.

Mathematicians refer to the problems associated with the study of very large numbers 
of variables as the “curse of dimensionality.” In highly dimensional space, the distances 
between any two points are very large and approximately equal. Descriptive statistics are 
useful to explore such data. These mathematical approaches typically do not yield statis-
tically significant results because they are not used for hypothesis testing. Rather, they are 
used to explore the dataset and to try to find biologically meaningful patterns. We have 
seen that PCA can show how genes (or samples) form groups. We next examine several 
other main descriptive techniques. These can be explored using software such as R or 
Partek. In each case, we begin with a matrix of genes (typically arranged in rows) and 
samples (typically arranged in columns). Appropriate global and/or local normalizations 
are applied to the data. Some metric is then defined to describe the similarity (or alterna-
tively to describe the distance) between all the data points.

The approaches are unsupervised: prior assumptions about the genes and/or samples 
are not made, and the data are explored to identify groups with similar gene expression 
behaviors. You can choose a variety of distance functions in clustering, principal compo-
nents analysis, multidimensional scaling, and other visualization techniques. These can pro-
duce strikingly different outputs. If you want to report your findings to others it is a good 
idea to clearly describe the choices you make and, if they are unusual, justify their selection.

hierarchical Cluster analysis of Microarray Data

Clustering is the representation of distance measurements between objects (Kaufman and 
Rousseeuw, 1990). It is a commonly used method to find patterns of gene expression in 

The MAQC project involved 
over 100 researchers at over 
50 institutions. The MAQC 
website is  http://www.
fda.gov/ScienceResearch/
BioinformaticsTools/
MicroarrayQualityControlProject/ 
(WebLink 11.12).

http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
http://www.fda.gov/ScienceResearch/BioinformaticsTools/MicroarrayQualityControlProject/
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microarray experiments (Gollub and Sherlock, 2006; Thalamuthu et al., 2006). Clustered 
trees may consist of genes, samples, or both. Clusters are commonly represented in scat-
ter plots or in dendrograms, such as those used for phylogenetic analysis (Chapter 7) or 
for microarray data. The main goal of clustering is to use similarity (or distance) measure-
ments between objects to represent them. Data points within a cluster are more similar, 
and those in separate clusters are less similar. It is common to use a distance matrix for 
clustering based upon Euclidean distances.

There are several kinds of clustering techniques. The most common form for microar-
ray analysis is hierarchical clustering, in which a sequence of nested partitions is identified 
resulting in a dendrogram (tree). Hierarchical clustering can be performed using agglom-
erative or divisive approaches (Fig. 11.15). In each case, the result is a tree that depicts the 
relationships between the objects (genes, samples, or both). In divisive clustering, the 
algorithm begins at step 1 with all the data in one cluster (k = 1). In each subsequent step 
a cluster is split off, until there are n clusters. In agglomerative clustering, all the objects 
start apart. There are therefore n clusters at step 0; each object forms a separate cluster. In 
each subsequent step two clusters are merged, until only one cluster is left.

Agglomerative and divisive clustering techniques generally produce similar results, 
although large differences can occur in their representation of the data. Agglomerative 
techniques tend to give more precision at the bottom of a tree, while divisive techniques 

Agglomerative clustering is 
sometimes called “bottom up” 
while divisive clustering is “top 
down.”
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Agglomerative hierarchical clustering

Divisive hierarchical clustering

a

b

c

d

e

ab

de

cde

ab
cde

steps

steps

Figure 11.15 Two main kinds of hierarchical clustering are agglomerative and divisive. In agglom-
erative clustering, the data points (genes or samples, represented as the letters a–e) are considered indi-
vidually (step 0). The two most related data points are joined (circle ab, step 1). The relationship between 
all the data points is defined by a metric such as Euclidean distance. The next two closest data points 
are identified (step 2, de). This process continues (steps 3, 4) until all data points have been combined 
(agglomerated). The path taken to achieve this structure defines a clustering tree. Divisive hierarchical 
clustering involves the same process in reverse. The data points are considered as a combined group (step 
0, abcde). The most dissimilar object is removed from the cluster. This process is continued until all the 
objects have been separated. Again, a tree is defined. In practice, agglomerative and divisive clustering 
strategies often result in similar trees. Adapted from Kaufman and Rousseeuw (1990) with permission 
from Wiley.
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offer more precision at the top of a tree and may be better suited for finding relatively few, 
large clusters. Another feature of a clustering tree is that it may be highly sensitive to the 
choice of which genes (or samples) to include or exclude.

Clustering requires two basic operations. One is the creation of a distance matrix 
(or in some cases a similarity matrix). The two most commonly used metrics used to 
define the distance between gene expression data points are Euclidean distance (Box 11.2) 
and the Pearson coefficient of correlation (Box  11.1). Many software packages that 
perform microarray data analysis allow you to choose between these and other dis-
tance measures (such as manhattan, canberra, binary or minkowski) that describe the 
relatedness between gene expression values. In R you can use the hclust command 
within the stats package. In Partek you can select Euclidean distance as shown in 
Figure 11.16a. That dataset consists of the 25 trisomy 21 and euploid samples we stud-
ied earlier, annotated by chromosome to select only chromosome 21 genes. Two-way 
hierarchical clustering was performed of genes (x axis) and samples (y axis). Consistent 
with the PCA results, the astrocyte and heart samples form distinct clusters, while the 
samples from two brain regions are intermixed. We show just the sample dendrogram 
using three other distance metrics (Canberra, Pearson’s dissimilarity, and City Block; 
Fig. 11.16b–d). These different metrics can dramatically alter the tree topology. 

Row methods include average linkage, single linkage, complete linkage, centroid 
method, and Ward’s method.

Given a distance metric, a second operation is the construction of a tree. We can 
select a variety of methods to calculate the proximity between a single object and a group 
containing several objects (or to calculate the proximity between two groups). In Partek 
we used the default approach of average linkage (Fig. 11.16a–d). The distance between 
clusters is defined using the average distance between all the points in one cluster and all 
the points in another cluster. This is used in the unweighted pair-group method average 
(UPGMA) procedure in the context of phylogenetic trees (Chapter 7).

In single linkage clustering, an object that is a candidate to be placed into a cluster 
has a similarity that is defined as its relatedness to the closest member within that cluster 
(Fig. 11.17a). This method has also been called the minimum method or the nearest neigh-
bor method. It is subject to an artifact called chaining in which “long straggly clusters” 
form (Sneath and Sokal, 1973, p. 218) as shown in Figure 11.17b. This can obscure the 
production of discrete clusters. In complete linkage clustering, the most distant OTUs in 
two groups are joined (Fig. 11.17c); the effect is to tend to form tight, discrete clusters that 
join other clusters relatively rarely. In centroid clustering, the central or median object is 
selected (Fig. 11.17d). These methods often produce different clustering patterns. Many 
alternative strategies exist (see Sneath and Sokal, 1973).

What is the significance of these different approaches to making a clustering tree? We 
can consider the general problem involved in defining a cluster. Objects that are clustered 

The Canberra distance metric is 
calculated in R by 
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Terms with zero numerator and 
denominator are omitted from the 
sum and treated as if the values 
were missing.

Box 11.2 euclIdean dIstance 

Euclidean distance is defined as the distance d12 between two points in three-dimensional space 
(with coordinates x1, x2, x3 and y1, y2, y3) as follows:
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form groups that have homogeneity (internal cohesion) and separation (external isolation) 
(Sneath and Sokal, 1973; Everitt et al., 2001). The relationships between objects being 
studied, whether intensity measurements from microarray data or operational taxonomic 
units (OTUs) in phylogeny, are assessed by similarity or dissimilarity measures. Intui-
tively, the objects in Figure 11.18a form two distinct clusters. However, after shifting just 
two of the data points (Fig. 11.18b) it is not clear whether there are two clusters or not. 
Other challenges to identifying the nature of clusters are depicted in Figure 11.18c, d. Each 
figure shows two apparent clusters that demonstrate both homogeneity and separation. 
However, if we identify a central point in each cluster (the centroid) and calculate the 

(f) Euclidean,
complete-linkage

(e) Euclidean,
centroid linkage 

(a) Euclidean row dissimilarity; average linkage method

(b) Canberra 
dissimilarity

(c) Pearson’s 
Dissimilarity

(d) City Block

Figure 11.16 Hierarchical clustering of 250 chromosome 21 transcripts in 25 samples using Partek 
software. (a) Hierarchical clustering of microarray data using the default settings of Euclidean dissim-
ilarity for rows (samples) and columns (transcripts). Colors correspond to expression intensity values. 
For (b–f) the clustering was repeated and only the dendrograms of 25 samples are shown. These use 
metrics of (b) Canberra, (c) Pearson’s dissimilarity, and (d) city block (d). The clustering methods are 
(a–d) average linkage, (e) centroid linkage, and (f) complete linkage (f). Courtesy of Partek Inc.
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(a) single linkage clustering

(c) complete linkage clustering

(d) centroid linkage 

(b) chaining in single linkage

Figure  11.17 Defining the relatedness between clusters. (a) Single linkage clustering identifies 
the nearest neighboring objects between clusters. (b) The single linkage approach is sometimes subject 
to the artifact of chaining, in which clusters that might reasonably be expected to remain separate are 
instead connected and merged. (c) Complete linkage clustering identifies the farthest members of each 
cluster. This approach tends to generate tight, well-separated clusters that exclude objects from clusters. 
(d) Centroid linkage can represent a compromise approach to placing objects in clusters.

(a) (b) (c) (d)

j

k

m

n

Figure 11.18 Examples of the nature of clusters and clustering approaches. (a) Two clusters are 
intuitively apparent in a group of 14 data points (circles). Good clusters are characterized by internal 
cohesion and by separation. (b) Two data points are shifted relative to (a), making the assignment of two 
clusters more questionable. (c) Two clusters are clearly present, by inspection (“c” shapes). However, 
the separation between each cluster is not robust. For example, point j in the lower cluster may be closer 
to the center of the upper cluster than point k, even though j is not a member of the upper cluster. (d) 
Two clusters are again intuitively apparent. The great distance from the long cluster (e.g., points m to n) 
presents a challenge to finding a rule that distinguishes that cluster from the small one to its left. Such 
challenges motivate the development of algorithms to define distances between objects and clusters. 
(a, c) Adapted from Gordon (1980).
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distance to the farthest points within a cluster, that distance will also result in overlap with 
the adjacent cluster.

Two-way clustering of both genes and samples is used to define patterns of genes that 
are expressed across a variety of samples (Fig. 11.16a). A dramatic example is provided by 
Alizadeh et al. (2000), who defined subtypes of malignant lymphocytes based upon gene 
expression profiling (Web Document 11.4).

We can draw several conclusions about hierarchical clustering.

 • While hierarchical clustering is commonly used in microarray data analysis, the same 
underlying dataset can produce vastly different results. Datasets with a relatively 
small number of samples (typically 4–20) and a large number of transcripts (typically 
5000–30,000) occupy high-dimensional space, and different methods summarize the 
relationships of genes and/or samples as influenced by the distance metric that is 
chosen as well as the strategy for producing a tree.

 • Clustering is an exploratory tool, and is used to identify associations between genes 
and/or between samples. However, clustering is not used inferentially.

 • Clustering is not a classification method (see “Classification of Genes or Samples” 
below). It is unsupervised in that information about classes (e.g., trisomy 21 versus 
control) is not used to generate the clustering tree.

partitioning Methods for Clustering: k-Means Clustering

Sometimes we know into how many clusters our data should fit. For example, we may 
have treatment conditions we are evaluating, or a set number of time points. An alterna-
tive type of unsupervised clustering algorithm is a partitioning method that constructs 
k clusters (Tavazoie et al., 1999). The steps are as follows. (1) Choose samples and/
or genes to be analyzed. (2) Choose a distance metric such as Euclidean. (3) Choose 
k; data are classified into k groups as specified by the user. Each group must contain 
at least one object n (e.g., gene expression value), and each object must belong to 
exactly one group. (In all cases, k ≤ n.) Two different clusters cannot have any objects 
in common, and the k groups together constitute the full dataset. (4) Perform clustering. 
(5) Assess cluster fit.

How is the value of k selected? If you perform a microarray experiment with two dif-
ferent kinds of diseased samples and one control sample, you might choose k = 3. Also, k 
may be selected by a computer program that assesses many possible values of k. The out-
put of k-means clustering does not include a dendrogram because the data are partitioned 
into groups, but without a hierarchical structure.

The k-means clustering algorithm is iterative. It begins by randomly assigning 
each object (e.g., gene) to a cluster. The center (“centroid”) of each cluster is calculated 
(defined using a distance metric). Other cluster centers are identified by finding the data 
point farthest from the center(s) already chosen. Each data point is assigned to its nearest 
cluster. In successive iterations, the objects are reassigned to clusters in a process that 
minimizes the within-cluster sum of squared distances from the cluster mean. After a 
large number of iterations, each cluster contains genes with similar expression profiles. 
Tavazoie et al. (1999) described the use of k-means clustering to discover transcriptional 
regulatory networks in yeast.

A concern with using k-means clustering is that the cluster structure is not necessarily 
stable in that it can be sensitive to outliers. Cluster fit has been assessed using a variety of 
strategies such as measuring the effect of adding random noise to a dataset.

We can select partition clustering in Partek using a Euclidean distance function and 
the k-means clustering method. You can select a number of clusters (e.g., 3 anticipating 
heart, astrocyte, and brain clusters) or check a range of possible cluster sizes (e.g., from 2 
to 10). For each cluster a Davies–Bouldin metric is plotted, indicating from its profile that 
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using 3 clusters is reasonable (Fig. 11.19a). When these are plotted a PCA plot results with 
added data points (black spheres) at the center of each cluster (Fig. 11.19b).

Multidimensional Scaling Compared to principal Components analysis

We have seen that principal components analysis (PCA) is an exploratory technique used 
to find patterns in gene expression data from microarray experiments. It involves a linear 
projection of data from a high-dimensional space to two or three dimensions.

Multidimensional scaling (MDS) is a related dimensional reduction technique that 
uses nonlinear projection. MDS plots represent the relationships between objects from a 
similarity (or dissimilarity) matrix in a manner comparable to PCA. We may compare and 
contrast these techniques.

 • Both reduce the dimensionality of datasets to easily interpretable plots.
 • Both represent the relatedness of objects (e.g., samples) in an unsupervised fashion. 
You must therefore interpret the meaning of separation of samples (e.g., based on 
tissue, expression value, or some other attribute) based on your knowledge of the 
underlying dataset.

 • PCA reports information content in terms of the percent of variance explained along 
each principal component axis; MDS does not.

 • MDS may more accurately reflect small dissimilarities between samples.

We can use MDS in R with cmdscale (in the stats package), plotMDS (in 
limma), or plotMDS.DGEList (in the edgeR package for RNA-seq data). MDS of 
our 250 genes in 25 samples in Partek shows separation of the 25 samples into 4 clusters 
(Fig. 11.19c).

Clustering Strategies: Self-Organizing Maps

The self-organizing map (SOM) algorithm resembles k-means clustering in that it parti-
tions data into a two-dimensional matrix. For SOMs and other structured clustering tech-
niques, you can estimate the number of clusters you expect (e.g., based on the number of 
experimental conditions) in order to decide on the initial number of clusters to use.

Unlike k-means clustering which is unstructured, SOMs impose a partial structure 
on the clusters (Tamayo et al., 1999). Also in contrast to k-means clustering, adjacent 
partitions in SOMs can influence each other’s structure. The principle of SOMs is as fol-
lows (Fig. 11.19d). A number of “nodes” (similar to a value k) and an initial geometry of 
nodes such as a 3 × 2 rectangular grid (indicated by solid lines in the figure connecting the 
nodes) are chosen. Clusters are calculated in an iterative process, as in k-means clustering, 
with additional information from the profiles in adjacent clusters. Nodes migrate to fit the 
data during successive iterations. The result is a clustering tree with an appearance similar 
to those produced by hierarchical clustering.

Classification of genes or Samples

The distances and similarities among gene expression values can be described using two 
types of analysis: supervised or unsupervised. The unsupervised approaches we have 
described so far are especially useful for finding patterns in large datasets. In supervised 
analyses, the approach is different because the experimenter assumes some prior knowl-
edge of the genes and/or samples in the experiment. For example, transcriptional profiling 
has been performed on cell lines or biopsy samples that are either normal or cancerous 
(e.g., prominent early studies were by Alizadeh et al., 2000; Perou et al., 1999). In some 
cases, the cancerous samples are further subdivided into those that are relatively malig-
nant or relatively benign. Some of these studies apply unsupervised approaches.

The SOM approach to microarray 
data analysis has been 
championed by Todd Golub, Eric 
Lander, and colleagues from the 
Whitehead Institute.
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Figure 11.19 Data visualization methods. (a) In partition clustering it is possible to select an optimal number of clusters based on a 
Davies–Bouldin statistic. Here a plateau at a value of 3 (for 25 samples and 250 chromosome 21 transcripts) suggests an appropriate number 
of clusters. (b) k-means clustering resembles PCA output, but includes a sphere corresponding to cluster centroids. (c) Multidimensional 
scaling (MDS) produces a clustering pattern that resembles PCA but does not include information on the percent of variance that is explained. 
However, MDS can more accurately depict the relationships of objects. Here, note that the cerebrum and cerebellum samples are well sepa-
rated (except for a single cerebrum sample; see arrow). (d) Self-organizing maps (SOMs) allow partial structuring to be imposed on clusters. 
This contrasts with k-means clustering, which imposes a fixed number of clusters. An initial set of nodes (numbered 1–6) forms a rectangular 
grid. During iterations of the self-orgnaizing map algorithm, the nodes migrate to new positions (arrows) to better fit the data. Black dots 
represent data points. 

Source for (d): Tamayo et al. (1999). Reproduced with permission from the National Academy of Sciences.
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The goal of supervised microarray data analysis algorithms is to define a rule that 
can be used to assign genes (or conditions) into groups. In each case, we begin with 
gene expression values from known groups (e.g., normal versus cancerous) and “train” an 
algorithm to learn a rule. Positive and negative examples are used to train the algorithm. 
The algorithm is then applied to unknown samples, and its accuracy as a predictor or 
classifier is assessed. It is critical that the data used for building a classifier are entirely 
separate from the data used to assess its predictive accuracy.

Some of the most commonly applied supervised data analysis algorithms are 
 support vector machines, supervised machine learning, neural networks, and  linear 
 discriminant analysis. As an example of a supervised approach, Brown et al. (2000) 
used support vector machines to classify six functional classes of yeast genes: 
 tricarboxylic acid cycle, respiration, cytoplasmic ribosomes, proteasome, histones, 
and helix–turn–helix proteins. They used a threefold cross-validation method: the 
dataset is divided into thirds (sets 1, 2, and 3). Sets 1 and 2 are used to train the support 
vector machine, then the algorithm is tested on set 3 as the “unknowns.” Next, sets 1 
and 3 are used for training and set 2 is tested as the unknowns. Finally, sets 2 and 3 are 
used for training, and set 1 is tested. They measured the false positive rate and found 
that support vector machines outperform both unsupervised clustering and alternative 
supervised clustering approaches.

Dupuy and Simon (2007) described many strategies for properly performing super-
vised analyses, and also listed many of the common data analysis errors. For example, 
improperly performing cross-validation leads to overly optimistic prediction accuracy. 
It is also essential to have an adequate sample size for both the training and the test sets.

Luigi Marchionni, Jeff Leek and colleagues (2013) stress the importance of repro-
ducible tests for clinical applications such as measuring gene expression to classify sam-
ples as having cancer or not. Hundreds of thousands of patients receive diagnoses from 
the leading clinical tests. Marchionni et al. developed a predictor from training data and 
evaluated it with independent test data.

We can perform classification using Partek, asking the question if we can build a 
classifier that can discriminate tissue of origin (heart, astrocyte, cerebrum, cerebellum) 
from expression data. Instead of using an external dataset for independent validation, we 
employ leave-one-out cross-validation. In this approach, the dataset is divided into ten 
random partitions (Fig. 11.20a). At each pass, nine-tenths of the data are used for training 
and one-tenth is withheld for testing. We can decide to create one classifier or study a 
set of possible classifiers (using two-level nested cross-validation; Fig. 11.20b). Variable 
selection can be performed, using ANOVA or other approaches to improve the accu-
racy of classification (Fig 11.20c). We can select k-nearest neighbor or other classifica-
tion approaches, including over a dozen distance measures (e.g., Euclidean, Canberra, or 
Pearson’s as described above). After running the model we can assess its accuracy with a 
variety of metrics. A confusion matrix shows the number of samples that are truly from 
a region compared to the predicted tissue source (table 11.4). For a perfect classifier, all 
values would occur on the diagonal. In our example 17 samples are correctly classified, 
while 8 samples are misclassified (e.g., four cerebrum samples are incorrectly assigned 
to cerebellum).

rna-seq
RNA-seq is used to accomplish the same goal as microarrays: quantifying RNA tran-
script levels. However, it is considered revolutionary because it allows the measurement 
of essentially all RNA transcripts (rather than only those pre-selected on a microarray sur-
face), it has a broader dynamic range, it allows identification of novel transcripts and tran-
script isoforms, and it is able to quantify alternative splicing events. For reviews including 
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Figure  11.20 Classification of microarray data. (a) A leave-one-out cross-validation approach 
divides a dataset into randomly selected partitions (n =  10 in this case). For each pass at building a 
classifier, one part is withheld for subsequent testing. This provides an alternative to testing classifiers 
on independent datasets. (b) Cross-validation options include the simpler one-level method, or two-
level nested cross-validation to evaluate multiple classifiers in parallel. (c) Variable selection includes 
ANOVA and other approaches. For example, forward selection each variable (e.g., gene expression 
measurement) is evaluated separately and paired with remaining variables according to optimization 
criteria. Courtesy of Partek Inc.
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details of analysis methods see Wang et al. (2009), Nagalakshmi et al. (2010), Garber et 
al. (2011), and Ozsolak and Milos (2011).

There are extraordinary data analysis challenges associated with this new tech-
nology. Some consider RNA-seq analysis to be vastly more challenging than either 
microarray data analysis or even the analysis of next-generation sequence analysis for 
DNA. Soneson and Delorenzi (2013) compare 11 methods, finding that from ~200 
to ~3200 differentially expressed genes are identified for one particular dataset, with 
highly variable overlap between methods. Why does this occur? No single method is 
optimal, methods vary in how they are influenced by outlier data points, they vary in the 
sample sizes required to achieve adequate statistical power, and they vary in accuracy. 
All methods are affected by variations in read coverage across the expressed portions 
of the genome.

We can consider a workflow for RNA-seq experiments (Fig. 11.21; Oshlack et al., 
2010). Experimental design (step 1) needs to include sufficient replicates to measure 
the biological variability between samples (Hansen et al., 2011). Hansen et al. note 
that the variability in RNA transcript levels is similar in microarray and RNA-seq 
technologies, and that individual transcripts vary greatly in their biological variability. 
It is common for biologists to design RNA-seq experiments with a sample size of just 
one or two per group, but more are needed to enable meaningful conclusions about 
the findings.

You can do power calculations for RNA-seq data using R. We’ll load the package 
RNASeqPower and assess four effect sizes (1.25 to 2) at read depths of 20 then 200 and 
a power of 0.9 (i.e., the fraction of true positives that will be detected).

tabLe 11.4 Confusion matrix from classification of tissue types from microarray 
data. gene expression data were analyzed in partek using K-nearest neighbor with 
euclidean distance measure. the number of samples is 25.

Real/Predicted Cerebellum Heart Cerebrum Astrocyte

Cerebellum 3 0 2 1

Heart 0 4 0 0

Cerebrum 4 0 7 0

Astrocyte 0 0 1 3

> source("http://bioconductor.org/biocLite.R")
> biocLite("RNASeqPower")
> library(RNASeqPower)
> rnapower(depth=20, cv=.4, effect=c(1.25, 1.5, 1.75, 2), 
+ alpha= .05, power=.9)
 1.25   1.5   1.75   2 
 88.629200  26.843463   14.091771  9.185326 
> rnapower(depth=200, cv=.4, effect=c(1.25, 1.5, 1.75, 2), 
+ alpha= .05, power=.9)
   1.25   1.5   1.75   2 
 69.637228  21.091292   11.072106  7.217042 

RNA acquisition (step 2 of the workflow) often involves isolation of messenger 
RNA and enrichment of complementary DNA corresponding to exons using oligo-
nucleotide baits (Fig. 11.22). Other techniques are also available (Ozsolak and Milos, 
2011). For the next steps in the RNAseq workflow – mapping, summarization, normal-
ization, and differential expression testing – a key aspect of the mapping of RNA-seq 
reads is transcriptome assembly. This can be performed de novo or using a reference 

http://bioconductor.org/biocLite.R
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Data: Millions of short reads

Step 4: Mapping

Step 5: Summarization

Step 6: Normalization

Step 7: Differential expression testing

Step 8: Interpretation; systems biology

Data: Reads aligned to a reference genome

Data: Table of counts

Data: List of differentially expressed genes

Test for enriched categories
or pathways
Software: GOseq

Infer networks;
integrate with other data

Step 1: Experimental design
Step 2: RNA acquisition
Step 3: Data acquisition

Burrows-Wheeler transform
Software: BWA, Bowtie, SOAP2

Hash tables
Software: PerM, SHRiMP, 
BFAST, ELAND

Data:
Unmapped reads

Step 9: Validation

Poisson test
Software: DEGseg

Negative binomial test
Software: edgeR, baySeq, DEseq

Between sample normalization
Method: TMM, upper quartile

Within sample normalization
Method: RPKM, quantile

By coding sequence By exon By gene span Junction reads

Map to junction library
created from annotation

Map to “de novo”
junction library
Software: SplitSeek, Tophat

Figure 11.21 Workflow for RNA-seq data analysis. Steps in the pipeline are shown in green-shaded 
ellipses; datasets are in peach rectangles; methods are shown in blue boxes. 

Source: Oshlack et al. (2010). Licensed under Creative Commons Attribution License 4.0.

genome (Robertson et al., 2010; Li and Dewey, 2011; Martin and Wang, 2011; Steijger 
et al., 2013).

We next perform a practical RNA-seq analysis using the popular tools TopHat and 
Cufflinks. These are free, open-source software packages; they can be used to identify 
novel splice variants (and novel genes, depending on how well the organism of interest 
has already been annotated), and they can be used to measure differential expression lev-
els of RNA transcripts. Many other RNA-seq software packages are available (listed in 
Oshlack et al., 2010). Guo et al. (2013), Kvam et al. (2013) and Soneson and Delorenzi 
(2013) each evaluate a variety of recent software packages, assessing factors such as 
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speed and accuracy. Gordon Smyth and colleagues introduced Voom, a method for RNA-
seq analysis that uses a limma empirical Bayes analysis pipeline (Law et al., 2014).

Setting up a tophat and CuffLinks Sample protocol

Cole Trapnell, Lior Pachter and colleagues provide a description of TopHat and Cuf-
flinks as well as a detailed protocol for using the software to analyze differential 
expressions (Trapnell et al., 2012). We follow that exact protocol using a Linux server 
(you should preferably use a machine with more than 4 GB of RAM); refer to their paper 
for additional details. We perform the following set-up tasks: (1) organize our directories; 
(2) download a Drosophila reference genome; and (3) download sequence data in the 
FASTQ format. We then proceed with the analysis using TopHat then CuffLinks 
then CuffMerge, downloading required software packages at each stage. We conclude 
by plotting the results with the R package cummeRbund.

We begin by organizing our directories. First, open terminal and navigate to your 
home directory with cd ~. Make directories for this tutorial and (optionally) for your 
data files.

5’
5’

5’
5’

Poly(A)  RNA
random hexamers

+

RNA shearing
Double-stranded
cDNA conversion

• Adapter ligation
• PCR amplification
• Size selection

Agilent SureSelect
• Amplification
• Denaturation
• +170-nt RNA baits

• Removal of baits
• Sequence 
   amplification

Isolation of cDNA
and baits

Figure 11.22 Method for targeted RNA-seq. The Agilent SureSelect workflow is shown. Adapted 
from Ozsolak and Milos (2011) with permission from Macmillan Publishers.

$ mkdir rnaseq_tutorial
$ mkdir data
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We need a reference Drosophila genome. We work with a file called genes.gtf, 
which can obtain via an iGenome website or (optionally) from Ensembl. After you down-
load the file, navigate to your data directory, copy the tar compressed file, and unpack it:

The Cufflinks website ( http://
cole-trapnell-lab.github.io/
cufflinks/, WebLink 11.13) 
includes links to many available 
genomes. The one we will use 
is  ftp://igenome:G3nom3s4u@
ussd-ftp.illumina.com/Drosophila_
melanogaster/Ensembl/BDGP5.25/
Drosophila_melanogaster_
Ensembl_BDGP5.25.tar.gz 
(WebLink 11.14). GTF files from 
many dozens of organisms are 
also available from Ensembl at 

 http://www.ensembl.org/info/
data/ftp/ (WebLink 11.15).

TheTopHat website is  http://
ccb.jhu.edu/software/tophat/
index.shtml (WebLink 11.19). We 
can download the binary release. 
Also, we can copy the tophat 
binary to the ~/bin directory. 
The –p argument refers to the 
number of threads and depends 
on the configuration of your 
computer. –G refers to the GTF 
file name. Bowtie's website is  

http://bowtie-bio.sourceforge.
net/index.shtml (WebLink 11.20).

$ cd ~/data # cd is the command to change directory.
# ~/data refers to a directory called data under the home directory.
$ cp ~/Downloads/Drosophila_melanogaster_Ensembl_BDGP5.25.tar ~/data/
$ tar xopf Drosophila_melanogaster_Ensembl_BDGP5.25.tar

$ ln –s ~/data/Drosophila_melanogaster/Ensembl/BDGP5.25/Sequence/
Bowtie2Index/genome* . # the * specifies all files in that directory  
# beginning with genome
$ ln –s ~/data/Drosophila_melanogaster/Ensembl/BDGP5.25/Annotation/Genes/
genes.gtf .
$ head -2 genes.gtf
2L  protein_coding  exon 75298116 .  +  .  exon_number "1"; 
gene_id "FBgn0031208"; gene_name "CG11023"; p_id "P9062"; transcript_id 
"FBtr0300689"; transcript_name "CG11023-RB"; tss_id "TSS8382";
2L  protein_coding  exon 75298116 .  +  .  exon_number "1"; 
gene_id "FBgn0031208"; gene_name "CG11023"; p_id "P8862"; transcript_id 
"FBtr0300690"; transcript_name "CG11023-RC"; tss_id "TSS8382";

$ tophat –p 8 –G genes.gtf –o C1_R1_thout genome C1_R1_1.fq C1_R1_2.fq
$ tophat –p 8 –G genes.gtf –o C1_R2_thout genome C1_R2_1.fq C1_R2_2.fq
$ tophat –p 8 –G genes.gtf –o C1_R3_thout genome C1_R3_1.fq C1_R3_2.fq
$ tophat –p 8 –G genes.gtf –o C2_R1_thout genome C2_R1_1.fq C2_R1_2.fq
$ tophat –p 8 –G genes.gtf –o C2_R2_thout genome C2_R2_1.fq C2_R2_2.fq
$ tophat –p 8 –G genes.gtf –o C2_R3_thout genome C2_R3_1.fq C2_R3_2.fq

As we use cd to change directory and see the Drosophila genome contents, we 
encounter three directories: Annotation, GenomeStudio, and Sequence. The 
Annotation directory contains a Genes folder which includes the file genes.gtf. 
We can inspect the first two lines of the GTF file using head, and using wc –l we can 
see it has about 270,000 rows. Then (working from our rnaseq_tutorial direc-
tory) we can create a symbolic link (ln –s) to it and to a set of Bowtie index files in a 
neighboring directory. The links allow us to later specify a file (or set of files) in other 
directories by simply pointing to them. The final . symbol indicates that the link should 
be placed here in the current directory.

In a Linux environment, type $ 
tar –zxvf myfile.tar.

gz to open a compressed file.

Our next task is to download RNA-seq data. We use GSE32038 from GEO. I prefer to 
store files such as these in a directory called data; after unpacking the FASTQ files, copy 
them to the rnaseq_tutorial directory with cp and shorten their names as shown 
below. (To rename a file from an old name to a new name use mv old.txt new.
txt). They are named C1 and C2 (for conditions 1 and 2); R1, R2, and R3 (for three 
biological replicates); and 1.fq or 2.fq for the forward or reverse reads of paired end 
sequencing. There are 12 files in total, each 1.8 GB in size and, from $ grep –c '@' 
GSM794483_C1_R1_1.fq, have 11.6 million reads.

tophat to Map reads to a reference genome

TopHat is a fast splice junction mapper for RNA-seq data (Kim et al., 2013). It uses Bow-
tie (Langmead and Salzberg, 2012) to align reads to a reference genome. We download, 
unpack, and install those two programs.

To use TopHat we first map the reads for each sample to a reference genome.

The GTF format is described at  
http://mblab.wustl.edu/GTF2.html 
(WebLink 11.16).

The GEO page ( http://www.ncbi.
nlm.nih.gov/geo/, WebLink 11.17) 
includes a link with instructions 
on how to download data, and 
whether the data are original GEO 
records or curated DataSets and 
Profiles. You can begin by entering 
GSE32038 as a query of the home 
page of NCBI, and search GEO 
DataSets; alternatively, visit  

http://www.ncbi.nlm.nih.gov/
geo/download/?acc=GSE32038 
(WebLink 11.18) directly.

The output includes a folder for each run (e.g., –o C1_R1_thout specifies the 
TopHat output folder for condition 1, biological replicate 1). This includes BAM files 
(accepted_hits.bam and unmapped.bam), BED files, and a set of log files. To 

http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/
ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Drosophila_melanogaster/Ensembl/BDGP5.25/Drosophila_melanogaster_Ensembl_BDGP5.25.tar.gz
http://www.ensembl.org/info/data/ftp/
http://mblab.wustl.edu/GTF2.html
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE32038
http://ccb.jhu.edu/software/tophat/index.shtml
http://ccb.jhu.edu/software/tophat/index.shtml
http://bowtie-bio.sourceforge.net/index.shtml
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assess the quality of the mapping try using SAMtools (this step is not in the Trapnell 
et al. protocol):

$ samtools flagstat accepted_hits.bam

Note that the Trapnell et al. paper 
protocol mistakenly labels the 
FASTQ files in the C2 group. See 
Web Document 11.5 for a correct 
version. Each TopHat run takes 
about a half hour using several 
cores.

The output includes the percent of reads that map to the reference. It also describes 
how many reads mapped with a mate to a different chromosome.

Cufflinks to assemble transcripts

Cufflinks determines the fragment length distributons of reads from a BAM file, that is, 
from RNA-seq reads that have been aligned to the human genome. It assembles transcripts 
for each sample, and estimates abundances. In the following commands we invoke Cuff-
Links, specify that we want to use 8 processors (you may have more or fewer), define the 
output filename, and specify the inputs as accepted_hits BAMfiles that are located within 
the various thout (TopHat output) folders that were created in the previous TopHat run.

$ cufflinks –p 8 –o C1_R1_clout C1_R1_thout/accepted_hits.bam
$ cufflinks –p 8 –o C1_R2_clout C1_R2_thout/accepted_hits.bam
$ cufflinks –p 8 –o C1_R3_clout C1_R3_thout/accepted_hits.bam
$ cufflinks –p 8 –o C2_R1_clout C2_R1_thout/accepted_hits.bam
$ cufflinks –p 8 –o C2_R2_clout C2_R2_thout/accepted_hits.bam
$ cufflinks –p 8 –o C2_R3_clout C2_R3_thout/accepted_hits.bam

$ nano assemblies.txt
$ less assemblies.txt
./C1_R1_clout/transcripts.gtf
./C1_R1_clout/transcripts.gtf
./C1_R1_clout/transcripts.gtf
./C1_R1_clout/transcripts.gtf
./C1_R1_clout/transcripts.gtf
./C1_R1_clout/transcripts.gtf

$ cuffmerge –g genes.gtf –s genome.fa –p 8 assemblies.txt

$ cuffdiff -o diff_out -b genome.fa -p 8 -L C1,C2 -u merged_asm/merged.
gtf ./C1_R1_thout/accepted_hits.bam,./C1_R2_thout/accepted_hits.bam,./C1_
R3_thout/accepted_hits.bam ./C2_R1_thout/accepted_hits.bam,./C2_R3_thout/
accepted_hits.bam,./C2_R2_thout/accepted_hits.bam

The Cufflinks outputs are sent to a folder with text files listing the loci and lengths of 
genes, transcripts, and isoforms.

Next, create a file called assemblies.txt. This lists the assembly file for each sample.

We next run Cuffmerge on all the assemblies. This generates a single merged tran-
scriptome annotation. The –s option specifies the genomic DNA sequences for the refer-
ence, while –g genes.gtf is an optional reference GTF file.

The output is a merged transcriptome annotation (in a file called merged_asm, placed 
in a new subfolder). Word count (wc –l) tells us it has 143,569 rows.

Cuffdiff to Determine Differential expression

Cuffdiff is used to identify differentially expressed genes and transcripts. We use the 
merged transcriptome assembly and the BAM files from TopHat. In the following com-
mand, the argument –o specifies the output directory; –b uses a bias correction; –p spec-
ifies the number of processors we use; –L indicates a comma-separated list of condition 
labels (ours are C1,C2, i.e., conditions 1 and 2); and –u is for a read correction method. 
All options are listed by simply entering $ cuffdiff.
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The output consists of 18 files in the diff_out folder, which we explore in R in the 
following section.

Cummerbund to Visualize rNa-seq results

We use the R package cummeRbund to visualize our results. We can work in R on the 
command line, and it is also convenient to use the RStudio environment on a Mac (or 
PC). First we load the cummeRbund package into R. In this environment the command 
prompt is > (rather than $ for Unix).

$ R
> source("http://bioconductor.org/biocLite.R")
> biocLite("cummeRbund")
> library(cummeRbund)

> cuff_data <- readCufflinks('diff_out')
> ?cuff_data # you can get more details about usage here
> cuff_data
CuffSet instance with:
   2 samples
   14410 genes
   25077 isoforms
   17360 TSS # these are transcription start sites
   18175 CDS # these are coding sequences
   14410 promoters
   17360 splicing
   13270 relCDS

> gene_diff_data <- diffData(genes(cuff_data))
> sig_gene_data <- subset(gene_diff_data, (significant == 'yes'))
> nrow(sig_gene_data)
[1] 271
> dim(sig_gene_data)
[1] 271 11
> head(sig_gene_data)
 gene_id  sample_1 sample_2 status  value_1 value_2 log2_fold_
change
3  XLOC_000003 C1 C2  OK  48.4754 82.4077 0.765526
59  XLOC_000059  C1  C2  OK  65.3518  113.1420 0.791835
133  XLOC_000133  C1  C2  OK  84.3472 148.3190 0.814293
180  XLOC_000180  C1  C2  OK  39.4686 59.3858 0.589412
241  XLOC_000241  C1  C2  OK  19.9367 35.7757 0.843553
249  XLOC_000249  C1  C2  OK  24.4575 44.6019 0.866825
  test_stat  p_value  q_value  significant
3  3.91602  5e-05  0.00160278 yes
59  4.81631  5e-05  0.00160278 yes
133  3.94607 5e-05 0.00160278 yes
180  3.59121  5e-05  0.00160278 yes
241  4.48772  5e-05 0.00160278 yes
249  4.08778  5e-05 0.00160278 yes

Next, take the CuffDiff output and create a cummeRbund database called 
cuff_data. Before we make plots, let’s look at the database and explore the transcripts 
that are most regulated based on p value and based on fold change.

Create the file gene_diff_data using the diffData function, and then select 
the subset of significantly regulated transcripts. We see the number of rows (271), the 
dimensions (271 × 11 columns), and the first few values.

The gene identifier of the most significantly regulated transcript is 3 (from the first 
entry in the table above). You can pursue this in biomaRt, or enter it into a web-based 
search of NCBI Entrez with 3 AND “Drosophila melanogaster”[porgn:__txid7227]. For 

http://bioconductor.org/biocLite.R
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the search 5752 AND “Drosophila melanogaster”[porgn:__txid7227], the official gene 
 symbol is Msp-300.

Which transcript is up-regulated the most? We can take the sig_gene_data table 
and sort it by the column log2_fold_change.

> attach(sig_gene_data)
> sig_fc <- sig_gene_data[order(-log2_fold_change),]
> head(sig_fc)
  gene_id  sample_1  sample_2 status value_1 value_2 log2_fold_
change
5752 XLOC_005752  C1  C2  OK   398.219 1060.680 1.41335
1272 XLOC_001272  C1  C2  OK   411.755 1064.820 1.37075
2660 XLOC_002660  C1  C2  OK   513.880 1308.490 1.34840
4677 XLOC_004677  C1  C2  OK  1527.160 3881.330 1.34570
678 XLOC_000678  C1  C2  OK   244.958 621.402 1.34299
4609 XLOC_004609  C1  C2  OK   122.289 306.945 1.32768
  test_stat p_value q_value significant
5752 9.62010  5e-05  0.00160278 yes
1272 9.07087  5e-05  0.00160278 yes
2660 8.61505  5e-05  0.00160278 yes
4677 9.61730  5e-05  0.00160278 yes
678  8.77837  5e-05  0.00160278 yes
4609 8.00396  5e-05  0.00160278  yes

> csDensity(genes(cuff_data))
> csScatter(genes(cuff_data), 'C1', 'C2')
> csVolcano(genes(cuff_data), 'C1', 'C2')

> globin <- getGene(cuff_data, 'glob1')
> expressionBarplot(globin)

XLOC_005752 therefore has a fold change of 1.41 and is the most up-regulated of the 
significantly, differentially expressed transcripts. Next we plot the data.

The outputs of these plots are shown in Figure 11.23a–c. We continue by looking at a 
specific gene, the Drosophila globin glob1:

This produces a barplot showing the expression levels in our two groups (Fig. 11.23d). 
Additional analyses offered in the protocol of Trapnell et al. (2012) include analyzing 
particular isoforms and plotting read coverage in IGV (Chapter 9).

rNa-seq genome annotation assessment project (rgaSp)

RGASP was designed to evaluate computational methods to predict and quantify expressed 
transcripts from RNA-seq data. Developers of 14 software programs were invited to ana-
lyze RNA-seq data to assess methods for exon identification, transcript reconstruction, 
and expression-level quantification (Steijger et al., 2013). Performance was lower for 
Homo sapiens data than for Drosophila or C. elegans datasets.There are many computa-
tional challenges. For example, identifying all exons cannot be accomplished, and valid 
assembly of exons into transcript isoforms was accomplished for just 41% of human 
genes. Methods also vary substantially in their estimates of expression levels from the 
same gene loci.

In another RGASP project, Engström et al. (2013) described the ability of 26 pro-
tocols (involving 11 programs) to align transcript reads to a reference genome. There 
were dramatic differences involving alignment yield (68–95%), concordance of paired 
end reads, mismatches of number and position, basewise accuracy, indel frequency and 
accuracy, and spliced alignment (involving both splices detected in individual reads and 
genomic splice sites).
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Assessments such as RGASP are useful to compare the performance of various soft-
ware tools, and to identify aspects that need to be improved.

functIonal annotatIon of MIcroarray data
A major task confronting the user of microarrays is to learn the biological significance of 
the observed gene expression patterns. Often researchers rely on manual literature searches 
and expert knowledge to interpret microarray results. Several software tools accept lists 
of accession numbers (corresponding to genes that are represented on microarrays) and 
provide annotation. 

When Christopher Bouton was a graduate student in the Pevsner lab back in 2000, he 
developed the Database Referencing of Array Genes Online (DRAGON) database. This 
includes a website that allows microarray data to be annotated with data from publicly 
available databases such as UniGene, Pfam, SwissProt, and KEGG (Bouton and Pevsner, 
2000; Bouton et al., 2003). DRAGON offers a suite of visualization tools allowing the 
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Figure  11.23 Visualizing RNA-seq data with the R package cummeRbund: (a) distribution of 
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(Glob1 from Drosophila). 

Source: R.
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user to identify gene expression changes that occur in gene or protein families. The goal 
of annotation tools such as DRAGON is to provide insight into the biological significance 
of gene expression findings. Today DRAGON is obsolete because of the emergence of 
richer databases as well as projects such as BioMart (or biomaRt; Chapter 8) that enable 
comprehensive searches.

An active area of research is the annotation of microarray data based on functional 
groups such as Gene Ontology categories (we introduce Gene Ontology in Chapter 12). The 
premise is that, in addition to considering individual transcripts that are significantly regu-
lated, groups that are functionally related (such as transcripts that encode kinases or function 
in mitochondrial biogenesis) can be identified. Tools to analyze datasets based on annotation 
groups include GOMiner (Zeeberg et al., 2005) and are reviewed by Osborne et al. (2007).

Gene Set Enrichment Analysis (GSEA), introduced by Jill Mesirov and colleagues, 
represents an increasingly popular approach to identifying regulated sets of genes (Subra-
manian et al., 2005; reviewed in Hung et al., 2012). Suppose you measure genome-wide 
expression in two classes (e.g., control and wildtype), obtaining log2 ratios of samples 
in these conditions for >20,000 transcripts. GSEA examines predefined groups, such as 
75 genes defined as relevant to heart development or 750 genes defined as relevant to the 
regulation of transcription. GSEA tests whether the set of genes in each of those groups 
are randomly distributed among all 20,000 measurements (null hypothesis) or not (alter-
nate hypothesis). GSEA: (1) calculates an enrichment score; (2) estimates significance 
with a permutation test (the class labels are permuted randomly as part of the null model, 
and the enrichment score from scrambled labels is calculated 1000 times); and (3) per-
forms a multiple test correction. The false discovery rate is the estimated probability that 
a gene set with some enrichment score is a false positive result. The GSEA developers 
have suggested that an FDR of 25% is reasonable, although the user must decide what is 
appropriate for generating hypotheses about biological function.

With all these annotation procedures, it is important to keep in mind that the product 
of mRNAs is protein. Identification of a set of mRNAs encoding proteins in a particular 
cellular pathway does not mean that the proteins themselves are present in altered levels, 
nor does it mean that the function of that pathway has been perturbed. Such conclusions can 
only be drawn from experiments on proteins and pathways performed at the cellular level.

PersPectIve
DNA microarray technology allows the experimenter to rapidly and quantitatively mea-
sure the expression levels of thousands of genes in a biological sample. This technology 
emerged in the late 1990s as a tool to study diverse biological questions. Thousands to 
millions of data points are generated in microarray experiments. Microarray data anal-
ysis therefore employs mathematical tools that have been established in other data-rich 
branches of science. These tools include cluster analysis, principal components analysis, 
and other approaches to reduce highly dimensional data to a useful form. The main ques-
tions that microarray data analysis seeks to answer are as follows:

 • For a comparison of two conditions (e.g., cell lines treated with and without a drug), 
which genes are dramatically and significantly regulated?

 • For comparisons across multiple conditions (e.g., analyzing gene expression in 100 
cell lines from normal and diseased individuals), which genes are consistently and 
significantly regulated?

 • Is it possible to cluster data as a function of sample and/or as a function of genes?

RNA-seq emerged more recently as a complementary approach to measuring steady-
state RNA levels. A challenge is to translate the discoveries from these experiments into 
further insight about biological mechanisms.

GSEA software is available from 
the Broad Institute at  http://
www.broadinstitute.org/gsea/
index.jsp (WebLink 11.21).

http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
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Finally, while DNA microarrays and RNA-seq have been used to measure gene 
expression in biological samples, they have also been used in a variety of alternative 
applications. Microarrays have been used as a tool to detect genomics DNA (e.g., to 
identify polymorphisms, to obtain DNA sequence, to identify regulatory DNA sequence, 
to identify deletions and duplications, and to determine the methylation status of DNA). 
RNA-seq has been applied to small non-coding RNAs and to variant detection (comple-
menting DNA sequencing studies). Such diverse applications are likely to expand in the 
near future.

PItfalls
A key study by John Ioannidis and colleagues (2009) showed that of 20 gene expression 
microarray papers published in Nature Genetics, the results of only 2 could be repro-
duced; 6 could be reproduced with discrepancies; and 10 could not be reproduced. Prob-
lems included lack of availability of the raw data; requirement for software that is not 
available; or unclear analysis methods. Roger Peng (2011) described approaches to per-
forming reproducible research including access to the original data, code used for analy-
sis, and everything needed for full replication of the study.

Dupuy and Simon (2007) reviewed 90 publications in which gene expression profiles 
were related to cancer outcome. Half of the studies they reviewed in detail had at least 
one of three flaws:

 1. Controls for multiple testing were not properly described or performed.
 2. In class discovery a correlation was claimed between clusters and clinical outcomes. 

However, such correlation is spurious because differentially expressed genes were 
identified and then used to define clusters.

 3. Supervised predictions included estimates of accuracy that were biased because of 
incorrect cross-validation procedures.

Dupuy and Simon (2007) offer a useful and practical list of 40 guidelines for the 
statistical analysis of microarray experiments, spanning topics from data acquisition to 
identifying differentially regulated genes, class discovery, and class prediction.

For RNA-seq studies, a major problem is that vast numbers of experiments include 
either no replicates or just duplicates. This is problematic because biological variability 
cannot be assessed. It is not possible to generalize the meaning of the results; instead, for 
each condition we can only know what RNA changes occurred in the particular one or 
two samples that were studied.

Errors occur in a variety of stages of microarray and RNA-seq experiments:

 • Experimental design is a critical but often overlooked stage of a microarray experi-
ment. It is essential to study an adequate number of experimental and control sam-
ples. The appropriate number of replicates must also be employed. While there is 
no consensus on what this number is for every experiment, there must be adequate 
statistical power and using one to three biological replicates is often insufficient.

 • It is difficult to relate intensity values from gene expression experiments to actual cop-
ies of mRNA transcripts in a cell. This situation arises because each step of the exper-
iment occurs with some level of efficiency, from total RNA extraction to conversion 
to a probe labeled with fluorescence and from hybridization efficiency to variability 
in image analysis. Some groups have introduced universal standards for analysis of a 
uniform set of RNA molecules, but these have not yet been widely adopted.

 • Data analysis requires appropriate attention to global and local background correc-
tion. Benchmark studies suggest that while excellent approaches have been devel-
oped (such as GCRMA), applying different normalization procedures will lead to 
different outcomes (such as differing lists of regulated transcripts).
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 • For exploratory analyses, the choice of distance metric, such as Pearson’s correlation 
coefficient, can have a tremendous influence on outcomes such as clustering of samples.

 • Each data analysis approach has advantages and limitations. For example, popu-
lar unsupervised methods (such as cluster analysis) sacrifice information about the 
classes of samples that are studied (such as cell lines derived from patients with 
different subtypes of cancer). Supervised methods make assumptions about classes 
that could be false.

 • Many experimental artifacts can be revealed through careful data analysis. Skewing of 
scatter plots may occur because of contamination of the biological sample being stud-
ied. Cluster analysis may reveal consistent differences, not between control and exper-
imental conditions, but between samples analyzed as a function of day or operator.

advIce for students
For work with RNA-seq, as for any high throughput or next-generation sequencing 
technology, I believe that biologists need to actively collaborate with biostatisticians 
regarding experimental design and data analysis. As you begin to analyze RNA-seq 
data here are several suggestions. (1) Make a goal of gaining experience working 
in the Linux environment. In this chapter we followed a protocol by Trapnell et al. 
(2012); try it yourself. (2) Once you learn a single workflow, try to deepen your under-
standing by reading the documentation for the packages you choose; reading papers 
in the literature that use that workflow; and running the workflow multiple times in 
order to understand the effects of changing various parameters. (3) Many people begin 
with RNA-seq analysis in Galaxy. It is user-friendly and offers excellent tutorials and 
documentation. Some researchers rely on Galaxy entirely, while for many others it 
provides initial exposure to a variety of RNA-seq analysis tools and it can serve as 
a stepping-stone using those tools in Linux. (4) Try to develop a feel for the current 
state of RNA-seq data analysis. Read review papers cited in this chapter; note some 
of the main challenges at each step such as the choice of aligner, or the difficulty of 
assembly. New tools are continuously developed and you should actively follow the 
literature. Read broadly and note how the authors assess the performance of their soft-
ware and perform benchmarking to show how and when it outperforms other software. 
(5) Join forums such as Biostars and Seqanswers to keep in touch with new develop-
ments in the community.

Biostars is online at  http://www 
.biostars.org (WebLink 11.22). For 
a tutorial on analyzing microarray 
data using Bioconductor, visit  
( https://www.biostars 
.org/p/53870/).

Discussion Questions
[11.1] A microarray dataset can be clus-
tered using multiple approaches, yielding 
different results. How can you decide which 
clustering results are “correct” (most bio-

logically relevant)? For microarray data normalization we 
described the concepts of precision and accuracy; do these 
apply to clustering as well?

[11.2] What are the best criteria to use to decide if a gene 
is significantly regulated? If you apply fold change as a 
criterion, will there be situations in which a fold change 
is statistically significant but not likely to be significant in 
a biological sense? If you apply a conservative correction 

and find that no genes change significantly in their expres-
sion levels in a microarray experiment, is this a biologi-
cally plausible outcome?

[11.3] In this chapter we examined a dataset comparing 
trisomy 21 samples versus euploid controls, and observed 
an increase in the levels of RNA transcripts assigned to 
chromosome 21 genes. What other microarray datasets 
involve experiments for which you can hypothesize what 
changes might occur? Consider cancer studies (e.g., tumor/
normal), wildtype versus knockout experiments, pharma-
cological treatments (e.g., cells ± a drug), or studies of 
physiological states.

http://www.biostars.org
https://www.biostars.org/p/53870/
https://www.biostars.org/p/53870/
http://www.biostars.org
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prObLeMS/COMputer Lab
[11.1] We described GEO2R. Visit NCBI’s GEO and 
select another dataset to analyze. (For example, search 
GEO DataSets with the term encode or “1000 Genomes” 
and select a dataset having a GEO2R link.) Inspect the R 
code; copy the R code to a text editor. Open R (or RStudio) 
and repeat the commands line-by-line.

[11.2] Obtain a set of CEL files from NCBI GEO. You can 
download them from the website to your working direc-
tory, or use the getGEO function (from the GEOquery 
package) to import them.

Self-test Quiz
[11.1] It is necessary to normalize 
microarray data because:

(a) gene expression values are not nor-
mally distributed;

(b) some experiments use cDNA labeled with fluorescence 
while others employ cDNA labeled with radioactivity;

(c) the efficiency of dye incorporation may vary for dif-
ferent samples; or

(d) housekeeping genes (such as actin) may be expressed 
as verying levels between samples.

> source("http://bioconductor.org/biocLite.R")
> biocLite("GEOquery")

> dir() 
#view the contents of your directory; this 
should include the file myarraydata.txt
> z=read.delim("myarraydata.txt")
#read.delim is a principal way of reading a 
table of data into R. This creates a new file 
called z with 8 rows (genes) columns including 
gene name, chromosomal locus, and 14 samples.
> z
#view the data matrix z consisting of 8 genes 
and 14 samples
> row.names(z)=z[,1]
> clust=hclust(dist(z[,3:16]),method="complete")
#create a distance matrix using columns 3 to 
16; perform hierarchical clustering using the 
complete linkage agglomeration method

> plot(clust)
#generate a plot of the clustering tree, such as 
a figure shown in this chapter
#Note that you can repeat this using a variety 
of different methods (e.g., method=”single” or 
method=”median”. Type ?hclust for more options.
> z.back=z[,-c(1,2)]
#create a version of matrix z called z.back in 
which two columns containing the gene names and 
chromosomal loci are removed.
> z.back
#view this matrix
> w=t(z.back)
#create a new file called w by transposing z.back.
> w
#view matrix w. There are now 4 rows (samples) 
and 8 columns (genes).
> clust=hclust(dist(w[,1:8]),method="complete")
> plot(clust)
#perform clustering. The cluster dendrogram now 
shows 14 samples (rather than 8 genes).
> clust=hclust(dist(z[,3:16],method="euclidean") 
,method="complete")
> plot(clust)
> clust=hclust(dist(z[,3:16],method="manhattan"), 
method="complete")
> plot(clust)
> clust=hclust(dist(z[,3:16],method="minkowski"), 
method="complete")
> plot(clust)
> clust=hclust(dist(z[,3:16],method="binary"), 
method="complete")
> plot(clust)
> clust=hclust(dist(z[,3:16],method="maximum"), 
method="complete")
> plot(clust)
> clust=hclust(dist(z[,3:16],method="canberra"), 
method="complete")
> plot(clust)
#You can vary the metric by which you create a 
distance matrix (e.g., Euclidean, manhattan, 
minkowski, binary, maximum, canberra) as well as 
varying the clustering method ("ward", "single", 
"complete", "average", "mcquitty", "median" or 
"centroid").

Repeat the affy and limma analyses described 
in this chapter on your dataset.
[11.3] Perform hierarchical clustering using R. Obtain a 
matrix of genes (n =  8) and samples (n =  14) from Web 
Document 11.6 at  http://www.bioinfbook.org/chapter11. 
Copy this as a text file into an R working directory. Then 
use the following commands (# indicates a comment line).

[11.2] Microarray data analysis can be performed with 
scatter plots. Which of the following pieces of information 
do you not get from a scatter plot:

(a) whether a gene is expressed at a relatively high or 
low level;

(b) whether a gene has been up- or down-regulated;

(c) if a gene is expressed in a region that suggests it is 
skewing data points; or

(d) if a gene is statistically significantly regulated in that 
experiment.

http://bioconductor.org/biocLite.R
http://www.bioinfbook.org/chapter11
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[11.3] Log2 ratios of gene expression values are often 
used rather than raw ratios because:

(a) two-fold up-regulation or two-fold down-regulation 
log2 ratios each have the same absolute value;

(b) two-fold up-regulation or two-fold down-regulation 
log ratios each have the same relative value;

(c) the scale of log2 ratios is hypergeometrically com-
pressed relative to the scale of raw ratios; or

(d) a plot of log2 ratios compresses the expression val-
ues to reduce the number of outliers.

[11.4] Inferential statistics can be applied to expression 
datasets to perform hypothesis testing:

(a) in which the probability is assessed that any individ-
ual transcript is significantly regulated in a compari-
son of two samples;

(b) in which the probability is assessed that any individ-
ual transcript is significantly regulated in a compari-
son of two or more samples;

(c) by clustering of array data; or

(d) by either supervised or unsupervised analyses.

[11.5] Which one of the following statements is FALSE?

(a) Clustering of expression data produces a tree that 
can resemble a phylogenetic tree.

(b) Clustering of expression data can be performed on 
genes and/or samples.

(c) Clustering of expression data can be performed 
with partitioning methods (such as k-means) or 
hierarchical methods (such as agglomerative or 
divisive clustering).

(d) Clustering of expression data is always performed 
using principal components analysis.

[11.6] Clustering techniques rely on distance metrics to:

(a) describe whether a clustering tree is agglomerative 
or divisive;

(b) reduce the dimensionality of a highly dimensional 
dataset;

(c) identify the absolute values of gene expression mea-
surements in a matrix of gene expression values ver-
sus samples; or

(d) define the relatedness of gene expression values from 
a matrix of gene expression values versus samples.

[11.7] A self-organizing map:

(a) imposes some structure on the formation of clusters;

(b) is unstructured, like k-means clustering;

(c) has neighboring nodes that represent dissimilar clus-
ters; or

(d) cannot be represented as a clustering tree.

[11.8] Principal components analysis (PCA):

(a) minimizes entropy to visualize the relationships 
among genes and proteins;

(b) can be applied to gene expression data from microar-
rays but not to protein analyses;

(c) can be performed by agglomerative or divisive strat-
egies; or

(d) reduces highly dimensional data to show the rela-
tionships among genes or among samples.

[11.9] The main difference between supervised and unsu-
pervised analyses is:

(a) Supervised approaches assign some prior knowledge 
about function to the genes and/or samples, while 
unsupervised analyses do not.

(b) Supervised approaches assign a fixed number of 
clusters, while unsupervised analyses do not.

(c) Supervised approaches cluster genes and/or samples, 
while unsupervised approaches cluster only genes.

(d) Supervised approaches include algorithms such as 
support vector machines and decision trees, while 
unsupervised approaches use clustering algorithms.

suGGested readInG
Miron and Nadon (2006) provide a review of key concepts in microarray data analysis. 
See Leek et al. (2010) for an important overview of batch effects. For RNA-seq method-
ology see Garber et al. (2011).

There are many introductions to R, including an introduction to statistics using R by 
Verzani (2005) and a book on R and Bioconductor for bioinformatics by Gentleman et 
al. (2005).

Ma and Dai (2011) review PCA. For cluster analysis of microarray data, Gollub and 
Sherlock (2006) provide an excellent overview. Michael Eisen and colleagues (1998) 
describe the clustering of 8600 human genes as a function of time. This classic paper 
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includes an excellent description of the metric used to define the relationships of gene 
expression values and also a discussion of the usefulness of clustering in defining func-
tional relationships among expressed genes.
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While it is obvious to us that most proteins 
are composed of 20 amino acids, chemists 
in the late nineteenth century struggled 
to understand protein composition. At 
the turn of the century only several dozen 
proteins were known, including so-called 
albumins (including serum albumins, 
lactoglobulins, fibrinogen, myosin, and 
histones), proteids (e.g., hemoglobin and 
mucins), and albuminoids (e.g., collagen, 
keratin, elastin, and amyloid). Of these 
proteins only a very small group were 
available in pure form as crystals (e.g., 
hemoglobin and serum albumin from 
horse, ovalbumin, and ichthulin (salmon 
albumin)). Gustav Mann (1906, p. 70–75) 
described the dissociation products of 
51 assorted proteins into their fundamen-
tal units. The results are shown for seven 
proteins (see columns). The rows indicate 
various compounds found upon dissolv-

ing the proteins. Most of these are amino acids; for example, glycocoll is a name 
formerly given to glycine. This table shows that, from when proteins could first be 
analyzed, scientists made an effort to understand both the nature of individual 
protein molecules and the relationships of related proteins from different species. 

Source: Mann (1906).
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The egg‐white like bodies (albumin) have occupied a considerable part of my life. All 
kinds of difficulties had to be surmounted, difficulties not met with other bodies; and 
whatever may have been said about this, one point is certain, that I have been the first 
who has shown (in 1838) that the meat is present in the bread and the cheese in the grass; 
that the whole organic kingdom is endowed with one and the same group, which is trans-
ferred from plants to animals and from one animal to another: one group, which is the 
first and foremost, and which I therefore still wish to call protein, a word derived from the 
Greek πρϖτοζ [of first rank] suggested to me by Berzelius.
— G. J. Mulder, Levensschets van G. J. Mulder door Hemzelven geschreven en door drie 

zijner vrienden uitgegeven (1881). Translation by Westerbrink (1966) p. 154.

Quantitative proteomics is a broad term, but it began with a specific meaning that should 
persist. It is the use of mass spectrometry (MS)‐based technologies to detect, identify and 
quantitate changes in proteins and their post‐translational modifications in biological 
systems. The key approach is MS: a highly sensitive, accurate and precise technology for 
measuring very small amounts of molecules, such as proteins and peptides. Importantly, 
quantitative proteomics is predominantly a tool for biological discovery.

— Michael Washburn (2011) p. 170.

Protein Analysis and 
Proteomics

C h a p t e r 

12

LeArninG ObjecTives

After reading this chapter you should be able to:
 ■ describe techniques to identify proteins including edman degradation and mass spectrometry;
 ■ define protein domains, motifs, signatures, and patterns;
 ■ describe physical properties of proteins from a bioinformatics perspective;
 ■ describe how protein localization is captured by bioinformatics tools; and
 ■ provide definitions of protein function.

IntroductIon
A living organism consists primarily of five substances: proteins, nucleic acids, lipids, 
water, and carbohydrates. Of these essential ingredients, it is the proteins that most define 
the character of each cell. DNA has often been described as a substance that corresponds 
to the blueprints of a house, specifying the materials used to build the house. These mate-
rials are the proteins, and they perform an astonishing range of biological functions. This 

http://www.wiley.com/go/pevsnerbioinformatics
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includes structural roles (e.g., actin contributes to the cytoskeleton), roles as enzymes 
(proteins that catalyze biochemical reactions, typically increasing a reaction rate by sev-
eral orders of magnitude), and roles in transport of materials within and between cells. 
If DNA is the blueprint of the house, proteins form primary components not just of the 
walls and floors of the house but also of the plumbing system, the system for generating 
and transmitting electricity, and the trash removal system.

Proteins are polypeptide polymers consisting of a linear arrangement of amino acids. 
There is a rich history of attempts to purify proteins and identify their constituent amino 
acids. By 1850 a series of proteins had been identified (albumin, hemoglobin, casein, 
pepsin, fibrin, crystallin) and partially purified. It was not until 1950s that the complete 
amino acid sequences of several small proteins were determined. Today, we have access 
to 85 million protein sequences.

Earlier we learned how to access proteins from databases (Chapter 2), we aligned 
them and searched them against databases (Chapters 3–6), and we visualized multiple 
sequence alignments as phylogenetic trees (Chapter 7). In this chapter, we discuss tech-
niques to identify proteins (direct sequencing, gel electrophoresis, and mass spectrom-
etry). We then present four perspectives on individual proteins: domains and motifs, 
physical properties, localization, and function. We consider the structure of proteins in 
Chapter 13; in Chapter 14 we address functional genomics, the genome‐wide assessment 
of gene function. Functional genomics encompasses large‐scale studies of protein func-
tion both in normal conditions and following genetic or environmental perturbations.

protein Databases

Protein sequences were initially obtained directly from purified proteins (starting in the 
1950s), but the vast majority of newly identified proteins are predicted from genomic 
DNA sequence. GenBank/DDBJ/EMBL, the separate whole‐genome shotgun (WGS) 
division and the Short Read Archive/European Nucleotide Archive include vast amounts 
of nucleotide sequence data (Chapter 2). For proteins, one major resource is the NCBI 
nonredundant protein database. Perhaps the most prominent resource is UniProt, consist-
ing of a series of databases (UniProt Consortium, 2013):

 • UniProtKB is a protein knowledgebase that includes UniProtKB/Swiss‐Prot 
(∼500,000 reviewed protein entries given expert manual annotation) and UniProtKB/
TrEMBL (∼84 million unreviewed sequences, most of which are predicted from 
DNA sequencing projects).

 • UniRef offers sets of sequence clusters which generally hide redundant sequences. 
For UniRef100, identical sequences (and subfragments with ≥11 resides) are merged 
into a single UniRef entry; UniRef90 and UniRef50 datasets are also available.

 • UniMES includes metagenomic and environmental sequences. There are also 
UniMES Clusters merging entries with 100% or 90% identity.

 • UniParc is a UniProt archive.

You can access UniProt or other protein databases by querying their websites, or by 
using tools such as BioMart at Ensembl. We can also use the R package biomaRt to 
accomplish a variety of tasks. (Refer to Chapter 8 where we performed other biomaRt 
tasks.) Open R (or it may be convenient to use RStudio), set the working directory to a 
convenient location, and install biomaRt.

Example 1: consider a list of gene symbols. For the proteins they encode, what are the 
InterPro database identifiers and descriptions?

The history of protein studies 
is briefly discussed in Web 
Document 12.1. UniProtKB 
release 2014_09 of October 2014 
has ~550,000 sequence entries 
comprising ~200 million amino 
acids (  http://web.expasy.
org/docs/relnotes/relstat.html, 
WebLink 12.1). Another 84 million 
automatically annotated (i.e., 
not reviewed) sequences are in 
TrEMBL.

UniProt is available at  http://
www.uniprot.org (WebLink 12.2). 
It is a collaboration between 
the European Bioinformatics 
Institute (EMBL‐EBI), the Swiss 
Institute of Bioinformatics (SIB), 
and the Protein Information 
Resource (PIR).

> getwd() # Confirm which directory you are working in
> source("http://bioconductor.org/biocLite.R")
> biocLite("biomaRt") # the package is now installed

http://web.expasy.org/docs/relnotes/relstat.html
http://web.expasy.org/docs/relnotes/relstat.html
http://www.uniprot.org
http://www.uniprot.org
http://bioconductor.org/biocLite.R
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> library("biomaRt") # load the package
> listMarts() # This displays >60 available databases 
 biomart
1 ensembl
2 snp
3 functional_genomics
4 vega
# additional Marts from this list of 60 are truncated.
> ensembl = useMart("ensembl")
> listDatasets(ensembl)
   dataset    description
1   oanatinus_gene_ensembl Ornithorhynchus anatinus genes (OANA5)
2   cporcellus_gene_ensembl Cavia porcellus genes (cavPor3)
# This list is truncated.
> ensembl = useDataset("hsapiens_gene_ensembl", mart=ensembl)
> filters = listFilters(ensembl)
> filters
> attributes = listAttributes(ensembl)
> attributes
# Browse the attributes to find protein-related topics!
# Let's select a small set of globin gene symbols
> globinsymbols <- c(HBB,HBA2,HBE,HBF)
# Next let's do the search, sending the results to a file
# called myinterpro:
> myinterpro <- 
getBM(attributes=c("interpro","interpro_description"),
filters="hgnc_symbol",values=globinsymbols, mart=ensembl)
> myinterpro # we print the results
   interpro   interpro_description
1   IPR000971   Globin
2   IPR002338   Haemoglobin, alpha
3   IPR002339   Haemoglobin, pi
4   IPR009050   Globin-like
5   IPR002337   Haemoglobin, beta

Example 2: Given a region of interest (e.g., 100,000 base pairs on chromosome 11) 
what are the gene symbols? For the genes that are protein‐coding, which have predicted 
transmembrane regions?

> getBM(c("hgnc_symbol","transmembrane_domain"),  
filters=c("chromosome_name","start","end"),  
values=list(11,5200000,5300000), mart=ensembl)
   hgnc_symbol   transmembrane_domain
1   OR52A1   Tmhmm
2   OR51V1   Tmhmm
3   HBB
4   HBD
5   HBD    Tmhmm
6   HBG1
7   HBG2
8   HBE1

As another approach to accessing protein data, you can obtain sequences in the 
FASTA format from the command line using EDirect utilities from NCBI (Chapter 2).

Metagenomics (introduced in Chapter 15) has had a major impact on the discovery 
of genome sequences and the inference of protein sequences. For example, Craig Ven-
ter and colleagues assembled 7.7 million genomic DNA sequence reads as part of the 
Global Ocean Sampling (GOS) project as well as an earlier Sargasso Sea project (Venter 
et al., 2004; Yooseph et al., 2007). They used shotgun sequencing to randomly sample 
the DNA of microorganisms, including bacteria, archaea, and viruses, in seawater. They 
predicted the existence of 6.1 million proteins; a single publication therefore doubled the 
number of proteins known at that time. We discuss other metagenomics projects in which 

The GOS project accession 
number at NCBI is 
AACY000000000. Note that many 
of the GOS project predicted 
proteins were not full‐length, that 
is, they were not derived from a 
DNA segment that included both a 
start and a stop codon.
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microorganisms are sequenced from environmental samples in Chapters 15–17. Such 
projects are intended to explore the relationship between communities of microorganisms 
and their ecosystems, and will continue to greatly expand the number of known proteins.

In addition to cataloguing protein sequences, a variety of databases provide anno-
tation of proteomics data such as protein–protein interactions, subcellular localization, 
post‐translational modifications of proteins, and regional expression. The Human Protein 
Reference Database (HPRD) features expert curation on thousands of proteins (Mishra 
et al., 2006; Goel et al., 2011). Human Proteinpedia, established by Akhilesh Pandey 
and colleagues as for HPRD, is another broad, expertly curated proteomics resource 
(Muthusamy et al., 2013). It serves as a community portal for the sharing, annotation, and 
integration of proteomics data.

Community Standards for proteomics research

In all areas of bioinformatics, efforts are underway to standardize the way biological 
models are formulated and experimental data are generated and described. The Human 
Proteome Organization (HUPO) supports a Proteomics Standards Initiative (PSI) with the 
goals of defining standards for proteomic data representation to facilitate the comparison, 
exchange, and verification of data (Martens et al., 2007). HUPO‐PSI currently has work-
ing groups in three areas, with each group issuing community guidelines, data formats, 
and controlled vocabularies.

These three areas are:

 • Mass spectrometry and proteomics informatics. Guidelines have been issued for the 
topics of mass spectrometry (e.g., defining the minimum information necessary to 
describe a proteomics experiment, identification, and quantiation (Taylor et al., 2007; 
Martínez‐Bartolomé et al., 2013, 2014; Mayer et al., 2013). For example, mass spec-
tra are stored and exchanged with a Mass Spectrometry Markup Language (mzML; 
Turewicz and Deutsch, 2011).

 • Protein separation, with guidelines for gel electrophoresis, gel informatics, column 
chromatography, capillary electrophoresis, and phosphoproteomics.

 • Molecular interactions, with guidelines for Minimum Information about a Molecular 
Interaction eXperiment (MIMIx), information about a bioactive entity (MIABE), and 
standard formats for protein affinity reagents (MIAPAR). A practical example is the 
PSI Common Query InterfaCe (PSICQUIC) which allows you to access multiple 
molecular interaction databases with a single query (Orchard, 2012; del‐Toro et al., 
2013) (Fig. 14.21).

These guidelines for reporting data, as well as data exchange formats and controlled 
vocabularies, require effort on the part of researchers but offer the great benefit of pro-
viding guidance for producing reproducible research (Orchard and Hermjakob, 2011; 
Orchard et al., 2012; Gonzalez‐Galarza et al., 2014; Orchard, 2014). This particular sec-
tor of the research community has placed tremendous effort into preparing for the next 
phase of research, namely acquiring and cataloguing large datasets in an organized way 
that will maximize its utility.

evaluating the State-of-the-art: aBrF analytic challenges

The Association of Biomolecular Resource Facilities (ABRF) is a professional society 
whose 600 members organize community experiments, often at core facilities, to perform 
research in proteomics, genomics, and other areas. ABRF research groups distribute (or 
request) test samples and have participating laboratories try to solve tasks such as deter-
mining the composition of a protein mixture or identifying the phosphorylation site of 
a phosphopeptide. The successes and failures of the various labs inform the community 

HPRD is available at  http://
www.hprd.org (WebLink 
12.3). Currently (February 
2015) HPRD includes over 
30,000 protein entries. Human 
Proteinpedia is at  http://
www.humanproteinpedia.org/ 
(WebLink 12.4) and currently has 
∼15,000 protein entries and ∼250 
contributing laboratories.

A controlled vocabulary is a set 
of predefined terms that are 
used to annotate data.

To learn about PSICQUIC visit 
 http://code.google.com/p/

psicquic/ (WebLink 12.5). To use 
a PSICQUIC web‐based tool visit 
PSICQUIC View at the European 
Bioinformatics Institute (  
http://www.ebi.ac.uk/Tools/
webservices/psicquic/view/, 
WebLink 12.6). Enter a query for 
GNAQ to see >1100 interactions 
defined in several dozen 
databases.

The HUPO Proteomics Standards 
Initiative website is  http://
www.psidev.info/ (WebLink 12.7).

The ABRF website is  http://
www.abrf.org/ (WebLink 12.8).

http://www.hprd.org
http://www.hprd.org
http://www.humanproteinpedia.org/
http://www.humanproteinpedia.org/
http://code.google.com/p/psicquic/
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/
http://www.psidev.info/
http://www.psidev.info/
http://www.abrf.org/
http://www.abrf.org/
http://code.google.com/p/psicquic/
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about the current limits of accuracy, precision, and efficiencies in commonly performed 
experiments. This process of self‐evaluation by the community illuminates the current 
state of the art and helps develop best practices in all aspects of proteomics from sample 
preparation to data analysis. We refer to several ABRF studies in this chapter.

technIques for IdentIfyIng ProteIns
In this section we introduce three fundamental approaches to protein identification: direct 
protein sequencing; gel electrophoresis; and mass spectrometry.

Direct protein Sequencing

The first protein sequencing was by Frederick Sanger and Hans Tuppy (1951) who hydro-
lyzed insulin with acid, fractionated the resulting peptides by paper chromatography, and 
labeled them with dinitrophenyl (DNP) to identify the amino acid residues. The methods 
of Sanger and Tuppy were laborious, and soon an approach pioneered by Pehr Edman 
(1949) became established. Edman systematically degraded proteins, beginning with the 
amino terminal residue (which is derivatized, cleaved, and identified) and proceeding 
toward the carboxy terminus.

The Edman degradation procedure requires purification of a protein to relative homo-
geneity. This can be achieved by conventional biochemical means such as purification on 
ion exchange, size exclusion, other columns, or by electrophoresis. A portion of the amino 
acid sequence of a protein is obtained by transferring it to a specialized polyvinylidene 
fluoride (or PVDF) membrane, then performing microsequencing by sequential Edman 
degradations (Fig. 12.1). About 60–85% of the time, the amino terminus of yeast and other 
eukaryotic proteins is blocked (e.g., acetylated and unavailable for Edman degradations). 
A standard procedure is to proteolyze (e.g., trypsinize) the protein, purify the proteolytic 
fragments by reverse‐phase high‐performance liquid chromatography (HPLC), confirm 
the purity of the fragments, and then perform Edman degradations.

The Edman degradation method has been reviewed by Shively (2000). It remains a 
fundamental method of protein identification, and is useful to identify sequences of 1–10 
picomoles of a protein. It is well suited to identifying the amino terminus of an intact 
protein (when unblocked), in contrast to mass spectrometry techniques that only ana-
lyze peptide fragments. It can be used for carboxy‐terminal sequencing (Nakazawa et al., 
2008). However, the Edman technique has several limitations.

 • It is laborious and not amenable to high‐throughput analyses.
 • While it is sensitive, mass spectrometry techniques can be 10–100 times more sen-
sitive.

 • Direct sequence is not useful for the analysis of post‐translational modifications, 
unless combined with two‐dimensional gel electrophoresis and mass spectrometry.

The ABRF has conducted 19 studies of Edman degradation including one by Brune 
et al. (2007) that also reviews earlier studies. Three synthetic peptides were synthesized 
including one with a modified residue (an acetyl lysine). Amino acid assignments were 
highly accurate for the peptides, but quantification of acetylated peptide was inaccurate 
(1.49/1 ratio for two peptides that were actually 1/1). This could be due to the lack of 
commercial PTH standards for many modified peptides.

Gel electrophoresis

Polyacrylamide gel electrophoresis (PAGE) is a premier tool for the analysis of protein 
molecular weight (for reviews of recent advances see Curreem et al., 2012; Righetti, 
2013). Proteins (like nucleic acids) possess a charge and thus migrate when introduced 

Consider a 10 kilodalton protein; 
given a molecular weight of 
∼115 daltons per residue, such a 
protein consists of about 87 amino 
acids. To obtain 1 pmol, just 10 ng 
or 10–8 g of protein is required.
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into an electric field. Proteins are denatured and electrophoresed through a matrix of 
acrylamide that is inert (so it does not interact with the protein) and porous (so that pro-
teins can move through it). The velocity of a protein as it migrates through an acrylamide 
gel is inversely proportional to its size; a complex mixture of proteins can therefore be 
separated in a single experiment. Proteins are almost always electrophoresed through 
acrylamide under denaturing conditions in the presence of the detergent sodium dodecyl 
sulfate (SDS), so this technique is commonly abbreviated SDS‐PAGE.

O’Farrell (1975) greatly extended the capabilities of this technology by combining 
it with an initial separation of proteins based on their charge. In the first step, proteins 
are separated by isoelectric focusing. A gel matrix (or strip) is produced that contains 
ampholytes spanning a continuous range of pH values, usually between pH 3 and 11. 
Each protein is zwitterionic (having both positive and negative ions) and, when elec-
trophoresed, it migrates to the position at which its total net charge is zero. This is the 
isoelectric point (abbreviated pI) at which the protein stops migrating. A complex mixture 
of proteins may therefore be separated based upon charge, and this corresponds to the first 
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FIGUre 12.1 Protein sequencing by Edman degradation. The Edman process is illustrated for a pro-
tein fragment of six amino acids. The first amino acid reacts through its amino terminus with phenyliso-
thiocyanate (PITC). Under acidic conditions this amino acid residue, derivitized with phenylthiohydan-
toin (PTH), is cleaved and can be identified in an amino acid analyzer. The peptide now has five amino 
acid residues, and the cycle is repeated with successive amino‐terminal amino acids. The structure of 
PTH‐alanine is shown as an example. The typical result is a readout of 10–20 amino acids. The corre-
sponding protein and gene can be evaluated by performing BLAST searches (Chapter 4).
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dimension of two‐dimensional gel electrophoresis. In the second dimension, proteins are 
separated by SDS‐PAGE.

The technique of two‐dimensional gel electrophoresis has matured into an import-
ant technology used to analyze proteomes (Görg et al., 2004; Carrette et al., 2006; Cur-
reem et al., 2012). An example of a two‐dimensional gel profile is shown in Figure 12.2. 
Several hundred micrograms of protein from human lymphocytes were separated by 

FIGUre 12.2 Example of a two‐dimensional protein gel result. The ExPASy two‐dimensional gel 
resource was searched for beta globin. This profile is of several hundred proteins from human lympho-
cytes. The x axis corresponds to pH; proteins migrate to their isoelectric point (pI) where the net charges 
are zero. The y axis corresponds to molecular weight. On this particular gel, relatively low molecular 
weight proteins (10–50 kilodaltons) are well resolved, while other gels resolve larger proteins. The 
highly abundant proteins include two beta globin isoforms at molecular weights of about 17 kilodaltons 
(arrow). Several other identified proteins are indicated (beta actin (ACTB), calreticulin, enolase, ribo-
nucleoproteins). By mousing over each identified spot, a dialog box appears with information on the 
protein (here, HBB with accession P68871) as well as an identifier, a statement of the molecular weight 
and pI, and a link to further information at ExPASy.

Source: ExPASy. Reproduced with permission from SIB Swiss Institute of Bioinformatics.
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pH (on the x axis) by isoelectric focusing, then by molecular mass (on the y axis) by 
SDS‐PAGE. Thousands of proteins may be visualized with a protein‐binding dye such 
as silver nitrate or Coomassie blue (Panfoli et al., 2012). Note that several proteins are 
especially abundant, including alpha and beta globin as well as the structural proteins 
actin and spectrin. Many proteins have a characteristic pattern of spots that spread 
along the first dimension. This is a “charge train” that usually represents a series of 
variants of a protein with differing amounts of charged groups such as phosphates that 
are covalently attached.

A central website for proteomics is the Expert Protein Analysis System (ExPASy; 
Artimo et al., 2012; Fig. 12.3). ExPASy includes the main public database for information 
on two‐dimensional gel electrophoresis (Hoogland et al., 2004). Information is available 
for gels from a variety of organisms and experimental conditions, including the experi-
ment shown in Figure 12.2. These profiles may be queried by choosing a two‐dimensional 
gel map by other criteria such as keyword.

A key property of two‐dimensional protein gels is that the individual proteins may 
be identified by direct protein microsequencing or by sensitive mass spectroscopy tech-
niques (see following section). The ExPASy Swiss‐2DPAGE site includes reference maps 
from organisms such as human, mouse, the plant Arabidopsis thaliana, the slime mold 

ExPASy is located at  http://
www.expasy.ch/ (WebLink 12.9). 
Many of the tools we explore 
in this chapter are available at 
ExPASy, which is part of the 
Swiss Institute of Bioinformatics.

FIGUre 12.3 ExPASy offers a premier web server for protein analysis as well as genomics, imaging and other analyses (  http://www.
expasy.ch/). You can input a query (such as hemoglobin, as shown at the top). The site provides a gateway to a two-dimensional gel database, 
to a large, well-organized list of links to databases, and to a vast variety of tools for protein analysis.

Source: ExPASy. Reproduced with permission from SIB Swiss Institute of Bioinformatics.

http://www.expasy.ch/
http://www.expasy.ch/
http://www.expasy.ch/
http://www.expasy.ch/


PrOTein AnALysis And PrOTeOMics 547

Dictyostelium discoideum, and several bacteria. There have been thousands of applica-
tions of two‐dimensional SDS‐PAGE. These studies range across diverse species, cell 
types, and physiological states. Examples include descriptions of hundreds of proteins 
in human and rat brain (Langen et al., 1999), characterizing traits of beer (Iimure et al., 
2014), studying vaginal, nasal, or other secretions, and characterizing changes in cancer 
or during the cell cycle of bacteria.

There have been many improvements to two‐dimensional gel technology. Jonathan 
Minden and colleagues introduced difference gel electrophoresis (DIGE), a technique in 
which two (or sometimes three) samples are labeled with amine‐reactive, fluorescent dyes 
(Viswanathan et al., 2006; Minden, 2012). These samples are mixed, electrophoresed, 
and then the relative abundance of many proteins is determined based on fluorescence 
imaging. In some cases, DIGE has been used to detect 0.5 femtomoles of protein (for a 
10 kilodalton protein, this corresponds to just 5 pg).

We may summarize the strengths of two‐dimensional gel electrophoresis as follows:

 • It offers the ability to describe both isolectric point and molecular mass of intact 
proteins; this contrasts with mass spectrometry methods that identify molecular mass 
based on peptide fragments and that further lose information on pI.

 • Several thousand proteins can be resolved and visualized with an appropriate stain.
 • It is possible to detect and quantitate less than 1 ng per spot on the gel. A variety of 
sensitive stains (dyes) are available to detect proteins.

 • Mass spectrometry is commonly used in conjunction with two‐dimensional gels for 
protein identification, as discussed below.

The two‐dimensional gel approach has several limitations, however.

 • It is not amenable to high‐throughput processing of many samples in parallel.
 • Sample preparation is a critical step and often requires a great deal of optimization. 
However, this is true of essentially all proteomics methods.

 • Only the most abundant proteins in a sample are usually detected. Hydrophobic pro-
teins, including proteins with transmembrane regions, are underrepresented on two‐
dimensional gels. Similarly, highly basic or acidic proteins are often excluded.

 • It requires considerable expertise to reliably generate consistent results. In comparing 
two gel profiles, if the polyacrylamide gels vary even slightly in composition or if 
the samples are electrophoresed under differing conditions, it can be difficult to accu-
rately align the protein spots. An important technical advance in the reproducibility 
of 2DG electrophoresis was the introduction of immobilized pH gradients preformed 
on dry strips, replacing an older system of pH gradient formation with ampholytes.

Mass Spectrometry

Mass spectrometry techniques have revolutionized the field of proteomics by allowing 
proteins to be identified with extraordinary sensitivity. There are many excellent reviews 
of the technology (Gstaiger and Aebersold, 2009; Kumar and Mann, 2009; Washburn, 
2011; Bruce et al., 2013) and discussions on its future (Walsh et al., 2010; Roepstorff, 
2012; Thelen and Miernyk, 2012). Mass spectrometry is useful for: (1) identifying pro-
teins (e.g., for identifying protein spots from two‐dimensional gels, complex mixtures 
such as extracts of cells, or other biochemical purification approaches); (2) quantifying 
proteins; and (3) characterizing post‐translational modifications of proteins. The ability 
of mass spectrometry to measure the mass of a protein with extremely high accuracy and 
precision allows it to distinguish even subtle changes in proteins such as the addition of 
a single phosphate group.

Mass spectrometers analyze charged protein or peptide molecules in the gaseous state. 
A key step is to transfer proteins into the gas phase and ionize them. This is accomplished 
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using either matrix‐assisted laser desorption ionization (MALDI) or electrospray ioiniza-
tion. In MALDI‐TOF (MALDI with time‐of‐flight spectroscopy), the analyte molecules 
(i.e., the material to be analyzed) are dried on a metal substrate, irradiated with a laser, 
and fragmented (Fig. 12.4). The resulting ions are accelerated in a field that imparts a 
fixed kinetic energy. The ions traverse a path, are reflected in an ion mirror, and are then 
detected by a channeltron electron multiplier. The mass‐to‐charge ratio (m/z) of an ion 
determines the time it takes to reach the detector; lighter ions (smaller analytes) have a 
higher velocity and are detected first. A time‐of‐flight spectrum is recorded from which 
the amino acid composition of even one femtomole of peptide can be deduced.

We can consider two common applications of mass spectrometry (Fig. 12.5; Doerr, 
2013). First, discovery‐based proteomics involves extracting proteins from a source 
of interest (such as a cell line, an organelle, a region excised with a razor from a two‐
dimensional gel, or other biological specimens). Proteins are digested with a protease 
such as trypsin to produce a set of peptides. These are fractionated to reduce the com-
plexity of the sample, using techniques such as liquid chromatography with electrospray 
ionization. A mass spectrometer then identifies the m/z ratio of the peptide ions. The 
experimentally derived spectra are compared to a library of known peptide spectra, and 
the peptides in the sample can be identified. This allows inference of the original proteins 
in the sample. The databases that are searched for matches to mass spectrometry spec-
tra typically include RefSeq and dbEST at NCBI, UniProt, and the Mass Spectrometry 
protein sequence DataBase (MSDB). The resolution of MALDI‐TOF is excellent (about 
0.1–0.2 daltons), allowing identification of the protein especially when multiple peptides 
correspond the same protein.

Second, in a targeted workflow (Fig. 12.4, left side) selected reaction monitoring 
(SRM) is applied. The mass spectrometer identifies a pre‐specified protein of interest. 
This can involve a triple quadrupole mass spectrometer (QQQ) in which peptide ions 
having a particular m/z ratio are selected in a first filter, resulting ions are selected in a 
second filter, and SRM traces are obtained showing absorbance (signal intensity) versus 
retention time for particular peptide ions.

John Fenn and Koichi Tanaka 
shared half the Nobel Prize 
in Chemistry 2002 for their 
development of “soft desorption 
ionisation methods for mass 
spectrometric analyses of 
biological macromolecules” 
(  http://nobelprize.org/nobel_
prizes/chemistry/laureates/2002/, 
WebLink 12.10).
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FIGUre  12.4 Matrix‐assisted laser desorption/ionization time‐of‐flight spectroscopy (MALDI‐
TOF). Spectroscopy is a technique to measure the mass of protein samples and other macromolecules. 
A sample is placed in a matrix of material that absorbs ultraviolet light. A laser is fired at the sample in 
the source region(s), and in the context of the matrix the sample becomes ionized. Some of the protein 
samples evaporate (i.e., desorption occurs). The ionization occurs in the presence of an electric field that 
accelerates the ions into a long drift region (D). The acceleration of each protein fragment is proportional 
to the mass of the ion. A detector records a time‐of‐flight spectrum that can be analyzed to determine the 
mass of each fragment. Peptide fragments are then searched against a protein database to determine the 
identity of the analyte (protein).

http://nobelprize.org/nobel_prizes/chemistry/laureates/2002/
http://nobelprize.org/nobel_prizes/chemistry/laureates/2002/
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A key step in mass spectrometry experiments is the identification of proteins by 
matching of observed mass spectra to the theoretical spectral profiles of peptide frag-
ments obtained from protein databases (Marcotte, 2007; Malik et al., 2010). A variety 
of software tools are available to do this. An example is the PRoteomics IDEntifica-
tions (PRIDE) database at the European Bioinformatics Institute website. PRIDE is a 

FIGUre 12.5 Targeted workflow and discovery workflow analyses of a proteome using mass spec-
trometry. In a discovery workflow (right side of figure), a goal is to identify as many proteins as possible. 
In a typical approach a set of proteins (proteome) is extracted from a sample, enriched, and cleaved with 
selective proteases to generate a set of peptides. These are separated by techniques such as liquid chro-
matography‐electrospray ionization (LC‐ESI) and tandem mass spectrometry (MS/MS). By matching 
observed spectra to a library of known spectra many peptides can be identified, allowing inference of the 
set of proteins present in the original sample. Some discovery workflows are sensitive enough to identify 
thousands of proteins in a sample. In a targeted workflow (left side of figure), a goal is to identify and 
quantify a set of proteins of interest. Here the mass spectrometer may be set to detect particular ions 
derived from selected proteins. In one approach using a triple quadrupole mass spectrometer (QQQ) a 
mass filter selects ions of interest (based on their m/z ratio) for quantitation. 

Source: Doerr (2013). Reproduced with permission from Macmillan Publishers.
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central public repository for mass spectrometry‐based proteomics data (Vizcaíno et al., 
2013). We can search PRIDE with a UniProt accession for human beta globin (P68871, 
obtained from the NCBI Gene page for HBB); currently there are over 900 experiments 
to choose from. Viewing a HUPO brain proteome project from Martins‐de‐Souza et al. 
(2012; Fig. 12.6a) we can examine results in PRIDE Inspector software (downloaded as 

(a) PRIDE search results for mass spectrometry datasets including P68871 (beta globin)

(b) PRIDE Inspector software 1.3.2

(c) PRIDE Inspector summary charts

FIGUre 12.6 The PRoteomics IDEntifications database (PRIDE) database at EBI is a central repos-
itory for mass spectrometry‐based proteomics data. (a) A search for beta globin protein produces >900 
rows of results, several of which are shown here. One of the results links is to PRIDE Inspector software 
(b). This includes lists of peptides and their overlap with the protein sequence (green boxes; the yellow 
region is selected). Individual m/z spectra may also be seen. (c) A variety of summary statistics are 
available. Three shown here are Delta m/z (a measure of quality control that should be symmetrical and 
centered on zero); peptides per protein (50% of identified proteins have >5 matching peptides, indicating 
high confidence in the assignment); and missed tryptic cleavages.
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a Java application). This shows metadata (including the experiment, instrument, species, 
authors, references) and lists of identified peptides and proteins (Fig. 12.6b), here showing 
an overlap between 22 peptides that match beta globin. Summary plots describe the qual-
ity of the experiment (Fig. 12.6c), and MS spectra are also available.

Among the most commonly used software is MASCOT® (Perkins et al., 1999). 
Like other tools it provides a scoring algorithm to evaluate the false positive rate, and 
an E value similar to that used in BLAST (Chapter  4). The main strength of MAS-
COT® is its integration of three different search methods: peptide mass fingerprinting 
(in which peptide mass values are obtained); sequence queries (in which peptide mass 
data are combined with amino acid sequence data and compostional information); and 
MS/MS data obtained from peptides. Other prominent software includes ProteinPilot 
and Sequest.

How can we assess the accuracy of protein identification by mass spectrometry? The 
Association of Biomolecular Resource Facilities (ABRF) has conducted several stud-
ies to address this question. Falick et al. (2011) added 12 known proteins at varying, 
defined ratios to several complex mixtures of E. coli lysate. There were 43 study par-
ticipants; each used mass spectrometry to identify proteins, and for quantification most 
used iTRAQ. The results showed how challenging this exercise was: only one‐third of the 
particpants could identify and detect differences in the five most abundant of the added 
proteins. The experience of the personnel was a key factor, a finding also seen in the realm 
of gene expression microarrays.

In an earlier ABRF study, Arnott et al. (2002) prepared five purified proteins at 
quantities of either 2 picomoles or 200 femtomoles: bovine protein disulfide isomer-
ase (PDI); serum albumin (BSA); superoxide dismutase; Escherichia coli GroEL; and 
Schistosoma japonicum glutathione‐S‐transferase (GST). They digested the samples 
with trypsin, mixed them, and sent them “blind” to 41 participating laboratories that 
performed a total of 55 mass spectrometric analyses. The laboratories tended to use 
MALDI‐TOF or microliquid chromatography with nanospray ioinization (μLC‐NSI). 
At the 2 picomole level, 96% (53/55) of the analyses correctly identified PDI, while 
80% correctly identified GST. At the 200 femtomole level, 44% identified GroEL, 27% 
identified BSA, and 11% identified SOD. From one perspective, this is an enormous 
improvement over earlier mass spectrometry performance; from another perspective, 
this indicates that it is challenging for many laboratories to detect quantities below one 
or two picomoles.

There are dozens of important applications of mass spectrometry. We discuss some 
applications in this chapter and others in Chapter 14 when we describe functional genom-
ics as applied to protein–protein interactions.

four PersPectIves on ProteIns
We will next describe four different perspectives on proteins (summarized in Fig. 12.7): 
(1) protein families (domains and motifs); (2) physical properties of proteins; (3) protein 
localization; and (4) protein function.

The first perspective we consider is the protein family. We define terms such as fam-
ily, domain, and motif. Next, we consider the physical properties of proteins and how we 
can assess them. These properties include molecular weight, isoelectric point, and post‐
translational modifications (of which several hundred have been described).

The third and fourth perspectives, protein localization and function, complete our 
approach to proteins. These views are loosely related to a conceptual framework provided 
by the Gene Ontology (GO) Consortium. We therefore introduce GO as well, including 
its organizing principles for describing proteins (cellular component, biological process, 
and molecular function).

PRIDE is available from the 
European Bioinformatics Institute 
at  http://www.ebi.ac.uk/pride/ 
(WebLink 12.11) along with 
extensive documentation, search 
features, tools, and support. It 
might seem surprising that this 
particular brain proteome project 
includes abundant hemoglobin. 
However, blood is almost always 
present during dissections of 
brain.

MASCOT® software is available 
from Matrix Science (  http://
www.matrixscience.com/, 
WebLink 12.12). ProteinPilot is 
from AB Sciex (  http://www 
.absciex.com/, WebLink 12.13)  
and Sequest is from the  
laboratory of John Yates III 
(  http://fields.scripps.edu/index 
.php, WebLink 12.14).

http://www.ebi.ac.uk/pride/
http://www.matrixscience.com/
http://www.matrixscience.com/
http://www.absciex.com/
http://www.absciex.com/
http://fields.scripps.edu/index.php
http://fields.scripps.edu/index.php
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perspective 1: protein Domains and Motifs: Modular Nature of proteins

We begin our discussion of protein domains by considering several types of proteins. In 
the simplest case, a protein (or gene) has no matches to any other sequences in the avail-
able databases. This situation occurs less frequently as increasing numbers of genomes 
are sequenced, and yet it is not unusual to find that substantial numbers of predicted pro-
teins have no identifiable homologs (e.g., Chapters 15–17). Even if there are no known 
homologs, a protein may have features such as a transmembrane domain, potential sites 
for phosphorylation, or some predicted secondary structure (see following section and 
Chapter 13). Such features may provide clues to the structure and/or function of the 
protein.

For proteins that do have orthologs and/or paralogs, there are regions of significant 
amino acid identity between at least two proteins (or DNA sequences). Such regions of 
proteins that share significant structural features and/or sequence identity have a variety 
of names: signatures, domains, modules, modular elements, folds, motifs, patterns, or 

RNA
(3) Protein localization

(2) physical properties
of proteins

c

b

(1) protein families
(domains and motifs)

protein

a

d (4) Protein function

Gene Ontology:
--cellular component
--biological process
--molecular function

FIGUre 12.7 Overview of proteins. A protein is composed of a series of amino acids specified by 
a gene. Proteins can be classified by a variety of criteria, including family, localization, physical prop-
erties, and function. (1) Protein families are defined by the homology of a protein to other proteins; the 
proteins may be homologous over a partial region. Databases of protein families and motifs (discussed 
in Chapter 12) allow hundreds of thousands of proteins to be classified in groups that may be function-
ally related. (2) Proteins may be described in terms of their physical properties, such as size (molecular 
weight), shape (e.g., Stokes radius and frictional coefficient), charge (isoelectric point), post‐transla-
tional modifications (see text), or the existence of isoforms due to proteolytic processing or alternative 
mRNA splicing. (3) A protein is depicted in several possible locations: it may be soluble in the cytosol 
(a), in an intracellular organelle such as the nucleus (b), or extracellular as a secreted protein (c). A 
protein may be bound to membranes on the cell surface (d) or on an intracellular organelle (not shown); 
membrane localization may be via transmembrane domains or by peripheral attachment. (4) Proteins 
may be categorized according to function. The Gene Ontology (GO) Consortium classifies proteins 
according to cellular component (i.e., localization), biological process (e.g., transcription or endocyto-
sis), and molecular function (e.g., enzyme or transporter). A protein can belong to multiple categories 
of any of these groups. The GO system provides a dynamic, controlled vocabulary that can be applied 
to all eukaryotic proteins.
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repeats. These terms have varied definitions, but all refer to the idea that there are closely 
related amino acid sequences shared by multiple proteins (Bork and Gibson, 1996; Bork 
and Koonin, 1996). Such regions may be considered in terms of protein structure and/
or function (Copley et al., 2002). We will primarily adopt the definitions provided by 
the InterPro Consortium (Hunter et al., 2012). InterPro is an integrated documentation 
resource that encompasses a group of databases of protein families, domains, and func-
tional sites.

A signature is a broad term that denotes a protein category, such as a domain or 
family or motif. When you consider a single protein sequence in isolation, there is only 
a limited amount of information you can infer about its structure or function. However, 
when you align related sequences, a consensus sequence may be identified. There are two 
principal kinds of signatures, and each is identified with its own methodology.

 1. A domain is a region of a protein that can adopt a particular three‐dimensional struc-
ture (Doolittle, 1995). Domains are also called modules (Sonnhammer and Kahn, 
1994; Henikoff et al., 1997). The term fold is commonly used in the context of 
three‐dimensional structure (Jones, 2001). Together, a group of proteins that share a 
domain is called a family. Many protein domains are further classified based upon the 
subcellular localization of the domain (e.g., intracellular domains of proteins occur in 
the cytoplasm; extracellular domains are oriented outside the cell) or in terms of the 
structure of the domain (e.g., zinc finger domains bind the divalent cation zinc).

   There are many databases of protein families, such as Pfam and SMART, that 
we explored in Chapter 6. The definitions of the terms family, domain, repeat, and 
related terms in the InterPro and SMART databases are given in tables 12.1 and 12.2.

 2. Motifs (or fingerprints) are short, conserved regions of proteins (discussed in “Protein 
Patterns”). A motif typically consists of a pattern of amino acids that characterizes a 
protein family (Bork and Gibson, 1996). The size of a defined motif is often 10–20 
contiguous amino acid residues, although it can be smaller or larger. Some simple 
and common motifs, such as a stretch of amino acids that form a transmembrane 
region or a consensus phosphorylation site, do not imply homology when found in a 
group of proteins. In other cases, a small motif may provide a characteristic signature 
for a protein family.

To introduce specific examples of domains, table 12.3 lists the 10 most common 
domains in the proteins encoded by the human genome. Similar lists are available for 

InterPro is accessed at  
http://www.ebi.ac.uk/interpro/ 
(WebLink 12.15). It includes 11 
consortium member databases: 
PROSITE (described in “Protein 
Patterns”); PRINTS (which 
uses position‐specific scoring 
matrices); ProDom (which uses 
automatic sequence clustering); 
HAMAP (high‐quality automated 
and manual annotation of 
proteins); and seven databases 
that use hidden Markov models 
(CATH‐Gene3D, Panther, Pfam, 
PIRSF, SMART, SUPERFAMILY, 
TIGRFAMs). InterPro further links 
to dozens of additional resources 
including UniProt.

 Wong et al. (2010) noted that 
transmembrane regions or signal 
peptides, commonly shared by 
vast numbers of proteins that are 
not homologous, are the source 
of over a thousand false positive 
entries in databases such as Pfam 
and iProClass (Chapter 6).

taBLe 12.1 Definitions of protein families and related terms from Interpro database.

Term Definition

Family A protein family is a group of proteins that share a common evolutionary origin 
reflected by their related functions, similarities in sequence, or similar primary, 
secondary or tertiary structure. A match to an InterPro entry of this type indicates 
membership of a protein family.

Domain Domains are distinct functional, structural, or sequence units that may exist in a variety 
of biological contexts. A match to an InterPro entry of this type indicates the presence 
of a domain.

Repeat A match to an InterPro entry of this type identifies a short sequence that is typically 
repeated within a protein.

Site A match to an InterPro entry of this type indicates a short sequence that contains one 
or more conserved residues. The type of sites covered by InterPro are active sites, 
binding sites, post‐translational modification sites, and conserved sites.

Source:  http://www.ebi.ac.uk/interpro/.

http://www.ebi.ac.uk/interpro/
http://www.ebi.ac.uk/interpro/
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the abundant protein domains of other organisms (Chapters 16–19). In many cases, two 
proteins that share a domain also share a common function. For example, the immuno-
globulin‐like domain (InterPro accession IPR007110 with over 1000 members) is one of 
the most common domains encoded by the human genome. Many proteins having this 
domain have roles in extracellular signaling (Fig. 12.8). As another example, in humans 
there are hundreds of small guanosine triphosphate‐ (GTP‐) binding proteins (InterPro 

taBLe 12.2 Definitions of protein domains and motifs from SMart database (a tool 
to allow automatic identification and annotation of domains in user-supplied protein 
sequences; see Chapter 6). adapted from http://smart.embl-heidelberg.de/help/
smart_glossary.shtml (accessed November 2013); Gribskov et al. (1987); Lüthy et al. 
(1994); thompson et al. (1994a, b); Bork and Gibson (1996); Gribskov and Veretnik 
(1996); higgins et al. (1996).

Term Definition

Domain Conserved structural entities with distinctive secondary structure content 
and a hydrophobic core. In small disulfide‐rich and Zn2+‐binding or Ca2+‐
binding domains, the hydrophobic core may be provided by cystines and 
metal ions, respectively. Homologous domains with common functions 
usually show sequence similarities.

Domain composition Proteins with the same domain composition have at least one copy of 
each domain of the query.

Domain organization Proteins having all the domains as the query in the same order (additional 
domains are allowed).

Motif Sequence motifs are short conserved regions of polypeptides. Sets of 
sequence motifs need not necessarily represent homologs.

Profile A profile is a table of position‐specific scores and gap penalties, 
representing an homologous family, that may be used to search sequence 
databases (Gribskov et al., 1987; Lüthy et al., 1994; Gribskov and Veretnik, 
1996). In CLUSTAL‐W‐derived profiles those sequences that are more 
distantly related are assigned higher weights (Thompson et al., 1994a, 
b; Higgins et al., 1996). Issues in profile‐based database searching are 
discussed in Bork and Gibson (1996).

taBLe 12.3 Most common domains of Homo sapiens.

InterPro accession Proteins matched Name of domain

IPR027417 1022 P‐loop containing nucleoside triphosphate hydrolase

IPR007110 1015 Immunoglobulin‐like domain

IPR007087 806 Zinc finger; C2H2

IPR015880 801 Zinc finger; C2H2‐like

IPR017452 796 GPCR; rhodopsin‐like; 7TM

IPR000276 789 G protein‐coupled receptor; rhodopsin‐like

IPR003599 623 Immunoglobulin subtype

IPR013106 619 Immunoglobulin V‐set

IPR011009 560 Protein kinase‐like domain

IPR000719 513 Protein kinase; catalytic domain

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.

http://smart.embl-heidelberg.de/help/smart_glossary.shtml
http://smart.embl-heidelberg.de/help/smart_glossary.shtml
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IPR005225). Many dozens are thought to regulate the intracellular docking and fusion of 
transport vesicles through a cycle of GTP binding and hydrolysis (Geppert et al., 1997). 
Other related low‐molecular‐weight GTP‐binding proteins function in cell cycle control 
and cytoskeletal organization (reviewed in Takai et al., 2001). This superfamily is orga-
nized into related subfamilies that are usually presumed to share common functions.

Focusing our attention on a single domain, there are many ways in which proteins can 
share that domain in common. The entire protein may consist of one domain, such as the 
lipocalin domain or globin domain (Fig. 12.9a). Many other small, globular proteins also 
consist of a single domain.

It is even more common for a domain to form a subset of a protein. A comparison 
of two proteins often indicates that the domains occupy different regions of each protein 
(Fig. 12.9b). A group of six proteins contain a domain that confers the ability of each protein 
to bind methylated DNA. One of these proteins, methyl‐CpG‐binding protein 2 (MeCP2), 
is a transcriptional repressor that binds the regulatory region of a variety of genes. (Muta-
tions in the MECP2 gene cause Rett syndrome, a neurological disorder that affects girls 
and is one of the most common causes of intellectual disability in females; see Box 21.2.) 
We can perform a BLASTP search with the MeCP2 protein sequence to illustrate the con-
cept of protein domains. The BLAST formatting page shows that the methyl‐CpG‐binding 
domain (MBD) is present in several databases of protein domains (Fig. 12.10a). The BLAST 
search result shows that a portion of MeCP2 matches four other MBD proteins (Fig. 12.10b). 
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FIGUre 12.8 Many proteins have multiple copies of distinct domains. The most common domain 
in humans is the immunoglobulin (Ig) domain, and the fibronectin repeat also commonly occurs. These 
domains are especially prevalent in the extracellular regions of proteins. Information about domains such 
as these is summarized in the InterPro database.
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Furthermore, examination of the MeCP2/MBD family shows that the proteins are various 
different sizes, only having the MBD domain in common (Fig. 12.10c).

What is the definition of a family? Is a group of proteins homologous if they share 
only one domain in common? The MBD domains are clearly homologous (descended 
from a common ancestor), defining this group of proteins as a family; the regions outside 
the MBD domain share no significant amino acid identity, however. A family is a group of 
evolutionarily related proteins that share one (or more) regions of homology.

A third scenario for proteins containing individual domains is that the domain may be 
repeated many times (Fig. 12.9c). Two of the most common protein domains in H. sapiens 
are immunoglobulin domains (table 12.3) and fibronectin repeats. Both of these domains 
are present in variable numbers in a group of proteins having extracellular domains 
(Fig. 12.8). Notably, these and other extracellular domains are highly abundant in humans 
and the multicellular nematode Caenorhabditis elegans, but nearly absent in the single‐
celled eukaryote Saccharomyces cerevisiae (Copley et al., 1999). Comparison of protein 
families that are encoded by various genomes sheds light on the biological processes that 
each organism performs (Chapters 16–20).

Added Complexity of Multidomain Proteins
Multidomain proteins provide a common, more complicated scenario than single‐domain 
proteins. HIV‐1 gag‐pol is an example of such a protein (Frankel and Young, 1998). The 
gag‐pol gene encodes a single large polypeptide that is cleaved into several independent 
proteins with distinct biochemical activities including an aspartyl protease, a reverse tran-
scriptase (RNA‐dependent DNA polymerase), and an integrase. Note that other multi-
domain proteins, such as the immunoglobulin domain proteins depicted in Figure 12.8, 
maintain separate domains within a mature polypeptide without cleaving them into sep-
arate proteins.
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FIGUre 12.9 Proteins can share a common domain in a number of ways. (a) A domain may essen-
tially extend across the length of a protein. An example of this format is the lipocalin family. (b) Domains 
may contain highly related stretches of amino acids that form only a subset of each protein’s sequence. 
An example of this situation is found in the family of transcriptional regulators that bind methylated 
DNA. (c) A domain may be repeated within a single protein (sometimes with many copies). Such a 
domain may occur in homologous proteins any number of times. An example is the family of proteins 
containing a fibronectin III‐like repeat.
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To examine the sequence of gag‐pol, we first go to NCBI Gene. That entry shows that 
the protein accession is NP_057849.4 (corresponding to a protein of 1435 amino acid 
residues), associated with at least six mature proteins, each with a RefSeq identifier. A 
link to the Conserved Domain Database shows assorted domains graphically (Fig. 12.11a). 
These domains include links to the authoritative Pfam database. There are also assorted 
motifs which we discuss in the following section.

Protein Patterns: Motifs or Fingerprints Characteristic of Proteins
Within a domain or outside a domain there may be a small number of characteristic amino 
acid residues that occur consistently. These are called motifs (or fingerprints). Several are 

(a) BLAST result links

(b) BLAST alignments

(c) Domain structure

MeCP2

MBD1

MBD3
MBD2

MBD4

Link to Conserved Domain Database

MBD1 605 aaMBD

MeCP2 486 aaMBD

MBD2 411 aaMBD

MBD2 (testis) 302 aaMBD

291 aaMBD3 MBD

MBD4 580 aaMBD

FIGUre 12.10 A methyl‐binding domain is found in several human proteins. To illustrate the concept 
of domains, methyl‐CpG‐binding protein 2 (MeCP2; NP_004983.1) was used as a query in a BLASTP 
search restricted to human RefSeq proteins. (a) The formatting BLAST web page shows that this protein 
has a domain that is present in the Conserved Domain Database. (b) The BLAST search reveals there are 
separate MeCP2 entries that match the query (top alignments). Additionally, there is a region of about 80 
amino acids in MeCP2 that matches other methyl‐CpG‐binding proteins: MBD1 (NP_056671), MBD2 
(NP_003918), a testis‐specific isoform of MBD2 (NP_056647), MBD3 (NP_003917), and MBD4 
(NP_003916). (c) These proteins have different sizes. Also, the methylated DNA‐binding domain that 
these proteins share occurs in different regions of the proteins. Further BLAST searches confirm that 
together these six proteins share no significant amino acid identity at any region other than the methyl‐
binding domain.

Source: BLASTP, NCBI.
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indicated in our Gag‐pol protein graphic from the Conserved Domain Database, including 
a zinc knuckle (i.e., a CX2CX4HX4C motif) and an active site within a reverse transcrip-
tase domain (Fig. 12.11a). PROSITE is a dictionary of protein motifs (Sigrist et al., 2002, 
2013). Following the link from ExPASy (Fig. 12.3) or searching the site directly, we can 
paste the FASTA format of the gag‐pol protein into a search box and identify a variety of 
motifs (Fig. 12.11b, c). A zinc finger profile is characteristic of many proteins but its occur-
rence does not imply homology. Similarly there are 70 patterns corresponding to potential 
N‐myristoylation sites (defined in the following section), although none of these sites is 

FIGUre 12.11 Searches for a multidomain protein. (a) The NCBI Gene entry for HIV‐1 gag‐pol pro-
vides RefSeq accession numbers for the precursor protein (NP_057849.4, 1435 amino acids) and for six 
predicted mature protein products. The protein includes both domains (thick arrows) and patterns (thin 
arrows). (b) A search of PROSITEscan using the FASTA‐formatted gag‐pol protein sequence reveals 
a variety of profiles, for example a zinc‐finger profile, and (c) patterns, for example, N‐myristoylation 
sites. Athough a pattern or motif may not adopt a known three‐dimensional structural conformation, it 
may nonetheless contain an amino acid sequence that is characteristic of a protein family.

Source: NCBI Gene, NCBI.

(a) Gag-pol at Conserved Domain Database

(b) PROSITEscan for Gag-pol (zinc finger CCHC-type profile)

domain
(Pfam 00607,

gag gene protein p24)

domain
(Pfam 00075,
RNase H)

Pattern (motif):
zinc knuckle
(CX2CX4HX4C 
zinc binding motif)

Pattern (motif): several amino acids within
the reverse transcriptase domain
(active site,  DNA binding site, dNTP binding site)

domain
(Pfam 00078,
reverse 
transcriptase)

(c) PROSITEscan for Gag-pol (N-myristoylation sites)
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necessarily modified in vivo. Another example of a motif is the amino acids that are reli-
ably found at the active site of an enzyme. In the aspartyl protease domain of HIV‐1 pol, 
an aspartate residue is crucial for the proteolytic reaction. The motif is defined by a string 
of 12 amino acid residues: [LIVMFGAC]‐[LIVMTADN]‐[LIVFSA]‐D‐[ST]‐G‐[STAV]‐
[STAPDENQ]‐x‐[LIVMFSTNC]‐x‐[LIVMFGTA]. This format is identical to that used 
by PHI‐BLAST (Chapter 5).

Motifs are typically subsets of protein domains. A short motif that is found in 
almost all lipocalins is GXW. The consensus pattern defined in PROSITE (document 
PDOC00187) incorporates several additional amino acids surrounding GXW. That 
motif is [DENG]‐x‐[DENQGSTARK]‐x(0,2)‐[DENQARK]‐[LIVFY]‐{CP}‐G‐{C}‐W‐
[FYWLRH]‐x‐[LIVMTA]. The GXW sequence is represented as G‐{C}‐W, where the 
curly brackets indicate that any amino acid other than cysteine is accepted at that position. 
Some motifs are extremely short and very common, such as the sequence surrounding 
a serine or threonine that is a substrate for many kinases. Such motifs are not specific 
to a particular protein family, and their occurrence in multiple proteins does not reflect 
homology. A search of PROSITE for “kinase” reveals >170 entries, including both kinase 
and kinase substrate signatures. One of these entries is for the protein kinase C (PKC) 
consensus phosphorylation site, [ST]‐x‐[RK] (S or T is the phosphorylation site and x 
is any residue; PROSITE document PDOC00005). This simple motif occurs in proteins 
many thousands of times.

An important aspect of regular expressions (or patterns) in the PROSITE database is 
that they are qualitative (i.e., either matching or not) and not quantitative (i.e., we do not 
recognize partial matches to a pattern). While patterns can accommodate complex defini-
tions, such as having one of several different amino acid residues in a given position, mis-
matches are not tolerated when a protein sequence is compared to a pattern. In contrast 
to such rigid patterns, many databases such as Pfam, ProDom, and SMART (described 
in Chapter 6) use profiles. Profiles, like patterns, are built from multiple sequence align-
ments, but they employ position‐specific scoring matrices. They also span larger stretches 
of protein sequence than do patterns. For both patterns and profiles we can define true 
positives (e.g., >1000 globin proteins match the globin family profile of PROSITE family 
PS01033), as well as false negatives (10 proteins that are known to be globins are not 
included in that globin family profile).

perspective 2: physical properties of proteins

Proteins are characterized by a variety of physical properties that derive both from their 
essential nature as an amino acid polymer and from a variety of post‐translational mod-
ifications (table 12.4). Over 200 post‐translational modifications are known, occuring on 
15 of the 20 amino acids (all but Leu, Ile, Val, Ala, and Phe; Walsh, 2006). Some of these 
modifications allow the covalent attachment of a hydrophobic group to a protein to pro-
mote insertion into a lipid bilayer. Examples include palmitoylation, farnesylation, myris-
toylation, and inositol glycolipid attachment (Fig. 12.12). Other prominent modifications 
include phosphorylation and glycosylation (Temporini et al., 2008; Amoresano et al., 
2009; Eisenhaber and Eisenhaber, 2010). The InterPro database also lists categories of 
post‐translational domains (table 12.5).

A variety of web‐based services are available to evaluate the predicted physical prop-
erties of proteins (Blom et al., 2004; Trost and Kusalik, 2011). Resources are available to 
input an individual protein sequence and to predict its physical properties such as: mass 
and isoelectric point (pI; Fig. 12.13; see also “Web Resources”); amino acid composi-
tion; glycosylation sites (see “Web Resources”); phosphorylation sites in which kinases 
reversibly add a phosphate group to individual serine, threonine, or tyrosine residues 
(Fig. 12.14); and tyrosine sulfation. Many programs predict secondary‐structure features 

PROSITE is accessed at  
http://www.expasy.org/prosite/ 
(WebLink 12.16). In PROSITE, 
the term profile refers to a 
quantitative motif description 
based on a generalized profile 
syntax. The term pattern refers 
to a qualitative motif description 
based on a regular expression‐
like syntax such as those 
described below. The term motif 
refers to the biological object 
approximated by a pattern or a 
profile. See Web Document 12.2 
at  http://www.bioinfbook.org/
chapter12 for these definitions.

You can use the ScanProsite 
tool to search a pattern against 
the PROSITE database, and the 
PRATT tool to generate a pattern 
based on an input of unaligned 
sequences. PRATT is available 
at  http://web.expasy.org/pratt/ 
(WebLink 12.17). See computer lab 
exercise (12.1).

For websites offering protein 
motif analysis tools, see “Web 
Resources” below.

The COILS server is available 
at  http://www.ch.embnet.
org/software/COILS_form.html 
(WebLink 12.18).

http://www.expasy.org/prosite/
http://www.bioinfbook.org/chapter12
http://web.expasy.org/pratt/
http://www.ch.embnet.org/software/COILS_form.html
http://www.bioinfbook.org/chapter12
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taBLe 12.4 Some physical properties of proteins. G protein: guanosine triphosphate-binding protein; Gap-43: 
growth-associated protein of 43 kD; MarCKS: myristoylated alanine-rich C-kinase substrate; naChr: nicotinic 
acetylcholine receptor; pDZ domain: post-synaptic density protein; pSD-95: the Drosophila tumor suppressor discs-
large, tight-junction protein ZO-1; pKa: protein kinase a; SNap-25: synaptosomal-associated protein of 25 kD; rab3a: 
rat brain Gtp-binding protein 3a; thy-1: thymocyte- 1.

Property Classical method Example

Amino acid motifs – PDZ domain (e.g., nitric oxide synthase), coiled‐
coil domain (e.g., hemagglutinin, syntaxin, 
SNAP‐25, myosin)

Isoelectric point (pI) Derived from isoelectric 
focusing

–

Molecular weight Derived from Stokes radius 
and sedimentation coefficient

–

Post‐translational modifications: phosphorylation Enzymatic analyses Synapsin

Post‐translational modifications: glycosylation Enzymatic analyses Nerve growth factor, neural cell adhesion molecule

Post‐translational modifications: isoprenylation Biochemical analyses Lamin B, G protein γ subunits, rab3A

Post‐translational modifications: palmitoylation Biochemical analyses β‐Adrenergic receptor, GAP‐43, insulin receptor, 
rhodopsin, nAChR

Post‐translational modifications: myristoylation Biochemical analyses PKA, Giα‐subunit, MARCKS protein, calcineurin

Post‐translational modifications: GPI‐anchored 
proteins

Enzymatic analyses Alkaline phosphatase, thy‐1, prion protein, 
5′‐nucleotidase, uromodulin

Sedimentation coefficient Derived from sucrose density 
gradients

–

Stokes radius Derived from gel filtration –

Transmembrane domain Derived from subcellular 
fractionation

–

taBLe 12.5 post-translational modifications at Interpro.

Accession Post‐translational modification site

IPR000152 EGF‐type aspartate/asparagine hydroxylation site

IPR001020 Phosphotransferase system, HPr histidine phosphorylation site

IPR002114 Phosphotransferase system, HPr serine phosphorylation site

IPR002332 Nitrogen regulatory protein P‐II, urydylation site

IPR004091 Chemotaxis methyl‐accepting receptor, methyl‐accepting site

IPR006141 Intein splice site

IPR006162 Phosphopantetheine attachment site

IPR012902 Prokaryotic N‐terminal methylation site

IPR018051 Surfactant‐associated polypeptide, palmitoylation site

IPR018070 Neuromedin U, amidation site

IPR018243 Neuromodulin, palmitoylation/phosphorylation site

IPR018303 P‐type ATPase, phosphorylation site

IPR019736 Synapsin, phosphorylation site

IPR019769 Translation elongation factor, IF5A, hypusine site

IPR021020 Adhesin, Dr family, signal peptide

Source: InterPro,  http://www.ebi.ac.uk/interpro/.

http://www.ebi.ac.uk/interpro/
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FIGUre  12.12 A variety of post‐translational modifications are added to proteins. Examples are 
palmitoylation (e.g., to the transferrin receptor and SNAP‐25), farnesylation (e.g., to ankyrin), myris-
toylation (e.g., to protein kinase A), and inositol glycolipid anchoring to a membrane (e.g., neural cell 
adhesion molecule, thy‐1, and 5′‐nucleotidase). While these covalent modifications can be studied bio-
chemically, a variety of websites offer predictions of possible sites of covalent modification to proteins. 
Adapted from Austen and Westwood (1991), with permission from Oxford University Press.
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FIGUre 12.13 The Compute pI/Mw server at ExPASy calculates the predicted molecular weight and 
isoelectric point of input proteins. Here, the values for beta globin are calculated. Programs at ExPASy 
do not accept RefSeq accession numbers as input (e.g., NP_000509 for beta globin), but do accept raw 
sequence or UniProt accessions (e.g., P68871).

Source: ExPASy. Reproduced with permission from SIB Swiss Institute of Bioinformatics.
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FIGUre 12.14 The ExPASy web server offers a large group of protein analysis tools such as the NetPhos server for prediction of phos-
phorylation sites (  http://www.cbs.dtu.dk/services/NetPhos/). Beta globin protein sequence was input and the output included two likely 
sites for phosphorylation on serines, two on threonines, and none on tyrosines based on scores exceeding a threshold value of 0.5. Such infor-
mation on sulfation, phosphorylation, glycosylation, or other post-translational modifications may be fundamental in designing experiments 
to test the function of a protein.

Source: NetPhos:  http://www.cbs.dtu.dk/services/NetPhos/ ExPASy. Reproduced with permission from SIB Swiss Institute of Bioinformatics.

  147 Sequence    
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLD      80
NLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH                  160
....T.......................................S....S..............................      80
.......T...........................................................                  160
 
Phosphorylation sites predicted: Ser: 2 Thr: 2 Tyr: 0

                Serine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
Sequence        10   PEEKSAVTA  0.389    .
Sequence        45   RFFESFGDL  0.621  *S*
Sequence        50   FGDLSTPDA  0.987  *S*
Sequence        73   LGAFSDGLA  0.026    .
Sequence        90   FATLSELHC  0.020    .
_________________________^_________________

                Threonine predictions

Name           Pos   Context    Score  Pred
_________________________v_________________
Sequence         5   MVHLTPEEK  0.930  *T*
Sequence        13   KSAVTALWG  0.022    .
Sequence        39   VYPWTQRFF  0.398    .
Sequence        51   GDLSTPDAV  0.489    .
Sequence        85   NLKGTFATL  0.012    .
Sequence        88   GTFATLSEL  0.587  *T*
Sequence       124   GKEFTPPVQ  0.393    .
_________________________^_________________
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http://www.cbs.dtu.dk/services/NetPhos/
http://www.cbs.dtu.dk/services/NetPhos/ExPASy
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of proteins (see Chapter 13). One such feature is coiled‐coil regions, which are typically 
associated with protein–protein interaction domains (Lupas et al., 1991; Lupas, 1997; 
Fig. 12.15).

For experimental studies of post‐translational modifications, mass spectrometry has 
a critical role because of its accuracy, broad dynamic range, and sensitivity (Choudhary 
and Mann, 2010; Sabidó et al., 2012). At the same time, mass spectrometry can be lim-
ited: obtaining high‐quality results requires considerable expertise, and when a modi-
fication such as a phosphorylated amino acid residue is detected we do not necessarily 
know which kinase was responsible for the activity. Most post‐translational modifications 
require highly specific enzymes to recognize a span of approximately 10 amino acids, 
including the residue(s) that are physically modified. Computational prediction of such 
modifications, based on primary sequence data (or primary data further informed by ter-
tiary structure data), complements experimental approaches.

Some proteins with unusual 
occurrences of particular 
amino acids are given in “Web 
Resources”. We provided other 
examples in Web Documents 
4.1–4.4 at  http://www.
bioinfbook.org/chapter4. These 
proteins may have physical 
properties (such as pI) that are 
difficult to predict.

FIGUre 12.15 The COILS program of Lupas et al. (1991) assesses the likelihood that a protein 
sequence forms a coiled-coil structure. (a) Output of the coils program using human SNAP‐25 protein 
(NP_003072.2) as input. The result depicts the probability that the protein will form a coiled‐coil sec-
ondary structure motif ( y axis) across the length of the protein (x axis). Coiled‐coils often represent 
protein–protein interaction domains. In this case, the coiled‐coils of SNAP‐25, a peripherally associated 
plasma membrane protein, allow it to bind tightly to two other proteins (syntaxin and vesicle‐associated 
membrane protein (synaptobrevin)) to coordinate synaptic vesicle docking and neurotransmitter release 
at the presynaptic nerve terminal. (b) According to the Conserved Domain Database (CDD at NCBI), 
SNAP‐25 has two t‐SNARE domains that are known to coordinate binding to syntaxin and synaptobre-
vin. These domains partially overlap the predicted coiled‐coil domains.

Source: COILS software at ExPASy. Reproduced with permission from SIB Swiss Institute of Bioinformatics.

(a) COILS output for SNAP-25

(b) Domains from Conserved Domain Database (NCBI)
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Accuracy of Prediction Programs
For each of these various prediction programs, it is important to assess the accuracy. This is 
typically done by measuring sensitivity and specificity relative to a “gold standard” of a set 
of proteins known to have a particular modification. In recent decades, the physical proper-
ties of proteins were assessed at the laboratory bench, one protein at a time (Cooper, 1977). 
The molecular mass of a protein can be estimated by gel filtration chromatography or by 
polyacrylamide gel electrophoresis (PAGE). Its shape can be estimated by calculating the 
frictional coefficient, obtained through a combination of gel filtration and sucrose density 
gradient centrifugation. Such techniques cannot be applied to large numbers of proteins. 
Almost all proteins that are studied using the tools of bioinformatics have not been purified, 
but instead the protein sequence is predicted from genomic DNA or cDNA sequence data.

Prediction programs vary in their accuracy. For proteins with typical amino acid com-
positions, the prediction of the molecular weight and pI (Fig. 12.13) is likely to be accurate. 
These protein features can also be experimentally confirmed using techniques such as gel 
electrophoresis and isoelectric focusing. A prediction algorithm may accurately specify 
that a protein has a consensus site for phosphorylation or sulfation, but these modifica-
tions are not necessarily made in living cells and their regulation is likely to be dynamic. 
Whether or not a protein has a potential site for modification can be asked; a separate 
issue is the conditions under which such modification occurs.

Proteomic Approaches to Phosphoryation
Reversible protein phosphorylation occurs when a kinase mediates the covalent attach-
ment of a phosphate moiety from adenosine triphosphate (ATP) to an acceptor site on a 
serine, threonine, or tyrosine residue (Dissmeyer and Schnittger, 2011; Derouiche et al., 
2012). It has been estimated that one‐third of all proteins are phosphorylated, affording 
an important mechanism for regulating their function. There are also nearly 1000 kinases 
encoded by the human genome.

Over three dozen software programs have been introduced to predict phosphorylation 
sites (reviewed in Miller and Blom, 2009; Trost and Kusalik, 2011). Blom et al. (1999) 
introduced NetPhos, the first in silico program that predicts phosphorylation (Fig. 12.14). 
(Available via ExPASy, it continues to be commonly used.) The authors analyzed a large 
number of amino acid sequences surrounding known acceptor residues on substrate pro-
teins. They applied an artificial neural network to classify sequence patterns in a training 
set, and then examined a test set. This allowed them to determine the sensitivity (pro-
portion of positive sites correctly predicted) and specificity (proportion of all positive 
classifications that are correct). A challenge they addressed is that the sequence databases 
include sites incorrectly annotated as nonphosphorylated (i.e., the false positive rate of 
their program was inappropriately high). Some methods Blom et al. (1999) tested sur-
passed 95% sensitivity and specificity for predictions of phosphorylation on serine, with 
less accuracy for predictions on threonine or tyrosine.

Many machine learning methods have been employed to predict phosphorylation 
sites. Some software packages (such as Scansite) use a position‐specific scoring matrix 
(PSSM) such as those we described in Chapter 5. For phosphorylation site prediction 
these PSSMs describe the frequency of amino acids occurring at positions surrounding a 
phosphorylation site. A major limitation of PSSMs is that they do not detect patterns of 
co‐occurring amino acid residues. Other software such as NetPhos use artificial neural 
networks or support vector machines which are able to model more complex patterns of 
residues. In addition to the basic algorithm used to predict phosphorylation sites, predic-
tion algorithms also vary in other ways including the following (Trost and Kusalik, 2011):

 • the number of residues they examine flanking the phosphorylated residue;
 • the properties of surrounding residues such as hydrophobicity;
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 • the inclusion of secondary and tertiary structural information, as well as the inclusion 
of information about intrinsic disorder (described in Chapter 13);

 • the specification of which particular kinase is responsible for the phosphorylation 
event; and

 • the types of true positive and true negative training data that are employed.

Mass spectrometry is the method of choice for experimental determination of phos-
phorylation. A competition from the Association of Biomolecular Resource Facilities 
(ABRF) was used to assess the ability of 54 laboratories to detect phosphorylation sites 
(Arnott et al., 2003). They prepared a sample consisting of bovine protein disulfide isomer-
ase (PDI; 5 picomoles), two phosphopeptides corresponding to PDI (length 8 and 17 amino 
acids; 1 picomole each), and bovine serum albumin (BSA; 200 femtomoles). After proteo-
lytic digestion with trypsin, the samples were distributed blind to the research community 
and 54 laboratories reported 67 analyses. A total of 96% of the laboratories identified PDI, 
but only 10% detected BSA. There was a surprisingly low success rate for detecting the 
phosphopeptides and assigning the phosphorylation site; only 3 of 54 laboratories did so 
for both phosphopeptides. This study highlights the enormous challenges of experimental 
protein analyses. Most of the laboratories employed MALDI‐TOF or LC‐MS.

In addition to considering the phosphorylation of individual proteins, many investi-
gators have examined the total collection of phosphorylated sites in a biological sample 
(the “phosphoproteome”; Kalume et al., 2003; Ptacek and Snyder, 2006). Advances have 
occurred in the ability to enrich complex mixtures for phosphoproteins and in mass spec-
trometry approaches (e.g., Ptacek et al., 2005).

A variety of databases provide annotation of post‐translational modifications of pro-
teins. The Human Protein Reference Database (HPRD) and Proteinpedia feature expert 
curation on thousands of proteins, including information on phosphoproteins (Mishra 
et al., 2006; Goel et al., 2011). Phospho3D specifically focuses on three‐dimensional 
structures of phosphorylation sites (Zanzoni et al., 2011).

Proteomic Approaches to Transmembrane Regions
Cells and intracellular compartments are bordered by phospholipid bilayers. These bilay-
ers include polar heads facing aqueous compartments and lipid tails oriented to the inte-
rior of a ∼3 nm hydrophobic core. Perhaps 25% of all proteins include transmembrane 
regions that are capable of spanning the membrane, minimizing the energetically unfa-
vorable interactions of polar amino acid residues with the hydrophobic core. The sec-
ondary structure features of the membrane‐spanning regions of these proteins include 
transmembrane α‐helices (typically having a length of 20–25 residues) or transmembrane 
β‐strands organized into β‐sheets (typically 9–11 residues). We discuss these aspects of 
protein secondary structure in Chapter 13, where we also introduce the Protein Data Bank 
as the main repository of protein structural data. Currently PDB has >100,000 three‐
dimensional protein structures. Membrane‐spanning proteins are notoriously difficult to 
crystallize and characterize structurally. At present, only ∼2000 structures in PDB include 
transmembrane proteins.

Algorithms can predict the number of transmembrane spans in a protein, their bound-
aries, and their orientation with respect to the membrane (Punta et al., 2007; Tusnády 
and Simon, 2010; Nugent and Jones, 2012). One simple approach is to measure hydro-
phobicity in sliding windows. The hydropathy index of Kyte and Doolittle (1982) was a 
predominant method in the 1980s and 1990s, aided by the “positive‐inside” rule of von 
Heijne (1992) who noted the tendency of positively charged amino acids to localize to the 
cytoplasmic face of the membrane in bacteria. More recently it has been possible to apply 
machine‐learning algorithms such as neural networks, support vector machines, or hidden 
Markov models to transmembrane prediction.

HPRD is available at  http://
www.hprd.org (WebLink 12.3). 
It includes a PhosphoMotif 
Finder. Phospho3D can be 
viewed at  http://www.
phospho3d.org/ (WebLink 12.19). 
It includes P3Dscan in which 
a Protein Data Bank‐formatted 
structure is searched for a 
set of phosphorylation site 3D 
zones present in the phospho3D 
database.

The PDBTM database collects 
PDB structures having 
transmembrane regions. Visit  
http://pdbtm.enzim.hu/ (WebLink 
12.20). The transmembrane‐
containing proteins in this 
database are predicted using 
TMDET software available at 

 http://tmdet.enzim.hu/ (WebLink 
12.21). The Orientations of 
Proteins in Membranes (OPM) 
database lists >2200 membrane 
proteins at  http://opm.phar.
umich.edu/ (WebLink 12.22) 
(Lomize et al., 2011).

http://www.hprd.org
http://www.hprd.org
http://www.phospho3d.org/
http://pdbtm.enzim.hu/
http://tmdet.enzim.hu/
http://opm.phar.umich.edu/
http://www.phospho3d.org/
http://opm.phar.umich.edu/
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One prominent program for transmembrane domain prediction, TMHMM, employs 
a hidden Markov model whose states include regions spanning the membrane (the core 
of a transmembrane helix as well as cytoplasmic and noncytoplasmic caps) and globular 
regions and loops on the cytoplasmic and noncytoplasmic sides of the membrane (Krogh 
et al., 2001). The accuracy of this program in predicting the topology of 160 proteins was 
about 78%. A further advance comes from incorporating information about transmem-
brane spans with signal peptide predictions (Käll et al., 2007). In analyses of various 
eukaryotic, bacterial, and archaeal genomes, about 5–10% of all proteins had predicted 
transmembrane segments that overlap predicted signal peptides (as predicted by software 
such as SignalP). The Phobius server improves its accuracy by accounting for this.

What is the accuracy of a program that predicts transmembrane topology? It is easy 
to use a search tool to find a prediction, and large‐scale predictions are extremely valu-
able. However, this is fundamentally a cell biological question which requires the tools of 
cell biology to obtain a clear answer. Many proteins have stretches of 10–25 hydrophobic 
amino acid residues that may form transmembrane regions. The most rigorous assessment 
of the true number of transmembrane spans comes from experimental approaches such 
as immunocytochemistry. Specific antisera can be raised in rabbits, mice, or other spe-
cies and used to detect an antigen (such as a stretch of amino acids) in a sample affixed 
to a microscope slide. In unpermeabilized‐cells, the antisera can be used to visualize 
protein regions that are oriented outside the cell. However, when cells are permeabi-
lized with detergent, the antisera can gain access to the cytosol and can therefore visual-
ize intracellular (cytoplasmic) regions. Cell biological analyses such as these have been 
used to experimentally determine the number of transmembrane regions; in some cases, 
these results contradict the predictions of hydropathy plots (e.g., Ratnam et al., 1986). 
As reviewed by Punta et al. (2007) and Nugent and Jones (2012), recent high‐resolution 
X‐ray crystallographic structures reveal the complexity of topologies:

 • Some α‐helices are re‐entrant: they enter and exit the membrane on the same side.
 • There is an enrichment of interfacial α‐helices at the membrane–water interface; 
these helices could have functions such as gating channels.

 • Some transmembrane helices have kinks and coils, often caused by prolines; half of 
these helices for which PDB structures are known have kinks, 3

10
 helices, or π‐helix 

turns (Chapter 13). Such changes can cause the helical backbone to deviate.
 • Many transmembrane helices have a tilted orientation. Other helices include unex-
pected polar residues, potentially involved in ligand binding or channel gating.

The biological complexity therefore adds to the challenge of in silico predictions of 
transmembrane regions.

Introduction to perspectives 3 and 4: Gene Ontology Consortium

An ontology is a description of concepts. The GO Consortium is a project that compiles 
a dynamic, controlled vocabulary of terms related to different aspects of genes and gene 
products (proteins) (Thomas et al., 2007; Gene Ontology Consortium, 2010). A prominent 
use of this vocabulary is to annotate and interpret the results of microarray experiments 
that profile RNA transcripts, although many other kinds of high‐throughput assays are 
also annotated using GO (Beissbarth, 2006; Whetzel et al., 2006). The consortium was 
begun by scientists associated with three model organism databases: the Saccharomyces 
Genome Database (SGD), the Drosophila genome database (FlyBase), and the Mouse 
Genome Informatics databases (MGD/GXD) (Ashburner et al., 2000; Gene Ontology 
Consortium, 2001). Subsequently, databases associated with many other organisms have 
joined the GO Consortium (table 12.6). The GO database is not centralized per se, but 
instead relies on external databases (such as a mouse database) in which each gene or 

The TMHMM server is available 
at  http://www.cbs.dtu.dk/
services/TMHMM/ (WebLink 
12.23). The Phobius web server 
is at  http://phobius.sbc.
su.se/ (WebLink 12.24). SignalP 
(Emanuelsson et al., 2007) has a 
server at  http://www.cbs.dtu.
dk/services/SignalP/ (WebLink 
12.25).

The Gene Ontology Consortium 
main web site is  http://www 
.geneontology.org/ (WebLink 
12.26).

http://www.cbs.dtu.dk/services/TMHMM/
http://phobius.sbc.su.se/
http://www.cbs.dtu.dk/services/SignalP/
http://www.geneontology.org/
http://www.cbs.dtu.dk/services/TMHMM/
http://phobius.sbc.su.se/
http://www.cbs.dtu.dk/services/SignalP/
http://www.geneontology.org/
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gene product is annotated with GO terms. It therefore represents an ongoing, cooperative 
effort to unify the way genes and gene products are described. There are several web 
browsers that serve as principal gateways to search GO terms (table 12.7). Additionally, 
EBI, Ensembl, and NCBI gene and protein entries (Chapter 2) contain GO terms.

There are three main organizing principles of GO: (1) molecular function; (2) bio-
logical process; and (3) cellular compartment. Molecular function refers to the tasks per-
formed by individual gene products. For example, a protein can be a transcription factor 
or a carrier protein. Biological process refers to the broad biological goals that a gene 
product (protein) is associated with, such as mitosis or purine metabolism. Cellular com-
ponent refers to the subcellular localization of a protein. Examples include nucleus and 
lysosome. Any protein may participate in more than one molecular function, biological 
process, and/or cellular component.

Genes and gene products are assigned to GO categories through a process of annota-
tion. The author of each GO annotation supplies an evidence code that indicates the basis 
for that annotation (table 12.8). As an example of a GO‐annotated protein, look at the 
NCBI Gene entry for human beta globin (HBB; Fig. 12.16). NCBI Gene entries include a 
section on function that includes information from OMIM (Chapter 21), Enzyme Com-
mission nomenclature (see “Persepctive 4”), and GO terms. For HBB, the GO terms 
include heme binding, oxygen binding, and oxygen transporter activity (molecular 
functions); oxygen transport (a biological process); and hemoglobin complex (a cellular 
component).

taBLe 12.6 participating organizations and databases in Gene Ontology Consortium.

Database or organization Organism (or comment) Common name URL

Berkeley Bioinformatics Opensource Projects Various – http://www.berkeleybop.org/

DictyBase Dictyostelium discoideum Slime mold http://dictybase.org/

EcoliWiki Escherichia coli E. coli http://ecoliwiki.net/colipedia/

European Bioinformatics Institute (EBI) GO Editorial office – http://www.ebi.ac.uk/GOA/

FlyBase D. melanogaster Fly http://flybase.org/

GeneDB (Wellcome Trust Sanger Institute) protozoans, fungi http://www.genedb.org/

Gramene Oryza sativa; other grains, 
monocots

Rice http://www.gramene.org/

Institute of Genome Sciences, University of 
Maryland

Various – http://igs.umaryland.edu/

InterPro Various – http://www.ebi.ac.uk/interpro/

J. Craig Venter Institute Various – http://www.jcvi.org/cms/home/

Mouse Genome Informatics Mus musculus Mouse http://www.informatics.jax.org/

Pombase Schizosaccharomyces 
pombe

Fission yeast http://www.pombase.org/

Rat Genome Database (RGD) Rattus norvegicus Rat http://rgd.mcw.edu/

Reactome http://www.reactome.org/

Saccharomyces Genome Database (SGD) Saccharomyces cerevisiae Baker’s yeast http://www.yeastgenome.org/

The Arabidopsis Information Resource (TAIR) Arabidopsis thaliana Thale cress http://www.arabidopsis.org/

UniProtKB‐Gene Ontology Annotation Various – http://www.ebi.ac.uk/GOA

WormBase Caenorhabditis elegans Worm http://www.wormbase.org/

Zebrafish Information Network Danio rerio zebrafish http://zfin.org/

Source: Gene Ontology Consortium (2001), licenced under the Creative Commons Attribution 4.0 Unported License, CC-BY-4.0.

http://www.berkeleybop.org/
http://dictybase.org/
http://ecoliwiki.net/colipedia/
http://www.ebi.ac.uk/GOA/
http://flybase.org/
http://www.genedb.org/
http://www.gramene.org/
http://igs.umaryland.edu/
http://www.ebi.ac.uk/interpro/
http://www.jcvi.org/cms/home/
http://www.informatics.jax.org/
http://www.pombase.org/
http://rgd.mcw.edu/
http://www.reactome.org/
http://www.yeastgenome.org/
http://www.arabidopsis.org/
http://www.ebi.ac.uk/GOA
http://www.wormbase.org/
http://zfin.org/
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taBLe 12.7 Websites useful to access gene ontology data.

Browser Description URL

AmiGO GO browser from the Berkeley 
Drosophila Genome Project

http://amigo.geneontology.org/

Mouse Genome Informatics 
(MGI) GO Browser

From Jackson Laboratories http://www.informatics.jax.org/
searches/GO_form.shtml

“QuickGO” at EBI From the EMBL and European 
Bioinformatics Institute; integrated 
with InterPro (Chapter 10)

http://www.ebi.ac.uk/QuickGO/

Cancer Gene Anatomy 
Project (CGAP) GO Browser

From the National Cancer 
Institute, NIH

http://cgap.nci.nih.gov/Genes/
AllAboutGO

taBLe 12.8 evidence Codes for Gene Ontology project.

Code Evidence code Example(s), notes

EXP Inferred from experimenta Parent of IDA, IEP, IGI, IMP, IPI

IDA Inferred from direct assaya An enzyme assay (for function); immunofluorescence microscopy (for cellular component)

IEP Inferred from expression patterna Transcripts levels (e.g., based on Northern blotting or microarrays) or protein levels 
(e.g., Western blots)

IGI Inferred from genetic interactiona Suppresors; genetic lethals; complementation assays; experiments in which one gene 
provides information about the function, process, or component of another gene

IMP Inferred from mutant phenotypea Gene mutation; gene knockout; overexpression; antisense assays

IPI Inferred from physical interactiona Yeast two‐hybrid assays; copurification; co‐immunoprecipitation; binding assays

IGC Inferred from genomic contextb Identity of the genes neighboring the gene product in question (i.e., synteny), operon 
structure, and phylogenetic or other whole‐genome analysis

IRD Inferred from rapid divergenceb A type of phylogenetic evidence

ISA Inferred from sequence alignmentb Note that quantitative criteria for sequence alignment are not employed

ISO Inferred from sequence orthologyb Note that orthology is defined permissively, with nonquantitative sequence comparisons

ISS Inferred from sequence or structural 
similarityb

Sequence similarity; domains; BLAST results that are reviewed for accuracy by a curator

RCA Inferred from reviewed 
computational analysisb

Predictions based on large‐scale experiments (e.g., genome‐wide two‐hybrid, genome‐
wide synthetic interactions); predictions based on integration of large‐scale datasets of 
several types; text mining)

NAS Nontraceable author statementc Database entries such as a SwissProt record that does not cite a published paper

TAS Traceable author statementc Information in a review article or dictionary

IC Inferred by curatord A protein is annotated as having the function of a “transcription factor”; a curator may 
then infer that the localization is “nucleus”

ND No biological data availabled Corresponds to “unknown” molecular function, biological process, or cellular 
compartment

IEA Inferred from electronic annotatione Annotations based on “hits” in searches such as BLAST (but without confirmation by a 
curator; compare ISS)

1Experimental evidence codes; bComputational analysis evidence codes; cAuthor statement evidence codes; dCurator statement evidence codes; eAutomatically‐
assigned evidence code. Not all evidence codes are shown.

Source: Gene Ontology Consortium (2001), licenced under the Creative Commons Attribution 4.0 Unported License, CC‐BY‐4.0.

http://amigo.geneontology.org/
http://www.informatics.jax.org/searches/GO_form.shtml
http://www.ebi.ac.uk/QuickGO/
http://cgap.nci.nih.gov/Genes/AllAboutGO
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You can also access gene ontology information by entering a query term such as 
“HBB” or “lipocalin” into a GO web browser. In some cases the output includes a graph-
ical tree view. This displays the relationships between the different levels of GO terms, 
which have the form of a “directed acyclic graph” or network. This differs from a hierar-
chy; in a hierarchy each child term can have only one parent, while in a directed acyclic 
graph it is possible for a child to have more than one parent. A child term may be an 
instance of its parent term, in which case the graph is labeled “isa,” or the child term may 
be component of the parent term (a “partof” relationship). This complicates the structure 
of the terms in GO and the evaluation of their biological and stastical significance. Some 
statistical tests assess the likelihood that each GO category is under‐ or overrepresented 
more than is expected by chance. However, a concept such as “mitochrondria” occurs in 

FIGUre 12.16 The GO Consortium provides a dynamic, controlled vocabulary that describes genes and gene products from a variety 
of organisms. Its three organizing principles are molecular function, biological process, and cellular component. GO terms can be accessed 
through a variety of browsers or through NCBI Gene, as shown for human beta globin. These GO terms are obtained from the Gene Ontology 
Annotation (GOA) Database at the European Bioinformatics Institute.

Source: Gene Ontology Consortium (2001), licenced under the Creative Commons Attribution 4.0 Unported License, CC‐BY‐4.0.
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all the three categories (biological process, molecular function, cellular compartment) 
and at multiple levels.

We next consider protein localization and protein function. These topics loosely cor-
respond to the GO categories “cellular component” and “molecular function.” In Chap-
ter 14 we discuss protein pathways, although the GO category “biological process” does 
not refer specifically to pathways.

perspective 3: protein Localization

The cellular localization of a protein is one of its fundamental properties. Proteins are 
synthesized on ribosomes from mRNA, and some are synthesized in the cytosol. Other 
proteins, destined for secretion or insertion in the plasma membrane, are inserted into 
the endoplasmic reticulum (in eukaryotes) or into the plasma membrane (in bacteria and 
archaea). This insertion, which occurs either cotranslationally or post‐translationally, is 
mediated by the signal recognition particle, an RNA–multiprotein complex (Stroud and 
Walter, 1999). In the endoplasmic reticulum, proteins may be transported through the 
secretory pathway to the Golgi apparatus and then to further destinations such as intracel-
lular organelles (e.g., endosomes, lysosomes) or to the cell surface.

Proteins may further be secreted into the extracellular milieu. The trafficking of 
a protein to its appropriate destination is achieved by transport in secretory vesicles. 
These vesicles are typically 75–100 nm in diameter, and they transport soluble or mem-
brane‐bound cargo to specific compartments.

We may also distinguish two main categories of proteins based upon their relation-
ships to phospholipid bilayers: (1) those that are soluble and exist in the cytoplasm, in 
the lumen of an organelle, or in the extracellular environment; and (2) those that are 
membrane attached, associated with a lipid bilayer. Those proteins associated with mem-
branes may be integral membrane proteins (having a span of 10–25 hydrophobic amino 
acid residues that traverse the lipid bilayer) or they may be peripherally associated with 
membranes (attached via a variety of anchors such as those shown in Fig. 12.12).

Many proteins defy categorization into one static location in the cell. For example, 
the annexins and the low‐molecular‐weight GTP‐binding proteins are families of proteins 
that migrate between the cytosol and a membrane compartment. This movement typically 
depends on the presence of dynamically regulated cellular signals such as calcium or 
transient phosphorylation.

Proteins are often targeted to their appropriate cellular location because of intrin-
sic signals embedded in their primary amino acid sequence. For example, the sequence 
KDEL (lysine–aspartic acid–glutamic acid–leucine) at the carboxy terminus of a soluble 
protein specifies that it is selectively retained in the endoplasmic reticulum. Other target-
ing motifs have been identified for import into mitochondria, lysosomes, or peroxisomes 
and for endocytosis. However, these motifs are typically not as invariant as KDEL.

Several web‐based programs predict the intracellular localization of any individual 
protein sequence (Casadio et al., 2008; Imai and Nakai, 2010; see also “Web Resources”). 
For example, WoLF PSORT accurately predicts the signal sequence at the amino termi-
nus of retinol‐binding protein (Fig. 12.17). This signal peptide is characteristic of proteins 
that enter the secretory pathway in the endoplasmic reticulum. WoLF PSORT analyzes a 
protein query for localization features based on sorting signals, amino acid composition, 
and functional motifs (Horton et al., 2007). It then uses a k‐nearest neighbor classifier to 
predict the localization.

perspective 4: protein Function

We have described bioinformatics tools to describe protein families, their physical prop-
erties, and the cellular localization of proteins. A fourth aspect of proteins is their function 

In eukaryotic cells, the 
intracellular organelles account 
for up to 95% of the cell’s 
membranes.

You can access WoLF PSORT 
server at  http://wolfpsort.org/ 
(WebLink 12.27).

http://wolfpsort.org/
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FIGUre 12.17 The WoLF PSORT server provides a web‐based query form to predict the subcellular 
location of a protein. The program searches for sorting signals and other features that are characteristic 
of proteins localized to particular compartments. The output of a search using retinol‐binding protein 
protein sequence (NP_006735) includes 32 nearest neighbors (of which ten are shown here in rows 
along with the query). The columns include features analyzed including site (proposing correctly that the 
query is extracellular; see column labeled site), results of the iPSORT program (including calculations 
of the negative charge and hydrophobicity of the initial 25–30 amino acid residues), and results from the 
PSORT program (including the presence of motifs typical of proteins localized to various subcellular 
compartments). The output shows that there is strong evidence for a signal peptide with a cleavage site 
between amino acid residues 16 and 17. Such a signal peptide characterizes proteins that enter the secre-
tory pathway where some (such as RBP) are secreted outside the cell.

Source: WoLF PSORT. Courtesy of K. Nakai.

(Raes et al., 2007). Function is defined as the role of a protein in a cell (Jacq, 2001). Each 
protein is a gene product that interacts with the cellular environment in some way to 
promote the cell’s growth and function. We can consider the concept of protein function 
from seven perspectives (Fig. 12.18) as follows.

 1. A protein has a biochemical function synonymous with its molecular function. 
For an enzyme, the biochemical function is to catalyze the conversion of one or 
more substrates to product(s). For a structural protein such as actin or tubulin, the 
biochemical function is to influence the shape of a cell. For a transport protein, 
the biochemical function is to carry a ligand from one location to another. (Such 
a transport role may even occur in the absence of a requirement for an energy 
source such as ATP; in such a way, retinol‐binding protein transports retinol 
through serum, and hemoglobin transports oxygen.) For a hypothetical protein 
that is predicted to be encoded by a gene, the biochemical function is unknown 
but is presumed to exist. There are thought to be no proteins that exist without a 
biochemical function.

 2. Functional assignment is often made based upon homology (Ponting, 2001; Lee et 
al., 2007; Emes et al., 2008; Mazumder et al., 2008). Currently, when a genome is 
sequenced the great majority of its predicted proteins can be functionally assigned 
based on orthology. If a hypothetical protein is homologous to an enzyme, it is often 
provisionally assigned that enzymatic function. This is best viewed as a hypothesis 
that must be tested experimentally. As an example, many globin‐like proteins occur 
in bacteria, protozoa, and fungi having biochemical properties distinct from those of 
vertebrate globins (Poole and Hughes, 2000).
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 3. Function may be assigned based upon structure (Chapter 13). If a protein has a three‐
dimensional fold that is related to that of a protein with a known function, this may be 
the basis for functional assignment. Note, however, that structural similarity does not 
necessarily imply homology, and homology does not necessarily imply functional 
equivalence.

 4. All proteins function in the context of other proteins and molecules. A definition of a 
protein’s function may include its ligand (if the protein is a receptor), its substrate (if 
the protein is an enzyme), its lipid partner (if the protein interacts with membrane), 
or any other molecule with which it interacts. The odorant‐binding protein (OBP) is a 
lipocalin that binds a variety of odorants in nasal mucus, suggesting that the binding 
properties of the protein are central to its function (Pevsner et al., 1990). However, 
the biological function of OBP is not known from its ligand‐binding properties alone. 

FIGUre 12.18 Protein function may be analyzed from several perspectives. Retinol‐binding protein 
(RBP) is used as an example.

biochemical function
(molecular function)

function assigned 
based on homology

RBP binds retinol, and thus could be a carrier protein

RBP is homologous to other lipocalins
such as the odorant-binding protein 
that are thought to be carrier proteins

function based
upon ligand binding

specificity
retinol

RBP binds retinol (vitamin A) but not
odorants or other ligands

function based on
cellular process

RBP is an abundant,
soluble protein that is
secreted into blood
where it may serve 
as a carrier 

function based on
biological process

Vitamin A is essential for vision; mutations
in the RBP gene are associated with visual defects

function based on
"functional genomics"

or high throughput
"proteomics" studies

RBP protein levels are elevated during renal
failure and are decreased during malnutrition and
liver disease, based upon 2-dimensional gel
analyses

function based
on structure

X-ray crystallography reveals that RBP forms a cup-like
structure (a calyx) lined with hydrophobic amino acid
residues that serves as a ligand binding site
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The protein could transport odorants toward the olfactory epithelium to promote sen-
sory perception, it could carry odorants from the olfactory epithelium to facilitate 
odorant clearance, or it could metabolize odorants.

 5. Many proteins function as part of a distinct biochemical pathway such as the Krebs 
cycle, in which discrete steps allow the cell to perform a complex task. Other exam-
ples are fatty acid oxidation in peroxisomes or proteolytic degradation that is accom-
plished by the proteasome.

 6. Proteins function as part of some broad cell biological process. Cells divide, grow, 
and senesce; neurons have axons that display outgrowth, pathfinding, target recog-
nition, and synapse formation; and all cells secrete molecules through discrete path-
ways. All cellular processes require proteins in order to function, and each individual 
protein can be defined in the context of the broad cellular function it serves. The Gene 
Ontology Consortium (Ashburner et al., 2000, p. 27) defines a biological process as 
“a biological objective to which the gene or gene product contributes. A process is 
accomplished via one or more ordered assemblies of molecular functions. Processes 
often involve a chemical or physical transformation, in the sense that something goes 
into a process and something different comes out of it.”

 7. Protein function can be considered in the context of all the proteins that are encoded 
by a genome, that is, in terms of the proteome. The term functional genomics includes 
the use of experimental approaches and/or computational tools to analyze the role of 
many hundreds or thousands of expressed genes (i.e., RNA transcripts). Since the 
ultimate product of transcription is a protein, the term functional genomics is some-
times applied to large‐scale studies of protein function. Chapter  14 addresses the 
topic of functional genomics.

Protein function can therefore be defined in many ways. Many proteins are enzymes 
(Alderson et al., 2012). The Enzyme Commission (EC) system provides a standardized 
nomenclature for almost 4000 enzymes (table 12.9). When a genome is sequenced and a 
potential protein‐coding sequence is identified, homology of that protein to an enzyme 
with a defined EC listing provides a specific, testable hypothesis about the biochemical 
function of that hypothetical protein.

Another broader approach to the functional assignment of proteins is provided 
by the Clusters of Orthologous Groups (COGs) database developed by Eugene Koo-
nin and colleagues (Tatusov et al., 1997, 2003; Kristensen et al., 2010). The func-
tional groups defined by this system are listed in table 12.10. While the COGs database 
initially focused on bacterial and archaeal genomes, the general categories are relevant 
to basic cellular processes in all living organisms. Many other functions that are unique 
to eukaryotes, such as apoptosis and complex developmental processes, are represented 
in the eukaryotic portion of the COGs scheme (Tatusov et al., 2003). Peer Bork and 
colleagues developed the Evolutionary genealogy of genes: Non‐supervised Ortholo-
gous Groups (EggNOG) database which extends the COGs concept (although without 
its manual annotation) to >1100 organisms and >700,000 orthologous groups (Powell 
et al., 2012).

PersPectIve
In this chapter we have considered bioinformatics approaches to individual proteins. In 
Chapter 13 we consider protein structure, which provides us with deeper insight into the 
nature of proteins including their domains, physical properties, and function. In Chap-
ter 14 (functional genomics) we explore high‐throughput approaches to studying sets of 
proteins (e.g., techniques emplolying gel electrophoresis and mass spectrometry) as well 
as protein–protein interactions and networks.

Apoptosis is programmed cell 
death. It occurs in a variety of 
multicellular organisms, both as 
a normal process in development 
and as a homeostatic mechanism 
in adult tissues. Apoptosis can be 
triggered by external stimuli (such 
as infectious agents or toxins) or 
by internal agents such as those 
causing oxidative stress. You 
can visit the COGs database at 

 http://www.ncbi.nlm.nih.gov/
COG/ (WebLink 12.28). EggNOG is 
online at  http://eggnog.embl.de/
version_3.0/ (WebLink 12.29).

http://www.ncbi.nlm.nih.gov/COG/
http://eggnog.embl.de/version_3.0/
http://www.ncbi.nlm.nih.gov/COG/
http://eggnog.embl.de/version_3.0/
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taBLe 12.9 Functional assignment of 5276 proteins based upon their enzymatic 
activity: partial list of enzyme commission classification system. Number of enzymes 
refers to the UniprotKB entries matching that query (e.g., “ec:2.-.-.-reviewed:yes”).

EC number Description of class

Number of 

enzymes Example of subclass

1. ‐. ‐. ‐ Oxidoreductases 38,216

1. 1. ‐. ‐ – – Acting on the CH–OH group of donors

1. 2. ‐. ‐ – – Acting on the aldehyde or oxo group of donors

2. ‐. ‐. ‐ Transferases 89,624

2. 1. ‐. ‐ – – Transferring one‐carbon groups

3. ‐. ‐. ‐ Hydrolases 62,574

4. ‐. ‐. ‐ Lyases 23,427

5. ‐. ‐. ‐ Isomerases 14,163

6. ‐. ‐. ‐ Ligases 30,569

Source: http://www.expasy.org/enzyme/ ExPASy. Reproduced with permission from SIB Swiss Institute 
of Bioinformatics.

In the past decade, our understanding of the properties of proteins has advanced dra-
matically, from the level of biochemical function to the role of proteins in cellular pro-
cesses. Advances in instrumentation have propelled mass spectrometry into a leading role 
for many proteomics applications. 

Many web‐based tools are available to evaluate the biochemical features of individ-
ual proteins. Such programs can predict the existence of glycosylation, phosphorylation, 
or other sites. These predictions can be extremely valuable in guiding the biologist to 
experimentally test the possible post‐translational modifications of a protein.

High‐throughput approaches have been used in an effort to define the function of 
all proteins. Large numbers of proteins still have no known function because they lack 
detectable homology to other characterized proteins. We will continue to obtain a more 
comprehensive description of protein function as distinct high‐throughput strategies are 
applied to model organisms, such as large‐scale analyses of protein localization and pro-
tein interactions.

PItfalls
Many of the experimental and computational strategies used to study proteins have lim-
itations. Two‐dimensional protein gels are most useful for studying relatively abundant 
proteins, but thousands of proteins expressed at low levels are harder to characterize. 
Experimental approaches are extremely challenging in practice, as shown by the ABRF 
critical assessments. Many computational approaches suffer from high false positive error 
rates, reflecting the difficulty of obtaining adequate training sets.

advIce for students
In my experience many students have a single protein they are studying in depth. My 
suggestion is to try to learn all that can be known about it (including its domains, physical 
properties, localization, and function as outlined in this chapter). At the same time, try to 

http://www.expasy.org/enzyme/ExPASy
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understand what questions you want to ask about this protein, and what techniques are 
appropriate. We have taken the example of a predicted transmembrane spanning protein: 
while computational predictions are easy to make, their predictive value may be relatively 
low. In such cases let the predictions guide which biological experiments need to be per-
formed. Let bioinformatics serve biology, rather than the other way around.

taBLe 12.10 Functional classification of proteins in clusters of orthologous groups 
database.

General category Function

Clusters of 

orthologous 

groups Domains

Information storage 
and processing

Translation, ribosomal structure, and biogenesis 245 10,572

RNA processing and modification 25 137

Transcription 231 11,271

Replication, recombination, and repair 238 10,338

Chromatin structure and dynamics 19 228

Cellular processes 
and signaling

Cell cycle control, cell division chromosome 
partitioning

72 1,678

Defense mechanisms 46 2,380

Signal transduction mechanisms 152 7,683

Cell wall/membrane/envelope biogenesis 188 7,858

Cell motility 96 2,747

Cytoskeleton 12 128

Extracellular structures 1 25

Intracellular trafficking, secretion, vesicular 
transport

159 3,743

Post‐translational modification, protein 
turnover, chaperones

203 6,206

Energy production and conversion 223 5,584

Carbohydrate transport and metabolism 170 5,257

Metabolism Energy production and conversion 258 9,830

Carbohydrate transport and metabolism 230 10,816

Amino acid transport and metabolism 270 14,939

Nucleotide transport and metabolism 95 3,922

Coenzyme transport and metabolism 179 6,582

Lipid transport and metabolism 94 5,201

Inorganic ion transport and metabolism 212 9,232

Secondary metabolites biosynthesis, transport 
and catabolism

88 4,055

Poorly 
characterized

General function prediction only 702 22,721

Function unknown 1,346 13,883

Source: Clusters of Orthologous Groups Database, NCBI. http://www.ncbi.nlm.nih.gov/COG/

http://www.ncbi.nlm.nih.gov/COG/
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Web resources
I suggest proteomics web resources including tools to analyze protein motifs (table 12.11), 
secondary structure analysis (table 12.12), glycosylation analysis (table 12.13), post‐
translational modifications (table 12.14), proteins with unusual occurrences of particular 
amino acids (table 12.15), prediction of protein localization (table 12.16), and prediction 
of transmembrane regions (table 12.17).

taBLe 12.12 tools to analyze primary and/or secondary structure features of 
proteins.

Program Source/comment URL

COILS Prediction of coiled‐coil 
regions in proteins

http://www.ch.embnet.org/software/
COILS_form.html

Compute pI/Mw From ExPASy http://web.expasy.org/compute_pi/

Helical wheel Draws an helical wheel 
(i.e., an axial projection of a 
regular alpha helix)

http://www‐nmr.cabm.rutgers.edu/
bioinformatics/
Proteomic_tools/Helical_wheel/

M.M., pI, 
composition, titrage

Many tools from the Atelier 
Bio Informatique de Marseille

http://sites.univ‐provence.fr/wabim/
english/logligne.html

Paircoil Prediction of coiled‐coil 
regions in proteins

http://groups.csail.mit.edu/cb/paircoil/
paircoil.html

Peptidemass From ExPASy http://web.expasy.org/peptide_mass/

Source: ExPASy,  http://www.expasy.org/tools/ ExPASy. Reproduced with permission from SIB Swiss 
Institute of Bioinformatics.

taBLe 12.13 Web resources for characterization of glycosylation sites on proteins

Program Comment/source URL

DictyOGlyc 1.1 
Prediction Server

Neural network predictions for GlcNAc O‐glycosylation sites in 
Dictyostelium discoideum proteins

http://www.cbs.dtu.dk/services/DictyOGlyc/

NetGlycate Prediction of glycation of ε amino groups of lysines in mammalian 
proteins

http://www.cbs.dtu.dk/services/NetGlycate/

NetOGlyc Prediction of type O‐glycosylation sites in mammalian proteins http://www.cbs.dtu.dk/services/NetOGlyc/

YinOYang 1.2 Produces neural network predictions for O‐β‐GlcNAc attachment 
sites in eukaryotic protein sequences

http://www.cbs.dtu.dk/services/YinOYang/

taBLe 12.11 tools to analyze protein motifs.

Program Comment URL

Source of many tools ExPASy http://www.expasy.org/proteomics

InterProScan At EBI http://www.ebi.ac.uk/Tools/pfa/iprscan/

PROSITE Scan At EBI http://www.ebi.ac.uk/Tools/pfa/ps_scan/

PRATT At EBI http://www.ebi.ac.uk/Tools/pfa/pratt/

Motif Scan At SIB http://hits.isb‐sib.ch/cgi‐bin/PFSCAN

Source of many tools Pôle Bio‐Informatique Lyonnais http://pbil.univ‐lyon1.fr/

SMART At EMBL http://smart.embl‐heidelberg.de/

TEIRESIAS At IBM http://cbcsrv.watson.ibm.com/Tspd.html

http://www.expasy.org/proteomics
http://www.ebi.ac.uk/Tools/pfa/iprscan/
http://www.ebi.ac.uk/Tools/pfa/ps_scan/
http://www.ebi.ac.uk/Tools/pfa/pratt/
http://hits.isb%E2%80%90sib.ch/cgi%E2%80%90bin/PFSCAN
http://pbil.univ%E2%80%90lyon1.fr/
http://smart.embl%E2%80%90heidelberg.de/
http://cbcsrv.watson.ibm.com/Tspd.html
http://www.ch.embnet.org/software/COILS_form.html
http://web.expasy.org/compute_pi/
http://www-nmr.cabm.rutgers.edu/bioinformatics/Proteomic_tools/Helical_wheel/
http://sites.univ%E2%80%90provence.fr/wabim/english/logligne.html
http://groups.csail.mit.edu/cb/paircoil/paircoil.html
http://web.expasy.org/peptide_mass/
http://www.expasy.org/tools/ExPASy
http://www.cbs.dtu.dk/services/DictyOGlyc/
http://www.cbs.dtu.dk/services/NetGlycate/
http://www.cbs.dtu.dk/services/NetOGlyc/
http://www.cbs.dtu.dk/services/YinOYang/
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taBLe 12.14 tools to analyze post-translational modifications.

Program Comment URL

big‐PI Predictor GPI modification site prediction http://mendel.imp.ac.at/gpi/gpi_server.html

NetPhos 2.0 
Prediction Server

Produces neural network 
predictions for serine, threonine, 
and tyrosine phosphorylation sites 
in eukaryotic proteins

http://www.cbs.dtu.dk/services/NetPhos/

Sulfinator Prediction of tyrosine sulfation sites http://web.expasy.org/sulfinator/

Source: ExPASy,  http://www.expasy.org/tools/ ExPASy. Reproduced with permission from SIB Swiss 
Institute of Bioinformatics.

taBLe 12.15 examples of proteins with unusually high occurrences of specific amino 
acids. the hydrophobic residues characteristic of transmembrane helices are from tanford 
(1980). adapted from ponting (2001), with permission from Oxford Unviersity press.

Amino acid(s) Proteins

C Disulfide‐rich proteins; metallothioneins; zinc finger proteins

D, E Acidic proteins (e.g., NP_033802.2)

G Collagens (e.g., NP_000079)

H Hisactophilin; histidine‐rich glycoprotein (e.g., XP_629852)

W, L, P, Y, L, V, M, A Transmembrane domains (e.g., NP_004594, NP_062098)

K, R Nuclear proteins (nuclear localization signals)

N Dictyostelium proteins

P Collagens (e.g., NP_000079.2); filaments; SH3/WW/EVHI binding sites

Q Proteins encoded by genes mutated in triplet repeat disorders 
(Chapter 21; e.g., huntingtin, NP_002102.4)

S, R Some RNA‐binding motifs

S, T Mucins; oligosaccharide attachment sites (e.g.. XP_855042)

abcdefg Heptad coiled coils (a and d are hydrophobic residues; e.g., myosin 
NP_005370)

taBLe 12.16 Web-based programs for prediction of protein localization

Program Comment URL

ChloroP Predicts presence of chloroplast 
transit peptides (cTP) in protein 
sequences

http://www.cbs.dtu.dk/services/ChloroP/

MITOPROT Calculates the N‐terminal 
protein region that can support a 
mitochondrial targeting sequence 
and the cleavage site

http://ihg.gsf.de/ihg/mitoprot.html

PSORT Prediction of protein‐sorting signals 
and localization sites; access to 
PSORT II, WoLF PSORT

http://psort.hgc.jp/

SignalP Predicts presence and location of 
signal peptide cleavage sites in 
prokaryotes and eukaryotes

http://www.cbs.dtu.dk/services/SignalP/

TargetP Predicts subcellular location of 
eukaryotic protein sequences

http://www.cbs.dtu.dk/services/TargetP/

http://mendel.imp.ac.at/gpi/gpi_server.html
http://www.cbs.dtu.dk/services/NetPhos/
http://web.expasy.org/sulfinator/
http://www.expasy.org/tools/ExPASy
http://www.cbs.dtu.dk/services/ChloroP/
http://ihg.gsf.de/ihg/mitoprot.html
http://psort.hgc.jp/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/TargetP/
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Discussion Questions
[12-1] InterPro is an important resource 
that coordinates information about pro-
tein signatures from a variety of databases. 
When these databases all describe a partic-

ular protein family or a particular signature, what different 
kinds of information can you obtain? Is the information in 
InterPro redundant?

[12-2] How do you define the function of a protein? Does 
the function, physiological state, or other condition change 
over time? 

prOBLeMS/COMpUter LaB
[12-1] Use biomaRt to extract a protein sequence starting 
with the HGNC gene symbol for hemoglobin beta (HBB). 
(1) Install R and RStudio and load biomaRt (Chapter 8 
and this chapter). (2) Retrieve the sequence with the fol-
lowing four commands.

taBLe 12.17 Web servers for prediction of transmembrane regions in protein sequences. From expaSy web server.

Program Comment/source URL

DAS server Prediction of transmembrane regions http://www.sbc.su.se/~miklos/DAS/

APSSP Advanced protein secondary structure 
prediction server

http://imtech.res.in/raghava/apssp/

HMMTOP Prediction of transmembrane helices 
and topology of proteins

http://www.enzim.hu/hmmtop/

Phobius Combined transmembrane topology 
and signal peptide predictor

http://phobius.sbc.su.se/
http://www.ebi.ac.uk/Tools/pfa/phobius/

PredictProtein server Prediction of transmembrane helix 
location and topology

https://www.predictprotein.org/

TMpred Prediction of membrane‐spanning 
regions and their orientation

http://www.ch.embnet.org/software/TMPRED_form.html
http://embnet.vital‐it.ch/software/TMPRED_form.html

TopPred2 Topology prediction of membrane 
proteins

http://mobyle.pasteur.fr/cgi‐bin/ portal.py?#forms::toppred

> library(biomaRt)
> mart <- useMart(biomart="ensembl",  
dataset="hsapiens_gene_ensembl")
> seq = getSequence(id="HBB",  
type="hgnc_symbol", seqType="peptide", 
mart=mart)
> seq

$ esearch -db protein -query  
"1000000:1500000 [MLWT] AND human [ORGN]"  
| efetch -format fasta

$ esearch -db protein -query "1000000:1500000 
[MLWT] AND human [ORGN]" 
| efetch -format fasta > myresults.txt

(on Linux, Windows, or Mac machines). Then extract the 
largest human proteins in the FASTA format. Try the fol-
lowing command, in which the $ symbol indicates a UNIX 
prompt.

[12-2] We introduced EDirect (Chapter  2, “Accessing 
NCBI Databases with EDirect”) as a way to access NCBI 
Entrez databases from the command line. First, set it up 

Here the esearch program searches through the database 
we specify (protein database), and the query is restricted to 
a particular molecular weight (MLWT) and species (human). 
We then use the pipe command (|) to send the result to 
the efetch utility that downloads the data of interest. We 
specify that we want the data in the FASTA format. You can 
also send the results to a file called myresults.txt:

Next try searching for different information using additional 
queries and filters.

[12-3] Select a group of unaligned, divergent globins 
(Web Document 6.3 at  http://www.bioinfbook.org/chap-
ter6). Use them as input to the PRATT program at Prosite 
(  http://www.expasy.ch/prosite/) in order to find a repre-
sentative pattern. Scan this pattern against the PROSITE 
database using the ScanPROSITE tool. Do you identify 
globin proteins? Are there nonglobin proteins as well?

http://www.sbc.su.se/~miklos/DAS/
http://imtech.res.in/raghava/apssp/
http://www.enzim.hu/hmmtop/
http://phobius.sbc.su.se/
http://www.ebi.ac.uk/Tools/pfa/phobius/
https://www.predictprotein.org/
http://www.ch.embnet.org/software/TMPRED_form.html
http://embnet.vital%E2%80%90it.ch/software/TMPRED_form.html
http://mobyle.pasteur.fr/cgi%E2%80%90bin/portal.py?#forms::toppred
http://www.bioinfbook.org/chap-ter6
http://www.expasy.ch/prosite/
http://www.bioinfbook.org/chap-ter6
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[12-4] InterPro has a BioMart (available at  http://
www.ebi.ac.uk/interpro/biomart/martview/). Use it to find 
how many human proteins have sequence lengths greater 
than 20,000 amino acids. Currently, there are five hav-
ing the following UniProtKB protein accessions, names, 
and lengths: (1) Q8WXI7, MUC16_HUMAN, 22,152; 
(2) D3DPF9_HUMAN, 26,926; (3) C0JYZ2_HUMAN, 
33,423; (4) Q8WZ42, TITIN_HUMAN, 34,350; (5) 
D3DPG0_HUMAN, 34,942.

[12-5] Salmon has a pinkish color and some lobsters are 
blue (but turn red when boiled) because a chromophore 
called astaxanthin binds to a carrier protein called crusta-
cyanin. Examine the protein sequence of crustacyanin 
from the European lobster Homarus gammarus. What are 
some of its physical properties (e.g., molecular weight, 
isoelectric point)? Does it have any known domains or 

motifs that might explain how or why it binds to the 
chromophore? Use the tools at the ExPASy site. (For 
more information about this protein, read the article at 
ExPASy:  http://www.expasy.org/spotlight/back_issues/
sptlt026.shtml.)

[12-6] Evaluate human syntaxin at the ExPASy site. 
Does it have coiled‐coil regions? How many predicted 
transmembrane regions does it have? What is its function?

[12-7] Olfactory receptors are related to the rhodopsin‐
like G‐protein coupled receptor (GPCR) superfamily. What 
percent of the mouse proteome is formed of these recep-
tors? What percent of the human proteome is formed of 
these receptors?

[12-8] Are any of the 15 most common protein domains in 
E. coli K12 also present in humans?

Self-test Quiz
[12-1] Can a domain be at the amino ter-
minus of one protein and the carboxy ter-
minus of another protein?

(a)   yes; or

(b)   no.

[12-2] In general, if you compare the size of a pattern 
(also called a motif or fingerprint) and a domain:

(a) they are about the same size;

(b) the pattern is larger;

(c) the pattern is smaller; or

(d) the comparison always depends on the particular 
proteins in question.

[12-3] The amino acid sequence [ST]‐X‐[RK] is the con-
sensus for phosphorylation of a substrate by protein kinase 
C. This sequence is an example of:

(a) a motif that is characteristic of proteins that are 
homologous to each other;

(b) a motif that is characteristic of proteins that are not 
necessarily homologous to each other;

(c) a domain that is characteristic of proteins that are 
homologous to each other; or

(d) a domain that is characteristic of proteins that are not 
necessarily homologous to each other.

[12-4] If you analyze a single, previously uncharacter-
ized protein using programs that predict glycosylation, 

sulfation, phosphorylation, or other post‐translational 
modifications:

(a) the predictions of the programs are not likely to be 
accurate;

(b) the accuracy of the predictions is unknown and diffi-
cult to assess;

(c) the predictions of the programs are likely to be 
accurate concerning the possible presence of par-
ticular modifications, but their biological revelance 
is unknown until you assess the protein’s properties 
experimentally; or

(d) the predictions of the programs are likely to be accu-
rate concerning the possible presence of particular 
modifications, but it is not feasible to assess the pro-
tein’s properties experimentally.

[12-5] An underlying assumption of the Gene Ontology 
Consortium is that the description of a gene or gene prod-
uct according to three categories (molecular function, bio-
logical process, and cellular component):

(a) is likely to be identical across many species, from 
plants to worms to human;

(b) is likely to vary greatly across many species, from 
plants to worms to human;

(c) may or may not be identical across many species, 
and therefore must be assessed for each gene or gene 
product individually; or

http://www.ebi.ac.uk/interpro/biomart/martview/
http://www.ebi.ac.uk/interpro/biomart/martview/
http://www.expasy.org/spotlight/back_issues/sptlt026.shtml
http://www.expasy.org/spotlight/back_issues/sptlt026.shtml
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(d) may or may not be identical across many species 
and therefore must be assessed for each gene or gene 
product individually by an expert curator.

[12-6] Protein localization is described primarily in which 
Gene Ontology category?

(a) molecular function;

(b) cellular component;

(c) cellular localization; or

(d) biological process.

[12-7] Which of the following is a means of assessing pro-
tein function?

(a) finding structural homologs;

(b) studying bait–prey interactions;

(c) determining the isoelectric point; or

(d) all of the above.

[12-8] A major advantage of two‐dimensional protein gels 
as a high‐throughput technology for protein analysis is that:

(a) sample preparation and the process or running two‐
dimensional gels is straightforward and can be auto-
mated;

(b) the result of two‐dimensional gels includes data on 
both the size and the charge of thousands of proteins;

(c) the technique is well suited to the detection of low‐
abundance proteins; or

(d) the technique is well suited to the detection of hydro-
phobic proteins.

suggested readIng
Reviews on proteomics include Becnel et al. (2012), Bruce et al. (2013), and Ivanov et al. 
(2013). Bernard Jacq (2001) and Raes et al. (2007) have reviewed protein function. Both 
articles discuss the complexity of protein function and the use of bioinformatic tools to 
dissect function. Jacq proposes to consider function from six structural levels, from the 
structure of a protein to its role in a population of organisms. Raes et al. include a discus-
sion of the impact of genomics projects on assessing protein function.

Reviews on mass spectrometry in proteomics include Gstaiger and Aebersold (2009), 
Kumar and Mann (2009), and Washburn (2011). Trost and Kusalik (2011) have written a 
highly recommended review on computational prediction of phosphorylation sites.
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Beginning in the 1940s, Max Perutz and 
John Kendrew realized the goal of deter-
mining the structure of globular proteins 
by solving the structure of myoglobin and 
hemoglobin. In recognition of this work, 
they shared the Nobel Prize in Chemistry 
in 1962. Top: X-ray precession photograph 
of a myoglobin crystal (from  http://
www.nobel.se/chemistry/laureates/1962/ 
kendrew-lecture.pdf, WebLink 13.1). 
Kendrew studied myoglobin from the 
sperm whale (Physeter catodon), and incor-
porated a heavy metal by the method 
of isomorphous replacement. He could 
then bombard the crystals with X-rays in 
order to obtain an X-ray  diffraction pat-
tern (such as that shown here) with which 
to deduce the electron density through-
out the  crystal. This required the analysis 
of 25,000 reflections. Middle: Perutz and 
 Kendrew used the EDSAC I computer 
(introduced in 1949, from  http://www.cl. 
cam.ac.uk/relics/jpegs/edsac99.36.jpg, 
WebLink 13.2). This computer was essen-
tial to interpret the diffraction patterns. 
For a simulator that shows the capacity of 
the EDSAC machine, see  http://www.dcs. 
warwick.ac.uk/~edsac/ (WebLink 13.3). 
Bottom: photograph by Max Perutz of 
John Kendrew with his model of myoglo-
bin in 1959.

Source: (Top) Kendrew, 1962. (Middle) Com-
puter Laboratory, University of Cambridge. 
(Bottom) MRC Laboratory of Molecular  
Biology, 1959. Reproduced with permission 
from MRC Laboratory of Molecular Biology.
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A visitor to the Accademia in Florence can see magnificent images that emerged from 
blocks of marble at the hands of Michelangelo. By analogy, the noncrystallographer can 
capture the vision that a crystallographer has when admiring a rigorously shaped crystal 
before exploring the marvelous structure hidden within. So the Protein Data Bank is our 
museum, with models of molecules reflecting the wonders of nature and complex shapes 
that may be as old as life itself. With the aid of interactive graphics and networking, the 
PDB makes these images readily available. What wonders still remain hidden as we build, 
compare, and extend our database?

Edgar F. Meyer (1997)

LEARNINg oBJECTIvES

After studying this chapter you should be able to:
 ■ understand the principles of protein primary, secondary, tertiary, and quaternary structure;
 ■ use the NCBI tool CN3D to view a protein structure;
 ■ use the NCBI tool vAST to align two structures;
 ■ explain the role of PDB including its purpose, contents, and tools;
 ■ explain the role of structure annotation databases such as SCoP and CATH; and
 ■ describe approaches to modeling the three-dimensional structure of proteins.

C h a p t e r

13

Overview Of PrOtein Structure
Proteins adopt a spectacular range of conformations and interact with their cellular milieu 
in diverse ways. There are three major classes of proteins: structural proteins (such as 
tubulin and actin), membrane proteins (such as photoreceptors and ion channels), and 
globular proteins (such as globins).

The three-dimensional structure of a protein determines its capacity to function. 
This structure is determined from its primary (linear) amino acid sequence. In the 1950s 
Christian Anfinsen and others performed a remarkable set of experiments. They puri-
fied the enzyme ribonuclease from bovine pancreas, and denatured it with urea. This 
enzyme includes eight sulfhydryl groups that form four disulfide bonds. After removing 
the urea, the ribonculease refolded and adopted a conformation that was indistinguish-
able from native ribonuclease. Anfinsen stated the thermodynamic hypothesis that the 
three-dimensional structure of a native protein under physiological conditions is the one 

Protein Structure
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in which the Gibbs free energy of the system is lowest (Anfinsen, 1973). We can picture 
an energy landscape in which many conformations are possible, and proteins tend to 
adopt the structure(s) that minimize the free energy. Anfinsen’s work helped to solidify 
the concept that the three-dimensional structure of a protein is inherently specified by the 
linear amino acid sequence.

In the 1950s researchers applying the techniques of X-ray crystallography to proteins 
focused on the structures of hemoglobin, myoglobin, ribonuclease, and insulin. By 1957 
John Kendrew and colleagues reported the three-dimensional structure of myoglobin to 
6 Å resolution, sufficient to reconstruct the main outline of the protein. Soon after, the 
resolution was improved to 2 Å. For the first time, all the atoms comprising a protein 
could be spatially described and the structural basis of the function of a protein – here, 
myoglobin as an oxygen carrier – was elucidated. Today the central repository of protein 
structures, the Protein Data Bank, contains over 100,000 structures (see “Protein Data 
Bank” below).

In this chapter we consider the structure of individual proteins from the principles 
of primary, secondary, tertiary, and quaternary structure. We also consider structural 
genomics initiatives in which a very broad range of high-resolution tertiary structures 
are determined for proteins, spanning organisms across the tree of life and also spanning 
the set of all possible conformations that protein structures can adopt. We introduce the 
main repository of protein structures, the Protein Data Bank (PDB), as well as three 
software tools to visualize structures: WebMol at PDB, Cn3D at NCBI, and DeepView 
at ExPASy. Many databases provide analyses of structural data and we describe three 
prominent databases: CATH, SCOP, and the Dali Domain Dictionary. Finally, we dis-
cuss protein structure prediction which underlies the newly emerging field of structural 
genomics.

protein Sequence and Structure

As described in Chapter 12, one of the most fundamental questions about a protein is 
its function. Function is often assigned based upon homology to another protein whose 
function is perhaps already known or inferred (Holm, 1998; Domingues et al., 2000). 
Two proteins that share a similar structure are usually assumed to also share a similar 
function. For example, two receptor proteins may share a very similar structure; even if 
they differ in their ability to bind ligands or transduce signals, they still share the same 
basic function.

Various types of BLAST searching are employed to identify such relationships of 
homology (Chapters 4 and 5). However, for many proteins sequence identity is extremely 
limited. We may take retinol-binding protein and odorant-binding protein as examples: 
these are both lipocalins of about 20 kDa and are abundant, secreted carrier proteins. 
They share a GXW motif that is characteristic of lipocalins. However, it is difficult to 
detect homology based upon analysis of the primary amino acid sequences. By pairwise 
alignment, the two proteins share less than 20% identity. Both structure and function are 
preserved over evolutionary time more than sequence identity. The three-dimensional 
structures of these proteins are therefore extraordinarily similar. We have seen similar 
relationships for myoglobin relative to alpha globin and beta globin (Fig. 3.1).

Can we generalize the relationship between amino acid sequence identity and protein 
structures? It is clear that even a single amino acid substitution can in some instances 
cause a dramatic change in protein structure, as exemplified by disease-causing mutations 
(discussed at the end of this chapter in “Protein Structure and Disease”). Many other sub-
stitutions have no observable effects on protein structure (discussed in Anfinsen, 1973). 
It is common for amino acid sequence to change more rapidly than three-dimensional 
structure, as in the case of lipocalins.

Christian Anfinsen won part of 
the 1972 Nobel Prize in Chemistry 
“for his work on ribonuclease, 
especially concerning the 
connection between the 
amino acid sequence and the 
biologically active conformation” 
(  http://nobelprize.org/nobel_
prizes/chemistry/laureates/1972/, 
WebLink 13.4).

An angstrom (abbreviated Å) 
is 0.1 nm or 10–10 m; a carbon–
carbon bond has a distance of 
about 1.5 Å. John Kendrew and 
Max Perutz shared the 1962 
Nobel Prize in Chemistry “for 
their studies of the structures of 
globular proteins;” see  http://
nobelprize.org/nobel_prizes/
chemistry/laureates/1962/ 
(WebLink 13.5).

It is difficult to make a pairwise 
alignment of rat retinol-binding 
protein (P04916) and rat odorant-
binding protein (NP_620258). If 
you use BLASTP no significant 
match is found, even using a 
large expect value and a scoring 
matrix appropriate for distantly 
related proteins (PAM250). If you 
perform a DELTA-BLAST search 
with rat OBP as a query, you will 
eventually detect retinol-binding 
protein after many iterations. We 
compare the three-dimensional 
structures of these two proteins 
in computer lab problem (13.4) 
in this chapter using the DaliLite 
server, and see evidence that 
they are homologous.

http://nobelprize.org/nobel_prizes/chemistry/laureates/1972/
http://nobelprize.org/nobel_prizes/chemistry/laureates/1972/
http://nobelprize.org/nobel_prizes/chemistry/laureates/1962/
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Biological Questions addressed by Structural Biology: Globins

We can use the globins to illustrate some of the key questions in structural biology:

 • What ligand does each protein transport? For many the answer is unknown. Can structural 
studies reveal the binding domain to suggest the identity of the ligand? How much struc-
tural information is required in order to predict the ligand from sequence information?

 • Mutations in globin genes result in a variety of human diseases, including thalas-
semias and sickle cell anemia (Chapter 21). Can we predict the structural and func-
tional consequences of a specific mutation?

 • Globins have been divided into subgroups based upon phylogenetic analyses and 
based upon their localization. To what extent do those groupings reflect structural and 
functional similarities?

 • When a genome is sequenced and a gene encoding a putative novel globin is dis-
covered, can we use information about other globins of known structure in order to 
predict a new structure?

PrinciPleS Of PrOtein Structure
Protein structure is defined at several levels. Primary structure refers to the linear sequence 
of amino acid residues in a polypeptide chain, such as human beta globin (Fig. 13.1a). 
 Secondary structure refers to the arrangements of the primary amino acid sequence into 
motifs such as α helices, β sheets, and coils (or loops; Fig. 13.1b). The tertiary structure is 
the three-dimensional arrangement formed by packing secondary structure elements into 
globular domains (Fig. 13.1c). Finally, quaternary structure involves this arrangement of 
several polypeptide chains. Figure 13.1d depicts two alpha globin chains and two beta globin 
chains joined to form mature hemoglobin, with four heme groups attached.  Functionally 
important areas of a protein such as ligand-binding sites or enzymatic active sites are formed 
at the levels of tertiary and quaternary structure. We describe these levels of protein structure 
in the following sections, using myoglobin and hemoglobin as examples.

primary Structure

In nature, the primary amino acid sequence specifies a three-dimensional structure that 
forms for each protein. A protein folds to form its native structure(s), sometimes  including 
the participation of chaperones. This process is rapid, typically taking from seconds to 
minutes; consider for example the bacterium Escherichia coli that can double every 
20 minutes, requiring all its thousands of proteins to be functionally expressed within that 
time constraint. Formation of the native structure(s) may depend on some post-transla-
tional modifications, such as the addition of sugars or disulfide bridges. The central issue, 
called the protein-folding problem, is that each cell interprets the information in a primary 
amino acid sequence to form an appropriate structure. Challenges to structural biologists 
include: (1) how to understand the biological process of protein folding; and (2) how to 
predict a three-dimensional structure based on primary sequence data alone.

Proteins are synthesized from ribosomes where amino acids are joined by peptide 
bonds into a polypeptide chain. Each amino acid consists of an amino group, a central 
carbon atom Cα to which a side chain R is attached, and a carboxyl group (Fig. 13.2a). 
The peptide bond is a carbon-nitrogen amide linkage between the carboxyl group of one 
amino acid and the amino group of the next amino acid. One water molecule is eliminated 
during the formation of a peptide bond. The basic repeating unit of a polypeptide chain 
is therefore NH-CαH-CO with a different R group extending from various Cα of various 
amino acids. In glycine, the R group is a hydrogen and that amino acid is therefore not 
chiral. For the other amino acids the R group is not a hydrogen; there are therefore four 
different moieties attached to Cα, allowing chiral (L- and D-) forms of most amino acids.

We discuss intrinsically 
disordered proteins towards the 
end of this chapter (“Instrinsically 
Disordered Proteins”); they do not 
adopt a unique native structure.

Remarkably, the discovery of the 
peptide bond was announced 
at a meeting on the same day 
(22 September 1902) by two 
researchers: Franz Hofmeister 
and Emil Fisher. Fisher won a 1902 
Nobel Prize “in recognition of the 
extraordinary services he has 
rendered by his work on sugar 
and purine syntheses” (  http://
nobelprize.org/nobel_prizes/
chemistry/laureates/1902/, 
WebLink 13.6). In the area of 
protein research, he discovered 
proline and oxyproline, 
synthesized peptides up to eight 
amino acids in length, and devised 
new methods of compositional 
analysis of proteins such as 
casein.

http://nobelprize.org/nobel_prizes/chemistry/laureates/1902/
http://nobelprize.org/nobel_prizes/chemistry/laureates/1902/
http://nobelprize.org/nobel_prizes/chemistry/laureates/1902/
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(a) Primary structure

(b) Secondary structure

(c) Tertiary structure (d) Quaternary structure

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGAFSD
GLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

N

C

FiGure 13.1 A hierarchy of protein structure. (a) The primary structure of a protein refers to the 
linear polypeptide chain of amino acids. Here, human beta globin is shown (NP_000539). (b) The sec-
ondary structure includes elements such as alpha helices and beta sheets. Here, beta globin protein 
sequence was input to the POLE server for secondary structure where three prediction algorithms were 
run and a consensus was produced. h: alpha helix; c: random coil; e: extended strand. (c) The tertiary 
structure is the three-dimensional structure of the protein chain. Alpha helices are represented as thick-
ened cylinders. Arrows labeled N and C point to the amino and carboxy termini, respectively. (d) The 
quarternary structure includes the interactions of the protein with other subunits and heteroatoms. Here, 
the four subunits of hemoglobin are shown (with an α 2β 2 composition and one beta globin chain high-
lighted) as well as four noncovalently attached heme groups.

Source: (b) Produced using PBIL software,  http://pbil.univ-lyon1.fr/. Courtesy of IBCP-FR 3302. (c, d) Produced 
using Cn3D software from NCBI.

http://pbil.univ-lyon1.fr/
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FiGure 13.2 Peptide bonds and angles. (a) Each amino acid includes an amino group, an alpha carbon 
(Cα) from which a side group R is attached, and a carboxyl group (having carbon C’). Two amino acids 
condense to form a dipeptide with the elimination of water. The peptide bond (highlighted in red) is an 
amide linkage. (b) Polypeptide chains can be thought of as extending from one Cα atom to the next with the 
peptide bond constrained to lie along a plain. The N-Cα bond is called phi (φ), and the Cα-C’ bond is called 
psi (ψ). The angle of rotation around φ and ψ for each peptide defines the entire main chain conformation. 
(c) The DeepView software from ExPASy (called Swiss-PdbViewer) includes a control bar with buttons 
for manipulating a molecule (translation, rotation, and zoom). There are additional tools that measure the 
following (from left to right): distance between two atoms (arrow 1); angle between three atoms; dihedral 
angles (arrow 2; here this tool has been selected and the φ, ψ, and ω values are shown); select groups a 
 certain distance from an atom; center the molecule on one atom; fit one molecule onto another; mutation 
tool; torsion tool. (d) Myoglobin (3RGK ) was loaded into DeepView and, using the Control Panel, the 
first three amino acid residues (Gly-Leu-Ser) were selected. The nitrogens are indicated in bright red, the 
oxygens in pale red, and Cα carbons (CA) and C’ carbons are indicated. By selecting the dihedral angle 
tool and clicking the leucine Cα carbon (arrow 1), the bond values in (b) were shown. 

Source: (c, d) DeepView software from ExPASy. Reproduced with permission from SIB Swiss Institute of Bioinformatics.
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The amino acid residues of the backbone of the polypeptide chain are constrained 
to the surface of a plane, and only have mobility around a restricted set of bond angles 
(Fig. 13.2.b; reviewed by Branden and Tooze, 1991; Shulz and Schirmer, 1979). Phi (φ) is 
the angle around the N-Cα bond, and psi (ψ) is the angle around the Cα-C’ bond. Glycine 
is an exceptional amino acid because it has the flexibility to occur at φψ combinations 
that are not tolerated for other amino acids. For most amino acids the φ and ψ angles are 
constrained to allowable regions in which there is a high propensity for particular second-
ary structures to form.

DeepView is a popular software program used to visualize protein structures and 
to analyze many features of one or more protein structures. It is also used in conjunc-
tion with SwissModel, an automated comparative modeling server. DeepView is avail-
able for download from the ExPASy website (Chapter 12). When we upload a file in the 
PDB (Protein Data Bank) format for myoglobin, we can view a control bar with assorted 
options for manipulating and analyzing the structure (Fig. 13.2c). Using the control panel 
of DeepView we can select just the first two amino acids of myoglobin (gly-leu) and 
obtain a description of the bond angles (Fig. 13.2c,  d). One reason why it is useful to 
inspect these bond angles is that they provide information about the secondary structure 
of a protein, which we describe in the following section.

Secondary Structure

Proteins tend to be arranged with hydrophobic amino acids in the interior and hydrophilic 
residues exposed to the surface. This hydrophobic core is produced in spite of the highly 
polar nature of the peptide backbone of a protein. The most common way that a protein 
solves this problem is to organize the interior amino residues into secondary structures 
consisting of α helices and pleated β sheets. Linus Pauling and Robert Corey (1951) 
described these structures from studies of hemoglobin, keratins, and other peptides and 
proteins. Their models were later confirmed by X-ray crystallography. These second-
ary structures consist of patterns of interacting amino acid residues in which main chain 
amino (NH) and carboxy (C’O) groups form hydrogen bonds. There are three types of 
helices: (1) α helices have 3.6 amino acids per turn and represent ∼97% of all helices; 
(2) 3.10 helices have 3.0 amino acids per turn (and are therefore more tightly packed) 
and account for ∼3% of all helices; and (3) π helices, which occur only rarely, have 4.4 
amino acids per turn. Myoglobin is an example of a protein with α helices (Fig. 13.3a); 
these helices are typically formed from contiguous stretches of 4–40 amino acid residues 
in length. The β sheets are formed from adjacent β strands composed of 2–15 residues 
(typically 5–10 residues). They are arranged in either parallel or antiparallel orientations 
which have distinct hydrogen-bonding patterns. Pepsin (1PSN) provides an example of 
a protein comprised largely of β sheets (Fig. 13.3b). β sheets have higher-order properties 
including the formation of barrels and sandwiches and “super secondary structure motifs” 
such as β-α-β loops and α/β barrels. Proteins commonly contain combinations of both α 
helices and β sheets.

A Ramachandran plot displays the φ and ψ angles for essentially all amino acids in 
a protein (proline and glycine are not displayed). The Ramachandran plot for beta globin 
shows a preponderance of φψ angle combinations in a region that is typical of proteins 
with a helical content (Fig. 13.4a). In contrast, for pepsin the majority of φψ angles occur 
in a region that is characteristic of β sheets (Fig. 13.4b). Ramachandran plots can be cre-
ated using a variety of software packages including DeepView from ExPASy.

Dozens of methods have been developed to predict the secondary structure of a pro-
tein from its primary amino acid sequence (Pirovano and Heringa, 2010; Zhang et al., 
2011). Prediction began in the early 1970s. Chou and Fasman (1978) developed a method 
to predict secondary structure based on the frequencies of residues found in α helices and 

We describe how to obtain 
DeepView in computer lab 
exercise (13.3) at the end of 
this chapter. The PDB file for 
a human myoglobin, 3RGK , is 
available as Web Document 
13.1 at  http://www.bioinfbook.
org/chapter13. SwissModel is 
available at  http://swissmodel.
expasy.org/ (WebLink 13.7).

http://www.bioinfbook.org/chapter13
http://swissmodel.expasy.org/
http://www.bioinfbook.org/chapter13
http://swissmodel.expasy.org/
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(a)

(b)

FiGure 13.3 Examples of secondary structure. (a) Myoglobin (Protein Data Bank accession 3RGK) 
is composed of large regions of α helices, shown as strands wrapped around barrel-shaped objects. By 
entering the accession 3RGK into NCBI’s structure site, the three-dimensional structure can be viewed 
using Cn3D software. The accompanying sequence viewer shows the primary amino acid sequence. By 
clicking on a colored region (bracket) corresponding to an alpha helix, that structure is highlighted in the 
structure viewer (arrow). (b) Human pepsin (PDB 1PSN) is an example of a protein primarily composed 
as β strands, drawn as large arrows. Selecting a region of the primary amino acid sequence (bracket) 
results in a highlighting of the corresponding β strand (arrow). 

Source: Cn3D, NCBI.
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(a) Ramachandran plot: myoglobin (3RGK) (b) Ramachandran plot: pepsin (1PSN)

1

2

PhiPhi

PsiPsi

FiGure 13.4 A Ramachandran plot displays the φ and ψ angles for each amino acid of a protein 
(except proline and in some cases glycine). Examples are shown for (a) myoglobin, a protein charac-
terized by alpha helical secondary structure and (b) pepsin, a protein largely comprising beta sheets. 
The plots were generated using DeepView software from ExPASy. The arrows indicate the region of 
the Ramachandran plot in which φψ angles typical of alpha helices (arrow 1) and beta sheets (arrow 2) 
predominate. 

Source: DeepView software from ExPASy. Reproduced with permission from SIB Swiss Institute of Bioinformatics.

β sheets (together accounting for about half of all residues), as well as turns. Their algo-
rithm calculates the propensity of each residue to form part of a helix, strand, or coil in the 
context of a sliding window of amino acids. For example, a proline is extremely unlikely 
to occur in an α helix, and it is often positioned at a turn. The Chou–Fasman algorithm 
scans through a protein sequence and identifies regions where at least four out of six con-
tiguous residues have a score for α helices above some threshold value. The algorithm 
extends the search in either direction. Similarly, it searches for bends and turns. In a key 
study Williams et al. (1987) tabulated the conformational preferences of the amino acids 
(table 13.1).

Subsequently, other approaches have been developed such as the GOR method 
(Garnier et al., 1996). In most cases, these algorithms were used to analyze individual 
sequences (and they are still useful for this purpose). As multiply aligned sequences have 
become increasingly available, the accuracy of related secondary-structure prediction 
programs has increased. The PHD program (Rost and Sander, 1993a, b) is an example of 
an algorithm that uses multiple sequence alignment for this purpose.

In recent years the performance of secondary structure prediction software has 
improved. This is due to: the use of multiple alignments; the increased availability of large 
numbers of solved structures; and the application of machine-learning approaches such 
as neural networks. Neural network-based algorithms use layers of input signals (e.g., a 
multiple alignment of amino acid sequences of a protein, analyzed in sliding windows) 
and outputs (secondary structure predictions). A training protocol accepts sequences hav-
ing known secondary structure elements. Zhang et al. (2011) compared 12 secondary 
structure predictors and found that those using neural networks tended to perform best.

The accuracy of the various algorithms has been assessed by evaluating their perfor-
mance using databases of known structures. The standard measure for prediction accu-
racy, called Q3, is the proportion of all amino acids that have correct matches for the three 
states of helix, strand, and loop. Another measure is the segment overlap (Sov) which 
is relatively insensitive to small variations in secondary structure assignments, with 
less emphasis on assigning states to individual residues (Rost et al., 1994). Current 
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taBle 13.1 Conformational preferences of the amino acids. Bold numbers indicate an 
increased propensity for a given amino acid to adopt a helix, strand, or turn position in 
a protein. adapted from Williams et al. (1987) with permission from elsevier.

Amino acid Preference Properties

Helix Strand Turn

Glu 1.59 0.52 1.01 Helical preference;
extended flexible side chainAla 1.41 0.72 0.82

Leu 1.34 1.22 0.57

Met 1.30 1.14 0.52

Gln 1.27 0.98 0.84

Lys 1.23 0.69 1.07

Arg 1.21 0.84 0.90

His 1.05 0.80 0.81

Val 0.90 1.87 0.41 Strand preference;
bulky side chains, beta-branchedIle 1.09 1.67 0.47

Tyr 0.74 1.45 0.76

Cys 0.66 1.40 0.54

Trp 1.02 1.35 0.65

Phe 1.16 1.33 0.59

Thr 0.76 1.17 0.90

Gly 0.43 0.58 1.77 Turn preference;
restricted conformations, side–main chain interactionsAsn 0.76 0.48 1.34

Pro 0.34 0.31 1.32

Ser 0.57 0.96 1.22

Asp 0.99 0.39 1.24

 predictors reach about 82% accuracy based on Q3 and 81% accuracy based on Sov 
(Zhang et al., 2011). Some of these leading software tools are listed in table 13.2. This 
contrasts with 70–75% accuracy for methods around 2001 and 50–60% accuracy in the 
Chou–Fasman era.

In 1983 Wolfgang Kabsch and Christian Sander introduced a dictionary of secondary 
structure, including a standardized code for secondary structure assignment. These are 
applied in the DSSP database with eight states (table 13.3). A variety of web servers allow 
you to input a primary amino acid sequence and delineate the secondary structure, often 

taBle 13.2 Web servers for secondary-structure prediction based on neural networks. From pirovano and heringa 
(2010) and Zhang et al. (2011). additional sites are listed at expaSy (  http://www.expasy.org/tools/#secondary, 
Weblink 13.38).

Program Source URL

APSSP Dr G. P. S. Raghava, Chandigarh, India http://imtech.res.in/raghava/apssp/

Jpred The Barton Group (Dundee) http://www.compbio.dundee.ac.uk/~www-jpred/

Porter University College, Dublin http://distill.ucd.ie/porter/

PHD Guy Yachdav & Burkhard Rost, Technical University of Munich https://www.predictprotein.org/

Proteus Wishart Research Group http://wks80920.ccis.ualberta.ca/proteus/

PSIPRED Bloomsbury Centre for Bioinformatics http://bioinf.cs.ucl.ac.uk/psipred/

SPINEX Indiana University–Purdue University, Indianapolis http://sparks.informatics.iupui.edu/SPINE-X/

SSpro University of California, Irvine http://scratch.proteomics.ics.uci.edu/

http://www.expasy.org/tools/#secondary
http://imtech.res.in/raghava/apssp/
http://www.compbio.dundee.ac.uk/~www-jpred/
http://distill.ucd.ie/porter/
https://www.predictprotein.org/
http://wks80920.ccis.ualberta.ca/proteus/
http://bioinf.cs.ucl.ac.uk/psipred/
http://sparks.informatics.iupui.edu/SPINE-X/
http://scratch.proteomics.ics.uci.edu/


Genomewide AnAlysis of dnA, RnA, And PRotein598

taBle 13.3 Secondary structure assignment from the DSSp database.

DSSP code Secondary structure assignment

H Alpha helix

B Residue in isolated beta-bridge

E Extended strand, participates in beta ladder

G 3-helix (3/10 helix)

I 5 helix (pi helix)

T Hydrogen bonded turn

S Bend

Blank or C Loop or irregular element, incorrectly called “random coil” or “coil.”

Source: DSSP (  http://swift.cmbi.ru.nl/gv/dssp/, WebLink 13.39), courtesy of G. Vriend.

employing the DSSP codes. Some of the programs allow you to enter a single sequence, 
while others allow you to enter a multiple sequence alignment. As an example, the Pôle 
Bio-Informatique Lyonnais (PBIL) has a web server that offers secondary-structure 
 predictions for a protein query. We used this server to generate the beta globin prediction 
in Figure 13.1b. This server also generates predictions using nine different algorithms and 
calculates a consensus. The various predictions differ somewhat in detail, but are gener-
ally consistent.

tertiary protein Structure: protein-Folding problem

How does a protein fold into a three-dimensional structure? As mentioned above, this 
problem is solved very rapidly in nature. In 1969 Cyrus Levinthal introduced an argument 
(later called “Levinthal’s paradox”) that there are far too many possible conformations for 
a linear sequence of amino acids to adopt its native conformation through random sam-
plings of the energy landscape. To find the most stable thermodynamic structure would 
require a period of time far greater than the age of the universe. Proteins must therefore 
adopt their three-dimensional conformations by following specific folding pathways. 
Progress in understanding protein folding has been reviewed by Dill et al. (2008), Hartl 
and Hayer-Hartl (2009), Travaglini-Allocatelli et al. (2009), and Dill and MacCallum 
(2012). Folding is thought to occur by incremental movements along a pathway toward 
favored low-energy native structures. This process is guided by factors such as hydro-
gen bonds (contributing to secondary structure), van der Waals interactions, backbone 
angle preferences, electrostatic interactions of amino acid side chains, hydrophobic inter-
actions, and entropic forces. Additionally, chaperones stabilize nascent polypeptides on 
ribosomes and facilitate appropriate folding.

In structural biology, there are two main approaches to determining protein structure: 
X-ray crystallography; and nuclear magnetic resonance spectroscopy (NMR). Structures 
can also be predicted computationally using three approaches described near the end of 
this chapter (homology modeling, threading, and ab initio prediction; see “Protein Struc-
ture Prediction”).

X-ray crystallography is the most rigorous experimental technique used to determine 
the structure of a protein (Box 13.1), and about 80% of known structures were determined 
using this approach. The basic steps involved in this process are outlined in Figure 13.5. 
A protein must be obtained in high concentration and seeded in conditions that permit 
crystallization. The crystal scatters X-rays onto a detector, and the structure of the crystal 
is inferred from the diffraction pattern. The wavelength of X rays (about 0.5–1.5 Å) is 
useful to measure the distance between atoms, making this technique suitable to trace the 
amino acid side chains of a protein.

DSSP software is available from 
 http://swift.cmbi.ru.nl/gv/dssp/ 

(WebLink 13.8). The PBIL website 
is at  http://npsa-pbil.ibcp.fr 
(WebLink 13.9).

http://swift.cmbi.ru.nl/gv/dssp/
http://swift.cmbi.ru.nl/gv/dssp/
http://npsa-pbil.ibcp.fr
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There have been continuous efforts to improve X-ray based technologies.

 • X-ray free-electron lasers (XFELs) deliver ultrashort, high-intensity pulses of X-rays 
(Schlichting and Miao, 2012; Smith et al., 2012). These pulses can be a billion times 
brighter than conventional sources, and this method has been called “diffraction- 
before-destruction.” Boutet et al. (2012) applied this approach to microcrystals (<1 μM 
× 1 μM × 3 μM) of the enzyme lysozyme. The significance is that proteins and other 
molecules for which it is difficult to obtain large crystals may now have their struc-
tures solved. An important example is the structure of the β2 adrenergic receptor com-
plexed with the alpha subunit of its corresponding heterotrimeric GTP-binding protein 
complex, solved by Brian Kobilka and colleagues (Rasmussen et al., 2011). The β2 
adrenergic receptor is an example of a G protein-coupled receptor (GPCR), the largest 
protein family encoded by the human genome. GPCRs respond to neurotransmitters, 
hormones, and signals such as light and odorants. XFELs have been used to advance 
the study of other membrane proteins (Kang et al., 2013). In another application, Koop-
mann et al. (2012) solved the structures of a Trypanosoma brucei cathepsin enzyme 

Target selection

PCR amplify the coding sequence

Clone the coding sequence into an expression vector

Express the recombinant protein

Sequence the cDNA to verify that the coding
sequence was correctly amplified

Characterize the expressed protein

Obtain adequate amounts (e.g. milligrams)
and confirm the purity of the protein

Determine appropriate crystallization 
(or NMR) conditions

X-ray or NMR measurements

Determine and refine the structure

Calculate comparative protein structure models

Make functional inferences

Deposit the structure in PDB

FiGure 13.5 The process involved in obtaining high-resolution structures. General procedure for 
obtaining a three-dimensional protein structure.
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using crystals grown in vivo. Such crystals may preserve post-translational modifica-
tions, and may also be characterized in parallel by electron microscopy.

 • Electron crystallography of two-dimensional crystals has been successfully employed 
to generate atomic models of many proteins (Kühlbrandt, 2013). The first of these 
was also the first membrane protein to have high-resolution structure determination, 
bacteriorhodopsin (Henderson and Unwin, 1975).

 • Small-angle X-ray scattering allows low-resolution structure determination without 
the requirement for diffraction-quality crystals, and without size limitation (Perry 
and Tainer, 2013).

Nuclear magnetic resonance spectroscopy is an important alternative approach to crys-
tallography. A magnetic field is applied to proteins in solution, and characteristic chemical 
shifts are observed. From these shifts, the structure is deduced. The largest structures that 
have been determined by NMR are about 350 amino acids (∼40 kD), considerably smaller 
than the size of proteins routinely studied by crystallography. Other limitations are that 
the quality of NMR structures is less than those obtained by crystallography, and NMR 
yields multiple structure solutions rather than one. However, an advantage of NMR is that 
it does not require a protein to be crystallized, a notoriously difficult process.

Structural Genomics, the protein Structure initiative, and  
target Selection

Structural genomics is an emerging field of research. Its goal is to determine the three-di-
mensional structure of all the major protein families throughout the tree of life, spanning fold 
space (Brenner, 2001; Koonin et al., 2002; Andreeva and Murzin, 2010). Fold space refers to 
the total variety of three-dimensional protein structures that occur in nature. This mostly com-
prises proteins having α, β, or αβ secondary structure composition (Holm and Sander, 1997). 
This comprehensive approach will permit a deeper understanding of the relatedness of protein 
domains, and will also enable us to assign function to many proteins. Structure space (or fold 
space) may be cataloged in terms of protein sequence families, which generally are defined as 
containing members having greater than about 30% amino acid identity. Structural genomics 
ultimately aims to solve at least one high-resolution structure for every sequence family.

The relationship of structural genomics to traditional structural biology is outlined in 
Figure 13.6. Traditionally, researchers obtained the structure of individual proteins by  starting 
with information about the known function of the protein. The new approach of structural 
genomics is based upon a reverse strategy: genome sequence projects generate predictions 
of protein-coding sequences. One fundamentally important aspect of each predicted protein 
is its structure. Predicted proteins may be expressed and their structures are solved to high 
resolution (Fig. 13.6). The recent identification of literally tens of millions of novel predicted 
proteins has enabled researchers to choose structures to solve (targets) based upon a variety 
of criteria. Once a target is selected and a cDNA encoding that protein is cloned, there are 
still many challenges in successfully expressing, purifying, and crystallizing the protein as 
well as obtaining its structure by either X-ray crystallography or NMR.

The general procedure for experimentally acquiring protein structural data, outlined 
in Figure 13.5, begins with target selection, the process of choosing which structure to 
solve (Brenner, 2000). Historically, proteins such as hemoglobin and cytochrome c were 
selected that were most amenable to experimental study: they are generally small, sol-
uble, abundant, and known to have interesting biological functions. Today, additional 
criteria are considered in deciding priorities for which protein structures to solve (Carter 
et al., 2008; Marsden and Orengo, 2008):

 • All branches of life (eukaryotes, bacteria, archaea, and viruses) are studied.
 • Should there be efforts to exhaustively solve all structures within an individual organ-
ism? This is being attempted for Methanococcus jannaschii and Mycobacterium 

Brian Kobilka and Robert 
Lefkowitz were awarded the 2012 
Nobel Prize in Chemistry “for 
studies of G-protein–coupled 
receptors;” see  http://www 
.nobelprize.org/nobel_prizes/
chemistry/laureates/2012/ 
(WebLink 13.10). See the mention 
of GPCRs in “Protein Structure 
and Disease” below.

DARA, a DAtabase for RApid 
search of structural neighbors 
for proteins based on their  
X-ray small-angle scattering 
patterns, is available at 

 http://dara.embl-hamburg.de 
(WebLink 13.11).

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2012/
http://dara.embl-hamburg.de
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2012/
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FiGure 13.6 Classical structural biology versus structural genomics. (a) In classical structural biol-
ogy approaches, a protein is purified based upon some known function or activity. After biochemical 
purification of the protein, if there is sufficient yield, the protein may be crystallized and its structure 
determined. This in turn allows the biochemical function of the protein and its mechanism of action to 
be studied. Having obtained protein sequence, the corresponding complementary DNA (cDNA) may be 
cloned, allowing recombinant protein to be expressed and purified for structure analyses. (b) The field of 
structural genomics proceeds from genomic DNA sequence. Large numbers of protein-coding genes are 
predicted, often including all those encoded by a genome of interest. Selected proteins are either cloned 
and expressed for biochemical analysis or the structure is predicted computionally (“in silico”). The 3D 
structure of a protein may be determined experimentally using techniques such as X-ray crystallogra-
phy or NMR spectroscopy. Finally, the biochemical role may be inferred based upon the nature of the 
structure. Additional insight into biochemical function is derived from database searches of the protein 
sequence (e.g., using DELTA-BLAST).

tuberculosis. The Bacterial Structural Genomics Initiative (Matte et al., 2007) includes 
efforts to determine structures for a large number of Escherichia coli proteins.

 • Should representatives from previously uncharacterized protein families be selected 
preferentially?

 • Should medically important proteins such as drug discovery targets be chosen first?
 • How can structures be solved for more proteins having transmembrane-spanning 
domains? These are among the most technically challenging proteins to study 
(Kang et al., 2013). Chang and Roth (2001) successfully solved the structure of a 
 multidrug-resistant ABC transporter from E. coli. They screened 96,000  crystallization 
conditions to find several that were adequate for X-ray structure determination.

The Protein Structure Initiative (PSI) has had a major impact in the direction of 
structural genomics, including target selection (Andreeva and Murzin, 2010; Monteli-
one, 2012). The PSI was established in the United States in 2000, with similar structural 
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genomics projects conducted in other countries (Canada, Israel, Japan, and in Europe). 
The PSI is a coordinated effort by the academic, industry, and federal research commu-
nities to develop the technology needed to determine the three-dimensional structures 
of most proteins based on knowledge of the corresponding DNA sequences. There have 
been three phases. The pilot phase of the project (conducted during 2000–2005) involved 
nine structural genomics centers that solved more than 1100 structures at high resolution. 
A key feature of this project is that solving the structure of proteins that are closely related 
to those having known structures is relatively easy, but predicting structures without close 
structure neighbors can be extremely difficult. Of the 1100 solved structures over 700 
were unique, that is, the structures shared less than 30% amino acid sequence identity 
with other known proteins.

The second phase of PSI (2005–2010) included the goal of depositing >4000 struc-
tures into the Protein Data Bank (we discuss the PDB in the following section). Most of 
these structures were of proteins, with additional protein-ligand complexes and paired 
X-ray and NMR structures. An analysis by Levitt (2007) emphasizes the general decline 
in the number of novel structures into the PDB beginning in 1995, and a reversal of this 
trend because of contributions from structural genomics initiatives. Chandonia and Bren-
ner (2005) proposed that the Pfam5000 set be selected: these are the 5000 largest Pfam 
families for which no structure has yet been solved. As part of PSI phase 2, the struc-
ture of representative members of Pfam families having domains of unknown function 
were determined at high resolution. These include Pfam family PF06684 (Bakolitsa et 
al., 2010), PF06938 (Han et al., 2010), and PF04016 (Miller et al., 2010). In each case 
these families contain hundreds of proteins, and solving the structures suggested possible 
functions in amino acid synthesis, signal transduction, and heavy metal chelation.

Phase 2 of PSI characterized the structures of only >100 human proteins. In the ongo-
ing Phase 3, called PSI:Biology, the focus changed from solving as many structures as 
possible to solving structures that are biologically or medically relevant (such as GPCRs; 
Depietro et al., 2013). The community can nominate proteins for structure determination. 
Current progress and project resources are available at the Structural Biology Knowl-
edgebase (SBKB) website (Gifford et al., 2012). As of February 2015, there have been 
∼332,000 protein targets deposited in the SBKB Target Track. Of these, a subset were 
successfully cloned, expressed, shown to be soluble, and crystallized. A subset of these 
yielded diffraction-quality crystals, and ∼10,000 structures were solved and deposited in 
the Protein Data Bank repository.

In 1992, even before the first genome of a free-living organism had been fully 
sequenced, Cyrus Chothia estimated that there may be about 1500 distinct protein folds. 
Structural genomics initiatives such as PSI continue to bring us closer to identifying all 
of them.

PrOtein Data Bank
Once a protein sequence is determined, there is one principal repository in which the 
structure is deposited: the Protein Data Bank (PDB) (Rose et al., 2013; reviewed in 
 Berman, 2012; Berman et al., 2013a–c; Goodsell et al., 2013). A broad range of primary 
structural data is collected, such as atomic coordinates, chemical structures of cofactors, 
and descriptions of the crystal structure. The PDB then validates structures by assessing 
the quality of the deposited models and by how well they match experimental data.

The main page of the PDB website includes categories by which information 
may be accessed (Fig. 13.7). This database currently has over 100,000 structure entries 
(table 13.4), with new structures being added at a rapid rate (Fig. 13.8). The database 
can be accessed directly by entering a PDB identifier into the query box on the main 
page, that is, by entering an accession number consisting of one number and three letters 

The SBKB website is  http://
sbkb.org/ (WebLink 13.12), which 
includes target selection data  
(  http://sbkb.org/tt/). The main 
PSI website at the National 
Institutes of Health is  

 http://www.nigms.nih.gov/
research/specificareas/PSI/
Pages/default.aspx  
(WebLink 13.13).

The PDB was established 
at Brookhaven National 
Laboratories in Long Island 
in 1971. Initially, it contained 
seven structures. It moved to 
the Research Collaboratory 
for Structural Bioinformatics 
(RCSB) in 1998. PDB is accessed 
at  http://www.rcsb.org/pdb/  
or  http://www.pdb.org 
(WebLink 13.14).

http://sbkb.org/
http://sbkb.org/
http://sbkb.org/tt/
http://www.nigms.nih.gov/research/specificareas/PSI/Pages/default.aspx
http://www.rcsb.org/pdb/
http://www.pdb.org
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FiGure  13.7 The PDB is the main repository for three-dimensional structures of proteins and 
other macromolecules. Information about PDB holdings is organized into categories such as organ-
ism, taxonomy, experimental method (greater than 85% of which are derived from X-ray structure 
determination), and resolution (with less than 1.5 Å corresponding to the highest resolution struc-
tures). The home page of PDB allows queries such as a PDB identifier (e.g., 3RGK for a myoglobin 
structure) or a molecule name. 

Source: RCSB PDB (www.rcsb.org). Reproduced with permission from RCSB PDB.

http://www.rcsb.org
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FiGure 13.8 Number of searchable structures per year in PDB. The PDB database has grown dra-
matically in the past decade. The yearly (red) and total (green) numbers of structures are shown. 

Source: RCSB PDB (www.rcsb.org). Reproduced with permission from RCSB PDB.

taBle 13.4 types of molecules, according to pDB holdings.

Experimental 

technique Proteins Nucleic acids

Protein and nucleic 

acid complexes Other Total

X-ray diffraction 88,991 1,608 4,398 4 95,001

NMR 9,512 1,112 224 8 10,856

Electron microscopy 539 29 172 0 740

Hybrid 68 3 2 1 74

Other 164 4 6 13 187

Total 99,274 2,756 4,802 26 106,858

Source: RCSB PDB. (www.rcsb.org). Reproduced with permission from RCSB PDB.

(e.g., 4HHB for hemoglobin). The PDB database can also be searched by keyword; the 
result of a keyword search for myoglobin is shown in Figure 13.9. In this case there are 
hundreds of results, and the list can be refined using options on the left sidebar. The 
result of searching for a specific hemoglobin identifier, 3RGK, links to a typical PDB 
entry (of which a portion is shown in Fig. 13.10). By clicking on an icon the 3RGK.
pdb file can be downloaded locally for further analysis with a variety of tools such 
as DeepView. Information provided on the 3RGK page includes the resolution of the 
experimentally derived structure, the space group, and the unit cell dimensions of the 
crystals. There are links to a series of tools to visualize the three-dimensional structure, 
including Jmol (Fig. 13.10, arrow 2). table 13.5 lists some additional visualization soft-
ware. Using Jmol does not require the installation of software (other than Java), and it 
is versatile (Fig. 13.11).

It is also possible to search within the PDB website using dozens of advanced search 
features (accessed via the top of the home page). This includes the use of BLAST or 
FASTA programs, allowing convenient access to PDB structures related to a query. Other 
advanced search features allow you to query based on properties of the  molecule (e.g., its 
molecular weight), PubMed identifier, Medical Subject Heading (MeSH term; Chapter 2), 
deposit date, or experimental method.

http://www.rcsb.org
http://www.rcsb.org
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FiGure 13.9 Result of a PDB query for myoglobin. There are several hundred results organized into categories such as UniProt gene 
names, structural domains, and ontology terms. The search results further show how to explore myoglobin entries with the same categories 
shown in Figure 13.7. 

Source: RCSB PDB (www.rcsb.org). Reproduced with permission from RCSB PDB.

1

FiGure 13.10 Result of a search for a myoglobin structure, 3RGK. The summary information includes 
a description of the resolution (2.8 Å), the space group, unit cell dimensions, ligands, and external database 
annotation. Available links include a variety of visualization software (including Jmol, arrow 1). 

Source: RCSB PDB (www.rcsb.org). Reproduced with permission from RCSB PDB.

http://www.rcsb.org
http://www.rcsb.org
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PDB is maintained by members of the WorldWide PDB. These include the RCSB 
PDB, the Protein Data Bank in Europe (operated by the European Bioinformatics Insti-
tute), and PDB Japan.

A series of databases are complementary to PDB and hold information corresponding 
directly to PDB entries. These include the following (Joosten et al., 2011):

 • DSSP includes secondary structure data;
 • PDBREPORT includes data on structure quality and errors;
 • PDBFINDER offers summaries of PDB content (information includes Enzyme 
 Commission numbers for enzymes);

 • PDB_REDO includes re-refined (often improved) copies of structures (e.g., the 
 orientation of peptide planes can be optimized); and

 • WHY_NOT explains why particular files were not produced (e.g., a brand new PDB 
entry might not yet have entries in ancillary databases, or a PDB entry solved by 
NMR spectroscopy would not have PDB_REDO entries).

The PDB database occupies a central position in structural biology. Several dozen 
other databases and web servers link directly to it or incorporate its data into their 
local resources. We next explore NCBI and other sites that allow a single protein 
structure to be analyzed or several structures to be compared. We then explore data-
bases that create comprehensive classification systems or taxonomies for all protein 
structures.

accessing pDB entries at NCBi Website

There are three main methods of finding a protein structure in the NCBI databases:

 1. Text searches allow access to PDB structures. These searches can be performed on the 
structure page or through Entrez, and they can consist of keywords or PDB identifiers. 

The PDB in Europe database 
(PDBe) is at  http://www.ebi.
ac.uk/pdbe/ (WebLink 13.15). 
PDB Japan is at  http://pdbj.org 
(WebLink 13.16).

The PDB-related WHAT IF 
servers are available at  http://
swift.cmbi.ru.nl/servers/html/ 
(WebLink 13.17).

taBle 13.5 interactive visualization tools for protein structures. the protein Data 
Bank maintains a list of molecular graphics software links, accessible from the pDB 
home page via software tools/molecular viewers at  http://www.pdb.org/pdb/static.
do?p=software/software_links/molecular_graphics.html (Weblink 13.40).

Tool Comment URL

Cn3D From NCBI http://www.ncbi.nlm.nih.gov/Structure/

CN3D/cn3d.shtml

JMol Open-source Java viewer for 
chemical structures in 3D

http://jmol.sourceforge.net/

Kiosk Viewer Uses Java Web Start http://pdb.org/

Mage Reads Kinemages http://kinemage.biochem.duke.edu

Protein Workshop Viewer Uses Java Web Start http://pdb.org/

RasMol Molecular graphics 
visualization tool

http://www.rasmol.org/

RasTop Molecular visualization 
software adapted from RasMol

http://www.geneinfinity.org/rastop/

Simple Viewer Uses Java Web Start http://pdb.org/

SwissPDB viewer At ExPASy http://spdbv.vital-it.ch

VMD Visual Molecular Dynamics; 
University of Illinois

http://www.ks.uiuc.edu/Research/vmd/

http://www.pdb.org/pdb/static.do?p=software/software_links/molecular_graphics.html
http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
http://jmol.sourceforge.net/
http://pdb.org/
http://kinemage.biochem.duke.edu
http://pdb.org/
http://www.rasmol.org/
http://www.geneinfinity.org/rastop/
http://pdb.org/
http://spdbv.vital-it.ch
http://www.ks.uiuc.edu/Research/vmd/
http://www.ebi.ac.uk/pdbe/
http://pdbj.org
http://swift.cmbi.ru.nl/servers/html/
http://swift.cmbi.ru.nl/servers/html/
http://www.pdb.org/pdb/static.do?p=software/software_links/molecular_graphics.html
http://www.ebi.ac.uk/pdbe/
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FiGure 13.11 Jmol applet software permits the visualization and analysis of macromolecular struc-
tures. (a) View of a human myoglobin structure. This can be manipulated (e.g., zoomed or rotated), 
colored according to criteria such as secondary structure, visualized (e.g., to show van der Waal radii), 
and analyzed (e.g., by measuring interatomic distances). (b) Right-clicking (on a PC) opens a menu of 
Jmol viewing options. 

Source: RCSB PDB (www.rcsb.org). Reproduced with permission from RCSB PDB.

(a) Structure visualization in PDB using the Jmol applet

(b) Jmol options menus

A keyword search of Entrez structures for hemoglobin yields a list of ∼1300 proteins 
with four-character PDB identifiers. If you know a PDB identifier of interest, such 
as 3RGK for myoglobin, use it as a search term and to find an NCBI Structure entry 
with useful links, including to the Molecular Modeling Database (Fig. 13.12), the 
Cn3D viewer, the VAST comparison tool (see below), and the Conserved Domain 

http://www.rcsb.org
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Database (Chapter 5). The Molecular Modeling Database is the main NCBI database 
entry for each protein structure (Madej et al., 2012) from the group of Steve Bryant. 
It includes literature and taxonomy data, sequence neighbors (as defined by BLAST), 
structure neighbors (as defined by VAST; see following section), and visualization 
options.

 2. It is possible to search by protein similarity. To do this, use the NCBI Protein database 
to select a protein of interest and look for a link to “Related Structures.” Alternatively, 
perform a BLASTP search and restrict the output to the PDB database. All database 
matches have entries in the NCBI Structure database (Fig. 13.13, right-hand column).

 3. Searching using nucleotide queries is another option. It is possible to use a BLASTX 
search with a DNA sequence as input, restricting the output to the PDB database.

Cn3D is the NCBI software for structure visualization. We describe its use in 
 computer lab exercise (13.1) and used it to generate Figure 13.3. Upon launching Cn3D 
two windows open: a Cn3D Viewer and a OneD-Viewer (Fig. 13.3.). The Cn3D Viewer 
shows the structure of the protein in seven available formats (such as ball-and-stick or 
space-filling models), and it can be rotated for exploration of the structure. The correspond-
ing OneD-Viewer shows the amino acid sequence of the protein, including α helices and 

The NCBI structure page is at 
 http://www.ncbi.nlm.nih.gov/

structure (WebLink 13.18).

FiGure 13.12 The Molecular Modeling DataBase (MMDB) at NCBI offers tools to analyze protein (and other) structures. You can 
view the structure (lower right) using the Cn3D structure viewer (alternatively, you can view the PDB file corresponding to this entry, a 
human myoglobin with PDB accession 3RGK). A link to VAST (upper right) allows identification and visualization of related structures (see 
Fig. 13.14). The entry includes a literature citation (upper left) as well as further information on the myoglobin molecule and its interactions 
(not shown). 

Source: Molecular Modeling DataBase (MMDB), NCBI.

http://www.ncbi.nlm.nih.gov/structure
http://www.ncbi.nlm.nih.gov/structure
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β sheets. Highlighting any individual amino acid residue or group of residues in either the 
Cn3D Viewer or the OneD-Viewer causes the corresponding region of the protein to be 
highlighted in the other viewer.

In addition to investigating the structure of an individual protein, multiple protein 
structures can be compared simultaneously. Beginning at the main MMDB structure 
summary for a protein such as myoglobin (Fig. 13.12), click “VAST” to obtain a list of 
related proteins for which PDB entries are available (Fig. 13.14). This list is part of the 
Vector Alignment Search Tool (VAST). Select the entries related to structures, or (using 
the advanced query feature) enter an accession such as 4HHB for hemoglobin. This 
results in a Cn3D image of both structures as well as a corresponding sequence alignment 
(Fig. 13.15). VAST provides many kinds of structural data (Box 13.2).

integrated Views of universe of protein Folds

We have examined how to view individual proteins and how to compare small numbers 
of structures. Chothia (1992) predicted about 1500 folds; how many different protein 
folds are now thought to exist? How many structural groups are there? Kolodny et al. 
(2013) note that these questions are complicated by the challenge of defining a domain 
and by the sometimes complex relationship between sequence, structure, and function. 
Several databases have been established to explore the broad question of the total protein 

Cn3D is short for “see in 3D.”

FiGure 13.13 Structure entries can be retrieved from NCBI by performing a BLASTP search (with a protein query) or a BLASTX search 
(with DNA), restricting the output to the PDB database. Here, a DELTA-BLAST search with human beta globin (NP_000509.1) restricted to 
birds (aves) produces matches against a variety of pigeon, parrot, duck, ostrich, and chicken globins. Since the database was set to PDB, all 
of these entries are of known structure and the PDB accession numbers are given (right-most column). 

Source: BLASTP, BLASTX and PDB database, NCBI.
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1AGM A (oxy-myoglobin)
2DC3 A (human cytoglobin)

2GDM A (lupin leghemoglobin)
2W72 B (hemoglobin mutant)

3PT8 B (Lucina pectinata hemoglobin)

FiGure 13.14 The Vector Alignment Search Tool (VAST) at NCBI allows the comparison of two 
or more structures. These may be selected by checking boxes (lower left) or by entering a specific PDB 
accession number (under the advanced search options). This site also provides links to data on the struc-
tures being compared (see Box 13.2) and links to the Conserved Domain Database at NCBI. In this case, 
a myoglobin structure (3RGK) was accessed (Fig. 13.12) and the VAST link was clicked. The first 5 of 
>2300 related structures are shown. 

Source: Vector Alignment Search Tool (VAST), NCBI.

fold space (Andreeva and Murzin, 2010). We examine several of these databases: SCOP, 
CATH, and the Dali Domain Dictionary. These databases also permit searches for indi-
vidual proteins. Christine Orengo and colleagues have suggested that, as the number of 
new folds is declining in their CATH database (with ∼1300 fold groups), this represents 
the majority of fold groups that are easily accessible (Sillitoe et al., 2013).

Taxonomic System for Protein Structures: SCOP Database
The Structural Classification of Proteins (SCOP) database provides a  comprehensive 
description of protein structures and evolutionary relationships based upon a  hierarchical 
classification scheme (Andreeva et al., 2008). Recently, the SCOP-extended (SCOPe) 
database has maintained SCOP updates, and an entirely new SCOP2 is being introduced 
(see below). The SCOP database can be navigated by browsing the hierarchy, by a key-
word query or PDB identifier query, or by a homology search with a protein sequence.  
A key feature of this database is that it has been manually curated by experts including  
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(a) Vector alignment search tool (VAST) alignment of myoglobin and beta globin

(b) Sequence/Alignment Viewer: corresponding amino acid sequences of myoglobin and beta globin

Iron

Heme
beta globin
sequence
highlighted
in Sequence/
Alignment Viewer

FiGure 13.15 Two structures that are selected in VAST (here myoglobin, 3RGK, and beta globin, 
4HHB) are compared as overlaid structures in the Cn3D viewer and in the form of a sequence align-
ment. Despite the relatively low-sequence identity between these proteins, they adopt highly similar 
three-dimensional folds. The heme group and iron atoms are indicated. (b) A stretch of amino acids in 
the sequence viewer (yellow) corresponding to that highlighted on the corresponding structure(s) in (a). 

Source: Vector Alignment Search Tool (VAST), NCBI.

BOx 13.2 vaSt infOrmatiOn
For each structural neighbor detected by VAST (such as Fig 13.15), the following information is 
listed:

 • checkbox: allows for selection of individual neighbors;
 • PDB: four-character PDB-identifier of the structural neighbor;
 • PDB chain name;
 • MMDB domain identifier;
 • VAST structure similarity score based on the number of related secondary structure elements 

and the quality of the superposition;
 • RMSD: root-mean-square superposition residual in angstroms (a descriptor of overall structural 

similarity);
 • NRES: number of equivalent pairs of Cα atoms superimposed between the two structures (the 

alignment length, i.e., how many residues have been used to calculate the three-dimensional 
superposition);

 • %Id: percent identical residues in the aligned sequence region;
 • description: string parsed from PDB records;
 • metric (Loop Hausdorff Metric): describes how well two structures match in loop regions; and
 • gapped score: combines RMSD, the length of the alignment, and the number of gapped regions.

Data from VAST, NCBI (  http://www.ncbi.nlm.nih.gov/Structure/VAST/vasthelp.html#VASTTa-
ble, WebLink 13.37).

http://www.ncbi.nlm.nih.gov/Structure/VAST/vasthelp.html#VASTTa-ble
http://www.ncbi.nlm.nih.gov/Structure/VAST/vasthelp.html#VASTTa-ble
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Alexey Murzin, John-Marc Chandonia, Steven Brenner, Tim Hubbard, and Cyrus Chothia. 
Because of their expertise, SCOP has a reputation as being one of the most important 
and trusted databases for classifying protein structures. Automatic classification is now 
performed in SCOP, partly due to the increase in structures through structural genomics 
initiatives, with manual annotation for particularly difficult problems.

We explore SCOPe using a myoglobin query (3rgk) as an example. The hierar-
chy consists of classes; these are subsequently classified into folds, superfamilies, and 
families, until we reach protein domains and individual PDB protein structure entries. 
Beginning at the top of the hierarchy, eleven SCOPe classes are listed in table 13.6. For 
myoglobin, the class is all alpha proteins (Fig. 13.16). The folds level of the hierarchy 
describes proteins sharing a particular secondary structure with the same arrangement and 
topology. Myoglobin is classified as having a globin-like fold (this is one of 284 different 
folds in this class). In SCOPe, different proteins with the same fold are not necessarily 
evolutionarily related.

As we continue down the SCOP hierarchy, we arrive at the level of the superfamily. 
Here proteins probably do share an evolutionary relationship, even if they share relatively 
low amino acid sequence identity in pairwise alignments. Myoglobin is in the globin-like 
superfamily, with a different, distantly related superfamily (alpha-helical ferredoxins) 
also categorized as having a globin-like fold. Beneath the globin-like superfamily there 
are five families, including one for globins including myoglobin. (The other four fam-
ilies include distantly related truncated hemoglobin and neural globins; Pfam links are 
sometimes provided.) While the superfamily level is defined by structural, functional, and 
sequence evidence for a common ancestor, the basis for classifying structures into SCOP 
families is less clear and has been examined by Pethica et al. (2012). SCOPe families 
include globins with 27 different domains such as myoglobin, beta globin, and alpha glo-
bin from various species. We can view myoglobin structures that have been determined 
from nine species (examples from an elephant and a seal are shown in Fig. 13.16).

SCOP will be replaced by a fully redesigned database, SCOP2, that is currently in 
development as a prototype (Andreeva et al., 2014). Instead of a hierarchy, SCOP2  features 
a directed acyclic graph structure (such as that used by Gene Ontology;  Chapter  12). 
The SCOP2 database will feature protein types (soluble, membrane, fibrous, and intrin-
sically disordered); evolutionary events (e.g., describing structural rearrangements); 

While SCOP was last updated in 
2009, the Structural Classification 
of Proteins extended (SCOPe) 
database continued with 
Release 2.05 in 2015 (  http://
scop.berkeley.edu/, WebLink 
13.19). The main classes in the 
latest release include ∼1200 
folds, ∼2000 superfamilies, 
∼4500 families, and >200,000 
domains. SCOPe is created 
and maintained by Naomi Fox, 
Steven Brenner, and John-Marc 
Chandonia.

taBle 13.6 release notes from SCOpe database, release 2.03. For each fold, there are 
between one and dozens of superfamilies.

Class Number of folds Number of proteins

All alpha proteins 284 46,456

All beta proteins 174 48,724

Alpha and beta proteins (α/β) 147 51,349

Alpha and beta proteins (α + β) 376 53,931

Multidomain proteins 66 56,572

Membrane and cell surface proteins 57 56,835

Small proteins 90 56,992

Coiled coil proteins 7 57,942

Low resolution protein structures 25 58,117

Peptides 120 58,231

Designed proteins 44 58,788

Total 1390 603,937

Source: SCOPe. Fox et al. (2014). Courtesy of SCOPe.

http://scop.berkeley.edu/
http://scop.berkeley.edu/
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structural classes (based on secondary structural content); and protein relationships 
(e.g., structural or evolutionary). The motivation for these changes includes the need to 
classify proteins that are evolutionarily related but structurally distinct (and were there-
fore inappropriately classified as having the same fold in SCOP).

CATH Database
CATH is a hierarchical classification system that describes all known protein domain 
structures (Cuff et al., 2011). It has been developed by David Jones, Janet Thornton, 
Christine Orengo and colleagues with a particular emphasis on defining domain bound-
aries. While some parts of the classification system are automated, expert manual cura-
tion is also employed for tasks such as classifying remote folds and remote homologs. 
CATH clusters proteins at four major levels: class (C); architecture (A); topology (T); 
and homologous superfamily (H) (Fig. 13.17). A search of CATH with the term myo-
globin (or hemoglobin) results in an output displaying the various hierarchy levels. 
The output for the globin superfamily includes a wealth of data on structures and their 
 annotation (Fig. 13.18). This includes functional families (called FunFams) that rely on 
Gene Ontology and Enzyme Commission nomenclature to assign functions to structures 
(Sillitoe et al., 2013).

At the highest level (class), the CATH database describes main folds based on sec-
ondary-structure prediction: mainly α, mixed α and β, and mainly β as well as a cate-
gory of few secondary structures. Assignment at this level resembles the SCOP  database 

The SCOP2 website is  http://
scop2.mrc-lmb.cam.ac.uk/ 
(WebLink 13.20). You can access 
data through its web browser or 
via SCOP2-graph, a graph-based 
web tool.

CATH is accessed at  http://
www.cathdb.info (WebLink 13.21). 
Version 4.0 includes about 235,000 
domains and 2700 superfamilies 
from >69,000 annotated PDB 
structures (February 2015).

FiGure  13.16 The Structural Classification of Proteins-extended (SCOPe) database includes a 
 hierarchy of terms. The results of a search for myoglobin are shown, including its membership in a class 
(all alpha proteins), fold, superfamily, and family. Two of the myoglobin structures are shown, including 
their PDB accessions, species and taxonomy identifiers, domain assignment, and complexed ligands. 

Source: SCOPe. Fox et al. (2014). Courtesy of SCOPe.

http://scop2.mrc-lmb.cam.ac.uk/
http://scop2.mrc-lmb.cam.ac.uk/
http://www.cathdb.info
http://www.cathdb.info
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FiGure 13.17 The CATH resource organizes protein structures by a hierarchical scheme of class, 
architecture, topology (fold family), and homologous superfamily (globins are highlighted). The hierar-
chy can be browsed using an interactive wheel at the CATH website (  http://www.cathdb.info). 

Source: CATH. Courtesy of Dr I. Sillitoe.

system (table 13.6). The architecture (A) level of CATH describes the shape of the domain 
 structure as determined by the orientations of the secondary structures. Examples are the 
TIM barrel (named for triose phosphate isomerase) and jelly roll. These assignments are 
made by expert judgment rather than by an automated process.

The topology (T) level of CATH describes fold families. Protein domains are clus-
tered into families using several approaches including the SSAP algorithm of Taylor and 
Orengo (1989a,  b). While at the Architecture level proteins share structural elements, 
they may differ in their connectivities; at the topology level structures are assembled into 

The SCOP classification system 
distinguishes alpha and beta 
proteins (α/β, consisting of 
mainly parallel beta sheets 
with β-α-β units) from α + β 
(mainly antiparallel beta sheets, 
segregating α and β regions). 
CATH does not make this 
distinction.

http://www.cathdb.info
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(a) CATH globin superfamily

(b) Superposition of globin superfamily members in CATH

FiGure 13.18 (a) A search of the CATH database with the term myoglobin (or hemoglobin) leads to a 
view of the globin superfamily. (b) This is richly annotated with Gene Ontology and Enzyme Commission 
functional assignments, and a variety of links (upper left of figure) such as superfamily superposition. 

Source: CATH. Courtesy of Dr I. Sillitoe.

groups sharing both shape and connectivity. Proteins sharing topologies in common are 
not necessarily homologous. In contrast, the homologous superfamily (H) level clusters 
proteins that are likely to share homology (i.e., descent from a common ancestor).

Dali Domain Dictionary
Dali is an acronym for distance matrix alignment. The Dali database provides a classifica-
tion of all structures in PDB and a description of families of protein sequences associated 

The SSAP algorithm compares 
two protein structures. It can be 
accessed at  http://www.cathdb.
info/cgi-bin/cath/GetSsapRasmol.
pl (WebLink 13.22). To compare 
two globins, try using 3rgk (a 
myoglobin structure) and 4hhbB  
(a beta globin structure). The 
output includes a PDB file, an 
option to launch Rasmol, and 
alignments in several formats.

http://www.cathdb.info/cgi-bin/cath/GetSsapRasmol.pl
http://www.cathdb.info/cgi-bin/cath/GetSsapRasmol.pl
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with representative proteins of known structure (Holm and Sander, 1993, 1996). For pairwise 
alignments, Dali uses a distance matrix that contains all pairwise distance scores between Cα 
atoms in two structures. These scores from structural alignments are derived as a weighted sum 
of similarities of intramolecular distances. The Dali output reports Z scores which are  useful 
to report biologically interesting matches of proteins, even if they are of different lengths.

Dali can be used to compare two structures with the DaliLite server (Holm et al., 
2006, 2008). An example is shown in Figure 13.19 for myoglobin and beta globin. The 
result includes a Jmol interactive viewer that superimposes the two structures. You can 
also search the Dali database with a query, and browse a comprehensive classification of 
folds. For example, a search of the Dali fold index at the website hosted in Finland yields 
a classification of structural domains in PDB90 (a subset of the PDB in which no two 
chains share more than 90% sequence identity).

Dali is at  http://ekhidna.
biocenter.helsinki.fi/dali/start 
(WebLink 13.23).

(a) DaliLite query form 
(with myoglobin and alpha globin accessions)

(c) DaliLite summary of results and pairwise structural alignments

(b) DaliLite structure comparison with Jmol

DSSP  LLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHLHHHHHHLHHHLllllhhhHHLLHH
Query GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDRFKhlksedeMKASED   60
ident  ||      |   |||| |     | | | | |   | |   |  |           |  
Sbjct VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFD------lSHGSAQ   54
DSSP  LLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHLHHHHHHLLLLL------lLLLLHH

DSSP  HHHHHHHHHHHHHHHHLLLLLLHHHHHHHHHHHHHLLLLLHHHHHHHHHHHHHHHHHHLL
Query LKKHGATVLTALGGILKKKGHHEAEIKPLAQSHATKHKIPVKYLEFISEAIIQVLQSKHP  120
ident  | ||  |  ||                |   || |           |      |    |
Sbjct VKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLP  114
DSSP  HHHHHHHHHHHHHHHHHLHHHHHHHLHHHHHHHHHLLLLLLHHHHHHHHHHHHHHHHHLL

DSSP  LLLLHHHHHHHHHHHHHHHHHHHHHHHhl
Query GDFGADAQGAMNKALELFRKDMASNYKel  149
ident   |         | |        | |   
Sbjct AEFTPAVHASLDKFLASVSTVLTSKYR--  141
DSSP  LLLLHHHHHHHHHHHHHHHHHHLLLLL--

FiGure 13.19 The Dali server allows a comparison of two 3D structures based on analyses using 
distance matrices. (a) The PDB identifiers for myoglobin and beta globin are entered in the input form. 
(b) The output includes a pairwise structural alignment. (c) The output also includes a Z score (here a 
highly significant value of 21.4) based on quality measures such as: the resolution and amount of shared 
secondary structure; a root mean squared deviation (RMSD); percent identity; and a sequence alignment 
indicating secondary structure features. 

Source: Holm and Rosenström (2010). Dali Server.

http://ekhidna.biocenter.helsinki.fi/dali/start
http://ekhidna.biocenter.helsinki.fi/dali/start
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Comparison of resources

We have described SCOP, CATH, and the Dali Domain Dictionary. Many other  databases 
are available that classify and analyze protein structures, and some of these are listed 
in table 13.7. It is notable that for some proteins, such as the four listed in table 13.8, 
authoritative resources such as SCOP, CATH, and Dali-based databases provide different 
estimates of the number of domains in a protein (Sillitoe et al., 2013 review the extent 
of overlap between CATH and SCOP). The field of structural biology provides rigorous 
measurements of the three-dimensional structure of proteins, and yet classifying domains 
can be a complex problem requiring expert human judgments (Kolodny et al., 2013). 
There may be differing interpretations as to whether a particular segment of a protein 
exists as an independent folding unit, or whether the main principle of domain decompo-
sition involves compactness or the density of residue-residue contacts within a putative 
domain (as is the case for DomainParser). SCOP is especially oriented towards classify-
ing whole proteins, while CATH is oriented towards classifying domains.

The Genome3D project was established to facilitate comparisons between three-di-
mensional model predictions and structural annotation from leading resources (Lewis et 
al., 2013). Genome3D also involves a collaboration to map common entries in the SCOP 
and CATH databases.

PrOtein Structure PreDictiOn
Structure prediction is a major goal of proteomics. There are three principal ways to 
predict the structure of a protein (Fig. 13.20; Cozzetto and Tramontano, 2008; Pav-
lopoulou and Michalopoulos, 2011). First, for a protein target that shares substantial 

You can access DomainParser 
at  http://compbio.ornl.gov/
structure/domainparser/  
(WebLink 13.24).

Genome3D is available at  http://
genome3d.eu/ (WebLink 13.25).

taBle 13.7 partial list of protein structure databases.

Database Comment URL

3dee Structural domain definitions http://www.compbio.dundee.ac.uk/3Dee/

Enzyme Structures Databases Enzyme classifications and nomenclature http://www.ebi.ac.uk/thornton-srv/databases/enzymes/

FATCAT Flexible structure alignment by chaining 
aligned fragment pairs allowing twists

http://fatcat.burnham.org/

PDBeFold Secondary-structure matching for fast protein 
structure alignment in three dimensions

http://www.ebi.ac.uk/msd-srv/ssm/

PDBePISA Proteins, interfaces, structures and assemblies http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html

NDB Database of three-dimensional nucleic acid 
structures

http://ndbserver.rutgers.edu/

PDBSum Summary information about protein structures http://www.ebi.ac.uk/pdbsum/

SWISS-MODEL Repository Database of annotated three-dimensional 
comparative protein structure models

http://swissmodel.expasy.org/repository/

taBle 13.8 proteins having different numbers of domains assigned by SCOp, Cath, 
and Dali. Values are the number of domains assigned by each database. Data from 
Cath, SCOp, and Dali from the protein Data Bank (http://www.pdb.org).

Name PDB accession SCOP CATH DALI

Glycogen phosphorylase 1gpb 1 2 3

Annexin V 1avh_A 1 4 4

Submaxillary renin 1smr_A 1 2 1

Fructose-1,6-bisphosphatase 5fbp_A 1 2 2

http://www.compbio.dundee.ac.uk/3Dee/
http://www.ebi.ac.uk/thornton-srv/databases/enzymes/
http://fatcat.burnham.org/
http://www.ebi.ac.uk/msd-srv/ssm/
http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
http://ndbserver.rutgers.edu/
http://www.ebi.ac.uk/pdbsum/
http://swissmodel.expasy.org/repository/
http://compbio.ornl.gov/structure/domainparser/
http://genome3d.eu/
http://genome3d.eu/
http://www.pdb.org
http://compbio.ornl.gov/structure/domainparser/
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obtain sequence ("target")

find known structures
(templates) related
to the novel sequence

align the sequence 
with the template

build a model

assess the model

assume the native state
of the protein is at the global
free energy minimum

search for tertiary structures
that are low in free energy

build a model

assess the model

fold assignment

comparative modeling ab initio predictionfold recognition

obtain a library
of known folds

“thread” the target on
different folds; obtain scores 

to evaluate compatibility

build a model

assess the model

FiGure 13.20 Approaches to predicting protein structures (adapted from Baker and Sali, 2001). 
Comparative modeling is the most powerful approach when a target sequence has any indications of 
homology with a known structure. Threading is used to compare segments of a protein to a library of 
known folds. In the absence of homologous structures, ab initio prediction is used to model protein 
structure. Adapted from Baker and Sali (2001).

similarity to other proteins of known structure, homology modeling (also called com-
parative modeling) is applied. Second, for proteins that share folds but are not necessar-
ily homologous, threading is a major approach. Proteins that are analogous (related by 
convergent evolution rather than homology) can be studied this way. Third, for targets 
lacking identifiable homology (or analogy) to proteins of known structure, ab initio 
approaches are applied.

homology Modeling (Comparative Modeling)

While over 100,000 protein structures have been deposited in PDB, over half a million 
protein sequences have been deposited in the SwissProt database and 84 million more 
in TrEMBL (Chapter 12). For the vast majority of proteins, the assignment of structural 
models relies on computational biology approaches rather than experimental determi-
nation. As protein structures continue to be solved by X-ray crystallography and NMR 
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spectroscopy, the most reliable method of modeling and evaluating new structures is by 
comparison to previously known structures (Baker and Sali, 2001; Jones, 2001). This is 
the method of comparative modeling of protein structure, also called homology model-
ing. This method is fundamental to the field of structural genomics.

Comparative modeling consists of four sequential steps (Marti-Renom et al., 2000).

 1. Template selection and fold assignment are performed. This can be accomplished 
by searching for homologous protein sequences and/or structures with tools such as 
BLAST and DELTA-BLAST. The target can be queried against databases described 
in this chapter, such as PDB, CATH, and SCOP. As part of this analysis, structurally 
conserved regions and structurally variable regions are identified. It is common for 
structurally variable regions to correspond to loops and turns, often at the exterior of 
a protein.

 2. The target is aligned with the template. As for any alignment problem, it is espe-
cially difficult to determine accurate alignments for distantly related proteins. For 
30% sequence identity between a target and a template protein, the two proteins are 
likely to have a similar structure if the length of the aligned region is sufficient (e.g., 
more than 60 amino acids). The use of multiple sequence alignments (Chapter 6) can 
be especially useful.

 3. A model is built. A variety of approaches are employed, such as rigid-body assembly 
and segment matching.

 4. The model must be evaluated (see below).

There are several principal types of errors that occur in comparative modeling (see 
Marti-Renom et al., 2000):

 • errors in side-chain packing;
 • distortions within correctly aligned regions;
 • errors in regions of a target that lack a match to a template;
 • errors in sequence alignment; and
 • use of incorrect templates.

The accuracy of protein structure prediction is closely related to the percent sequence 
identity between a target protein and its template (Fig. 13.21). When the two proteins share 
50% amino acid identity or more, the quality of the model is usually excellent. For exam-
ple, the root-mean-square deviation (RMSD) for the main-chain atoms tends to be 1 Å in 
such cases. Model accuracy declines when comparative models rely on 30–50% identity, 
and the error rate rises rapidly below 30% identity. De novo models are able to generate 
low-resolution structure models.

Many web servers offer comparative modeling including quality assessment, such 
as SWISSMODEL at ExPASy, MODELLER, and the PredictProtein server (table 13.9). 
After a model is generated it is necessary to assess its quality. The goal is to assess whether 
a particular structure is likely, based on a general knowledge of protein structure principles. 
Criteria for quality assessment may include whether the bond lengths and angles are 
appropriate; whether peptide bonds are planar; whether the carbon backbone conforma-
tions are allowable (e.g., following a Ramachandran plot); whether there are appropriate 
local environments for hydrophobic and hydrophilic residues; and solvent accessibility. 
Quality assessment programs include VERIFY3D, PROCHECK, and WHATIF at CMBI 
(Netherlands; table 13.9).

Fold recognition (threading)

While there are currently >100,000 entries in the Protein Data Bank, there may be only 
1000–2000 distinct folds in nature. Fold recognition, also called threading, is useful when 

In Chapter 3, we discussed the 
importance of the length of the 
alignment in considering percent 
identity between two proteins.
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FiGure 13.21 Protein structure prediction and accuracy as a function of the relatedness of a novel 
structure to a known template. Modified from Baker and Sali (2001). aa: amino acids. Used with  
permission.

taBle 13.9 Websites for structure prediction by comparative modeling, and for 
quality assessment.

Website Comment URL

3D-JIGSAW Laboratory of Paul Bates http://bmm.cancerresearchuk.
org/~3djigsaw/ 

Geno3D POLE http://pbil.ibcp.fr/htm/index.php 

MODELLER From Andrej Sali’s group http://www.salilab.org/modeller/

PredictProtein Laboratory of Burkhard Rost http://www.predictprotein.org/

SWISS-MODEL ExPASy http://swissmodel.expasy.org/

PROCHECK Quality assessment http://www.ebi.ac.uk/thornton-
srv/software/PROCHECK/

VERIFY3D Quality assessment http://nihserver.mbi.ucla.edu/
Verify_3D/

WHATIF Quality assessment http://swift.cmbi.ru.nl/whatif/

a target sequence of interest lacks identifiable sequence matches and yet may have folds 
in common with proteins of known structure. The target might assume a fold that occurs 
in a characterized protein because of convergent evolution, or because the two proteins 
are homologous but extremely distantly related. An input sequence is parsed into subfrag-
ments and “threaded” onto a library of known folds. Scoring functions allow an assess-
ment of how compatible the sequence is with known structures. A variety of web servers 
provide automatic threading.

Websites for fold recognition 
include 3D-PSSM (  http://
www.sbg.bio.ic.ac.uk/~3dpssm/
index2.html, WebLink 13.26) and 
its successor PHYRE (  http://
www.sbg.bio.ic.ac.uk/~phyre/, 
WebLink 13.27), FUGUE (  
http://tardis.nibio.go.jp/fugue/, 
WebLink 13.28).

http://bmm.cancerresearchuk.org/~3djigsaw/
http://pbil.ibcp.fr/htm/index.php
http://www.salilab.org/modeller/
http://www.predictprotein.org/
http://swissmodel.expasy.org/
http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
http://nihserver.mbi.ucla.edu/Verify_3D/
http://swift.cmbi.ru.nl/whatif/
http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html
http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html
http://www.sbg.bio.ic.ac.uk/~3dpssm/index2.html
http://www.sbg.bio.ic.ac.uk/~phyre/
http://www.sbg.bio.ic.ac.uk/~phyre/
http://tardis.nibio.go.jp/fugue/
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Ab Initio prediction (template-Free Modeling)

In the absence of detectable homologs, protein structure may be assessed by ab initio 
(or de novo) structure prediction. “Ab initio,” meaning “from the beginning,” is the most 
difficult approach to structure prediction (Osguthorpe, 2000; Simons et al., 2001; Jothi, 
2012). It is based on two assumptions: (1) all the information about the structure of a 
protein is contained in its amino acid sequence; and (2) a globular protein folds into the 
structure with the lowest free energy. Finding such a structure requires both a scoring 
function and a search strategy. While the resolution of ab initio methods is generally low, 
this approach is useful to provide structural models.

The Rosetta method is one of the most successful ab initio strategies (Simons et al., 
2001; Rohl et al., 2004; Adams et al., 2013). The target protein is evaluated in fragments 
of nine amino acids. These fragments are compared to known structures in PDB. From 
this analysis, structures can be inferred for the entire peptide chain. Typically, models 
generated with Rosetta have accuracies of 3–6 Å root mean square deviation from known 
structures for aligned segments of 60 or more amino acids (Rohl et al., 2004). Bonneau et 
al. (2002) used the Rosetta method to model the structure of all Pfam-A sequence fami-
lies (Chapter 6) for which three-dimensional structures are unknown. By calibrating their 
method on known structures, they estimated that for 60% of the proteins studied (80 of 
131), one of the top five ranked models successfully predicted the structure within 6.0 Å 
RMSD.

a Competition to assess progress in Structure prediction

How well can the community predict the structures of proteins, particularly those with 
novel folds? The state-of-art protein prediction is assessed by the structural genomics 
community at Critical Assessment of Techniques for Protein Structure Prediction (CASP; 
Kryshtafovych et al., 2014a). This structure prediction experiment (or competition) has 
occurred every two years since the first competition in 1996. While 35 groups participated 
in CASP1, over 200 prediction servers and manual groups joined CASP10 in 2012, com-
ing from dozens of countries. Approximately 100 experimentally determined targets were 
evaluated, and tens of thousands of models were deposited with a team of assessors. The 
structures of the targets were known but withheld from publication so that the community 
could perform predictions in a blind fashion (Kryshtafovych et al., 2014b). Predictors 
consisted of either scientists who performed modeling of each target, or automatic servers 
that produced predictions in a short time period (48 hours) without human intervention. 
By 2014, CASP11 generated nearly 60,000 predictions.

The CASP targets include those that require:(1) comparative modeling with close 
evolutionary relationships (e.g., those identifiable by BLAST); (2) comparative model-
ing to distantly related targets (e.g., those requiring PSI- or DELTA-BLAST or hidden 
Markov models to detect relationships of a template to proteins having known structure); 
(3) threading; (4) template-free modeling; (5) refinement of protein models; or (6) assess-
ment of intramolecular residue-residue contacts (Monastyrskyy et al., 2014a; Nugent et 
al., 2014; Taylor et al., 2014). Kryshtafovych et al. (2014a) reviewed the overall progress 
of CASP. In its first 10 years (CASP1 through CASP5) there was substantial improve-
ment in model quality. In the second decade, improvements through CASP10 have been 
more modest, with overall model accuracy being comparable to that in CASP5. There are 
several reasons for this. Each target undergoes comparative modeling using an existing 
experimental structure as a guide that may be superimposed on the target. There has 
been progress in the ability to identify best templates (with 10% improvement in the 
past decade), partly through the development of methods involving multiple templates. 
The increased availability of known structures has however (surprisingly) made it more 
difficult to identify best templates in some cases. Major challenges include: the need for 

The Robetta server from David 
Baker’s lab, located at  http://
robetta.bakerlab.org/ (WebLink 
13.29), applies the Rosetta method 
(Kim et al., 2004).

http://robetta.bakerlab.org/
http://robetta.bakerlab.org/
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improved alignments; the need for models of close evolutionary relationships to approach 
the accuracy obtained by experimental structure determination; the need to better refine 
models of remote evolutionary relationships; and the need to discriminate among the best 
template-free models (Moult, 2005; Tai et al., 2005; Moult et al., 2007).

The CASP website provides detailed results of the competition. One criterion for the 
accuracy of a prediction is the GDT_TS metric which compares the difference in  position 
of the main chain Cα atoms in a model relative to the position in the experimentally 
determined structure. Figure 13.22 shows examples of an easy protein target from CASP10 
that was solved by most groups (Fig. 13.22a) and a difficult target that no group solved 
(Fig. 13.22b). Figure 13.22c depicts an example of a target that was aligned either very well 
or very poorly by many groups; those with poor results misaligned the sequence of the 
target, highlighting the difficulty of correctly aligning a target sequence onto available 
template structures for template-based models.

intrinSically DiSOrDereD PrOteinS
Jane Dyson and Peter Wright (2006) wrote an article entitled “According to current text-
books, a well-defined three-dimensional structure is a prerequisite for the function of a 
protein. Is this correct?” Many proteins do not adopt stable three-dimensional structures, 
and this may be an essential aspect of their ability to function properly. Intrinsically dis-
ordered proteins are defined as having unstructured regions of significant size such as 
at least 30 or 50 amino acids (Dyson and Wright, 2005; Le Gall et al., 2007; Radivojac 
et al., 2007; Babu et al., 2012; Bellay et al., 2012). Such regions do not adopt a fixed 
three-dimensional structure under physiological conditions, but instead exist as dynamic 
ensembles in which the backbone amino acid positions vary over time without adopting 
stable equilibrium values.

Keith Dunker and colleagues have estimated that about 10% of the PDB proteins have 
disordered regions longer than 30 amino acids (Le Gall et al., 2007). Only ∼7% of the 
 protein structures in PDB correspond to the full-length sequence in Swiss-Prot (and only 
∼25% of the proteins correspond to the structures that match >95% of the length of the 
 protein in Swiss-Prot). The lack of full-length sequences among proteins with solved struc-
tures may reflect the common occurrence of intrinsic disorder. Furthermore, these authors 
suggest that >25% of the proteins in SwissProt have disordered regions. DisProt, the Data-
base of Disordered Proteins, centralizes information on this class of proteins (Sickmeier 
et al., 2007). The Protein Structure Initiative has encountered great difficulty in obtaining 
many crystal structures, and analyses by Johnson et al. (2012) indicate that many of those 
challenging proteins contain long intrinsically disordered regions. Similarly, such disor-
dered regions present challenges in the CASP experiments (Monastyrskyy et al., 2014b).

Intrinsically disordered regions may have important cellular functions (Babu et al., 
2012). They may change conformation upon binding to a biological target (a ligand) in a 
process in which folding and binding are coupled. Many disordered regions of proteins 
are highly conserved, consistent with their having functionally important roles. Dunker 
et al. (2005) discuss the role of intrinsic disorder in protein–protein interaction networks, 
in which it is thought that the average protein has few connections but “hub” proteins 
serve central roles with many (tens to hundreds) of links. Intrinsic disorder in hub proteins 
could facilitate their ability to bind to structurally diverse protein partners.

PrOtein Structure anD DiSeaSe
The linear sequence of amino acids specifies the three-dimensional structure of a 
protein. A change in even a single amino acid can cause a profound disruption in 
structure. For example, cystic fibrosis is caused by mutations in the gene-encoding 

The Protein Structure 
Prediction Center organizes 
CASP information (  http://
predictioncenter.org/, WebLink 
13.30) including results from 
each CASP competition.

The Database of Intrinsic 
Disorder is available at  http://
www.disprot.org/ (WebLink 
13.31). As of March 2015 it 
includes ∼700 proteins and >1500 
disordered regions.

http://predictioncenter.org/
http://predictioncenter.org/
http://www.disprot.org/
http://www.disprot.org/
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(a) CASP10 target T0645-D1: solved by most teams 

(b) CASP10 target T0658-D1: not solved by any team

(c) CASP10 target T0651-D1: solved by many teams, misaligned by many teams
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FiGure 13.22 Examples of results from the CASP10 competition. Each plot (called a GDT plot or “Hubbard plot”) shows the percent of CA 
or Cα residues (i.e., the percent of the modeled structure; x axis) versus the distance cutoff in Ångstroms (from 0 Å to 10 Å; y axis). Each line rep-
resents a summary of a single prediction of that protein’s structure; multiple lines are from the many groups that submitted predictions. (a) Example 
of a protein target (T0645) whose structure was modeled extremely well by many teams participating in the CASP competition. Note that a very 
high percentage of the residues in the predictions that could be overlaid on the correct structure (x axis values approaching 100%) with only a very 
small RMSD (distance cutoff, y axis) as indicated by arrow 1. A small number of predictions were wrong (arrow 2) because they correctly matched 
the true structure over only a small percent of residues even at large distance cutoffs. (b) Example of a protein target (T0658) whose true structure 
was not predicted by any group in the CASP competition. Several groups’ predictions (colored lines from the Seok, Jiang, and Zhang groups) were 
better than all others. (c) Example of a target (T0651) that was predicted incorrectly by many teams (arrow 3) but correctly by others (arrow 4). Such 
a broad discrepancy in prediction accuracy is often attributable to incorrect sequence alignments in homology modelling. 

Source: CASP10 results at  http://www.predictioncenter.org. Reproduced with permission from University of California, Davis.

http://www.predictioncenter.org
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cystic fibrosis transmembrane regulator (CFTR; Ratjen and Döring, 2003). The most 
common mutation is ΔF508, a deletion of a phenylalanine at position 508. The con-
sequence of removing this residue is to alter the alpha helical content of the protein 
(Massiah et al., 1999). This in some way impairs the ability of the CFTR protein to 
traffic through the secretory pathway to its normal location on the plasma membrane 
of lung epithelial cells.

Changes in protein sequence that are associated with disease do not necessarily cause 
large changes in protein structure. An example is provided by sickle cell anemia (Online 
Mendelian Inheritance in Man or OMIM #603903), the most common inherited blood 
disorder. It is caused by mutations in the gene encoding beta globin on chromosome 
11p15.4. Adult hemoglobin is a tetramer consisting of two alpha chains and two beta 
chains. The protein carries oxygen in blood from the lungs to various parts of the body. 
A substitution of a valine for a normally occurring glutamic acid residue forms a hydro-
phobic patch on the surface of the beta globin, leading to clumping of many hemoglobin 
molecules.

Many human diseases are associated with defective protein folding. This may lead to 
a toxic gain of function as is thought to occur in Alzheimer’s disease (OMIM #104300), 
 Parkinson’s disease, Huntington’s disease, and prion diseases (Hartl and  Hayer-Hartl, 
2009). Several examples of proteins associated with human disease are listed in  table 13.10, 
including CFTR and beta globin.

Earlier in this chapter we described the high-resolution structure of a G  protein-coupled 
receptor (GPCR). Of all 21,000 drugs listed by the Food and Drug Administration, 
there are >1300 unique drugs which affect just 324 drug targets (Pitt et al., 2009). Half 
of all drugs act upon four protein families: GPCRs; nuclear receptors; ligand-gated ion 
channels; and voltage-gated ion channels. PDB contains structures for >100 of these 
targets.

David Baker and 70 colleagues performed a community experiment to assess the 
ability to predict the effects of mutations on protein–protein interactions (Moretti et al., 
2013). They designed two proteins capable of binding to hemagglutinin from influenza 
virus (Chapter  16), then created single point mutant variants corresponding to all 20 
amino acids at all positions of these short proteins. Computational predictions of the 
effects of mutations on protein–protein binding were compared to experimentally derived 
measurements. About a third of the mutations associated with increased binding were 
identified (at a 10% false discovery rate). The factors that led to the most accurate pre-
dictions included consideration of protein stability, packing, electrostatics, and solvation. 
As more such datasets become available, prediction methods can be expected to improve. 

You can access a brief definition 
of the hemoglobin chains at 
NCBI’s Gene. You can also find 
a link there to Online Mendelian 
Inheritance in Man, which 
provides a detailed description 
of the clinical and molecular 
consequences of globin gene 
mutations. We discuss OMIM 
and sickle cell anemia in 
Chapter 21.

taBle 13.10 examples of proteins associated with diseases for which subtle change 
in protein sequence leads to change in structure. CFtr: cystic fibrosis transmembrane 
regulator. Note that OMiM refers to the disease entry (rather than the protein entry) 
and pDB refers to the accession of an example of the protein structure, cited on the 
NCBi protein site.

Disease OMIM Gene/Protein RefSeq PDB

Alzheimer disease #104300 Amyloid precursor protein NP_000475.1 2M4J

Cystic fibrosis #219700 CFTR NP_000483.3 2LOB

Huntington disease #143100 Huntingtin NP_002102.4 4FED

Creutzfeldt-Jakob disease #123400 Prion protein NP_000302.1 2M8T

Parkinson disease #168600 alpha-synuclein isoform 
NACP140

NP_000336.1 2M55

Sickle cell anemia #603903 Hemoglobin beta NP_000509.1 2M6Z
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These studies are relevant to the interpretation of the clinical significance of single-nucle-
otide variations in human genomes, as many such variants are expected to have deleteri-
ous effects on both binding interactions and hence on fitness.

PerSPective
The aim of structural genomics is to define structures that span the entire space of protein 
folds. This project has many parallels to the Human Genome Project. Both are ambitious 
endeavors that require the international cooperation of many laboratories. Both involve 
central repositories for the deposit of raw data, and in each the growth of the databases is 
exponential.

It is realistic to expect that the great majority of protein folds will be defined in the 
near future. Each year, the proportion of novel folds declines rapidly. A number of lessons 
are emerging:

 • proteins assume a limited number of folds;
 • a single three-dimensional fold may be used by proteins to perform entirely distinct 
functions; and

 • the same function may be performed by proteins using entirely different folds.

PitfallS
One of the great mysteries of biology is how the linear amino acid sequence of a pro-
tein folds quickly into the correct three-dimensional conformation. One set of challenges 
concerns the experimental solution of three-dimensional structures that span the extent 
of sequence space. At the present time, no representative structures have been solved 
for thousands of protein families. Another set of challenges concerns protein structure 
prediction. While structures can be predicted with high confidence when a closely related 
template of known structure is available, it is still difficult to predict entirely novel protein 
structures. Ab initio methods are continually improving, particularly for predicting the 
structures of small proteins.

aDvice fOr StuDentS
Choose one protein of interest that has a known structure and has been described in the 
 literature, and analyze it in depth. An example is a neurotransmitter receptor that functions 
as a chloride channel (PDB structure 3rhw; Hibbs and Gouaux, 2011; see computer lab 
problem (13.5) below). Follow the principles of primary, secondary, tertiary, and quaternary 
structure. Try to reproduce the figures in the paper(s) you choose. Compare its structure to 
other known structures in databases (e.g., via BLAST) and perform direct structural com-
parisons. Explore its folds, domains, and other features from SCOP and CATH.

Discussion Questions
[13-1] The Protein Data Bank (PDB) is 
the central repository of protein struc-
ture data. What do databases such as 
SCOP and CATH offer that PDB lacks?

[13-2] A general rule is that protein structure evolves 
more slowly than primary amino sequence. Two proteins 
can therefore have only limited amino acid sequence iden-

tity, while sharing highly similar structures. (A good exam-
ple of this is the lipocalins, where retinol-binding protein, 
odorant-binding protein, and β-lactoglobulin share highly 
related structures with low sequence identity.) Are there 
likely to be exceptions to this general rule?
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prOBleMS/COMputer laB
[13-1] View the structure of a protein using Cn3D at 
NCBI. (1) Download Cn3D from the NCBI Structure site 
(  http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.
shtml, WebLink 13.32). (2) Go to NCBI Entrez Structures 
and select a lipocalin. You can access this from the main 
NCBI page by navigating to “structure.” Alternatively, in 
Entrez you can type a query, select “limits,” and restrict 
the output to PDB. If you select “odorant-binding protein,” 
there are entries for odorant-binding proteins from several 
different species. From cow, there are entries deposited 
independently from different research groups (e.g., PDB 
identifiers 1OBP, 1PBO). (3) Select “View 3D Structure” 
in the MMDB web page. Explore the links on the page. 
Click “View/Save Structure.” (4) Two windows open: the 
Cn3D viewer and the 1D-viewer. Click on each of these, 
and notice how they are interconnected. Change the “style” 
of the Cn3D viewer. Identify the α helices and β sheets of 
the protein.

[13-2] View the structure of a protein using Jmol at PDB. 
(1) Go to  http://www.pdb.org (WebLink 13.33) and enter 
the term 4HHB (for hemoglobin) in the search box. Note 
that the title of this page is “the crystal structure of human 
deoxyhaemoglobin at 1.74 angstroms resolution.” An icon 
at the top includes the option to download the PDB file to 
your desktop; by doing this you can easily load the 4HHB 
file into other programs later. Next, under the heading 
“display options” click Jmol. (2) The Jmol program opens 
(running Java) without the need to install software locally. 
There are pull-down menus and command tabs along the 
side and bottom of the image of hemoglobin, including a 
help document. Explore its dozens of features including 
viewing options.

[13-3] View the structure of a protein using DeepView 
at ExPASy. (1) Visit the website for DeepView, the Swiss 
PDB Viewer, at  http://expasy.org/spdbv/ (WebLink 13.34). 
Select download and install the software locally. (2) Open 
the file 3RGK (a myoglobin PDB file). You can find this 
by  visiting PDB (http://www.pdb.org), querying 3RGK, 
and downloading the PDB file to your desktop. There is 
a main toolbar (see Fig. 13.2b); use its File → Open com-
mand. (3) Under the Window pull-down menu, open the 
control panel. Click the column header “show” to deselect 
all the amino acid residues, then click the first two to view 
just them. On the main toolbar, click the ω, φ, ψ button 
(see Fig. 13.2b) to view the bond angles. (4) Compare the 
structures of two lipocalins using VAST at NCBI:

 • Go back to the MMDB page for 1PBO and select 
“Structure neighbors.” (This can be accessed by mousing 
over the protein graphic.) You are now looking at the 

NCBI VAST (Vector Alignment Search Tool) site. There 
is a list of proteins related to OBP. Select one or two 
other proteins, such as β-lactoglobulin or retinol-binding 
protein, by clicking on the box(es) to the left. Now view/
save the alignments.

 • Notice that two windows open up: Cn3D and DDV (the 
two-dimensional viewer). Again, explore the relationship 
between these two visualization tools. What are the 
similarities between the proteins you are comparing? 
What are their differences? Highlight the regions of 
conserved amino acids both in the alignment viewer 
and the graphical viewer. Where are the invariant GXW 
residues located?

[13-4] Compare the structures of two homologous proteins 
using Dali at  http://ekhidna.biocenter.helsinki.fi/dali/
start (WebLink 13.35). Try structures such as 1PBO (for 
an odorant-binding protein) and 1RBP (for retinol-binding 
protein). Are the structures significantly related? By what 
criteria? Are the sequences significantly related, and by 
what criteria?

[13-5] This problem involves identifying a known struc-
ture related to your sequence of interest, and then model-
ing the structure of your protein. A child has seizures and 
intellectual disability. To try to find the genetic cause you 
sequence the exome of the child and his parents, and find 
a de novo mutation (M79nn) in GABRB encoding the beta 
subunit of the GABA receptor. (1) Find a related structure 
by identifying the GABRB protein sequence at NCBI, and 
performing a BLASTP search restricted to the PDB. Alter-
natively, you can go to PDB and perform a database search. 
(2) Vist the SWISS-MODELLER (via ExPASy), register, 
and go to the SwissModel Automatic Modelling Mode. 
There, paste in the FASTA-formatted GABRB protein, and 
specify the PDB accession of the closest related known 
structure (e.g., 3rhw chain A).

[13-6] Titin is the largest human protein (>34,000 amino 
acids). What is known about its structure, including 
domains? Try the following:

 • the NCBI structure page;
 • the PDB (see http://www.rcsb.org/pdb/101/motm.do? 
momID=185);

 • CATH or SCOP;
 • a BLASTP search against the PDB at the NCBI website.

[13-7] Sickle-cell anemia is caused by a specific mutation 
in HBB, E7V (i.e., a glutamic acid residue at amino acid 
position 7 is substituted with a valine). As a consequence 
of this mutation, hemoglobin tetramers can clump together. 
This causes the entire red blood cell to deform, adopting 
a sickled shape. Use PDB identifier 4HHB for wildtype 

http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml
http://www.pdb.org
http://expasy.org/spdbv/
http://www.pdb.org
http://ekhidna.biocenter.helsinki.fi/dali/start
http://www.rcsb.org/pdb/101/motm.do?momID=185
http://www.rcsb.org/pdb/101/motm.do?momID=185
http://ekhidna.biocenter.helsinki.fi/dali/start
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hemoglobin and 2HBS for a mutant form. Compare the 
structures using the VAST tool at NCBI. Is the glutamate 
at position 7 on the surface of the protein or is it buried 
inside? Does the mutation to a valine cause a change in 
the predicted secondary or tertiary structure of the protein?

[13-8] One way to obtain a list of identifiers for protein 
structures is by using a Perl script to query NCBI databases. 
For those without experience of writing Perl scripts, NCBI 
offers an interactive web tool called EBot. This constructs 
an E-utility pipeline. (1) Visit the EBot web page (  http://
www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/ebot/ebot.
cgi, WebLink 13.36). (2) Enter your email address (note 
that you could have selected from dozens of databases to 

begin). (3) Enter a PubMed text query, Perutz M[Au]. This 
should limit results to articles by Max Perutz. Click “Add 
Step to Pipeline.” (4) Choose “Link the entire dataset to 
one set of related records (elink)” and “Build Step.” (5) 
Scroll down to select “Structure Links” then “Add Step to 
Pipeline.” (6) Choose “Stop here and download the UIDs” 
then Build Step. (7) Provide an output file name (ebot_glo-
bins) and “End Pipeline.” (8) Choose a file name (e.g., 
ebot1.pl) and generate the Perl script. (9) Save the script to 
your computer, and run it by typing perl in Windows (use 
the command prompt), Mac OS/X (use the terminal), or 
Linux (use the shell). A copy of this Perl script is available 
as a text file (Web Document 13.2).

Self-test Quiz
[13-1] In comparing two homologous but 
distantly related proteins, which of the fol-
lowing is true?

(a) They tend to share more three- 
dimensional structure features in common than 
 percent amino acid identity.

(b) They tend to share more percent amino acid identity 
in common than three-dimensional structure fea-
tures.

(c) They tend to share three-dimensional structure fea-
tures and percent amino acid identity to a compara-
ble extent.

(d) It is not reasonable to generalize about the extent to 
which they share three-dimensional structure fea-
tures and percent amino acid identity.

[13-2] Protein secondary structure prediction algorithms 
typically calculate the likelihood that a protein forms:

(a) α helices;

(b) α helices and β sheets;

(c) α helices, β sheets, and coils; or

(d) α helices, β sheets, coils, and multimers.

[13-3] An advantage of X-ray crystallography relative to 
NMR for structure determination is that when using X-ray 
crystallography it is easier to:

(a) solve the structure of transmembrane domain-con-
taining proteins;

(b) grow crystals than prepare samples for NMR;

(c) interpret diffraction data; or

(d) determine the structures of large proteins.

[13-4] The Protein Data Bank (PDB):

(a) functions primarily as the major worldwide reposi-
tory of macromolecular secondary structures;

(b) contains approximately as many structures as there 
are protein sequences in SwissProt/TrEMBL;

(c) includes data on proteins, DNA–protein complexes, 
as well as carbohydrates; or

(d) is operated jointly by the NCBI and EBI.

[13-5] The NCBI VAST algorithm:

(a) is a web browser tool for the visualization of related 
protein structures by threading;

(b) is a visualization tool that allows the simultaneous 
comparison of as many as two structures;

(c) allows searches of all the NCBI structure database 
with queries that have known structures (i.e., having 
PDB accession numbers), but this tool is not useful 
for the analysis of uncharacterized structures; or

(d) allows searches of all the NCBI structure database 
entries against each other and provides a list of 
“structure neighbors” for a given query.

[13-6] Cn3D is a molecular structure viewer at NCBI. It 
features:

(a) a menu-driven program linked to automated homol-
ogy modeling;

(b) a command line interface useful for a variety of 
structure analyses;

(c) a structure viewer that is accompanied by a sequence 
viewer; or

(d) a structure viewer that allows stereoscopic viewing 
of structure images.

http://www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/ebot/ebot.cgi
http://www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/ebot/ebot.cgi
http://www.ncbi.nlm.nih.gov/Class/PowerTools/eutils/ebot/ebot.cgi
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SuggeSteD reaDing
There are many superb overviews of structural genomics and protein structure predic-
tion. For overviews on protein folding, see Dill et al. (2008), Fersht (2008) and Hartl 
and Hayer-Hartl (2009). The central structure repository PDB is described by Berman et 
al. (2013a). Structural genomics initiatives are reviewed and analyzed by Andreeva and 
Murzin (2010), Marsden et al. (2007), Chandonia and Brenner (2006), Levitt (2007), and 
others cited above. Michael Levitt and colleagues (Kolodny et al., 2013) have written a 
clear, thought-provoking review on the universe of protein folds including the problem of 
classifying structures according to domains. Very early but useful reviews are by Holm 
and Sander (1996, 1997).

Jenny Gu and Philip Bourne have edited an excellent textbook, Structural Bioinfor-
matics (2009).
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It is of great interest to understand the 
relationship between the genotype (e.g., 
having an altered chromosome number) 
and the phenotype (the appearance of 
the organism including its fitness). When 
an organism has an extra copy of a chro-
mosome it is trisomic. The mechanisms 
by which trisomy occurs were under-
stood in detail by the 1940s. The jimson-
weed (Datura stramonium L.), a flowering 
plant of the potato family (Solanaceae), 
normally has 12 pairs of chromosomes. 
Albert Blakeslee (1874–1954) investigated 
the seed capsule from wildtype Datura 
(top) and 12 distinct trisomic types. For 
each trisomic, a diagram of the extra 
chromosome is shown including a num-
bering system for the chromosome ends 
(telomeres). Blakeslee noted that since 
each chromosome has a distinctive set of 
genes, each trisomic plant has a distinc-
tive phenotype.

Source: Riley (1948, p.  420). Used with 
permission.
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Nil adeo quoniam natum’st in corpore, ut uti possemus, sed quod natum’st, id procreat 
usum. [In fact, nothing in our bodies was born in order that we might be able to use it, 
but rather, having been born, it begets a use.]

— Lucretius (c. 100–c. 55 bc), De Rerum Natura, IV, 834–835 (1772, p. 160)

A world of made is not a world of born.
— E. E. Cummings (1954, p. 397)

Functional Genomics C h a p t e r

14

LeARnInG oBjecTIves

Upon reading this chapter, you should be able to:
 ■ define functional genomics;
 ■ describe the key features of eight model organisms;
 ■ explain techniques of forward and reverse genetics;
 ■ discuss the relation between the central dogma and functional genomics; and
 ■ describe proteomics-based approaches to functional genomics.

IntroductIon to FunctIonal GenomIcs
A genome is the collection of DNA that comprises an organism. Functional genomics is 
the genome‐wide study of the function of DNA (including genes and nongenic elements) 
as well as the nucleic acid and protein products encoded by DNA. We may further con-
sider the meaning of the term functional genomics by considering some examples of the 
ways in which it has been characterized in recent years.

 • Functional genomics may be applied to the complete collection of DNA (the genome), 
RNA (the transcriptome), or protein (the proteome) of an organism. The assessment 
of RNA transcripts that are expressed at various times of development or various 
body regions constitutes an example of functional genomics.

 • Functional genomics implies the use of high‐throughput screens, in contrast to 
traditional methods of biology in which one gene or protein has been characterized 
experimentally in depth. Such traditional methods commonly complement high‐
throughput approaches. For example, after performing a yeast two‐hybrid screen to 
identify thousands of interacting protein partners in some model organism, further 
validation of selected binding partners is subsequently performed.

http://www.wiley.com/go/pevsnerbioinformatics
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 • Functional genomics often involves the perturbation of gene function to investigate 
the consequence on the function of other genes in a genome. For example, in the 
yeast Saccharomyces cerevisiae, each gene has been individually knocked out and 
simultaneously “bar‐coded” as discussed below.

 • One of the most challenging and fundamental problems in modern biology is to 
understand the relationship between genotype and phenotype (discussed in the fol-
lowing section). Connecting the two is a fundamental part of functional genomics.

We provide an overview of functional genomics in Figure 14.1 with a schematic of a 
cell. We can consider the three cellular consitutents of genomic DNA (including genes); 
RNA (including coding and noncoding RNA; Chapter  10); and proteins (Chapters  12 
and 13). Other constituents, such as lipids and various metabolites, are also worthy of 

Figure  14.1 Functional genomics approaches to high‐throughput protein analysis. From left to 
right, we can consider several aspects of a cell: the functions associated with DNA, RNA, and protein 
as well as higher‐order aspects such as protein interactions, biochemical pathways, cell metabolism, 
and ultimately the phenotype of the cell and of the organism. We can also consider functional genomics 
approaches in the two broad categories of natural variation and of functional disruptions. Natural varia-
tion includes comparisons of the state of DNA, RNA, protein, or other cellular constituents as changes 
occur over time, under different physiological conditions, or (in the case of multicellular organisms) 
across different cell types and body regions. Functional disruptions occur in nature (such as chromo-
somal abnormalities); Williams syndrome is an example of a microdeletion syndrome causing the hem-
izygous (single‐copy) loss of dozens of genes on chromosome 7, and Down syndrome is caused by 
the gain of an extra copy of chromosome 21. In this chapter we discuss high‐throughput experimental 
approaches to disrupting gene function. Such studies elucidate the normal function of genes.

DNA RNA protein phenotype

DNA RNA protein

Natural variation
  --across development
  --across body regions
  --across species, strains

SNPs; epigenomics transcriptome profiling
(RNA-seq)

protein localization;
protein-protein
interactions; pathways
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knockout collections
transgenic animals        
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RNA decay

chemical modification
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consideration but are not “informational” in the same sense as the polymers above. The 
scope of functional genomics includes two levels.

 1. Natural variation. How do genes, RNA transcripts, and proteins change across body 
regions, or across developmental stages? In terms of genomic DNA we see in Chap-
ter 18 that the genomes of many closely related yeast species have been sequenced, 
and in Chapter 19 we describe the recent sequencing of 12 Drosophila species and 
15 mouse strains. In Chapter 20, we also discuss the variation in individual human 
genome sequences. Variation encompasses other aspects such as epigenetics (the 
study of heritable changes in gene function that occur without a change in DNA 
sequence, as when DNA is reversibly methylated). In terms of RNA transcripts, tech-
niques such as RNA-seq (Chapter 10) are used to define region‐ and time‐specific 
features of RNA transcripts.

 2. Functional disruptions occur in nature and are experimentally studied. These 
include deletions, insertions, inversions, and translocations. The scale includes 
entire genomes (we discuss fish, plant, and Paramecium genome duplications in 
Chapter 19), entire chromosomes (which may become aneuploid, i.e., having an 
abnormal copy number), segments of chromosomes, or single nucleotides. Exam-
ples of naturally occurring deletions include the many microdeletion syndromes in 
which there is a hemizygous loss of chromosomal material, often spanning several 
million base pairs and including the loss of one copy of dozens of genes. We can 
find many examples of RNA loss (such as nonsense‐mediated decay) and protein 
loss (e.g., in one form of myasthenia gravis, muscle weakness results from an auto-
immune reaction that destroys copies of the nicotinic acetylcholine receptor at the 
neuromuscular junction; Drachman, 1994).

In this chapter we will describe many experimental approaches to deleting genes as 
well as intentionally reducing protein levels as a way to probe function. Amplifications 
also commonly occur in nature; Down syndrome is a well‐known example in which the 
presence of three copies of chromosome 21 (instead of the usual two) is associated with 
increased levels of mRNA and possibly of protein derived from chromosome 21, leading 
to a panoply of phenotypes. Experimentally, transgenic or other models can be used to 
overexpress DNA, RNA, or protein.

We can summarize our focus in this chapter as the consideration of both natural vari-
ation and also disrupted cellular function. We explore how to disrupt gene, gene expres-
sion, or protein function, and what the consequences are of such disruptions.

the relationship Between genotype and phenotype

The genotype of an individual consists of the DNA that comprises the organism. The 
phenotype is the outward manifestation in terms of properties such as size, shape, move-
ment, and physiology. We can consider the phenotype of a cell (e.g., a precursor cell may 
develop into a brain cell or liver cell) or the phenotype of an organism (e.g., a person 
may have a disease phenotype such as sickle‐cell anemia). We can trace the history of 
how genotype and phenotype are defined back to August Weismann in the late nineteenth 
century (Web Document 14.1).

A great challenge of biology is to understand the relationship between genotype and 
phenotype (Ryan et al., 2013). We can gather information about either one alone. Con-
sidering the genotype, we have now sequenced thousands of genomes (including viral 
and organellar genomes), and defined many of the coding and noncoding genes. It is 
possible to further describe the transcription of DNA into both coding and noncoding 
RNA. Protein products are also characterized in depth, both alone and in the context of 
interaction partners, pathways, and networks.
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Considering the phenotype, we can describe many categories of phenotype from vari-
ation in the natural state (such as hair color or other quantitative traits) to disease. Model 
organisms undergo extensive phenotypic analyses. Diseases affecting humans, other ani-
mals, plants, or other organisms represent another aspect of phenotype. We discuss the 
major database for human disease (OMIM) in Chapter 21. As an example of a disease 
phenotype, Rett syndrome primarily affects girls, leading to hand‐wringing, the loss of 
purposeful hand movements, and autism‐like features. The syndrome was recognized 
(and named) in the 1980s when a group of patients with a similar phenotype were gath-
ered at a meeting in Austria. Eventually, Huda Zhogbi and colleagues identified mutations 
in the X‐linked gene MECP2 as causing Rett syndrome (Amir et al., 1999). MECP2 
encodes a protein that functions as a transcriptional repressor, regulating gene expression. 
This case typifies the challenge in understanding the relationship between the genotype 
(a mutation in a specific gene encoding a transcriptional repressor) and a phenotype (a 
syndrome having unique features). We have thousands of patients with diagnoses from 
intellectual disability to learning disorders; beginning with a phenotype, how do we find 
the corresponding genotype for disorders that have a genetic basis? In the case of diseases 
such as Rett syndrome, for which both genotype and phenotype are known, how do we 
connect them? Through understanding the cellular phenotype we may rationally devise 
therapeutic strategies aimed at correcting abnormalities that are introduced by a mutant 
gene product.

The field of functional genomics involves experimental and computational strategies 
to elucidate the function of DNA and chromosomes in relation to phenotype at the levels 
of the cell, the tissue, and the organism. There is a large gap in our understanding of how 
genotype and phenotype are related. For many diseases, understanding a primary genetic 
mutation (or insult) has not led to effective treatment or to a cure because of this gap in 
our understanding. We know that Down syndrome is caused by the occurrence of an extra 
copy of chromosome 21, but we do not understand why Down syndrome individuals have 
characteristic symptoms ranging from intellectual disability to abnormal facial features 
to common heart problems, and we do not know why the phenotype ranges from mild to 
extremely severe (e.g., profound intellectual disability and self‐injurious behavior).

The remainder of this chapter is organized into three parts. First, we introduce eight 
model organisms that are prominent in functional genomics studies. We then describe 
two basic approaches to genetic studies of gene function: reverse and forward genetics. 
Finally, we explore functional genomics as related to proteomics, networks, and pathways 
as molecular biology intersects with systems biology.

eIGht model orGanIsms For FunctIonal GenomIcs
The tree of life has three great domains: the bacteria, archaea, and eukaryotes, as well as 
the separate group of viruses. Thousands of organisms across the tree of life are studied 
intensively. We can describe eight of them that have particularly important roles in the 
field of functional genomics. This is not a comprehensive list of model organisms, but 
helps to define the strengths and limitations of different experimental systems as well as 
the types of questions that can be addressed. We discuss the properties of their genomes in 
more detail in Chapters 15 (providing an overview of genomes), 17 (Escherichia coli), 18 
(for S. cerevisiae), 19 (various eukaryotic genomes), and 20 and 21 (the human genome). 
The time when these organisms last shared a common ancestor with humans is approxi-
mately 2.5 billion years ago (BYA) for E. coli, 1.5 BYA for Arabidopsis and S. cerevisiae, 
900 million years ago (MYA) for C. elegans and Drosophila, 450 MYA for zebrafish, and 
90 MYA for mouse.

Leading bioinformatics and genomics organizations have initiated a broad range of 
functional genomics projects related to model organisms. These include efforts by the 

Leonelli and Ankeny (2012) 
consider the origin of the 
concept of model organisms 
and the impact on the research 
community of focusing resources 
on these organisms. For 
estimates of species’ divergence 
times see  http://www.timetree.
org (WebLink 14.1; Hedges et al., 
2006).

http://www.timetree.org
http://www.timetree.org
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Wellcome Trust Sanger Institute, the National Institutes of Health (NIH), and the National 
Human Genome Resaerch Institute (NHGRI) at NIH. The Encyclopedia of DNA Ele-
ments (ENCODE) project (Chapter 8), which focused on characterizing functional ele-
ments of the human genome in great depth, also includes efforts to assess function in 
model organisms.

1. the Bacterium Escherichia coli

The bacterium Escherichia coli serves as the best‐characterized bacterial organism, if not 
the best‐characterized living organism. For decades it served as a leading model organism 
for bacterial genetics and molecular biology studies. Its 4.6 megabase (million base pairs) 
genome was sequenced by Blattner et al. (1997); we further describe the genome in Chap-
ter 17. At the time of the initial genome sequencing, some function could be assigned to 
62% of its genes. The principal website for E. coli is EcoCyc, the Encyclopedia of Esch-
erichia coli K‐12 Genes and Metabolism (Keseler et al., 2013). Today EcoCyc assigns a 
function to >75% of the 4501 annotated genes. Its content includes enzymes, transporters, 
transcription factors, and a range of regulatory interactions. EcoCyc is complemented by 
PortEco which includes high‐throughput data from techniques such as RNA expression 
studies, single‐gene knockouts, and chromatin immunoprecipitation (Hu et al., 2014). 
EcoCyc also links to the BioCyc database, a collection of ∼3000 databases of pathways 
and organisms (Latendresse et al., 2012).

As an introduction to the use of the EcoCyc database, a query with the term globin 
links to nitric oxide dioxygenase, a flavohemoglobin. The result includes links to the pro-
tein sequence, and functional annotation from the Gene Ontology project (Chapter 12) 
and Multifun (a classification scheme similar to that of Clusters of Orthologous Groups 
(COGs) described in Chapter 12). There is extensive annotation of thousands of E. coli 
genes at EcoCyc.

Genome databases are available for all prominent organisms. Lourenço et al. (2011) 
emphasize the challenges of trying to integrate information across different levels (genes, 
proteins, and compounds) of E. coli. For example, there is a lack of standard nomencla-
ture (even water has different designations across chemical databases). Many genes share 
synonyms, so EcoCyc and KEGG (see “Pathways, Networks, and Integration” below) list 
two different genes (argA and argD) that are each associated with a variant named Arg1.

Reed et al. (2006) described four dimensions of genome annotation, encompassing 
both experimental and compuatational (in silico) approaches.

 1. One‐dimensional annotation refers to identifying genes and assigning predicted func-
tions. For E. coli this has been achieved to a high degree. For a variety of eukaryotes 
(Chapters 18–20), obtaining a trusted, precise catalog of genes has been extremely 
challenging because of the difficulty of identifying genes in genomic DNA. The 
task is becoming easier as more genomes are sequenced and comparative genomics 
approaches facilitate gene discovery.

 2. Two‐dimensional annotation refers to specifying the cellular components and their 
interactions, a topic we discuss “Proteomics Approaches to Functional Genomics” 
below. For E. coli this has to a great extent been achieved through the description of 
transcriptional regulatory networks in the RegulonDB database (Gama‐Castro et al. 
2008) and protein interactions in Bacteriome.org (Su et al., 2008), for example. The 
MetaCyc database (Caspi et al., 2008) includes over 2000 metabolic pathways from 
∼2500 organisms as of 2014.

 3. Three‐dimensional annotation is a description of the intracellular arrangement of 
chromosomes and of cellular components.

 4. Four‐dimensional annotation refers to characterizing genome changes that occur 
during evolution. This is a major theme of our study of bacterial, archaeal, viral, and 

A Wellcome Trust Sanger 
Institute model organism site 
is available at  http://www.
sanger.ac.uk/research/areas/
mouseandzebrafish/ (WebLink 
14.2). The NIH offers a website on 
model organisms for biomedical 
research (  http://www.nih.gov/
science/models/, WebLink 14.3). 
The NHGRI Functional Analysis 
Program is available at  http://
www.genome.gov/10000612 
(WebLink 14.4). The website for 
the ENCODE project at UCSC is  
http://genome.ucsc.edu/ENCODE/ 
(WebLink 14.5).

EcoCyc is online at  http://
ecocyc.org/ (WebLink 14.6), 
PortEco is at  http://porteco.org/ 
(WebLink 14.7), and BioCyc is at  
http://biocyc.org/ (WebLink 14.8). 
Additional related resources are 
Regulon at  http://regulondb.
ccg.unam.mx/ (WebLink 14.9) and 
EcoGene at  http://ecogene.org/ 
(WebLink 14.10).

MetaCyc is available at  http://
metacyc.org/ (WebLink 14.11).

http://www.sanger.ac.uk/research/areas/mouseandzebrafish/
http://www.nih.gov/science/models/
http://www.nih.gov/science/models/
http://www.genome.gov/10000612
http://www.genome.gov/10000612
http://genome.ucsc.edu/ENCODE/
http://ecocyc.org/
http://ecocyc.org/
http://porteco.org/
http://biocyc.org/
http://regulondb.ccg.unam.mx/
http://ecogene.org/
http://metacyc.org/
http://metacyc.org/
http://www.sanger.ac.uk/research/areas/mouseandzebrafish/
http://regulondb.ccg.unam.mx/
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eukaryotic chromosomes, where comparative genomics approaches have allowed the 
delineation of evolution from the level of whole genomes and chromosomes to indi-
vidual DNA segments that are under positive or negative selection (Chapter 7).

2. the Yeast Saccharomyces cerevisiae

The budding yeast S. cerevisiae is the best‐characterized organism among the eukaroytes. 
This single‐celled fungus was the first eukaryote to have its genome sequenced (see 
Chapters 15 and 18). Its 13 megabase genome encodes about 6000 proteins. The Saccha-
romyces Genome Database (SGD) offers a remarkably deep insight into many aspects of 
the genome, including access to the results of hundreds of functional genomics experi-
ments (Cherry et al., 2012; Engel and Cherry, 2013). There are currently ∼6600 annotated 
open reading frames (ORFs, corresponding to genes), including ∼5000 that are verified, 
750 that are uncharacterized (likely to be functional based on conservation across spe-
cies but not experimentally validated), and <800 dubious (ORFs that are neither well 
conserved nor validated). Approximately 4200 gene products have been annotated to the 
root gene ontology terms (molecular function, biological process, cellular component; 
see Chapter 12).

SGD is online at  http://www.
yeastgenome.org/ (WebLink 
14.12). Genome statistics are 
available from Genome Snapshot 
(Hirschman et al., 2006) at  
http://www.yeastgenome.org/
cache/genomeSnapshot.html 
(WebLink 14.13).

Figure 14.2 The Saccharomyces Genome Database (SGD) offers a wealth of functional genomics 
information. The top portion of a search for a typical gene, SEC1, is shown. This includes chromosomal 
location, gene ontology annotations, and regulators.

Source: Saccharomyces Genome Database (SGD). Reproduced with permission from Stanford University.

http://www.yeastgenome.org/
http://www.yeastgenome.org/cache/genomeSnapshot.html
http://www.yeastgenome.org/
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To introduce SGD, we perform a search with a typical query, SEC1 (Figs. 14.2 
and 14.3). SEC1 is a gene that encodes a protein (Sec1p) involved in vesicle traffick-
ing (Fig. 14.4a). SEC1 was discovered in a genetic screen (described in “Functional 
Genomics Using Reverse and Forward Genetics” below) for mutants that fail to secrete 
the enzyme invertase properly. Later experiments showed that Sec1p is related to the 
SSO1 gene (named as “suppressor of SEC1”) and that the Sec1p and Sso1p proteins 
bind to each other to facilitate vesicle‐mediated secretion in yeast. Sso1p, localized to 
the plasma membrane, is called a SNARE protein (α‐soluble NSF attachment protein 
receptor) that also interacts with the vesicular SNARE protein Snc1p. Sec1p, Sso1p, 
and Snc1p are therefore proteins that function in the process of delivering a vesicle and 
its contents to an appropriate compartment in a eukaryotic cell; in this case, the vesicles 
deliver proteins to the plasma membrane which are then secreted outside the cell. All of 
these yeast trafficking proteins have mammalian counterparts (indicated in Fig. 14.4b). 
The SGD entry for SEC1 includes a wealth of information, including a description of 
its role in vesicle trafficking, and an explanation that the null (or knockout) pheno-
type is inviable and accumulates secretory vesicles (consistent with its required role in 

Figure 14.3 Further portion of a search for SEC1 in SGD (see Fig. 14.2). This provides information 
on mutant phenotypes from classical genetics and high‐throughput technologies, as well as physical 
and genetic interactions. The inset shows a clickable summary of expression experiments (based on the 
Serial Pattern of Expression Levels Locator or SPELL tool), including those in which the SEC1 tran-
script was up‐ or down‐regulated.

Source: Saccharomyces Genome Database (SGD). Reproduced with permission from Stanford University.
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Figure 14.4 Diagram of S. cerevisiae and mammalian proteins involved in secretion as an illustration of functional genomics principles 
and approaches. (a) A constitutive trafficking pathway exists in yeast with a set of proteins, including several of the sec (secretory pathway) 
mutants. The cytosolic protein Sec1p interacts with Sso1p, a plasma membrane protein and ortholog of mammalian syntaxin. Sso1p also inter-
acts with a protein complex that includes the vesicle‐associated proteins Snc1p and Snc2p (mammalian synaptobrevin/VAMP) and the mem-
brane‐associated protein Sec9p (mammalian SNAP‐25). Sec17p and Sec18p are required for this step and for other intracellular trafficking 
pathways such as from the Golgi apparatus to the vacuole. In yeast, the paralogous SNC1/SNC2 and SSO1/SSO2 genes arose after an ancient 
whole‐genome duplication event (see Chapter 18). The presence of two copies of each molecule could allow functional redundancy, so that if 
one copy is lost (e.g., through mutation) the organism could be viable. Alternatively, the duplicated genes could acquire distinct functions, such 
as conferring the specificity of the docking and fusion events of transport vesicles with the appropriate intracellular target membrane. (b) Sim-
plified diagram of proteins in the mammalian nerve terminal. Syntaxin binding protein 1 (Stxbp1, also called Munc18‐1/N‐sec1) binds tightly 
to the plasma membrane protein syntaxin. Separately, syntaxin binds to the synaptic vesicle protein synaptobrevin as well as SNAP‐25 to form 
a protein complex, and subsequently the proteins NSF and α‐SNAP further bind. Through this pathway, synaptic vesicles fuse with the plasma 
membrane and release their neurotransmitter contents by exocytosis. (c) Hypothetical pathway diagram showing two sets of proteins that 
could accomplish the task of secretion in yeast using parallel pathways. (d) Biochemical studies can reveal pairwise protein interactions and 
can also reveal complexes of multiple proteins. However, physical interactions would not reveal the relationship of proteins that do not interact 
directly but are part of the same pathway (such as Sec1p and Sec9p). (e) Genetic interaction maps reveal functionally related genes, including 
those involved in parallel pathways and those that do not physically interact. Adapted from Ooi et al. (2006), with permission from Elsevier.
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trafficking; Fig. 14.2). The SGD page also provides dozens of resources including links 
to a genome browser (GBrowse), literature, interaction databases, and information on 
physical and genetic interactions (Fig. 14.3).

As we introduce functional genomics approaches we will return to SEC1 as an exam-
ple. Over 100 milllion years ago the entire S. cerevisiae genome duplicated, followed by 
a massive loss of duplicated genes. We discuss this in Chapter 18, and use SSO1 and its 
paralog SSO2 as examples to discuss the evidence for whole‐geneome duplication and the 
possible fates of duplicated genes.

In this chapter we introduce a variety of functional genomics assays in yeast. One 
reason that yeast offer an appealing experimental system is that virtually any desired 
genomic change can be introduced at the native locus using very efficient homologous 
recombination‐based methods. In addition, they grow rapidly, they can make colored col-
onies, and it is easy to construct yeast strains with “reporters” that allow for selection 
of mutants with interesting traits, even if very rare. A variety of selectable colony color 
markers are available such as MET15 or ADE2 in which mutants can be selected for color 
upon growth in a particular medium. In this way the phenotypic consequence of genetic 
manipulations can be readily determined. SGD provides access to this wealth of mutant 
phenotype data (Engel et al., 2010).

3. the plant Arabidopsis thaliana

The thale cress Arabidopsis thaliana was the first plant to have its genome sequenced 
(and the third finished eukaryotic genome sequence). It has served as a model for eukary-
otic functional genomics projects (reviewed in Borevitz and Ecker, 2004; Koornneef and 
Meinke, 2010). The principal web site, The Arabidopsis Information Resource (TAIR), 
centralizes a vast amount of information about its genome (Lamesch et al., 2012). 
Figure 14.5 shows some of the diversity of information that is accessible from the home 
page pull‐down menus. Under the browse menu, a link to “2010 projects” describes doz-
ens of projects designed to reach a National Science Foundation goal to functionally 
annotate all Arabidopsis genes by 2010. As an example of a gene search at TAIR, a query 
for Arabidopsis SEC1A (RefSeq accession NP_563643; locus tag At1g02010) reveals 
information about its chromosomal location and available mutants.

Arabidopsis offers many appealing features as a model plant, including its short gen-
eration time, prolific seed production, compact genome size, and opportunities for genetic 
manipulation. As an example Atwell et al. (2010) performed a genome‐wide associa-
tion study (GWAS) to examine over 100 phenotypes (broadly involving flowering, plant 
defense, element concentrations, and developmental traits) in nearly 200 inbred lines. 
GWAS is a technique in which thousands to millions of single‐nucleotide polymorphisms 
(SNPs) are identified as a proxy for genotype and associated with phenotypes. Most 
GWAS have been applied to human disease (see Chapter 21). Atwell et al. successfully 
identified many common alleles of major effect, and in some cases found single genes 
that are associated with particular phenotypes.

4. the Nematode Caenorhabditis elegans

Among the metazoans (animals), the soil‐dwelling nematode Caenorhabditis elegans is a 
key model organism. This was the first multicellular animal to have its genome sequenced. 
This roundworm, like fruit flies and humans, is capable of complex behaviors, but its 
body is simple and all the 959 somatic cells in its body have been mapped including their 
lineages throughout development. Wormbase is the main online information repository 
(Harris et al., 2014).

The C. elegans genome encodes ∼20,400 protein‐coding genes, almost exactly the 
same number as in humans. Almost 7000 genes have been deleted (C. elegans Deletion 
Mutant Consortium, 2012), parallel to similar efforts for other model organisms. In the 

The 2013 Nobel Prize in 
Physiology or Medicine was 
awarded to James E. Rothman, 
Randy W. Schekman and Thomas 
C. Südhof “for their discoveries 
of machinery regulating vesicle 
traffic, a major transport system 
in our cells.” Schekman’s work 
included the identification of yeast 
secretory (SEC) mutants; Rothman 
focused on vesicular transport 
between Golgi stacks; and Südhof 
studied vesicle function in the 
mammalian nerve terminal. See  
http://www.nobelprize.org/nobel_
prizes/medicine/laureates/2013/ 
(WebLink 14.14).

The TAIR website is  http://www.
arabidopsis.org/ (WebLink 14.15).

WormBase is available at  http://
www.wormbase.org (WebLink 
14.16). The trans‐NIH C. elegans 
initiative website is  http://
www.nih.gov/science/models/c_
elegans/ (WebLink 14.17).

http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/
http://www.arabidopsis.org/
http://www.wormbase.org
http://www.wormbase.org
http://www.nih.gov/science/models/c_elegans/
http://www.nih.gov/science/models/c_elegans/
http://www.arabidopsis.org/
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million mutation project, ∼2000 mutagenized C. elegans strains were mutagenized then 
sequenced, allowing >800,000 unique single‐nucleotide variants to be identified (eight 
nonsynonymous changes per gene) as well as 16,000 indels (Thompson et al., 2013). That 
project also involved sequencing 40 wild isolate strains, producing a comparable number 
of SNVs and indels.

The modENCODE project, in parallel to the human ENCODE project, character-
ized the C. elegans transcriptome as well as transcription factor‐binding sites and chro-
matin organization (Gerstein et al., 2010). This resulted in more complete and accurate 
gene models as well as models of transcription factor‐binding sites associated with 
microRNAs.

Figure 14.5 The Arabidopsis Information Resource (TAIR) is the principal genome database for 
Arabidopsis. The screen capture shows some of the menu options including search strategies, analysis 
tools, available stocks, functional classification, and acess to functional genomics initiatives.

Source: The Arabidopsis Information Resource (TAIR), courtesy of Phoenix Bioinformatics.
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5. the Fruit Fly Drosophila melanogaster

The fruit fly Drosophila melanogaster, another metazoan invertebrate, has long served as 
a model for genetics. Early studies of Drosophila resulted in the descriptions of the nature 
of the gene as well as linkage and recombination, producing gene maps a century ago. 
The recent sequencing of 12 Drosophila genomes (Drosophila 12 Genomes Consortium 
et al., 2007) and 192 inbred lines of the Drosophila genus (Drosophila Genetic Refer-
ence Panel; Chapter 19) are already providing unprecedented insight into mechanisms of 
genome evolution (Russell, 2012). The central Drosophila database, FlyBase, combines 
molecular and genetic data on the Drosophilidae (McQuilton et al., 2012; St Pierre et al., 
2014).

A strength of Drosophila as a model organism is that genomic changes can be 
induced with extreme precision, from single‐nucleotide changes to introducing large‐
scale chromosomal deletions, duplications, inversions, or other modifications. At the 
same time, it is a multicellular animal that features a complex body plan. Loss of func-
tion mutations have been introduced into all of its ∼14,000 protein‐coding genes, and 
over half of these have an identifiable phenotype. Many human disease gene muta-
tions have been modeled in Drosophila to further understand pathogenesis (Chen and 
Crowther, 2012). As for C. elegans, the modENCODE consortium has comprehensively 
mapped transcripts, histone modifications, and other biochemical signatures. This has 
tripled the portion of the Drosophila genome that has been annotated (modENCODE 
Consortium et al., 2010).

6. the Zebrafish Danio rerio

Although the lineages leading to modern fish and humans diverged approximately 450 
million years ago, both are vertebrate species and orthologs are identifiable for the great 
majority of their protein‐coding genes (with an average of about 80% amino acid iden-
tity between orthologs). The first four fish genomes to be sequenced were the puffer-
fish Takifugu rubripes and Tetraodon nigroviridis, the medaka Oryzias latipes, and the 
zebrafish Danio rerio (Chapter 19). Of these, the zebrafish has emerged as an important 
model organism for functional genomics (Henken et al., 2004). It is a small tropical 
freshwater fish having a genome size of 1.8 billion base pairs (Gb) organized into 25 
chromsomes. There are >26,000 protein‐coding genes (Howe et al., 2013b), modestly 
more than in humans. For functional genomics studies, the zebrafish has served as a 
model for understanding both normal and abnormal development. Mutations in large 
numbers of human disease gene orthologs have been generated and characterized, and 
both forward and reverse genetic screens (introduced in “Functional Genomics Using 
Reverse and Forward Genetics” below) have been applied (e.g., Kettleborough et al., 
2013; Varshney et al., 2013). Some of the advantages of zebrafish as a model organism 
include the following:

 • Its generation time is short, especially for a vertebrate.
 • It produces large numbers of progeny.
 • The developing embryo is transparent. For example, if a transgene is inserted into 
the genome with a promoter that drives the expression of green fluorescent protein 
(GFP), it is possible to see this expression from the outside of each animal’s body.

 • It is a vertebrate and therefore a close model for human disease.
 • Its genome is well annotated. The vertebrate genome annotation (Vega) database 
at the Sanger Institute focuses on high‐quality manual annotation with a particular 
focus on genomes such as human, mouse, and zebrafish (Wilming et al., 2008).

The principal zebrafish website is the Zebrafish Information Network (ZFIN ; Howe 
et al., 2011, 2013a).

Flybase is at  http://www.
flybase.org (WebLink 14.18). The 
Drosophila Genetic Reference 
Panel website is  http://dgrp.
gnets.ncsu.edu (WebLink 14.19).

Two of the giants of genetics 
research focused their studies 
on Drosophila: Thomas Hunt 
Morgan and Hermann J. 
Muller. Morgan was awarded 
a Nobel Prize in 1933 “for his 
discoveries concerning the role 
played by the chromosome in 
heredity” (  http://nobelprize.
org/nobel_prizes/medicine/
laureates/1933/, WebLink 14.20). 
He and his contemporaries 
A.H. Sturtevant, C.B. Bridges, 
and Muller discovered a broad 
array of properties of genes and 
chromosomes. They described 
chromosomal deficiencies 
including nondisjunction, 
balanced lethals, chromosomal 
duplication (trisomy) and 
monosomy, and translocations. 
Muller was awarded a 1946 Nobel 
Prize “for the discovery of the 
production of mutations by means 
of X‐ray irradiation.” His finding 
of position effect variegation 
laid the foundation for modern 
epigenetics research. The 1995 
Nobel Prize in Physiology or 
Medicine was awarded to Edward 
B. Lewis, Christiane Nüsslein‐
Volhard, and Eric F. Wieschaus 
“for their discoveries concerning 
the genetic control of early 
embryonic development.” These 
studies were also performed in 
Drosophila (  http://nobelprize.
org/nobel_prizes/medicine/
laureates/1995/, WebLink 14.21).

The Vega database is available 
at  http://vega.sanger.ac.uk/ 
(WebLink 14.22).

http://www.flybase.org
http://dgrp.gnets.ncsu.edu
http://nobelprize.org/nobel_prizes/medicine/laureates/1933/
http://nobelprize.org/nobel_prizes/medicine/laureates/1933/
http://nobelprize.org/nobel_prizes/medicine/laureates/1933/
http://nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://vega.sanger.ac.uk/
http://www.flybase.org
http://dgrp.gnets.ncsu.edu
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7. the Mouse Mus musculus

The rodents diverged from the primate lineage relatively recently (90 million years ago) 
and share almost all of their genes with humans. The mouse Mus musculus is one of the 
most important model organisms for the study of human gene function because of the close 
structural and functional relationship between the two genomes combined with a relatively 
short generational span, and powerful tools have been developed to manipulate its genome.

The main mouse genome website is the Mouse Genome Informatics (MGI) site (Blake 
et al., 2014). In common with other leading organism‐specific website resources, MGI 
provides a portal to mouse‐specific resources including sequence data, a web browser, 
available mutant strains, gene expression studies, and literature (Fig. 14.6a).

ZFIN is online at  http://www.
zfin.org (WebLink 14.23). The 
trans‐NIH zebrafish initiative 
website is  http://www.nih.
gov/science/models/zebrafish/ 
(WebLink 14.24).

The Trans‐NIH Mouse Initiatives 
homepage is  http://www.nih.
gov/science/models/mouse/ 
(WebLink 14.25).

The MGI website is  http://
www.informatics.jax.org/ 
(WebLink 14.26).

(a) Mouse Genome Informatics home page

(b) Customized BioMarts for mouse functional genomics

IKMC Genes and Products

Euroexpress

EMMA

Ensembl

WTSI Mouse Genetics Project

UniTrap

MGI

Genes and genome features

Gene expression data (GXD)

Europhenome
Europhenome (phenotyping)

Eurexpress (expression)

EMMA strains

Mus musculus genes

WTSI DNA clone resources

UniTrap (gene traps)

OMIM (including MGI mappings)

MGP phenotyping

IKMC projects/alleles

IKMC targeted products

IKMC mouse production (iMits)
BioMarts for mouse 
knockout resources

Figure 14.6 The Mouse Genome Informatics (MGI) Database is the principal website for mouse 
genomics information. (a) The home page provides a portal to a vast number of resources. (b) There are 
many specialized BioMarts focused on mouse functional genomics, including: MGI; Ensembl, provid-
ing a genomic context; UniTrap for gene trapping; Inernational Mouse Knockout Consortium (IMKC) 
resources; Wellcome Trust Sanger Institute (WTSI) mouse genetics; and the European Mutant Mouse 
Archive (EMMA).

Source: Redrawn from MGD, Blake et al. (2014). Reproduced with permission from MGI.

http://www.zfin.org
http://www.nih.gov/science/models/zebrafish/
http://www.nih.gov/science/models/mouse/
http://www.informatics.jax.org/
http://www.informatics.jax.org/
http://www.zfin.org
http://www.nih.gov/science/models/zebrafish/
http://www.nih.gov/science/models/mouse/
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About 10,000 mouse genes have been knocked out (Koscielny et al., 2014). The 
International Mouse Phenotyping Consortium (IMPC) provides access to mutant mice 
and associated data, including coordination with MGI and Ensembl. IMPC follows earlier 
efforts such as the Knockout Mouse Project (KOMP), the European Conditional Mouse 
Mutagenesis Program (EUCOMM), and the North American Conditional Mouse Muta-
genesis Project (NorCOMM) (International Mouse Knockout Consortium et al., 2007). 
We discuss their strategies for mutating all protein‐coding genes in mouse, including 
the two main knockout approaches of gene targeting and gene trapping (Guan et al., 
2010; White et al., 2013). IMPC provides links to a variety of mouse‐specific BioMarts 
(Fig. 14.6b). All major genotyping projects are associated with detailed phenotyping efforts 
such as the pipelines described by Fuchs et al. (2011).

In a project called the Collaborative Cross, 1000 recombinant inbred strains of 
mouse are being bred (Complex Trait Consortium, 2004; Collaborative Cross Consor-
tium, 2012; Welsh et al., 2012). This project is producing large numbers of genetically 
related mice that have nonlethal phenotypic diversity, and also that can be exposed to 
manipulations such as phenotypic screens (see “Forward Genetics: Chemical Muta-
genesis” below). The 1000 strains are derived from eight inbred founder strains that 
were systematically crossed. These strains will be fully genotyped and used to model 
human populations and diseases. If we denote the eight inbred founder strains A–H, 
then the G

1
 generation will consist of AB, CD, EF, and GH genotypes (from mating 

of AA × BB mice, CC × DD, etc.), the G
2
 generation will consist of AB × CD mice 

yielding ABCD genotypes and EF × GH yielding EFGH. After 23 generations there 
will be 99% inbreeding with unique recombination events. The 1000 mouse strains 
are expected to provide an important resource for modeling human populations and 
diseases.

The Diversity Outbred (DO) population offers a complentary approach to mouse 
genetics, offering the benefit fo wildtype levels of heterozygosity (thus buffering against 
the consequences of mutation). The allelic diversity of these mice facilitates their useful-
ness in mapping phenotypes (Churchill et al., 2012; Logan et al., 2013). The founders of 
the DO are from breeding lines of the Collaborative Cross.

8. Homo sapiens: Variation in humans

Humans are not considered to be a model organism by some, and we do not consider 
ourselves to be an experimental system per se. We are however motivated to investigate 
the range of phenotypic expression to understand how we aquire our characteristic 
features, how we have evolved, and how we fit into the ecosystem. One of the strongest 
motivations for studying humans is to understand the causes of disease in order to search 
for more effective diagnoses, preventions, treatments, and ultimately cures if possible. 
While in most contexts we do not experiment on ourselves invasively, nature does per-
form functional genomics experiments on us. For example, human fecundity is extraor-
dinarily low relative to other mammalian and vertebrate species (see Chapter 21). Of 
all conceptuses that appear normal after one week of development as a zygote, perhaps 
over 80% are not viable. This is due to massive aneuploidy that commonly occurs, caus-
ing trisomy, monosomy, and even tetrasomy (four copies) or nullisomy (zero copies) 
of many chromosomes. Functional genomics is an experimental science in which gene 
function is often assessed by perturbing a system. Genes may be selectively deleted or 
duplicated, and then the functional consequence is measured to infer the function of the 
gene. Nature produces the equivalent of functional genomics experiments through the 
many forms of variation that organisms experience. Experimentally, the emergence of 
next‐generation sequencing is having a profound impact on studies of genetic variation 
in humans (Kilpinen and Barrett, 2013).

The International Mouse 
Phenotyping Consortium (IMPC) 
website is  https://www.
mousephenotype.org/ (WebLink 
14.27). Mouse‐centered BioMarts 
are available from MGI (  
http://biomart.informatics.jax.
org/, WebLink 14.28); IKMC (  
http://www.i‐dcc.org/, WebLink 
14.29); UniTrap (  http://biomart.
helmholtz‐muenchen.de/, WebLink 
14.30); the Europhenome Mouse 
Phenotyping Resource (  http://
www.europhenome.org/biomart/
martview/, WebLink 14.31); and 
WTSI (  http://www.sanger.ac.uk/
htgt/biomart/martview/, WebLink 
14.32). Additionally, the prominent 
Ensembl BioMart includes mouse 
genes under Ensembl builds (  
http://www.ensembl.org/biomart/
martview/, WebLink 14.33).

Collaborative Cross websites 
include  http://churchill.
jax.org/research/cc.shtml 
(WebLink 14.34).

Aneuploidy refers to a change 
in chromosomal copy number. 
A euploid individual has the 
normal two copies of a set of 
chromosomes.
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http://biomart.informatics.jax.org/
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http://churchill.jax.org/research/cc.shtml
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FunctIonal GenomIcs usInG reverse and  
Forward GenetIcs
There are many different basic approaches to identifying the function of a gene. Bio-
chemical strategies can be employed, which typically involves studying one gene or gene 
product at a time. This is often the most rigorous way to study gene function, and has been 
the main approach for the past century. For example, in order to understand the function 
of a globin gene, its protein product can be purified to homogeneity and its physical prop-
erties (such as molecular mass, isoelectric point, oxygen‐ and heme‐binding properties, 
and post‐translational modifications; Chapter 12), its interactions with other proteins, its 
role in cellular pathways, and the consequence of mutating the gene characterized. We 
described eight different aspects of protein function in Figure 12.18. While invaluable, 
analysis of a single gene and its products is almost always laborious and time‐consuming; 
a variety of complementary high‐throughput strategies have therefore been introduced. 
These strategies can produce thousands of mutant alleles that are then available to facili-
tate the research of scientists who focus on the study of any particular genes.

One high‐throughput method of assessing gene function is to examine messenger 
RNA levels in various conditions or states using RNA‐seq (described in Chapters 10 and 
11) or to measure protein levels (Chapter 12). These studies usually give only indirect 
rather than direct information about gene function. For example, if red blood cells are 
treated with a drug that inhibits heme biosynthesis in mitochondria, the cell may respond 
with a complex program of responses that serve to regulate the expression of heme‐bind-
ing proteins such as the globins. Globin messenger RNA and protein levels might be 
reduced dramatically, but it would be incorrect to infer that the drug acted directly on the 
globin gene, messenger RNA, or protein. Similarly, when RNA transcript levels are mea-
sured in tissues or cell lines derived from individuals with a disease, significantly regu-
lated transcripts might reflect adaptive changes made in response to a primary insult such 
as a genetic mutation. Changes might also occur because of downstream effects: a gene 
defect could disrupt a pathway, leading to degeneration of a brain region, and other cells 
such as glia could proliferate as a downstream response. Such experiments are not likely 
to directly reveal the gene‐causing mutation, although they may reveal information about 
its secondary consequences and are essentially a molecular phenotype for the mutant.

There are two main kinds of genetic screens that are used to identify gene func-
tion in a high‐throughput fashion: reverse and forward genetics (reviewed in Schulze and 
McMahon, 2004; Ross‐Macdonald, 2005; Alonso and Ecker, 2006; Caspary and Ander-
son, 2006). These two approaches are illustrated in Figure 14.7. In reverse genetic screens, 
a large number of genes (or gene products) is systematically inhibited one by one. This 
can be accomplished in many ways, for example by deleting genes using homologous 
recombination, gene trapping, or by selectively reducing messenger RNA abundance. 
One or more phenotypes of interest are then measured.

The main challenge of this approach is that for some organisms it difficult to disrupt 
large numbers of genes (such as tens of thousands) in a systematic fashion. It can also 
be challenging to discern the phenotypic consequences for a gene that is disrupted. As 
an example of reverse genetics, Thomas Südhoff and colleagues targeted the deletion 
of mouse syntaxin binding protein 1 (Stxb1; also called Munc18‐1 or N‐sec1), a gene 
encoding a nerve terminal protein (Verhage et al., 2000). The phenotype was lethality 
at the time of birth, with neurons unable to secrete neurotransmitter. Remarkably, brain 
development appeared normal up to the time of death. This targeted deletion allowed the 
dissection of the functional role of this gene; Figure 14.4b depicts its function.

In forward genetic screens the starting point is a defined phenotype of interest, such 
as the ability of plants to grow in the presence of a drug, neurons to extend axons to 
appropriate targets in the mammalian nervous system, or an eukaryotic cell to transport 
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cargo. An experimental intervention is made, such as administering a chemical mutagen 
or radiation to cells (or to an organism). This results in the creation of mutants. The phe-
notype of interest is observed in rare representatives among a large collection of mutants. 
If individuals need to be assayed for the phenotype one at a time (as part of a screen), 
this can be extremely laborious. If a specific selective condition can be defined in which 
only the desired mutant grows (a selection), the process is greatly facilitated. A second 
challenge of forward genetics approaches is to then identify the responsible gene(s) 
using mapping and sequencing strategies. As an example of this approach, Peter Novick, 
Randy Schekman and colleagues characterized temperature‐sensitive yeast mutants that 
accumulate secretory vesicles (Novick and Schekman, 1979; Novick et al., 1980). These 
secretion (sec) mutants occurred in a series of dozens of complementation groups (yeast 
strains harboring different mutant alleles of the same gene). All the sec mutant genes 

The accession number of S. 
cerevisiae Sec1p is NP_010448. 
The accession of an ortholog, 
human syntaxin‐binding protein 1a 
is NP_003156.

Figure  14.7 Reverse and forward genetics. In reverse genetics, genes are targeted for deletion 
through approaches such as homologous recombination. After a knockout animal is produced, the 
phenotype is investigated to discern the function of the gene. This is called a “gene‐driven” approach 
because it begins with targeted deletion or disruption of a gene. In forward genetics, the starting point is 
a phenotype of interest. The genome is subjected to a process of mutagenesis (typically with a chemical 
such as ENU or an exogenous DNA transposon). Mutants are collected and screened for those that dis-
play an altered phenotype. Next, the genes underlying the altered phenotype are mapped and identified. 
This is called a “phenotype‐driven” approach, since the starting point is an altered phenotype and not 
particular disrupted genes.

DNA RNA protein

Reverse genetics (mutate genes then examine phenotypes)

Forward genetics (”phenotype-driven” screen)

phenotype

Strategy:  Systematically inhibit the function of every gene in a genome 
  Approach 1: gene targeting by homologous recombination
  Approach 2: gene trap mutagenesis
  Approach 3: inhibit gene expression using RNA interference
  Measure the effect of gene disruption on a phenotype

Strategy:  Identify a phenotype (e.g. growth in the presence of a drug)
  Mutate genomic DNA (e.g. by chemical mutagenesis)
  Identify individuals having an altered phenotype
  Identify the gene(s) that were mutated
  Confirm those genes have causal roles in influencing the genotype
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were subsequently identified. For example, the SEC1 gene encodes the Sec1p protein that 
functions in vesicle docking at the cell surface. Sec1p is a yeast ortholog of mammalian 
syntaxin-binding protein 1. A schematic showing the role of Sec1p and three other sec 
proteins in vesicle trafficking is shown in Figure 14.4b.

reverse genetics: Mouse Knockouts and the β-globin gene

Knocking out a gene refers to creating an animal model in which a homozygous deletion 
is created, that is, there are zero copies (denoted (−/−) and referred to as a null allele) 
instead of the wildtype situation of two copies in a diploid organism (+/+). In a hemizy-
gous deletion, one copy is deleted and one copy remains (+/−).

We can illustrate the use of knockouts with the example of the β‐globin gene. In nor-
mal adult humans, hemoglobin is a tetramer that consists of two α‐globin subunits and 
two β‐globin subunits (α

2
β

2
), with a minor amount (∼2–3%) consisting of α

2
δ

2
 tetramers. 

The β and δ genes are part of a cluster of β‐like genes on chromosome 11 (Fig. 14.8a). 
There is a similar arrangement on mouse chromosome 7 (Fig. 14.8b). The globin genes are 
expressed at different developmental stages and cell types in a manner that is exquisitely 
choreographed. Within the β‐globin cluster, ε‐globin is expressed in the blood island of 
the yolk sac until 6–8 weeks of gestation when it is silenced and γ‐globin genes are acti-
vated. At birth, δ‐globin and β‐globin gene expression increase, while γ‐globin expression 
declines until it is silenced at about age 1. This process is called hemoglobin switch-
ing, and it is thought to occur because of interactions between the globin genes and the 
upstream locus control region (reviewed in Li et al., 2006). Various protein complexes 
interact with the locus control region (Mahajan and Wissman, 2006). As indicated in 
Figure 14.8a, specific regulatory sites have been identified by techniques such as DNase I 
hypersensitivity assays that reveal regions of exposed chromatin.

Several diseases are associated with perturbations of globin function (discussed in 
Chapter 21 on human disease). Sickle‐cell anemia is caused by mutations in a copy of the 
β‐globin gene. Thalassemias are hereditary anemias that result from an imbalance in the 
usual one‐to‐one proportion of α and β chains. In an effort to create an animal model of 
thalassemias, and to further understand the function of the β globin gene, Oliver Smithies 
and colleagues used homologous recombination in embryonic stem cells to disrupt the 
mouse major adult β‐globin gene b1 (Shehee et al., 1993). In homologous recombination, 
recombinant DNA introduced into the cell recombines with the endogenous, homologous 
sequence (Capecchi, 1989).

The approach, depicted in Figure 14.9, requires a targeting vector that includes the 
β‐globin gene having a portion modified by insertion of the neo gene into exon 2. This tar-
geting vector is introduced into embryonic stem cells by electroporation. When the cells 
are cultured in the presence of the drug G418, wildtype cells die whereas cells having the 
neo cassette survive. The successful introduction of an interrupted form of the β‐globin 
gene into stem cells can be confirmed by using the polymerase chain reaction and/or 
Southern blots (in which a radiolabeled fragment of the insert is hybridized to membranes 
containing extracts of genomic DNA from wildtype and targeted cells). Targeted embry-
onic cell lines are injected into mouse blastocysts and implanted into the uterus of a foster 
mother to generate chimeric offspring. The mice that were heterozygous for the disrupted 
gene (+/−) appeared normal, while homozygous mutants (−/−) died in utero or near the 
time of birth. The knockout therefore caused a lethal thalassemia with abnormal red blood 
cells and lack of protein produced from the deleted b1 gene.

In nature, the same b1 gene is sometimes deleted in mice. Surprisingly, this naturally 
occurring deletion results in only a mild thalassemia, rather than the lethal phenotype that 
results from the knockout. Shehee et al. (1993) hypothesized that the locus control region 
normally regulates the b1 and b2 genes, but there is a rate‐limiting amount of promoter 

The 2007 Nobel Prize in 
Physiology or Medicine was 
awarded to Mario Capecchi, 
Sir Martin Evans, and Oliver 
Smithies “for their discoveries 
of principles for introducing 
specific gene modifications in 
mice by the use of embryonic 
stem cells;” see  http://
nobelprize.org/nobel_prizes/
medicine/laureates/2007/ 
(WebLink 14.35).

http://nobelprize.org/nobel_prizes/medicine/laureates/2007/
http://nobelprize.org/nobel_prizes/medicine/laureates/2007/
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(a) Human beta globin cluster region

(b) Mouse beta globin cluster region

Figure 14.8 The β globin locus (a) on human 11 (85 kilobases on chr11:5,235,001–5,320,000, GRCh37/hg19 assembly) and (b) on 
mouse chromosome 7 (65 kilobases on chr7:103,806,001–103,871,000, GRCm38/mm10 assembly). In (a), this region includes six globin 
RefSeq genes (including a pseudogene), ranging from HBB (arrow 1) to HBE (arrow 2). A locus control region is indicated (arrow 3) in the 
intergenic region upstream of HBE. Annotation tracks (“hub tracks”) from the UCSC Genome browser, derived from the ENCODE project 
are shown including ChIP‐seq peaks for GATA1. Other tracks show DNAase I hypersensitivity, indicating genomic loci that are likely to 
have regulatory functions because they are in a conformation that is susceptible to DNase cleavage. Other annotation tracks show comparable 
patterns. A BED file was created corresponding to the beta globin locus control region sequence (given in accession AY195961). Note the 
prominent GATA1 peaks in the upstream regulatory region, some of which are conserved based on the PhastCons alignments. The properties 
of gene regulatory regions vary across cell types (e.g., erythrocytes and hematopoietic precursor K562 cells prominently display hypersen-
sitivity sites) as well as at different developmental stages (e.g., fetal versus adult erythrocytes). In (b) mouse globin genes are displayed 
with a conservation track, showing multi‐species conservation corresponding to exons as well as some conservation in noncoding regions, 
corresponding to cis‐regulatory elements.

Source:  http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu


Genomewide AnAlysis of dnA, RnA, And PRotein652

sequence neighboring each gene that the locus control region can regulate. In the natu-
rally occurring deletion associated with nonlethal thalassemia, the locus control region 
interacts with just the b2 gene (and mediates a compensatory increase in b2‐derived glo-
bin protein). However, in the targeted mutant the locus control region regulates b2 and 
also interacts with two more promoters: the inserted tk promoter driving the neo gene; and 
the promoter of the deleted b1 gene. The three promoters compete for factors associated 
with the locus control region, and so relatively functional b2 mRNA is produced and the 
phenotype is lethal instead of mild.

This example highlights the complexity of creating a null allele with an insertion vec-
tor. Many other strategies have been introduced (reviewed in van der Weyden et al., 2002) 
including a variety of positive and negative selection markers and the use of replacement 
vectors instead of insertion vectors that leave behind no selectable markers (and are there-
fore less likely to interfere with endogenous processes). Conditional knockouts permit 
activation (for “gain‐of‐function”) or inactivation (for “loss‐of‐function”) in vivo, and can 
be invoked at any time of development or, through the use of tissue‐specific promoters, in 
any region of the body. Conditional knockouts can be used to study the effects of disrupt-
ing a gene while avoiding embryonic lethality.

Major, coordinated efforts are underway to collect knockout mice via initiatives 
at the Sanger Institute, the National Institutes of Health, and elsewhere (Austin et al., 
2004; White et al., 2013). An ultimate goal is to systematically knock out all mouse 
genes using several approaches. It is proposed to generate null alleles, including a 
null‐reporter allele for each gene (such has β‐galactosidase or green fluorescent pro-
tein). The reporter allows the determination of the cell types that normally express 
that gene. It is further proposed to make mutated alleles using gene targeting, gene 
trapping, and RNA interference (discussed in “Reverse Genetics: Gene Silencing by 
Disrupting RNA” below). Mouse strain C57BL/6 is widely used and was the first 

Figure 14.9 Method of gene knockout by homologous recombination. (a) Structure of the β globin 
gene locus (from the UCSC Genome Browser, mouse GRCm38/mm10 assembly chr7:103,811,401–
103,815,400), showing three exons that are transcribed from right to left. (b) Schematic of the linearized 
targeting vector used by Sheehee et al. (1993). It includes the β globin gene with a neo gene inserted into 
exon 2 to allow for selection based on conferring resistance to the drug G418. Copies of the thymidine 
kinase (TK) gene from herpes simplex virus 1 flank the homologous segments and are also used for 
selection. The large X symbols indicate regions where crossing‐over can occur between homologous 
segments. (c) The successfully targeted locus includes a β globin gene that is interrupted by the neo 
gene. Note that this gene is labeled Hbb‐b1 in the UCSC Genes track and Hbb‐b2 in the RefSeq and 
Ensembl tracks.

Source: (a)  http://genome.ucsc.edu, courtesy of UCSC. (b) Adapted from Shehee et al. (1993), with permission 
from the National Academy of Sciences. 

(a) Mouse Hbb-b2 gene structure

(b)

NEO

(c) Knockout locus

TK TK

NEO

The NIH Knockout Mouse 
Project (KOMP) has websites 
at  http://www.nih.gov/
science/models/mouse/
knockout/ (WebLink 14.36) 
and  http://www.genome.
gov/17515708 (WebLink 14.37). 
Data coordination is via the 
IMPC website  https://www.
mousephenotype.org/ (WebLink 
14.38). Currently, ∼4500 mice 
have been produced, >700 
are assigned for production 
and phenotyping, and ∼10,000 
embryonic stem cells have been 
produced (February 2015).

http://genome.ucsc.edu
http://www.nih.gov/science/models/mouse/knockout/
http://www.genome.gov/17515708
https://www.mousephenotype.org/
https://www.mousephenotype.org/
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strain to have its genome sequenced. Efforts include the Knockout Mouse Project 
(KOMP), the European Conditional Mouse Mutagenesis Program (EUCOMM), and 
the North American Conditional Mouse Mutagenesis Project (NorCOMM) as well 
as a series of European intiatives (Ayadi et al., 2012; International Mouse Knockout 
Consortium et al., 2007).

The MGI website (Fig. 14.6) provides portals for browsing available knockout 
resources. This includes Deltagen and Lexicon Knockout Mice, and KOMP genes. As 
an example of a search for a specific gene, enter “globin” into the main search box at the 
MGI website and follow the link to Hbb‐b1 (the beta globin adult major chain on chro-
mosome 7; Fig. 14.10). This page includes information about the gene as well as a link to 
phenotypic alleles (Fig. 14.11). Detailed phenotypic data are provided, such as the body 
weight and effects on the hematopoietic system.

reverse genetics: Knocking Out genes in Yeast using Molecular 
Barcodes

Knockout studies in the yeast S. cerevisiae are far more straightforward and also much 
more sophisticated than in the mouse for several reasons. The yeast genome is extremely 
compact, having very short noncoding regions and introns in fewer than 7% of its ∼6000 
genes. Also, homologous recombination can be performed with high efficiency. A con-
sortium of researchers achieved the remarkable goal of creating yeast strains representing 

The Saccharomyces Genome 
Deletion Project website is  
http://www‐sequence.stanford.
edu/group/yeast_deletion_
project/deletions3.html (WebLink 
14.39). It includes lists of available 
deletion strains, protocols, and 
datasets.

Figure  14.10 The Mouse Genome Informatics (MGI) website entry for the major beta globin 
gene (Hbb‐b1) summarizes molecular data on that gene and includes a phenotype category, indicating 
that seven mutant alleles are indexed (five targeted and two chemically induced). Additional alleles are 
reported for the broader query of the hemoglobin beta chain complex (not shown).

Source: MGD, Blake et al. (2014). Reproduced with permission from MGI.

http://www-sequence.stanford.edu/group/yeast_deletion_project/deletions3.html
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the targeted deletion of virtually every known gene (Giaever et al., 2002). The goals of 
this project were as follows:

 • to create a yeast knockout collection in which all of the ∼6000 ORFs in the S. cerevi-
siae genome are disrupted;

 • to provide all nonessential genes (85% of the total) in four useful forms: (1) dip-
loids heterozygous for each yeast knockout (MATa and MATα strains); (2) diploids 
homozygous for each yeast knockout; (3) a mating type (MATa haploid); and (4) 
α‐mating‐type (MATα haploid); knockouts of essential genes are only viable in the 
heterozygous diploids; and

 • to provide all essential genes (15% of the total) as diploids heterozygous for each 
yeast knockout.

Within five years of the creation of the knockout strains, more than 5000 genes were 
associated with a phenotype based on three dozen publications (reviewed in Scherens 
and Goffeau, 2004). The strategy employed for this project is gene replacement by PCR, 
relying on the high rate of homologous recombination that occurs in yeast (Fig. 14.12a). 
A short region of DNA (about 50 bp), corresponding to the upstream and downstream 
portions of each open reading frame, is placed on the end of a selectable marker gene. 
Additionally, two “molecular barcodes” (an UPTAG and a DOWNTAG) are unique 
20‐base‐pair oligonucleotide sequences included in each such deletion/substitution strain. 

Budding yeasts have two mating 
types: MATa and MATα. Haploid 
MATa and MATα cells can mate 
with each other to form diploid 
MATa/α cells. Both haploid and 
diploid phases of the life cycle 
grow mitotically.

Figure 14.11 The MGI description of beta globin mutants includes phenotypic data such as the 
type of mutation (e.g., targeted knockout or conditional knock‐in), the observed phenotypes, the human 
disease relevance, and the allelic composition (genetic background).

Source: MGD, Blake et al. (2014). Reproduced with permission from MGI.
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This feature allows thousands of deletion strains to be pooled and assayed in parallel in a 
variety of growth conditions. The molecular barcode approach is extremely powerful. A 
collection of thousands of yeast knockouts can be grown in routine medium (Fig. 14.12b, 
unselected population) or in the presence of drug, temperature change, or other exper-
imental condition (selected population). Some of the strains in the selected population 
might grow slowly (or die), and others might grow favorably. Genomic DNA is isolated, 
the TAGs (or molecular barcodes) are PCR amplified, labeled with Cy3 or Cy5 dyes, and 
hybridized to a microarray which contains all 12,000 molecular barcodes (20‐mers) on 
its surface (Fig. 14.12c). Strains that are represented at high or low levels relative to the 
unselected population are identified based on unequal Cy3/Cy5 ratios on the microarray.

Giaever et al. (2002) used the yeast knockout collection to describe genes that are 
necessary for optimal growth under six conditions: high salt, sorbitol, galactose, pH 8, 
minimal medium, and treatment with the antifungal drug nystatin. Their findings include 
the following:

 • About 19% of the yeast genes (1105) were essential for growth on rich glucose 
medium. Only about half of these genes were previously known to be essential. 
Beyond these 1105 genes, additional genes could be essential in other growth 
conditions.

Figure 14.12 Targeted deletion of virtually all S. cerevisiae genes. (a) The strategy is to use gene 
replacement by homologous recombination. Each gene (e.g., SSO1) is deleted and replaced by a KanR 
gene, with unique UPTAG and DOWNTAG primer sequences located at either end. (b) A variety of 
selection conditions can be used. (c) Genomic DNA is isolated from each condition, labeled with Cy3 or 
Cy5, and hybridized to a microarray. In this way, genes functionally involved in each growth condition 
can be identified.

(a)

(b)

(c)

SSO1

KanR

KanR

unselected population selected population

Cy3 label Cy5 label

microarray
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 • Nonessential ORFs are more likely to encode yeast‐specific proteins.
 • Essential genes are more likely to have homologs in other organisms.
 • Few of the essential genes are duplicated within the yeast genome (8.5% of the non-
essential genes have paralogs, while only 1% of the essential genes have paralogs). 
This supports the hypothesis that duplicated genes have important redundant func-
tions (see Chapter 18).

The systematic deletion method offers a number of important advantages:

 • All known genes in the S. cerevisiae genome are assayed.
 • Each mutation is of a defined, uniform structure.
 • Mutations are guaranteed to be null.
 • Mutant knockout strains are recovered, banked, and made available to the scientific 
community.

 • Studies of multigene families are facilitated.
 • Parallel phenotypic analyses are possible, and many different phenotypes can be 
assayed.

 • Once the strains have been generated, the labor requirement is low when a new phe-
notype is assessed.

This method also has limitations:

 • The labor investment to generate these knockouts was very large.
 • For each gene, only null alleles were generated for study. (Additional alleles may be 
available from other studies.)

 • No new genes are discovered with this approach, in contrast to random transposon 
insertion approaches (described in the following section).

 • All nonannotated ORFs are missed. In particular, short ORFs may not be annotated.
 • Deletions in overlapping genes may be difficult to interpret.

Since over 80% of the yeast genes are nonessential, this implies that yeast can 
compensate for their loss through functional redundancy, perhaps by the presence of 
paralogs (such as SSO1 and SSO2) in which the loss of one is compensated by the 
presence of the other. A similar scenario explains why deletion of the b1 beta globin 
gene in mouse results in a mild disease due to upregulation of the activity of the paral-
ogous b2 gene. Another possibility is that parallel pathways exist such that if one is 
compromised the other can compensate. In this scenario, depicted in Figure 14.4c, the 
genes encoding members of each pathway need not be homologous. Another idea is 
that nonessential genes do not have redundancy or compensatory pathways, but are 
functionally required only under highly specific circumstances; under some experi-
mental condition, they would therefore be found to be essential or at least to confer 
improved fitness.

How can we determine the functions of nonessential genes in yeast? One approach 
is to study synthetic lethality, in which a combination of two separate nonlethal muta-
tions causes inviability (reviewed in Ooi et al., 2006). A related concept is synthetic 
fitness in which two nonlethal mutations combine to confer a growth defect or other 
disruption that is more severe than that of either single mutation. Tong et al. (2001) 
devised a high‐throughput strategy called synthetic genetic array (SGA) analysis to 
generate haploid double mutants (reviewed in Tong and Boone, 2006). A “query” muta-
tion is crossed to an array of ∼4700 “target” deletion mutants, and double mutant mei-
otic progeny that are inviable indicate that the two mutants are functionally related. 
Using 132 different query genes, Tong et al. (2004) identified a genetic interaction 
network having ∼1000 genes and ∼4000 interactions. The queries included nonessential 
genes as well as conditional alleles of essential genes. The results were consistent with 
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the behavior of a “small world network” in which immediate neighbors of a gene tend 
to interact together. In a related TAG array‐based approach, Jef Boeke and colleagues 
defined functionally related networks of genes that are responsible for maintaining 
DNA integrity, the processes by which cells protect themselves from chromosomal 
damage (Pan et al., 2006). They identified ∼5000 interactions involving 74 query genes. 
This illustrates how functional pathways can be inferred using a genetic screen to iden-
tify modules of interacting proteins.

Another approach to gene function based on the yeast knockout collection is het-
erozygous diploid‐based synthetic lethality by microarray analysis (dSLAM) (Ooi 
et al., 2006; Pan et al., 2007). In dSLAM, a “query” mutation is introduced into a pop-
ulation of ∼6000 heterozygous diploid yeast “target” mutants. The pool of double het-
erozygotes is then haploidized by sporulation and the haploids are analyzed. A control 
pool consists of single target mutants, while the experimental pool consists of double 
(query plus target) mutants. TAGs from these two pools are labeled and analyzed on 
microarrays to define differential growth properties. Advantages of dSLAM are its use 
of molecular barcodes to quantify synthetic lethal relationships on microarrays, and its 
use of heterozygous diploid cells which accumulate fewer suppressor mutations that 
can confound analysis. A concern for all genetic interaction methods is that the false 
positive and false negative error rates may vary according to many factors, including 
the nature of the particular query.

A practical approach to finding genetic relationships between yeast genes is to use 
the SGD database. As shown for SEC1 in Figure 14.3, five different types of genetic 
interaction were observed using a variety of genetic screens. (1) There were five dos-
age lethality interactions. These involved SEC1, SEC4, SEC8, and SEC15 genes, and 
the identification of additional SEC genes suggest that these genes all function in a 
common pathway. In a dosage lethality experiment, overexpression of one gene causes 
lethality in a strain that is mutated or deleted for another gene. (2) There were 13 dosage 
rescue interactions in which overexpression of one gene rescues the deleterious pheno-
type (lethality or growth defect) caused by deletion of another gene. These interactions 
included SEC3, SEC5, SEC10, and SEC15. (3) There were five phenotypic suppression 
interactions in which mutation (or overexpression) of one gene suppresses the pheno-
type (other than a lethality or growth defect) caused by mutation or overexpression 
of another gene. These interactors included both SEC genes (SEC6, SEC14, SEC18) 
and SNC1 (Fig. 14.4). (4) There was one synthetic growth defect interaction, in which 
the expression of two mutant genes in a strain, each of which causes a mild pheno-
type under some experimental condition, results in the phenotype of slow growth. This 
occurred between SEC1 and SRO7. (5) There were 38 synthetic lethality interactions 
that resulted in the phenotype of inviability. These synthetic lethals included a range of 
genes, both in the SEC family and others.

reverse genetics: random insertional Mutagenesis (gene trapping)

We have discussed targeted gene knockouts in mouse and yeast. Many other reverse 
genetics techniques have been developed (summarized in table 14.1). Another high‐
throughput approach to disrupting gene function is called gene trapping. When 
this technique is applied to mouse, insertional mutations are introduced across the 
genome in embryonic stem cells (reviewed in Stanford et al., 2006; Abuin et al., 
2007; Lee et al., 2007; Ullrich and Schuh, 2009). Gene trapping is performed using 
vectors that insert into genomic DNA leaving sequence tags that often include a 
reporter gene. In this way, mutagenesis of a gene can be accomplished and the gene 
expression pattern of the mutated gene can be visualized. When the random inser-
tional mutagenesis technique is applied to Arabidopsis, DNA is often introduced 
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using the bacterium Agrobacterium tumefaciens as a vector (reviewed in Alonso and 
Ecker, 2006).

Gene trap vectors are typically transfected into mouse embryonic stem cells with 
subsequent expression of a selectable marker and resistance to antibiotics. Figure 14.13 
shows three strategies for using gene traps in mouse. Each gene trap vector lacks an 
essential transcriptional component. An enhancer trap includes a promoter, neomycin 
resistance (neo) gene, and polyadenylation signal (Fig. 14.13a). It requires an endog-
enous enhancer to drive expression of the neo mRNA. A promoter trap lacks a pro-
moter (but includes a splice acceptor and a selectable marker), and its expression is 
driven by the function of an endogenous promoter (Fig. 14.13b). PolyA traps have their 
own promoter that drives expression of neo, but they depend on external polyadenyla-
tion signals to successfully confer drug resistance (Fig. 14.13c). These traps are useful 
to trap untranscribed genes since they do not depend on activity of an endogenous 
promoter.

Gene trapping is a method of random mutagenesis and is not used to target a specific 
gene or locus. One strength of the method is that a single vector can be used to both 
mutate and identify thousands of genes. The technique also has the potential to trap genes 
that were not previously mapped; this contrasts with targeted approaches that require 
prior knowledge of the gene sequence. A limitation is that specific genes of interest can-
not be targeted. Even a large‐scale random mutagenesis experiment may fail to trap genes 
because of the nonrandom nature of the insertion sites in the genome (Hansen et al., 
2003).

There are several large‐scale insertional mutagenesis projects. The International 
Gene Trap Consortium (IGTC) manages a collection of ∼45,000 mouse embryonic 
stem cell lines that represent ∼45% of known mouse genes (Skarnes et al., 2004; 
Nord et al., 2006). The Mutagenic Insertion and Chromosome Engineering Resource 
(MICER) includes ∼120,000 insertional targeting constructs that can be used to inac-
tivate genes with a high targeting efficiency (28%; Adams et al., 2004). You can 
view IGTC gene trap constructs at the UCSC Genome Browser, and both MICER 
and IGTC resources are available as annotation tracks at the Ensembl mouse genome 
browser (Fig. 14.14).

The International Gene Trap 
Consortium website is  http://
www.genetrap.org (WebLink 
14.40).

taBle 14.1 reverse genetics techniques. adapted from alonso and ecker (2006), 
with permission from Macmillan publishers ltd.

Method Advantages Disadvantages

Homologous 
recombination (e.g., 
gene knockouts)

A targeted gene can be replaced, 
deleted, or modified precisely; 
stable mutations are produced; 
specific (no off‐target effects)

Low throughput; low efficiency

Gene silencing
(e.g., RNAi)

Can be high‐throughput; can be 
used to generate an allelic series; 
can restrict application to specific 
tissues or developmental stages

Unpredictable degree of gene 
silencing; phenotypes not stable; 
off‐target effects are possible

Insertional mutagenesis High‐throughput; used for loss‐
of‐function and gain‐of‐function 
studies; results in stable mutations

Random or transposon‐mediated 
insertions target only a subset 
of the genome; limited 
effectiveness on tandemly 
repeated genes; limited 
usefulness for essential genes

Ectopic expression Similar to gene silencing Similar to gene silencing

http://www.genetrap.org
http://www.genetrap.org
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(a) Enhancer trap

(b) Promoter trap

(c) PolyA trap

enhancer

enhancer
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promoter

promoter promoter
polyA

stopATG

neo AAAAAAA

neo-polyA

SA-neo-polyA

polyA

stopATG
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neo-SD

polyA

stop
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Figure 14.13 Strategies for gene trap mutagenesis. (a) An enhancer trap consists of a vector con-
taining a promoter, a neo gene that confers antibiotic resistance (and therefore allows for selection of 
successfully integrated sequences), and a polyadenylation signal (polyA). This construct is activated by 
an endogenous enhancer, and disrupts the function of the endogenous gene. The endogenous gene is 
depicted with its own promoter, start codon (ATG), three exons in this schematic example, a stop codon, 
and a polyadenylation signal. (b) A promoter trap lacks an exogenous promoter and instead depends on 
an endogenous enhancer and promoter. It includes a splice acceptor (SA), neo cassette, and polyade-
nylation site. Integration of this vector disrupts the expression of an endogenous gene. (c) A poly(A) trap 
vector includes its own promoter and neo cassette but depends on an endogenous polyadenylation signal 
for successful expression.

Source: Abuin et al. (2007). Reproduced with permission from Springer Science and Business Media.
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reverse genetics: insertional Mutagenesis in Yeast

We will describe two powerful approaches to gene disruption in yeast, in addition to 
homologous recombination: (1) genetic footprinting using transposons; and (2) harness-
ing exogenous transposons.

Transposons are DNA elements that physically move from one location to another 
in the genome (Chapter 8). They accomplish either with an RNA intermediate (retro-
transposons) or without (DNA transposons). The Ty1 element is a yeast retrotransposon 
that inserts randomly into the genome. Patrick Brown, David Botstein, and colleagues 
developed a strategy in which populations of yeast are grown under several different 
conditions (e.g., rich medium versus minimal medium) and subjected to Ty1 trans-
poson‐mediated mutagenesis (Smith et al., 1995, 1996; Fig. 14.15). Following the inser-
tion, the polymerase chain reaction (PCR) is performed using primers that are specific 
to the gene and to the Ty1 element. This results in a series of DNA products of various 
molecular weights. The premise of the approach is that an individual gene (e.g., SSO1) 
might be important for growth under certain conditions. There will be a loss of PCR 
products (a “genetic footprint”) that indicates the importance of that gene for a partic-
ular condition.

This approach has several advantages:

 • Any gene of interest can be assayed or genes can be selected randomly.
 • Multiple mutations can be assayed for any given gene.
 • It is possible to perform phenotypic analyses in parallel in a population.
 • Many different phenotypes can be selected for analysis.
 • The approach can succeed even for overlapping genes.

There are also several disadvantages:

 • Mutant strains are not recovered.
 • Multiple mutations (alleles) are generated, but they are all insertions (rather than 
knockouts or other types of mutation).

 • The approach is labor‐intensive and entails a gene‐by‐gene analysis.
 • The role of duplicated genes with overlapping functions may be missed.

Figure 14.14 Access to information on gene trapped genes at the Ensembl mouse genome browser. 
From the home page of Ensembl, select mouse syntaxin 1a (Stx1a) then use the configuration menu 
(arrow 1) to select MICER data (arrow 2) and International GeneTrap Consortium (not shown). Several 
MICER constructs are shown; these are vectors that are useful for generating knockout mice and for 
chromosome engineering.

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.

1

2
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Another mutagenesis approach involves the random insertion of reporter genes and 
insertional tags into genes using bacterial or yeast transposons (Ross‐Macdonald et al., 
1999; Fig. 14.16). A minitransposon derived from a bacterial transposon Tn3 contains a 
lacZ reporter gene lacking an initiator methionine or upstream promoter sequence. When 
randomly inserted into a protein‐coding gene, it is expected to be translated in‐frame in 
one out of six cases. When this happens, the yeast will produce β‐galactosidase, allowing 
the insertion event to be detected. The construct includes loxP sites that allow a recombi-
nation event in which the lacZ is removed and the target gene is tagged with only a short 
amount of DNA encoding three copies of a hemagglutinin (HA) epitope tag.

An HA‐tagged protein can be 
localized within a cell using an 
antibody specific to HA.

unselected population selected population

single gene (e.g. SSO1)

gene-specific
primer

various sites of Ty1 insertion

(a)

(b)

(c)

unselected selected unselected selected

Figure  14.15 Genetic footprinting. (a) A population of yeast is selected (e.g., by changing the 
medium or adding a drug); some genes will be unaffected by the selection process. (b) Random insertion 
of a transposon allows gene‐specific PCR to be performed and (c) subsequent visualization of DNA 
products electrophoresed on a gel. Some genes will be unaffected by the selection process (panel at 
left). Other genes, tagged by the transposition, will be associated with a reduction in fitness. Less PCR 
product will be observed (in (c)), therefore identifying this gene as necessary for survival of yeast in that 
selection condition.
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This minitransposon construct allows a genome‐wide analysis of disruption pheno-
types, gene expression studies, and protein localization. Ross‐Macdonald et al. (1999) 
generated 11,000 yeast strains in which they characterized disruption phenotypes under 
20 different growth conditions. These studies resulted in the identification of 300 previ-
ously nonannotated ORFs.

reverse genetics: gene Silencing by Disrupting rNa

We have discussed reverse genetics approaches in which a gene is deleted by homol-
ogous recombination. Another approach to identifying gene function is to disrupt 
the messenger RNA rather than the genomic DNA. RNA interference (RNAi) is a 
powerful, versatile, and relatively novel technique that allows genes to be silenced by 
double‐stranded RNA (reviewed in Lehner et al., 2004; Sachidanandam, 2004; Mar-
tin and Caplen, 2007). In plants and animals, small RNAs (21–23 nucleotides) regu-
late the expression of target genes. The extent of inhibition of gene function may be 
variable, in contrast to null alleles created by gene knockouts. Mechanistically, RNAi 
is a form of post‐transcriptional gene silencing that is mediated by double‐stranded 
RNA. It may function as a host defense system to protect against viruses, and RNAi 
may also serve to regulate endogenous gene expression. When double‐stranded RNAs 
are introduced into Drosophila, nematode, plant, or human cells they are processed 
by the endoribonuclease Dicer into small interfering RNAs (siRNAs). These siRNAs 
cleave target messenger RNAs through the actions of an RNA‐induced silencing 
complex (RISC) composed of proteins (such as Argonaute proteins) and RNA. The 
endogenous RNAi process seems to involve microRNAs (described in Chapter 10) 
rather than double‐stranded RNAs.

Figure 14.16 Transposon tagging and gene disruption to assess gene function in yeast. Adapted 
from Ross‐Macdonald et al. (1999), with permission from Macmillan Publishers.

loxP loxPlacZ AmpR LEU2 3XHA

single gene

minitransposon

mutagenize library (yeast genome)

generate lacZ-fusion protein strains
(study expression patterns and disruption phenotypes)

generate hemagglutin-tagged strains
(study localization)



FUncTIonAL GenomIcs 663

RNAi has been used in genome‐wide screens to systematically survey the phe-
notypic consequence of disrupting almost every gene. In Drosophila, Boutros et al. 
(2004) ascribed functions to 91% of all genes and reported 438 double‐stranded 
RNAs that inhibited the function of essential genes. A further extension of the RNAi 
approach was provided by creating a transgenic RNAi library in Drosophila that per-
mits targeted, conditional gene inactivation in virtually any cell type at any develop-
mental stage. Dietzl et al. (2007) created an RNAi library that targets over 13,000 
genes (97% of the predicted protein‐coding genes in Drosophila). There are many 
false negative results, based on comparisons to a positive control set consisting of 
known phenotypes that are expected to occur based on previous classical genetics 
studies. This may occur because the library was constructed by randomly inserting 
transgenes into the fly genome, and not all transgenes express at sufficiently high lev-
els. (The false negative rate for the library was ∼40% and for the genes was ∼35%.) 
There were also false positive results; some could occur because of off‐target effects 
such as changes in the expression levels of genes flanking the target. As an example of 
the usefulness of this approach, Dietzl et al. described the use of a neuronal promoter 
to screen neuronal genes, and reported a lethal phenotype for many including n‐syb 
(a homolog of SNC1/synaptobrevin, Fig. 14.4), Snap (a homolog of SEC17/αSNAP), 
and Syx5 (a homolog of SSO1/syntaxin).

While it is known that false positive results can occur, Ma et al. (2006) empha-
sized how extensive this problem can be. Off‐target effects consist of RNAi constructs 
that inhibit the expression of endogenous genes other than those that are targeted. It 
is expected that sequences sharing a high degree of conservation to the small RNA 
regulator over a span of 19 or more nucleotides will also be targeted. In RNAi stud-
ies of Drosophila, Ma et al. noted off‐target effects mediated by short stretches of 
double‐stranded RNA. These false positives often contain tandem trinucleotide repeats 
(CAN where N represents any of the four nucleotides, with especially strong effects 
observed with CAA and CAG repeats). Such genes are overrepresented in the results 
of published RNAi screens. Ma et al. propose that libraries should be designed to avoid 
even short sequences present in multiple genes and, further, that identified pheno-
typic effects should be independently confirmed using more than one non‐overlapping 
double‐stranded RNA for each candidate.

RNAi screens have been performed in other organisms such as C. elegans (e.g., 
Kamath et al., 2003; Kim et al., 2005; Sönnichsen et al., 2005). Remarkably, C. 
elegans can be fed bacteria that express double‐stranded RNA to inhibit gene func-
tion (Fraser et al., 2000). Kamath et al. performed a genome‐wide RNAi screen and 
described mutant phenotypes for ∼1500 genes, about two‐thirds of which did not 
previously have an assigned phenotype. The most common RNAi phenotype they 
observed is embryonic lethality, observed in over 900 strains. In human, Berns et 
al. (2004) targeted ∼7900 genes using retroviral vectors that encode over 23,000 
short hairpin RNAs, and identified novel modulators of proliferation arrest dependent 
on p53, a key tumor suppressor and regulator of the cell cycle. Brass et al. (2008) 
used RNAi to systematically inhibit the function of human genes in a HeLa cell 
line transfected with short interfering RNAs. They identified 273 messenger RNAs 
that are required for human immunodeficiency virus (HIV) infection and replica-
tion in human cells. These human genes and gene products are potential targets for 
antiviral drugs. Unlike other antiretroviral drugs, potential drugs targeting these key 
human host proteins would not be affected by the extraordinary diversity of HIV 
genotypes (even within a single infected individual, there may be one million variant 
HIV genomes).

An HIV interaction database 
is available at  http://www.
ncbi.nlm.nih.gov/RefSeq/
HIVInteractions/ (WebLink 14.41). 
Currently it lists ∼7000 HIV‐1 
protein interactions involving 3500 
different proteins. We discuss HIV 
in Chapter 16.

http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/
http://www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/
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There are several prominent database resources for RNAi data. (1) The Genome-
RNAi database integrates sequence data for RNAi reagents with phenotypic data from 
RNAi screens, primarily in cultured Drosophila cells (Horn et al., 2007). A search of the 
GenomeRNAi database with the query rop (a Drosophila homolog of yeast SEC1) shows 
several RNAi probes (including the phenotype, the specificity, the occurrence of off‐tar-
get effects, and the efficiency) as well as a link to the FlyBase gene entry. (2) FLIGHT 
also provides data on high‐throughput RNAi screens (Sims et al., 2006). Its scope and 
mission are compable to the GenomeRNAi database. Both include a BLAST server, and 
FLIGHT contains additional analysis tools. (3) The RNAi Database is a similar database 
dedicated to C. elegans (Gunsalus et al., 2004). A search for UNC‐18, the C. elegans 
homolog of SEC1/rop/syntaxin‐binding protein 1, shows a list of phenotypes observed in 
RNAi screens. For example, RNAi of UNC‐18 leads to resistance to the acetylcholinester-
ase inhibitor aldicarb, a drug that induces paralysis by preventing the normal breakdown 
of the neurotransmitter acetylcholine. This result is consistent with a functional role for 
unc‐18 in modulating the release of acetylcholine from vesicles in the presynaptic termi-
nal at the neuromuscular junction.

A second approach to disrupting RNA is to knock down gene expression using mor-
pholinos (Angerer and Angerer, 2004; Pickart et al., 2004). Morpholinos are a form of 
antisense oligonucleotide consisting of a nucleic acid base with a morpholine ring and 
a phosphorodiamidate linkage between residues. They specifically bind to messenger 
RNAs (and microRNAs) and have been used to downregulate transcripts. They have been 
used extensively in zebrafish, and the ZFIN database describes the results of experiments 
using morpholinos. The MOrpholino DataBase lists morpholinos and their targets, and 
associated phenotypic data (Knowlton et al., 2008).

Several newly developed approaches offer the exciting possibility of engineering a 
genome by selectively modifying nucleotides of interest. (1) Zinc finger nucleases are 
engineered proteins that target genomic DNA of interest. Target specificity is gained 
through the amino acid sequences of DNA‐binding zinc fingers, the number of fingers, 
and interaction of a nuclease with the target DNA. Zinc fingers have been used in model 
organisms including the rat (Geurts and Moreno, 2010) and zebrafish. (2) The transcrip-
tion activator‐like effector nucleases (TALENs) have been widely used to target sequences 
across a variety of organisms (Joung and Sander, 2013). They combine a nuclease that 
cleaves genomic DNA with a DNA‐binding domain that can be directed to any target 
sequence of interest. (3) Streptococcus pyogenes and other bacteria and archaea use a 
system called clustered regularly interspaced short palindromic repeats (CRISPR)/Cas to 
defend against viruses and other foreign nucleic acids. RNA molecules guide a nuclease 
(Cas9) to a specific DNA site where cleaveage occurs (Barrangou, 2013). The CRISPR/
Cas system has been adapted to target and disrupt one or many genes in human and other 
cells (Le Cong et al., 2013; Mali et al., 2013) and to activate transcription (Perez‐Pinera 
et al., 2013).

The Zinc Finger Consortium produced a software package (ZiFiT Targeter) to help 
design zinc finger target sites as well as TALENs (Sander et al., 2010). Its website recently 
expanded to include CRISPR/Cas resources as well. The group of George Church (Mali 
et al., 2013) provided a resource of ∼190,000 unique guide RNAs targeting ∼41% of the 
human genome.

Zinc finger nuclease, TALEN, and CRISPR/Cas technologies do not have perfect 
specificity, and off‐target or incidental cleavages are a potential concern. Cradick et al. 
(2013) targeted the beta globin (HBB) gene and identified incidental cleavage of the 
closely related delta globin (HBD) gene, sometimes using guide strands having just a one‐
base mismatch. They reported a series of insertion, deletions, and point mutations. As for 
any genome editing technology it is essential to control for such effects to correctly inter-
pret research findings, especially as these technologies begin to have clinical applications.

The GenomeRNAi database 
(Schmidt et al., 2013) is available 
at  http://www.genomernai.de/
GenomeRNAi/ (WebLink 14.42). 
Currently it includes information 
on >140,000 Drosophila RNAi 
constructs and >320,000 RNAi 
reagents for human studies 
(February 2015). FLIGHT is 
available online at  http://
flight.icr.ac.uk/ (WebLink 14.43). 
The RNAi Database (RNAiDB) 
is available at  http://rnai.org/ 
(WebLink 14.44) and focuses on 
C. elegans RNAi resources.

The Morpholino Database 
(MODB) is available at  http://
www.morpholinodatabase.
org/ (WebLink 14.45). It 
currently contains over ∼1000 
morpholinos.

ZiFiT Targeter is available online 
at  http://zifit.partners.org/
ZiFiT/ (WebLink 14.46). You can 
also perform CRISPR search and 
analysis at  http://crispr.mit.edu 
(WebLink 14.47).

http://www.genomernai.de/GenomeRNAi/
http://flight.icr.ac.uk/
http://flight.icr.ac.uk/
http://rnai.org/
http://www.morpholinodatabase.org/
http://www.morpholinodatabase.org/
http://zifit.partners.org/ZiFiT/
http://crispr.mit.edu
http://www.genomernai.de/GenomeRNAi/
http://zifit.partners.org/ZiFiT/
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Forward genetics: Chemical Mutagenesis

Forward genetics approaches are sometimes referred to as phenotype‐driven screens. 
They are commonly performed using N‐ethyl‐N‐nitrosurea (ENU), a powerful chemi-
cal mutagen used to alter the male germline (O’Brien and Frankel, 2004; Clark et al., 
2004; Probst and Justice, 2010; Stottmann and Beier, 2010; Horner and Caspary, 2011). 
ENU is more effective than X‐ray irradiation, γ irradiation, or other chemical mutagens at 
inducing point mutations in organisms from mice to Drosophila to plants (Russell et al., 
1979). While the spontaneous mutation rate is about 5–10 × 10–6 for the average locus, 
ENU treatment typically yields a mutation frequency of about 1 × 10–3 per locus. These 
mutations tend to consist of single base substitutions, sometimes resulting in missense, 
splicing, or nonsense mutations. After ENU is administered to mice or other organisms, 
a phenotype of interest is observed (such as failure of neurons to migrate to an appropri-
ate position in the spinal cord). Recombinant animals are created by inbreeding and the 
phenotype can then be demonstrated to be heritable. The mutagenized gene is mapped by 
positional cloning and identified by sequencing the genes in the mapped interval. In mice, 
ENU is used to mutagenize either spermatogonia or embryonic stem cells. O’Brien and 
Frankel (2004) reviewed the use of chemical mutagenesis in the mouse and emphasized 
the need for phenotyping that is both expert and high capacity.

Arnold et al. (2012) summarized their findings of 185 phenotypes associated with 
129 genes, as well as 402 incidental mutations predicted to affect 390 genes (reviewed in 
Gunn, 2012). These findings are archived in the Mutagenetix database.

A major limitation of the ENU approach is that the gene(s) whose point mutations are 
responsible for the observed phenotypic change must be identified without the benefit of 
tags introduced into the genomic DNA. While positional cloning used to be a laborious 
process, the availability of complete genome sequences and dense maps of polymorphic 
markers has permitted relatively rapid identification of genes of interest. Michael Zwick 
and colleagues have applied next‐generation sequencing to rapidly identify causal vari-
ants (Sun et al., 2012). They apply multiplex chromosome‐specific exome capture to 
simultaneously assess variants in mutant, parental, and background strains.

The use of balancer chromosomes has also facilitated the ENU approach (Hentges 
and Justice, 2004). In a balancer chromosome, a phenotypically marked chromosomal 
segment is inverted; this facilitates mapping as well as maintenance of mutations in the 
heterozygous state. This effect was first described by Hermann Muller (1918). Monica 
Justice and colleagues used the strategy of a balancer chromosome to characterize dozens 
of novel recessive lethal mutations on mouse chromosome 11 (Kile et al., 2003). The 
balancer chromosome consists of mouse chromosome 11 harboring a large inversion (34 
megabases). Male mice are treated with ENU, mated to females with the balancer chro-
mosome and, through a strategy of successive intercrosses, mice that have a homozygous 
lethal mutation can be identified and the gene can be easily mapped.

Comparison of reverse and Forward genetics

Both reverse and forward genetics approaches are powerful. We can contrast and compare 
several of their features.

 • These approaches ask different questions. Reverse genetics asks “What is the phe-
notype of this mutant?” Forward genetics asks “What mutants have this particular 
phenotype?”

 • Reverse genetics approaches attempt to generate null alleles as a primary strategy 
(and conditional alleles in many cases). Forward genetics strategies such as chemi-
cal mutagenesis are “blind” in that multiple mutant alleles are generated that affect 
a phenotype (Guénet, 2005). These alleles include hypomorphs (having reduced 

Mutagenetix is online at  http://
mutagenetix.utsouthwestern.
edu/ (WebLink 14.48). It currently 
includes >300 phenotypes linked 
to genes, and ∼200,000 incidental 
mutations identified in >20,000 
genes.

http://mutagenetix.utsouthwestern.edu/
http://mutagenetix.utsouthwestern.edu/
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function), hypermorphs (having enhanced function), and neomorphs (having novel 
function) as well as null alleles.

 • We introduced techniques such as insertional mutagenesis (see above) as a form of 
reverse genetics. However, insertional mutagenesis has also been used in the context of 
forward genetics screens. In each case an attempt is made to infer the function of a set 
of genes based on the phenotypic consequence of disrupting the expression of a gene.

FunctIonal GenomIcs and the central doGma
We have discussed reverse and forward genetics approaches to gene function. Another 
way to describe the scope of the field of functional genomics is to consider the central 
dogma that DNA is transcribed to RNA and translated to protein. These levels of analysis 
are reflected in the organization of functional genomics projects at the National Human 
Genome Research Institute (NHGRI) and elsewhere.

approaches to Function and Definitions of Function

Function is a purpose or activity. In the context of bioinformatics and genomics, there 
is no single definition of function. Instead, function is considered in the context of a 
biological process such as development of the heart or metabolism of amino acids. We 
have already encountered function in our recent chapters. In Chapter 8 we discussed the 
assertion of the ENCODE Project Consortium that over 80% of the human genome is 
functional because it transcribes RNA and/or binds proteins that are involved in gene 
regulation.

It is important to distinguish three different approaches to function from three defini-
tions of function (Fig. 14.17). In the context of interpreting the function of genomic DNA, 
genetic approaches can be adopted (e.g., establishing the consequence of sequence alter-
ations by knocking out a gene in a mouse, or studying the consequence of a microdeletion 
syndrome in a patient). A second approach is evolutionary: we can align homologous 
DNA and/or proteins. In Chapter 13 we introduced structural genomics initiatives, many 
of which define inferred protein function according to the inference of homologous super-
families. A third approach is biochemical: we can measure an activity in a given cell type 
and physiological condition. The ENCODE biochemical map describes many biochem-
ical events that will facilitate hypothesis testing such as examing the consequence of 
knocking out long noncoding RNA genes.

The approaches are closely related to the definitions of function. The first definition 
is that functional process are evolutionarily selected. Since the emergence of the neutral 
theory of evolution (Kimura 1968, 1983; Chapter 7) it has been posited that the majority 
of DNA changes are neutral or nearly neutral. However, functional elements are under 
positive natural selection according to this definition of function and can be determined 
by identifying genomic loci under constraint and by characterizing the consequences of 
naturally occurring mutations or targeted mutations such as described in this chapter.

A second definition of function is that of a causal role: in genetics a gene knockout 
results in a phenotype, allowing us to infer the normal function of the gene. From the 
evolutionary perspective, this definition of function implies that conserved loci, identified 
by comparative genomics, are functional. There are many caveats: some ultraconserved 
loci seem to be dispensible (highlighting the need to perform appropriate phenotyping to 
identify the particular conditions in which some change has a deleterious consequence). 
A criticism of this second definition of function is that causal roles may be identified that 
are irrelevant to biology. A heart causes the sound of a beat, but this does not mean that 
the key function of the heart is to make sound. A segment of DNA may be transcribed into 
RNA, but it remains to be established that this is biologically relevant.

See  http://www.genome 
.gov/10000612 (WebLink 14.49) 
for a description of the NHGRI 
functional analysis program.

http://www.genome.gov/10000612
http://www.genome.gov/10000612
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A third definition of function is that of inferred selected effect. Every receptor that 
has been identified must bind some endogenous ligand, it is believed, because that is the 
inherent function of a receptor. However, for some receptors no endogenous ligand has 
yet been identified. This definition of function places faith in biological function that rises 
above the background noise of biological processes.

Figure 14.17 Distinguishing different approaches to function (columns) from definitions of func-
tion (rows). Considering these definitions and approaches clarifies the conclusions that can be drawn 
from projects such as ENCODE that ascribe function to the great majority of genomic DNA. The bottom 
figure shows three circles corresponding to the magnitude of functional findings in ENCODE. The bot-
tom portion of this figure was redrawn from Kellis et al. (2014), with permission from PNAS.
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Functional genomics and DNa: integrating information

One goal of functional genomics is to provide integrated views of DNA, RNA, protein, 
and pathways. Many resources (such as those at Ensembl, EBI, and NCBI) offer this 
integrated view. As an example, the NCBI BioSystems database describes groups of mol-
ecules that interact in some biological system (Geer et al., 2010). BioSystems serves as a 
repository of pathways and other data, and it is an interface to the Entrez system (Chap-
ter 2). The Frequency weighted links (FLink) tool allows you to input a list of genes (or 
proteins or small molecules) and obtain a ranked list of biosystems. Begin by choosing a 
database (we select BioSystems; Fig. 14.18a) and input data of interest (we select globin 
in Fig. 14.18b via an Entrez search, but you can upload a list of identifiers). The output can 
include entries from KEGG, REACTOME, and GO from various species (Fig. 14.18c). 
Each entry has a BioSystems identifier (BSID), typically linking to a pathway map. The 
LinkTo option further provides links to relevant data in other NCBI databases, in this 
example to thousands of globin structure links (Fig. 14.18d).

It is routine for bioinformatics tools to link fields of information using relational 
databases. BioMart at Ensembl is a prominent example. Christopher Bouton introduced 
DRAGON in 2000, one of the earliest relational databases (Bouton and Pevsner, 2000). 
DRAGON automatically downloaded and interconnected databases such as UniGene, 
SwissProt, KEGG (see “Pathways, Networks, and Integration” below), and Pfam. Bouton 
recently introduced Cortellis™ Data Fusion, an analytic platform that integrates multiple 
data sources and is often used in the pharmaceutical and biotechnology industries.

The vision of the ENCODE project is inherently integrative. Its main goal has been to 
catalog a “parts list” of functional elements in the human genome at the level of genomic 
DNA elements that act at the RNA and protein levels, including regulatory elements that 
control gene activity.

What are the phenotypic effects of genomic variation? The Critical Assessment of 
Genome Interpretation (CAGI) is a community‐based project in which research teams are 
provided genetic variants and must predict molecular, cellular, or organismal phenotypes. 
CAGI is modeled after Critical Assessment of Structure Prediction (CASP; Chapter 13). 
The 2013 CAGI experiment included <200 predictions from 33 different research groups. 
Examples of challenges are identifying asthma or other disease-associated variants in 
personal genomes, or predicting which BRCA1 mutations confer increased risk of breast 
cancer.

Functional genomics and rNa

Surveys of RNA transcript levels across different regions (for multicellular organisms) 
and times of development provide fundamental information about an organism’s pro-
gram of gene expression. (The expression “gene expression profiling” is commonly used, 
although more precisely it is steady‐state mRNA levels that are measured rather than the 
process of gene expression.) Many studies have surveyed changes in RNA transcripts 
levels across developmental stages of organisms, or across body regions. Microarrays 
have been used to measure gene expression patterns for thousands of Drosophila genes 
across many developmental stages (Arbeitman et al., 2002). Similar studies have been 
performed for the mosquito (Koutsos et al., 2007), C. elegans (Kim et al., 2001), and 
other species. These experiments have gradually been complemented by RNAseq with its 
extended dynamic range and improved coverage of the transcriptome.

The Saccharomyces Genome Database (SGD) offers many resources to describe 
gene expression in yeast. For each gene, an expression summary plots the log

2
 ratio of 

gene expression (x axis) versus the number of experiments (y axis; Fig. 14.3, lower right). 
That plot is clickable, so experiments in which SEC1 RNA is dramatically up‐ or down‐
regulated can be quickly identified.

BioSystems and FLink are 
available at  http://www.
ncbi.nlm.nih.gov/biosystems/ 
(WebLink 14.50).

Cortellis Data Fusion is available 
at  http://thomsonreuters.com/
cortellis‐data‐fusion/ (WebLink 
14.51). While DRAGON is no 
longer contemporary because 
it has been superceded by tools 
such as BioMart, it continues to 
operate at  http://pevsnerlab.
kennedykrieger.org/ (WebLink 
14.52).

The ENCODE website at the 
UCSC Genome Bioinformatics 
site is  http://genome.ucsc.
edu/ENCODE/ (WebLink 14.53), 
and the ENCODE homepage at 
NHGRI is  http://www.genome.
gov/10005107 (WebLink 14.54).

The CAGI website is  https://
genomeinterpretation.org/ 
(WebLink 14.55).

http://www.ncbi.nlm.nih.gov/biosystems/
http://thomsonreuters.com/cortellis%E2%80%90data%E2%80%90fusion/
http://pevsnerlab.kennedykrieger.org/
http://genome.ucsc.edu/ENCODE/
http://www.genome.gov/10005107
https://genomeinterpretation.org/
https://genomeinterpretation.org/
http://www.ncbi.nlm.nih.gov/biosystems/
http://thomsonreuters.com/cortellis%E2%80%90data%E2%80%90fusion/
http://pevsnerlab.kennedykrieger.org/
http://genome.ucsc.edu/ENCODE/
http://www.genome.gov/10005107
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 RNA studies can also be integrated with DNA‐ and protein‐level perspectives. As 
one example, Low et al. (2013) studied two rat strains for which the genome sequence 
was known (one of which is hypertensive). They performed RNA‐seq from the liver of 
individuals of both strains (finding expression of >18,000 known genes) and mass spec-
trometry (finding evidence for ∼26,000 peptides). This rich dataset allowed Low et al. to 
identify nonsynonymous variants, to find evidence for RNA editing (in which the genomic 

Figure  14.18 NCBI offers the FLink resource to identify connections between an input list of 
proteins, genes, or other molecules and associated database entries. (a) Users first select a database, (b) 
enter search terms, and (c) obtain a table of results from assorted databases. Note the “LinkTo” option; 
(d) shows available links, each of which further connects the results to further database entries.

Source: FLink, NCBI.

(a) Frequency-weighted link: select database (b) FLink: input identifiers or search terms

(c) FLink: table of globin results

(d) FLink LinkTo options 
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DNA specifies a given codon but editing at the RNA level directs synthesis of a different 
protein sequence), and to characterize post‐translational modifications. They could char-
acterize the correlation between RNA and protein (r ∼ 0.42). Finally, they could identify 
a variant in the Cyp17a1 gene that is a candidate for causing hypertension in one of the 
strains.

Functional genomics and protein

Classical biochemical approaches to protein function involve an assay for the function of 
a protein (such as its enzymatic activity or a bioassay for its influence on a cellular pro-
cess). This assay may be used as the basis of a purification scheme in which the protein is 
purified to homogeneity. Thousands of proteins have been studied individually with this 
approach. Each protein has its own personality in terms of biochemical properties and its 
propensity to interact with a variety of resins that separate proteins on the basis of size, 
charge, or hydrophobicity. We described several techniques to study proteins in Chap-
ter 12, including two‐dimensional gel electrophoresis and mass spectrometry.

ProteomIcs aPProaches to FunctIonal GenomIcs
In the remainder of this chapter we introduce proteomics approaches to functional genom-
ics. We describe a protein function prediction experiment, protein–protein interactions, 
and then conclude with a study of protein pathways. The functions of most proteins are 
unknown. Even for relatively well‐studied model organisms such as Escherichia coli and 
S. cerevisiae, functions have been assigned to only perhaps two‐thirds of all proteins, and 
the function of the great majority of mouse or human proteins is unknown. The high‐
throughput proteomics projects attempt to assign function on a large scale, identifying 
the presence of proteins (in particular, physiological conditions) or identifying protein–
protein interaction partners.

Basic features of proteins include their sequence, structure, homology relation-
ships, post‐translational modifications, localization, and function. In addition to the 
study of individual proteins, high‐throughput analyses of thousands of proteins are pos-
sible (Molloy and Witzmann, 2002). We describe three such approaches: (1) identifying 
pairwise interactions between protein using the yeast two‐hybrid system; (2) identify-
ing protein complexes involving two or more proteins using affinity chromatography 
with mass spectrometry; and (3) analyzing protein pathways. While protein studies 
have been studied in‐depth in a variety of model organisms, studies in S. cerevisieae are 
particularly advanced.

We have discussed forward genetics and reverse genetics approaches to gene func-
tion. A similar framework can be applied to proteomics (Palcy and Chevet, 2006). Forward 
proteomics approaches correspond to the classical approach to protein characterization 
(Fig. 14.19a). A biological system is selected, such as human cells from individuals with or 
without a disease. Proteins are compared by techniques such as mass spectrometry, differ-
entially regulated proteins are identified, and from this the function of these proteins and 
their possible roles in the disease state may be inferred and further studied. In reverse pro-
teomics, the starting point is genomic sequence from which genes, RNA transcripts, and 
protein products can be inferred (Fig. 14.19b). Complementary DNA (cDNA) clones can 
be obtained and expressed in a variety of systems so that their function may be assessed 
in assays for protein–protein interactions or other behaviors (cellular phenotypes).

Both forward and reverse proteomics approaches may be applied to discover protein 
function. Both of these may involve high‐throughput techniques in which large num-
bers of samples and/or proteins are assayed. For example, in the forward proteomics 
approach of “isobaric tags for relative and absolute quantitation” (iTRAQ; Aggarwal 
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et al., 2006), for eight or more protein samples of interest, the identity and relative quan-
tity of 1000 proteins in each of these samples may be determined with high accuracy. 
Protein microarrays, analogous to DNA microarrays, consist of affinity reagents (such 
as specific antibodies) that are attached to a solid support (Sutandy et al., 2013). Such 
technology can be challenging because of the difficulty in maintaining the structure (and 
function) of immobilized proteins. Nonetheless, it has been applied to diverse problems 
from characterizing enzyme activity to the detection of post‐translational modifications, 
assessing antibody specificity, and measuring protein–protein interactions.

Figure 14.19 Forward and reverse proteomics. (a) Forward proteomics. An experimental system is 
selected (such as a comparison of two developmental stages or normal versus diseased tissue). Proteins 
are extracted in a manner depending on the biological question that is addressed (e.g., selecting for mem-
brane proteins or a subcellular organelle). Sample preparation may include steps such as polyacrylamide 
gel electrophoresis or chromatography columns to separate complex protein mixtures and reduce the 
complexity of the sample fractions being compared. Proteins may be labeled with fluorescent dyes or 
a variety of other tags, then they are separated and analyzed by techniques such as mass spectrometry 
(Chapter 12). Spectra are analyzed and differentially regulated proteins are identified. These regulated 
proteins may reflect functional differences in the comparison of the original samples. (b) Reverse pro-
teomics. A genome sequence of interest is analyzed and genes, transcripts, and proteins are predicted 
based on a combination of computational and experimental evidence (discussed in Chapter 8 for eukary-
otes). Complementary DNAs (cDNAs) are cloned based on information about open reading frames 
available in repositories and based on appropriate primer design. cDNAs are validated by sequence 
analysis and are then expressed in systems such as E. coli (for the production of recombinant proteins), 
mammalian cells, or other model organism systems. Functional assays are performed in order to assess 
function; assays include the yeast two‐hybrid system or other protein interaction assays. Adapted from 
Palcy and Chevet (2006), with permission from John Wiley & Sons.
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bioinformatics

(a) Forward proteomics (b) Reverse proteomics
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Functional genomics and protein: Critical assessment of protein 
Function annotation

The critical assessment of protein function annotation (CAFA) experiment is also mod-
eled on CASP. More than 48,000 protein sequences were released to 30 participating 
teams who predicted Gene Ontology (GO; Chapter 12) annotations. The performances of 
various algorithms were assessed on a subset of 866 proteins for which “gold standard” 
GO annotation was available to the organizers, then used to assess the performance of 
prediction algorithms. CAGI involved many challenges inherent in the nature of protein 
function (Radivojac et al., 2013):

 • Protein function is defined at multiple levels, involving the role of a protein on its 
own and in pathways, cells, tissues, and organisms.

 • Protein function is context dependent (e.g., many proteins change function in the 
presence of a signal such as calcium or a binding partner).

 • Proteins are often multifunctional.
 • Functional annotations are often incomplete and may be incorrect.
 • Curation efforts map protein function to gene names, but multiple isoforms of a gene 
may have different functions.

Radivojac et al. concluded that the 2013 CAFA results included algorithms that out-
perform BLAST. In an independent analysis, Gillis and Pavlidis (2013) noted the funda-
mental reliance of all algorithms on sequence alignment with BLAST. Burkardt Rost and 
colleagues (Hamp et al., 2013) used several homology‐based predictors of protein func-
tion and noted that they performed well. Also, small changes to their algorithms could 
produce dramatically different results.

Gillis and Pavlidis (2013) also suggested that a major bottleneck is the inclusion 
of experimentally defined protein functions into annotation databases. Dessimov et al. 
(2013) also emphasize the occurrence of false positive errors. For example, a protein may 
be annotated as “receptor binding” by GO while other databases such as InterProScan 
may define it as “carbohydrate binding,” reflecting its authentic biological activity. If 
the InterProScan annotation is not transferred to other databases (such as SwissProt) and 
given GO functional annotation, then “carbohydrate binding” would be classified as a 
false positive result.

Future CAFA experiments are likely to continue evolving in design and in 
performance metrics. As with other competition experiments, they will move the  
community towards developing and benchmarking better methods for function 
prediction.

protein–protein interactions

Proteins are responsible for a dazzling variety of functions, from serving as enzymes to 
having structural roles. A consistent theme is that most proteins perform their functions 
in networks associated with other proteins and other biomolecules. As a basic approach to 
discerning protein function, pairwise interactions between proteins can be characterized 
(Williamson and Sutcliffe, 2010; Velasco‐García and Vargas‐Martínez, 2012). Proteins 
often interact with partners with high affinity. (The two main parameters of any binding 
interaction are the affinity, measured by the dissociation constant K

D
, and the maximal 

number of binding sites B
max

.) The interactions of two purified proteins can be measured 
with dozens of techniques such as the following:

 • Co‐immunoprecipitation, in which specific antibodies directed against a protein of 
interest are used to precipitate the protein to the bottom of a test tube along with any 
associated binding partners.
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 • Affinity chromatography, in which a cDNA construct is engineered that encodes a 
protein of interest in frame with glutathione S‐transferase (GST) or some other tag 
such as polyhistidine. A resin to which glutathione is covalently attached is incubated 
with a GST fusion protein, and it binds to the resin along with any binding partners. 
Irrelevant proteins are eluted and then the specific binding complex is eluted and its 
protein content is identified.

 • Cross‐linking with chemicals or ultraviolet radiation, in which a protein is allowed to 
bind to its partners and then cross‐linking is applied and the interactors are identified.

 • Surface plasmon resonance (with the BIAcore technology of GE Healthcare), in 
which a protein is immobilized to a surface and kinetic binding properties of interact-
ing proteins are measured.

 • Equilibrium dialysis and filter binding assays, in which bound free ligands (that is, a 
protein with and without its interacting partner) are separated and quantitated.

 • Fluorescent resonance energy transfer (FRET), in which two labeled proteins yield a 
characteristic change in resonance energy upon sharing a close physical interaction.

We can approach the general issues associated with protein–protein interactions by 
considering the trafficking proteins shown in Figure 14.4. Some interactions occur in a 
pairwise fashion; for example, mammalian syntaxin binds to syntaxin‐binding protein 1 
in a binary complex (Fig. 14.4d). Syntaxin is also a member of several other complexes 
to the exclusion of syntaxin‐binding protein; for example, syntaxin 1a, synaptobrevin‐2/
VAMP‐2, and SNAP‐25 (Fig. 14.4b) bind in a complex so tightly that they are able to 
migrate together as a trimer even in the harsh conditions of polyacrylamide gel electro-
phoresis that denatures most proteins. If purified syntaxin is immobilized on a column 
and mixed with an extract of rat brain, it is likely that two or more separate complexes will 
form as depicted in Figure 14.4d for Sso1p and other yeast orthologs. It would be incorrect 
to infer a direct binding interaction between syntaxin binding protein and synaptobrevin 
or SNAP‐25. At the same time, it would be reasonable to conclude that all these proteins 
function as part of a common pathway. Finding genetic interactions can provide even 
more information about genes whose products function in a pathway or in parallel, related 
pathways (Fig. 14.4c, e). Genetic interaction data give less information about which par-
ticular proteins directly interact or which form protein complexes, but they may provide 
more information than studies of protein partners and protein complexes in terms of the 
members of protein pathways.

Yeast Two‐Hybrid System
The yeast two‐hybrid system is a high‐throughput method used to identify protein–pro-
tein interactions (Fields and Song, 1989; Fields, 2009). The assay is extremely versatile 
and has been used to identify protein‐binding partners in many species. It is based upon 
the fact that the yeast GAL4 transcriptional activator is composed of two independent 
activation and binding domains (Box 14.1). The cDNA encoding a protein of interest 
(the “bait”) is fused to the GAL4 DNA binding domain. A large collection of cDNAs (a 
library consisting of various “prey”) is cloned into a vector containing the GAL4 activa-
tion domain. Alone, the GAL4 DNA binding domain does not activate transcription. How-
ever, when the bait binds to another fusion protein expressed from the cDNA library, the 
proximity of the two proteins enables transcription of a GAL4 reporter gene. The name 
“two‐hybrid” system refers to the use of two recombinant proteins that must interact.

In addition to the strategy of using a bait protein to screen a library, the yeast two‐
hybrid system has been used to measure the interaction of a known bait protein with indi-
vidual, cloned prey proteins. In this way a set of many protein–protein interactions can be 
assayed. Compared to screening libraries, this approach has the advantage of systemati-
cally testing a matrix of possible protein–protein interactions; it has the disadvantage of 
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not allowing the discovery of novel interacting partners that might be found in a complex 
cDNA library.

Yeast two‐hybrid system technology has been applied to the analyses of essentially 
all possible pairwise protein–protein interactions in the yeast S. cerevisiae. Uetz et al. 
(2000) described 957 interactions involving 1004 yeast proteins, while Ito et al. (2001) 
identified 4549 interactions among 3278 proteins. These datasets are useful to define pos-
sible pathways of interacting proteins. Surprisingly, only about 20% of these two datasets 
overlap. The lack of concordance between these datasets may be due to differences in 
the physiological conditions in the studies, or to different sources of false positive and 

Box 14.1 Yeast two-hYBrId sYstem 
The yeast two‐hybrid system allows the identification of the binding partners of a protein. A cDNA encoding a protein of interest (such 
as huntingtin, the protein that is mutated in Huntington’s disease) is used as a “bait” to identify interacting proteins in a library of 
cDNAs encoding human proteins expressed in brain (“prey”). A construct containing huntingtin cDNA, fused to a DNA binding domain 
(BD), is introduced into yeast cells. The BD interacts with a yeast GAL1 upstream activating sequence (UAS) but, in the absence of an 
appropriate activator domain (AD), a lacZ reporter gene is not activated (see part (a) in figure below). A library of thousands of cDNAs 
is created, each fused to an activation sequence, but these alone are also unable to activate a reporter gene (see part (b)). When a clone 
from the library (AD fused to prey 1) binds to the bait/DNA BD construct, the activator domain is able to activate transcription of the 
lacZ reporter gene. This reporter allows identification of plasmid DNA from these yeast cells, and the prey 1 cDNA is sequenced. There 
may be many different binding partners identified from a yeast two‐hybrid library. In one application of this technology, Li et al. (1995) 
identified huntingtin‐associated protein (HAP‐1), a protein enriched in brain that may affect the selective neuropathology of expanded 
polyglutamine repeats in Huntington’s disease.

lacZ reporter genePromoterGAL1 UAS

active transcription

lacZ reporter genePromoterGAL1 UAS

lacZ reporter genePromoterGAL1 UAS

(a) DNA binding without activation

(b) Prey bound to activation domain

(c) Transcription activation upon prey binding to bait

prey 1
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prey 3

AD

prey 2

AD

prey 1
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prey 3
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bait

DNA BD

bait

DNA BD



FUncTIonAL GenomIcs 675

false negative errors (discussed in the following). Other high‐throughput yeast two‐hybrid 
assays have been applied to Drosophila and other organisms (Giot et al., 2003).

This experimental strategy entails a number of assumptions, including reasons for 
false positive results (biologically nonsignificant interactions) and false negative results 
(missed biological interactions; Schächter, 2002). False negative results may occur for the 
following reasons:

 • The bait that is introduced into yeast cells must be localized to the nucleus. If the bait 
targets its native location, this could explain why some previously known interactions 
were not observed.

 • The fusion protein construct must not interfere with the function of the bait protein.
 • Transient protein interactions may be missed.
 • Some protein complexes require highly specific physiological conditions in which 
to form, and may therefore be missed. Some interactions may fail in the specialized 
environment of the yeast nucleus.

 • There may be a bias against hydrophobic proteins and low‐molecular‐weight 
proteins.

False positive results may also occur for a variety of reasons. Some proteins may 
be inherently susceptible to nonspecific binding interactions (i.e., they are “sticky” and 
activate many bait proteins). Proteins that are denatured may bind nonspecifically. A bait 
protein may autoactivate a reporter gene. Careful analysis of two‐hybrid results allows 
these sources of false positive and false negative results to be reduced, for example by 
identifying promiscuous binding proteins.

Information about yeast two‐hybrid data is available in several databases. The Sac-
charomyces Genome Database includes a link to physical interaction data including inter-
actions from two‐hybrid screens (Fig. 14.3, upper left). A search for Sec1p reveals several 
interaction partners including Sso2p and Mso1p. (When Mso1p was used as a bait in a 
reciprocal fashion, it was again found to bind to Sec1p.)

The yeast two‐hybrid system has been extended to many other applications includ-
ing RNA‐protein interactions (Martin, 2012) and small molecule screening (Rezwan and 
Auerbach, 2012). Stynen et al. (2012) provide an extensive review of many related appli-
cations.

Protein Complexes: Affinity Chromatography and Mass Spectrometry
Affinity chromatography is a technique in which a ligand such as a protein is chemically 
immobilized to a matrix on a column. A major difference between the yeast two‐hybrid 
strategy and the affinity chromatography approach is that the yeast two‐hybrid system is 
only used to detect pairwise interactions between proteins. In contrast, an affinity chro-
matography approach allows subunits consisting of many proteins to be isolated and 
identified.

Many groups have employed a strategy of identifying thousands of multiprotein com-
plexes in the yeast S. cerevisiae and other organisms (e.g., Gavin et al., 2002, 2006; Ho 
et al., 2002; Krogan et al., 2006). Each group selected large numbers of “bait” proteins 
containing a tag that allowed each bait to be introduced into yeast, where they could form 
native protein complexes. After complexes were allowed to form under physiologically 
relevant conditions, the bait was extracted, copurifying associated proteins. These protein 
complexes were resolved by one‐dimensional SDS‐PAGE. Thousands of individual pro-
tein gel bands (from experiments with many different bait proteins) were excised from 
the gel with a razor, digested with trypsin to form relatively small protein fragments, and 
identified by MALDI‐TOF mass spectrometry (Chapter 12).

Employing this strategy, Gavin et al. (2002) obtained 1167 yeast strains expressing 
tagged proteins, from which they purified 589 tagged proteins and identified 232 protein 
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complexes. Ho et al. (2002) selected 725 bait proteins and also detected thousands of pro-
tein–protein associations. In each case, a large number of the protein complexes that were 
identified included proteins of previously unknown function, highlighting the strength of 
these large‐scale approaches. Gavin et al. (2006) performed a more comprehensive screen 
using tandem affinity purification coupled to mass spectrometry (TAP‐MS) to create 
∼2000 TAP‐fusion proteins. A total of 88% of these interacted with at least one partner, 
and the abundance of the identified binding partners ranged from 32 to 500,000 copies per 
cell. Gavin et al. developed a “socio‐affinity” index measuring the log‐odds of the number 
of times two proteins are observed interacting divided by the expected occurrence based 
on the frequency in the dataset. Krogan et al. (2006) also used TAP‐MS and reported over 
7000 protein–protein interactions involving ∼2700 proteins. Employing a clustering algo-
rithm they defined ∼550 protein complexes averaging 4.9 subunits per complex. There 
was a large number of complexes with few members (two to four proteins), and few com-
plexes with many members. Each of these various studies reported many complexes that 
were absent from the MIPS database, and they also revealed new members of previously 
characterized complexes. Krogan et al. reported enhanced coverage and accuracy because 
of technical improvements such as: (1) avoiding artifacts associated with protein overpro-
duction; (2) systematically tagging and purifying both interacting partners; (3) using two 
methods of sample preparation and two methods of mass spectrometry; and (4) assigning 
confidence values to protein interaction predictions.

Data from Gavin et al. (2006) and many other interaction experiments are avail-
able in the IntAct database (Kerrien et al., 2012). A search for sec1 shows 16 interactors 
(although not Sso1p homologs, as recorded for yeast two‐hybrid screens).

Basic questions about complexes include the stoichiometry (the number of various 
subunits), the subunit interactions, and the organization. Conventional biochemical tech-
niques can be used to approach all these questions, and in some cases electron microscopy 
can reveal structural organization. Hernández et al. (2006) applied TAP‐MS to several 
well‐characterized complexes: the scavenger decapping and nuclear cap‐binding com-
plexes, as well as the exosome which contains ten different subunits. They could distin-
guish dimers from trimers and reveal subunit interactions that were not apparent using the 
yeast two‐hybrid approach.

This approach yields false positive and false negative results for reasons similar to 
those presented above for yeast two‐hybrid screens. While many complexes are identi-
fied repeatedly within a given experiment, indicating that saturation has been reached, 
this does not mean that those complexes are biologically real. Also, when a protein 
is identified by mass spectrometry it is usually accompanied by a confidence score. 
Peptides that are identified multiple times are associated with high confidence identifi-
cations, while “one‐hit wonders” that are identified by one peptide observed in a single 
run are by definition present in low abundance and are more likely to be spurious or 
misidentified.

Protein–Protein Interaction Databases
Many prominent databases store information on protein–protein interactions as well 
as protein complexes; several of these are listed in table 14.2. For example, the Bio-
logical General Repository for Interation Datasets (BioGRID) includes over 500,000 
manually annotated interactions (Chatr‐aryamontri et al., 2013). An entry for human 
syntaxin (STX1A) shows connections such as to the syntaxin‐binding protein STXBP1 
(Fig. 14.20). Mathivanan et al. (2006) compared the content of eight major databases 
that include information on human protein–protein interactions. They emphasized the 
dramatic differences in their content including the number of reported interactions, the 
total number of proteins, the curation methodology, and the methods of detecting pro-
tein–protein interactions. Ooi et al. (2010) also reviewed major interaction databases, 

IntAct is available at the 
European Bioinformatics 
Institute (  http//www.ebi.ac.uk/
intact) (WebLink 14.56). Currently 
it contains ∼87,000 proteins, 
>520,000 interactions, and 
>13,000 publications (February 
2015). The main species covered 
in IntAct are S. cerevisiae, 
human, Drosophila, E. coli strain 
K12, C. elegans, mouse, and 
Arabidopsis.

http://www.ebi.ac.uk/intact
http://www.ebi.ac.uk/intact
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taBle 14.2 protein–protein interaction databases.

Database Comment URL

BioGrid Repository for interaction datasets http://www.thebiogrid.org/ 

Biomolecular Object Network 
Databank (BOND)

Requires log‐in; formerly BIND http://bond.unleashedinformatics.com/ 

Comprehensive Yeast Genome 
Database (CYGD)

From the Munich Information Center for Protein 
Sequences (MIPS)

http://mips.helmholtz‐muenchen.de/
genre/proj/yeast/ 

Database of Interacting Proteins (DIP) From UCLA http://dip.doe‐mbi.ucla.edu/ 

Human Protein Reference Database 
(HPRD)

From Akhilesh Pandey’s group at Johns 
Hopkins

http://www.hprd.org/ 

IntAct At the European Bioinformatics Institute http://www.ebi.ac.uk/intact/ 

Molecular Interactions (MINT) 
Database

Rome http://mint.bio.uniroma2.it/mint/ 

PDZBase Database of PDZ domains http://abc.med.cornell.edu/pdzbase 

Reactome Curated resource of core human pathways and 
reactions

http://reactome.org/ 

Search Tool for the Retrieveal of 
Interacting Genes/Proteins (STRING)

Database of known and predicted protein–
protein interactions

http://string.embl.de/ 
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Figure 14.20 A BioGrid network map for human syntaxin and its binding partners.

Source: BioGrid, Courtesy of M. Tyers, TyersLab.
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describing great differences in their scope and the limited overlap of their reported 
interactions (table 14.3).

We described some of the efforts of the Human Proteome Organization Proteomics 
Standards Initiative (HUPO‐PSI) in Chapter 12. Their work includes the introduction of 
a standard format to describe molecular interactions (Kerrien et al., 2007) and efforts to 
unify search results from multiple databases through a PSI Common QUery InterfaCe 
(PSICQUIC; Orchard, 2012). Currently this includes 150 million binary interactions, 
searchable with free text or the Molecular Interaction Query Language. A search for syn-
taxin shows binding partners as defined by dozens of databases (Fig. 14.21a).

Protein network relationships can be viewed at the PSICQUIC website with a Cyto-
scape display at a broad scale (Fig. 14.21b) or zoomed in. Cytoscape is a popular software 
package for visualizing networks of genes, proteins, or other molecules (Cline et al., 
2007; Saito et al., 2012). The input is a list of nodes (e.g., proteins) and inclusion of lists 
of edges and attributes is possible. By downloading Cytoscape software you can access 
pre‐selected networks or import your own (Fig. 14.21c, d).

From pairwise interactions to protein Networks

A typical mammalian genome has ∼20,000 to 25,000 protein‐coding genes, a subset of 
which (perhaps 10,000 to 15,000) are expressed in any given cell type. These proteins 
are localized to particular compartments (or are secreted) where many of them interact 
as part of their function. Some, such as the carrier proteins hemoglobin, myoglobin, reti-
nol‐binding protein, and odorant‐binding protein, do not rely on protein–protein interac-
tions but instead bind to a ligand (such as oxygen, vitamin A, or odorants) and transport 
it across a compartment by facilitated diffusion. Other proteins function through binary 
interactions; the majority function via protein complexes. In some cases, these complexes 
are spatially arranged in what Robinson et al. (2007) call the “molecular sociology of the 
cell.” These authors describe some of the techniques used to determine the structures of 
complexes, and they further describe the architecture of multisubunit structures such as 
the nuclear pore complex and the 26S proteasome.

Information about the roles of many proteins in a cell can be integrated in databases 
and visualized with protein network maps (Schächter, 2002; Bader et al., 2003; Sha-
rom et al., 2004). A pathway is a linked set of biochemical reactions (Karp, 2001). The 

You can access PSICQUIC at 
the European Bioinformatics 
Institute (  http://www.ebi.ac.uk/
Tools/webservices/psicquic/
view/main.xhtml, WebLink 14.57).

Cytoscape can be downloaded 
from  http://www.cytoscape.
org (WebLink 14.58). Nearly 200 
apps (formerly called plug‐ins) 
are available.

taBle 14.3 Overlap among interaction databases. Numbers of binary interactions are rounded to the nearest 
thousand, and percentages are rounded. 

INTACT MINT BIOGRID DIP HPRD MPACT GNP MPPI

INTACTa 83,000

MINTb 54% 68,000

BIOGRIDc 16% 23% 138,000

DIPd 46% 61% 61% 50,000

HPRDe 22% 19% 15% 2% 37,000

MPACTf 42% 46% 57% 49% 0% 12,000

GNPg 1% 2% 1% 1% 5% 0% 1000

MPPIh 10% 13% 8% 4% 36% 0% 0% 1000

1http://www.ebi.ac.uk/intact/; bhttp://mint.bio.uniroma2.it/mint/Welcome.do; chttp://thebiogrid.org/; dhttp://dip.doe‐mbi.ucla.edu/dip/Main.cgi; ehttp://www.
hprd.org/; fCurrently unavailable; ghttp://genomenetwork.nig.ac.jp/public/sys/gnppub/portal.do; hhttp://mips.helmholtz‐muenchen.de/proj/ppi/

Source: Ooi et al. (2010). Reproduced with permission from Springer Science + Business Media.

http://www.ebi.ac.uk/intact/
bhttp://mint.bio.uniroma2.it/mint/Welcome.do
chttp://thebiogrid.org/
dhttp://dip.doe%E2%80%90mbi.ucla.edu/dip/Main.cgi
http://www.hprd.org/
ghttp://genomenetwork.nig.ac.jp/public/sys/gnppub/portal.do
hhttp://mips.helmholtz%E2%80%90muenchen.de/proj/ppi/
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
http://www.cytoscape.org
http://www.hprd.org/
http://www.cytoscape.org
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(a) PSICQUIC databases of protein interactions

(b) PSICQUIC display of Cytoscape network 
      for syntaxin

(d) Zoom of Cytoscape diagram showing syntaxin binding partners

(c) Cytoscape data import

Figure 14.21 Protein interaction networks. (a) PSICQUIC is useful to retrieve data on protein–
protein interactions from multiple sources; more than 150 million interactions may be queried. (b) A 
search for syntaxin shows >1,600 clustered binary interactions that are presented in a table and may be 
visualized on the PSICQUIC EBI website in a Cytoscape network. (c) Cytoscape software can be locally 
installed and, in a new session, data are imported from large, preset networks of human proteins. (d) 
An example is shown for syntaxin including a full network in a grid layout (bottom left) and a zoomed 
region (upper right, including several syntaxin paralogs and binding partners such as SNAP‐25). PSIC-
QUIC version 1.4.5 was queried from the EBI website. Cytoscape version 3.0.2 was used on a PC. 

Source: PSIQUIC.



Genomewide AnAlysis of dnA, RnA, And PRotein680

motivation behind making pathway maps is to visualize complex biological processes, 
that is, to use high‐throughput data on protein interactions to generate a model of all func-
tional pathways that is as complete as possible. There are unusual challenges associated 
with defining protein networks, as described in the following sections.

Assessment of Accuracy
One of the basic issues associated with a prediction is the assessment of its accuracy. 
How likely is it that a false positive or false negative error has occurred? To assess 
this, benchmark (“gold standard”) datasets are required that consist of trustworthy 
pathways. A particular approach to predicting or reconstructing pathways can then be 
tested to determine whether it is specific and sensitive. Unfortunately, relatively few 
interaction networks have been characterized in great detail; there are few accepted 
benchmark datasets comparable to those available for fields such as sequence align-
ment and structural biology. There is little concordance between major benchmark 
sets such as MIPS, Gene Ontology designations, and KEGG (see “Pathways, Net-
works, and Integration” below; Bork et al., 2004). Improved validation methods have 
emerged in recent years (Braun, 2012). These include the use of reference sets as 
positive controls, random datasets as negative controls, assessing technical false pos-
itives (identified interactions that give a positive signal although the proteins do not 
physically interact), and identifying biological false positives (interactions that occur 
in vitro but not in vivo).

Choice of Data
A related issue is that the choice of data is critical. Many researchers integrate data from 
genomic sequences, expression of RNA transcripts, and protein measurements. It can 
be challenging to perform this integration since RNA and protein levels are often shown 
to be poorly correlated. Considering just protein–protein interaction data, for all high‐
throughput techniques the false positive and false negative error rates can be extremely 
high as we have seen (e.g., with yeast two‐hybrid system data). Nonetheless many proj-
ects have proceeded to integrate the largest available datasets, including those with mil-
lions of predicted protein interactions, and also interactions as reported in thousands of 
literature references. For any study, it is essential to carefully evaluate the sources of error 
and the sensitivity and specificity of the assigned pathways.

Experimental Organism
The choice of experimental organism is important. Among the eukaryotes, S. cerevi-
siae is the best characterized: its genome encodes a relatively small number of genes; 
a tremendous amount of information is known about genes and gene products; and as a 
unicellular fungus it is simple compared to multicellular metazoans. In considering the 
use of different organisms to model pathways, a caveat is that even when orthologs of 
members of a particular pathway are identified, the function of homologs is not neces-
sarily conserved across species. (When a protein has an established function in one spe-
cies, an ortholog in a different species is often assigned the same function as a transitive 
property. When these orthologs do not actually share the same function, this situation 
has been called “transitive catastrophe.”) Mika and Rost (2006) analyzed high‐through-
put datasets from human, Drosophila, C. elegans, and S. cerevisiae. They introduced 
two metrics: an identity‐based overlap measure that describes the overlap between two 
different datasets in the IntAct database within a single organism, and a homology‐based 
measure that can be used to compare results from datasets in two different organisms. 
Their unexpected finding was that, for all organisms analyzed and at almost all lev-
els of sequence similarity, inference of protein–protein interactions based on homology 
was dramatically more accurate for pairs of homologs from the same organism than for 
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homologs between different organisms. One significant aspect of this result is that, if 
two proteins are shown to interact in yeast, they do not necessarily interact in animals. 
Mika and Rost provide examples of protein sequences in Drosophila that have different 
binding partners than in yeast.

C. elegans represents another well‐characterized organism, having 959 somatic cells 
and ∼20,500 protein‐coding genes that have been mapped into interaction networks (Wal-
hout, 2011). A total of 940 of these nematode genes encode transcription factors that can 
regulate gene function.

Variation in Pathways
In attempting to reconstruct networks on a global scale, another consideration is the great 
variation in the composition and behavior of different pathways. Some, such as the tricar-
boxylic acid (Krebs) cycle or urea cycle have been examined in depth for many decades; 
for example, extremely detailed maps of metabolic pathways are available at the ExPASy 
and KEGG websites. Other pathways are hypothetical or very poorly characterized. Some 
are constitutive, while others form transiently under particular physiological conditions 
or developmental stages. Some complexes are highly abundant, while others (such as the 
exocyst complex) appear to exist in vanishingly small quantities. For others, such as the 
vault complex (van Zon et al., 2003), the function remains entirely obscure even after 
extensive studies.

Categories of Maps
There are different categories of network or pathway maps. These include maps based 
on metabolic pathways, physical and/or genetic interaction data, summaries of the scien-
tific literature, or signalling pathways. For some screens (including the yeast two‐hybrid 
system), information may be gained about the particular domain(s) within a protein that 
are responsible for interactions. Some maps are based on experimental data, while others 
mix computationally derived results (such as transfers of information from orthologous 
networks) with experimental data.

We can describe the properties of protein networks. In graphical representations of 
such complexes, nodes typically represent proteins while edges represent interactions. 
Most nodes are sparsely connected, while a few nodes are highly connected. Barabási 
and Albert (1999) suggested that most networks (including biological networks, social 
networks, and the World Wide Web) follow a scale‐free power law distribution:

 P k k( ) ~ γ−  (14.1)

where P(k) is the probability that a node in the network interacts with k other nodes, and 
P(k) decays following the constant γ. As a consequence, large networks self‐organize 
into a scale‐free state. According to this model, this power law distribution is a conse-
quence of the continuous growth of networks and of the propensity of new nodes to attach 
preferentially to sites (nodes; here, proteins) that are already well connected. Two basic 
models that have emerged to describe protein complexes are a “spoke” model, in which 
a protein bait interacts with multiple partners like the spokes on a wheel, and a “matrix” 
model in which all proteins are connected (Bader and Hogue, 2002). Either of these mod-
els can encompass scale‐free properties, although an analysis by Bader and Hogue indi-
cates that a spoke model is more accurate. In reviewing eight databases of human protein 
interactions, Mathivanan et al. (2006) noted that the Human Protein Reference Database 
(HPRD) and Reactome databases include a large number of hub proteins that have many 
binary (direct) protein interactions. (The Reactome database assumes a matrix model 
with all proteins interconnected within a complex.) A similar finding applies to yeast; as 
discussed in “Protein Complexes” above, Krogan et al. (2006) described ∼550 protein 
complexes of which about two dozen complexes had ≥10 members, while the majority 

The ExPASy website (Chapter 12) 
includes detailed maps for 
metabolic pathways and for 
cellular and molecular processes 
(  http://www.expasy.org/cgi‐bin/
search‐biochem‐index, WebLink 
14.59).

http://www.expasy.org/cgi%E2%80%90bin/search%E2%80%90biochem%E2%80%90index
http://www.expasy.org/cgi%E2%80%90bin/search%E2%80%90biochem%E2%80%90index
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had 2–4 members. A property of networks having hub proteins is that random disruption 
of individual nodes (e.g., through mutation) is likely to be well tolerated, although the 
entire system is vulnerable to some failures at highly connected nodes (Albert et al., 
2000).

Many aspects of network properties have been further studied, such as the perfor-
mance of different ways of creating and assessing confidence scores assigned to par-
ticular edges (interactions; Suthram et al., 2006). Assigning confidence scores requires 
a benchmark (for example, STRING relies on KEGG, described in the following sec-
tion), although it is challenging to define adequate benchmarks. Another aspect of protein 
networks is the nature of hub proteins. Haynes et al. (2006) showed that hub proteins 
(defined as having ≥10 interacting partners) have more intrinsic disorder than end pro-
teins (those with one interacting partner) in worm, fly, and human. We described intrinsic 
disorder in Chapter 13. Yet another feature of networks is their modularity (Sharom et al., 
2004). One example of modularity is vesicle‐mediated exocytosis of neurotransmitter in 
the mammalian nerve terminal (Fig. 14.4b). The components required for neurotransmitter 
release function autonomously at a great distance from the cell body, and respond to the 
arrival of an action potential (an electrical signal) in a local fashion by releasing neu-
rotransmitters. This signaling system has a modular nature. Li et al. (2006) estimated the 
modularity as well as the clustering exponent γ for protein interaction networks in yeast, 
C. elegans, and Drosophila, reporting that all three have a scale‐free nature and varying 
degrees of modularity.

pathways, Networks, and integration: Bioinformatics resources

There are many database resources for global interaction networks. PathGuide is a 
website that lists 240 biological pathway resources (Bader et al., 2006). These are 
organized into categories such as protein–protein interactions, metabolic pathways, 
signaling pathways, pathway diagrams, and genetic interaction networks. For S. 
cerevisiae, the BioGRID database (Reguly et al., 2006) provides manual curation 
of ∼32,000 publications describing physical and genetic interactions. It is available 
online at its own site and through the SGD (see Fig. 14.2, lower right side). In an effort 
to standardize the way various database projects present information, the Biological 
Pathway Exchange (BioPAX) consortium provides a data exchange ontology for bio-
logical pathway integration.

Several web servers provide pathway maps. MetaCyc is a database of metabolic path-
ways (Caspi et al., 2008). It includes experimentally verified enzyme and pathway infor-
mation, with links from pathways to genes, proteins, reactions, and metabolites. The SGD 
offers similar metabolic pathway maps for yeast, including data derived from MetaCyc.

A major pathway database is offered by the Kyoto Encyclopedia of Genes and 
Genomes (KEGG; Kanehisa et al., 2008; Fig. 14.22). The KEGG atlas contains a detailed 
map of metabolism based on 120 metabolic pathways, with links to various organisms. 
KEGG pathways are a collection of manually drawn maps in six areas: metabolism; 
genetic information processing; environmental information processing; cellular pro-
cesses; human diseases; and drug development. An example of a pathway map is shown 
for vesicular transport (Fig. 14.23); by choosing S. cerevisiae from a menu of organisms, 
clicking on a box such as syntaxin links to an entry on yeast Sso1p. For all these pathway 
maps, the information obtained from biochemical studies is far richer and more accurate 
in terms of the identities of genes and gene products, their correct subcellular distribu-
tions, and the details of their interactions with partner proteins.

As another example of a KEGG pathway, by selecting human neurodegenerative dis-
orders a pathway description of amyotrophic lateral sclerosis (ALS; Lou Gehrig’s dis-
ease) can be found (Fig. 14.24). Mutations in the superoxide dismutase gene SOD1 are a 

MetaCyc is available at  
http://metacyc.org/ (WebLink 
14.64). There are currently over 
2200 pathways, 5500 organism 
databases, and 49,000 citations 
in the database (February 2015).

KEGG is available at  http://
www.genome.ad.jp/kegg/ 
(WebLink 14.65). The current 
release (February 2015) includes 
about 16 million genes from 
high‐quality genomes (∼300 
eukaryotes, >3100 bacteria, 
and ∼180 archaea), >130 million 
genes from metagenomes, and 
>350,000 pathways.

PathGuide is at  http://www.
pathguide.org/ (WebLink 14.60). 
BioGRID is available at  http://
www.thebiogrid.org (WebLink 
14.61). SGD is at  http://www.
yeastgenome.org (WebLink 
14.62). BioPAX is online at  
http://www.biopax.org/ (WebLink 
14.63).

http://www.pathguide.org/
http://www.thebiogrid.org
http://www.thebiogrid.org
http://www.yeastgenome.org
http://www.biopax.org/
http://metacyc.org/
http://www.genome.ad.jp/kegg/
http://www.genome.ad.jp/kegg/
http://www.pathguide.org/
http://www.yeastgenome.org
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common cause of this debilitating disease. SOD1 is an enzyme that normally converts the 
toxic oxygen metabolite superoxide ( −O2 ) into hydrogen peroxide and water. As shown in 
the KEGG pathway map, SOD1 has been shown to interact directly and indirectly with 
a variety of other proteins, such as those involved in apoptosis (programmed cell death). 
Clicking on SOD1, an entry describing the protein and nucleotide sequence can be found 
as well as several external links such as the Enzyme Commission number and protein 
structure links, Pfam, Prosite, the Human Protein Reference Database, and Online Men-
delian Inheritance in Man (OMIM; Chapter 21).

This example of SOD1 highlights a strength of KEGG: its coverage of a broad range 
of proteins and cellular processes is comprehensive. The example also serves to show that 
some processes described in KEGG are likely to be organism specific. KEGG is based 
primarily on data generated from bacterial genomes, and pathways described in bacteria 
are not always applicable to eukaryotic organisms.

Figure 14.22 The KEGG database includes pathway maps, data for a broad range of organisms, 
and a variety of analysis tools.

Source: KEGG, Courtesy of Kanehisa Laboratories.
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Figure 14.23 The KEGG database includes pathway maps and data for a broad range of organisms. This pathway shows SNARE func-
tion (soluble N‐ethylmaleimide‐sensitive factor receptors, including syntaxin and other proteins described in Fig. 14.4). Syntaxin is repre-
sented in additional KEGG pathway maps.

Source: KEGG, Courtesy of Kanehisa Laboratories.
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PersPectIve
Many thousands of genomes have now been sequenced (including viral and organellar 
genomes). For the genomes of prominent organisms such as human, worms, flies, plants, 
and yeast, we are acquiring catalogs of the genes and gene products encoded by each 
genome. Defining the genes and the complete structure of the genome are challenging 
problems that we address in Part III of this book. We are already beginning to confront 
a problem that is perhaps even harder than identifying genes: identifying their function. 
Function has many definitions, as discussed for proteins in Chapter 12. In this chapter 
we have described many innovative, high‐throughput functional genomics approaches to 
defining gene function. The field of functional genomics is broad, and can be considered 
using many different categories. (1) What type of organism do we wish to study? We 
highlighted eight model organisms, although many other models are commonly used. (2) 
What type of questions do we want to address: natural variation or experimental manip-
ulations used to elucidate gene function? (3) What type of experimental approach do 
we wish to apply (e.g., forward versus reverse genetics)? (4) What type of molecules do 
we wish to study (i.e., from genomic DNA to RNA to protein or metabolites)? (5) What 
types of biological questions are we trying to address? For many investigators interested 
in human diseases or the function of human genes, there are yeast orthologs (see Chap-
ters 18 and 21). If a yeast ortholog is identified then genetic screens can suggest many 
potential interacting partners that may elucidate the function of the human gene.

Figure 14.24 KEGG includes pathways for diseases. A pathway for amyotrophic lateral sclerosis (ALS; Lou Gehrig’s disease) is shown. 
Proteins in boxes link to detailed entries.

Source: KEGG, Courtesy of Kanehisa Laboratories.
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PItFalls
We have described a range of approaches to assessing gene function, including analyses 
at the levels of genes (e.g., creating null alleles or otherwise interfering with gene func-
tion), RNA, and proteins. The following caveats should be noted.

 • Every method produces false negatives and false positives. It is important to estimate 
these rates, although it can be difficult to acquire trusted (“gold standard”) datasets 
with which to measure sensitivity and specificity.

 • Many methods seem to work well with “knowns” but work much less well with 
unknown genes. Reasons may include functional redundancy, complex, multiple 
functions, or functions not evident under lab conditions.

 • Combinatorial informatic approaches need weighting to help evaluate strength of 
“links” between genes. Also, any single set of gene “links” is incomplete.

 • What is needed to have a better success rate at functional prediction is fewer links of 
low quality and more links of high quality.

advIce For students
The field of functional genomics is growing at an extraordinary pace. Large numbers 
of genome‐wide functional assays have been developed and applied to different organ-
isms. If you have a favorite protein or gene it is a good idea to survey existing functional 
genomics datasets. If the gene is present in humans, have knockouts or other functional 
assays been performed in model organisms?

weB resources
NCBI offers a Probe Database which includes reagents for functional genomics; it serves 
as a repository for nucleic acid reagents.

Visit the Probe database at  
http://www.ncbi.nlm.nih.gov/
probe (WebLink 14.66). See 
also its glossary at  http://
www.ncbi.nlm.nih.gov/projects/
genome/probe/doc/Glossary.
shtml (WebLink 14.67).

Discussion Questions
[14-1] Define a functional genomics ques-
tion. For example, how can we predict the 
functions of genes that currently lack func-
tional annotation? How does the choice of 

experimental organism affect the approaches you might 
take to answer the question? How can a critical assessment 
competition help determine the accuracy of the predic-
tions?

[14-2] Consider a human disease for which a gene has 
been implicated (such as β‐globin in sickle cell anemia) 
and an animal model is available. How can forward genetics 
approaches be used to study this disease? How can reverse 
genetics approaches be used? What are some of the differ-
ences in the kinds of information these two approaches can 
provide?

prOBleMS/COMputer laB
[14-1] Suppose you did not know anything about the 
function of hemoglobin but wanted to use bioinformatics 
resources to learn about its role in mouse and zebrafish. 
What information can you find?

[14-2] Select a yeast gene such as SEC1. Is it an essen-
tial gene? What proteins does it interact with based on 
physical (biochemical) or genetic assays? Are the inter-
actions observed in yeast also found in mammalian 
systems?

[14-3] List all human genes for which there is a targeted 
knockout allele in mouse. To do this, use MGI BioMart 
(choose the allele type filter).

http://www.ncbi.nlm.nih.gov/probe
http://www.ncbi.nlm.nih.gov/projects/
http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/Glossary.shtml
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Self-test Quiz
[14-1] While there are many definitions of 
“functional genomics,” the best of these is:

(a)    the assignment of function to genes 
based primarily on genome‐wide gene 
expression data using techniques such 
as microarrays or SAGE;

(b) the assignment of function to genes based primarily 
on comprehensive surveys of protein–protein inter-
actions and protein networks;

(c) the combined use of genetic, biochemical, and cell 
biological approaches to study the function of a par-
ticular gene, its mRNA product, and its correspond-
ing protein product; or

(d) the assignment of function to genes and proteins 
using genome‐wide screens and analyses.

[14-2] Reverse genetics approaches involve:

(a) systematically inhibiting the functions of one or 
many genes (or gene products), and measuring the 
phenotypic consequences correctly;

(b) measuring a phenotype of interest (such as cell 
growth), applying an intervention (such as radi-
ation exposure) to generate a large collection of 
mutants, and identifying changes to the phenotype 
of interest;

(c) treating an organism with a chemical mutagen or 
other agent to induce mutations, observing a pheno-
type of interest, and mapping the gene(s) responsible 
for the phenotype; or

(d) all of the above.

[14-3] The “YKO” project is an effort to systematically 
knock out all yeast ORFs. A potential limitation of this 
approach is:

(a) molecular barcodes may sometimes be toxic for 
yeast genes;

(b) this approach is not suited to finding new genes, but 
instead focuses on already‐known genes;

(c) mutant knockout strains cannot be banked for later 
study by other investigators; or

(d) mutations may not be null.

[14-4] A major advantage of genetic footprinting using 
transposons is:

(a) the approach is technically easy and can be scaled up 
to study the function of many genes;

(b) both insertion alleles and knockout alleles can be 
studied;

(c) any known gene of interest can be studied with this 
approach; or

(d) mutant strains can be banked for later study by other 
researchers.

[14-5] Forward genetics screens have become increas-
ingly powerful. However, a major limitation is that:

(a) mutations that are introduced through the use 
of mutagens or radiation do not leave molecular 
“tags” or barcodes in the genomic DNA, thus add-
ing to the challenge of identifying DNA changes 
that are responsible for particular phenotypes 
correct;

(b) mutant alleles tend to be null rather than having a 
broad range of phenotypes;

(c) these screens often involve morpholinos, but these 
compounds are effective in only a limited number of 
organisms; or

(d) there is no universally preferred method to sys-
tematically inhibit the function of each gene in a 
genome.

[14-6] High‐throughput screens such as the yeast two‐
hybrid system and affinity purification experiments can 
have false positive results because:

(a) some proteins are inherently sticky;

(b) some bait proteins that are introduced into cells 
become mislocalized;

(c) some protein complexes form only very tran-
siently;

(d) affinity tags or epitope tags can interfere with pro-
tein–protein interactions; or

(e) all of the above.

[14-7] Problems in determining protein networks include 
all of the following except for:

(a) few benchmark datasets are available with which to 
assess false positive and false negative results;

(b) false positive and negative error rates tend to be very 
high;

(c) there is tremendous heterogeneity in the types of 
protein complexes that form; or

(d) experimental data have been generated for bacteria 
and single‐celled eukaryotes such as the yeast S. 
cerevisiae, but it has not yet been possible to obtain 
high‐throughput data for organisms such as Dro-
sophila and human.
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[14-8] Hub proteins are proteins that occur at:

(a) nodes that are highly connected within a protein net-
work;

(b) edges that are highly connected within a protein net-
work;

(c) nodes that are sparsely connected within a protein 
network; or

(d) edges that are sparsely connected within a protein 
network.

[14-9] Which of the following best describes a major prob-
lem in evaluating large‐scale cellular pathway diagrams?

(a) the direction of the biochemical pathways is not usu-
ally known;

(b) the pathway maps do not employ Gene Ontology 
nomenclature;

(c) the pathway maps often depend on the correct iden-
tification of orthologs, but this can be problematic; 
or

(d) the pathway maps tend to be derived from bacteria 
and archaea, but only limited information is avail-
able on eukaryotes.

suGGested readInG
Excellent reviews of functional genomics approaches are available for the mouse (van der 
Weyden et al., 2002; Guénet, 2005), plants (Borevitz and Ecker, 2004; Alonso and Ecker, 
2006), and yeast. Abuin et al. (2007) thoroughly review gene trap mutagenesis.
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In the final part of this book we explore 
life on Earth from a genomics perspec-
tive, using the tools of bioinformatics 
we learned in Parts I and II. We provide 
an overview (Chapter 15) then discuss 
viruses (Chapter 16), bacteria and archaea 
(Chapter 17), fungi as an introduction to 
eukaryotes (Chapter 18), and eukaryotes 
from parasites to primates (Chapter 19). 
We conclude with the human genome 
(Chapter 20) and human disease (Chapter 
21). Just as contemporary genomics can-
not be understood without bioinformat-
ics, bioinformatics cannot fulfill its poten-
tial until it informs us about genomes and 
hence biology.

The tree of life from Ernst Haeckel (1879). The figure shows mammals (with humans at the top shown 
ascending from apes), vertebrates, invertebrates, and primitive animals at the bottom, including 
Monera (bacteria). 
Source:  http://en.wikipedia.Org/wiki/File:Tree_of_life_by_Haeckel.Jpg.

http://en.wikipedia.Org/wiki/File:Tree_of_life_by_Haeckel.Jpg
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The affinities of all the beings of the same class have sometimes been represented by a 
great tree. I believe this simile largely speaks the truth. The green and budding twigs may 
represent existing species; and those produced during each former year may represent 
the long succession of extinct species. … The limbs divided into great branches, and these 
into lesser and lesser branches, were themselves once, when the tree was small, budding 
twigs; and this connexion of the former and present buds by ramifying branches may 
well represent the classification of all extinct and living species in groups subordinate 
to groups. … From the first growth of the tree, many a limb and branch has decayed and 
dropped off, and these lost branches of various sizes may represent those whole orders, 
families, and genera which have now no living representatives, and which are known 
to us only from having been found in a fossil state. … As buds give rise by growth to 
fresh buds, and these, if vigorous, branch out and overtop on all a feebler branch, so 
by  generation I believe it has been with the Tree of Life, which fills with its dead and 
 broken branches the crust of the earth, and covers the surface with its ever branching and 
 beautiful  ramifications.

—Charles Darwin, The Origin of Species (1859)

Consider the scenario where a new E. coli sequence has been obtained from a  futuristic 
handheld device (like a Star Trek tricorder) that generates the complete genome in 
 seconds. While the genome sequence may only be slightly different from strains already 
in the public databases, the metadata associated with this bug is both unique and crucial. 
Where and when was the E. coli isolated? Was it transmitted as a food-borne pathogen? 
Did it hospitalize the patient from whom it was isolated? Was it part of a larger infectious 
outbreak? Knowledge that a pathogen was isolated from diseased patients or healthy 
controls will readily assist in intervention strategies derived from machine-readable data.

—Dawn Field et al. (2011), writing in support of the  
Genomic Standards Consortium.

Genomes Across the  
Tree of Life

C h a p t e r 

15

LEArnInG ObJECTIvEs

After reading this chapter you should be able to:
 ■ compare and contrast approaches to generating a tree of life;
 ■ briefly describe a chronology of genome sequencing projects;
 ■ describe the process of genome sequencing; and
 ■ describe genome annotation.

http://www.wiley.com/go/pevsnerbioinformatics
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IntroductIon
A genome is the collection of DNA that comprises an organism. Each individual organ-
ism’s genome contains the genes and other DNA elements that ultimately define its iden-
tity. Genomes range in size from the smallest viruses, which encode fewer than 10 genes, 
to eukaryotes such as humans that have billions of base pairs of DNA encoding tens of 
thousands of genes.

The recent sequencing of genomes from all branches of life – including viruses, bac-
teria, archaea, fungi, nematodes, plants, and humans – presents us with an extraordinary 
moment in the history of biology. By analogy, this situation resembles the completion 
of the periodic table of the elements in the nineteenth century. As it became clear that 
the periodic table could be arranged in rows and columns, it became possible to predict 
the properties of individual elements. A logic emerged to explain the properties of the 
elements, but it still took another century to grasp the significance of the elements and to 
realize the potential of the organization inherent in the periodic table.

Today we have sequenced the DNA from thousands of genomes, and we are now 
searching for a logic to explain their organization and function. This process will take 
decades. A variety of tools must be applied, including bioinformatics approaches, bio-
chemistry, genetics, and cell biology.

This chapter introduces the tree of life and the sequencing of genomes. There are 
seven sections: (1) in the remainder of this first section, we introduce perspectives on 
genomics, the tree of life, and taxonomy; (2) we then introduce major web resources; 
(3) we survey the chronology of genome sequencing projects; (4) we introduce genome 
analysis projects and (5) we explore sequence data and how they are stored; finally, we 
discuss (6) the assembly of genomes and (7) their annotation.

After this chapter we assess the progress in studying the genomes of viruses (Chap-
ter 16); bacteria and archaea (Chapter 17); fungi, including the yeast Saccharomyces cer-
evisiae (Chapter 18); eukaryotes from parasites to primates (Chapter 19); and finally the 
human genome (Chapters 20 and 21).

For definitions of several key terms related to the tree of life, see table 15.1.

table 15.1 Nomenclature for tree of life. Name refers to the name adopted in this 
book. adapted from Woese et al. (1990).

Name Synonym(s) Definition

Archaea (singular: 
archaeon)

Archaebacteria One of the three “urkingdoms” or “domains” 
of life

Bacteria Eubacteria; Monera 
(obsolete name)

One of the three “urkingdoms” or “domains” of 
life; unicellular organisms characterized by lack of 
a nuclear membrane

Eukaryotes Eucarya One of the three “urkingdoms” or “domains” of 
life; cells characterized by a nuclear membrane

Microbe — Microorganisms that cause disease in humans; 
microbes include bacteria and eukaryotes such 
protozoa and fungi

Microorganism — Unicellular life forms of microscopic size, including 
bacteria, archaea, and some eukaryotes

Progenote Last universal common 
ancestor

The ancient, unicellular life form from which the 
three domains of life are descended

Prokaryotes Procaryotes; formerly 
synonymous with bacteria

Organism lacking a nuclear membrane; bacteria 
and archaea
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Five perspectives on Genomics

For a course on genomics that I have taught, we discuss genomes across the tree of life 
from the following five perspectives. Each student selects any genome of interest and 
writes a report describing the genome according to these approaches. Students may iden-
tify an outstanding research problem and describe how genomics approaches are being 
applied to solve it. A related project is to select a single gene of interest and analyze it in 
depth, again following these five areas.

Perspective 1: Catalog genomic information. What are the basic features of each 
genome? These include its size; the number of chromosomes; the guanine plus cytosine 
(GC) content; the presence of isochores (described in Chapter 20); the number of genes, 
both coding and noncoding; repetitive DNA; and unique features of each genome. The 
techniques used to answer these questions include genomic DNA sequencing (Chapter 9); 
assembly; and genome annotation including gene prediction. Genome browsers represent 
a major resource to access catalogs of genomic information, organized into categories 
such as raw underlying DNA data as well as models of genes, regulatory elements, and 
other features of the genomic landscape.

Perspective 2: Catalog comparative genomic information. Our understanding of 
any genome is dramatically enhanced through comparisons to related genomes (Miller 
et al., 2004). When did a given species diverge from its relatives? Which genes or other 
DNA elements are orthologous, or share conserved synteny (Chapter 8)? To what extent 
did lateral gene transfer (Chapter 17) occur in each genome? Techniques of comparative 
genomics used to address these issues include whole-genome alignment and analyses 
with databases such as Ensembl Genomes (Kersey et al., 2013) and the UCSC Genome 
Browser (Karolchik et al., 2014). This approach also includes phylogenetic reconstruc-
tion (Chapter 7).

Perspective 3: Biological principles. For each genome, what are the functions of 
the organism (e.g., with respect to development, metabolism, and behavior) and how are 
they served by the genome? What are the mechanisms of evolution of the genome? This 
includes consideration of how genome size is regulated, whether there is polyploidization 
(Chapters 18, 19), how the birth and death of genes occurs, and what forces operate on 
DNA whether they involve positive or negative selection or neutral evolution. What forces 
shape speciation? What is the role of epigenetics? Some of the many techniques used 
to address these issues include molecular phylogeny (Chapter 7) and BLAST or related 
tools (Chapters 4 and 5).

Perspective 4: Human disease relevance. What are the mechanisms by which organ-
isms such as viruses or protozoan pathogens cause disease in humans or plants? What are 
the types of genomic responses and defenses that organisms have to prevent or adapt to 
avoid becoming subject to disease? A variety of techniques are applied to these questions, 
including the study of single-nucleotide polymorphisms (SNPs, Chapters 8 and 20) and 
linkage and association studies (Chapter 21).

Perspective 5: Bioinformatics aspects. What are some of the key databases and 
websites associated with each genome, and what command line or web-based software 
programs have been developed to facilitate the analysis and visualization of data? The 
functionality of genome browsers has been greatly enhanced in recent years, providing 
a system with which to store, analyze, and interpret hundreds of categories of genomic 
data.

brief history of Systematics

Throughout recorded history, philosophers and scientists have grappled with questions 
regarding the diversity of life on Earth (Mayr, 1982). Aristotle (384–322 bce) was an 
active biologist, describing over 500 species in his zoological works. He did not create a 

Web Document 15.1 at  http://
www.bioinfbook.org/chapter15 
presents a table of these 
perspectives on genomics, and 
Web Document 15.2 outlines the 
details of a project to analyze a 
gene in depth from a genomics 
perspective.

http://www.bioinfbook.org/chapter15
http://www.bioinfbook.org/chapter15
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general classification scheme for life, but he did describe animals as “blooded” or “blood-
less” in his Historia animalium. (Eventually, Lamarck (1744–1829) renamed these cate-
gories “vertebrates” and “invertebrates.”) Aristotle’s division of animals into genera and 
species provides the origin of the taxonomic system we use today.

The greatest advocate of this binomial nomenclature system of genus and species 
for each organism was the Swedish naturalist Carl Linnaeus (1707–1778). Linnaeus also 
introduced the notion of the three kingdoms of Animaliae, Plantae, and Mineraliae; in 
his hierarchical system four levels were class, order, genus, and species. Ernst Haeckel 
(1834–1919), who described over 4000 new species, enlarged this system. He described 
life as a continuum from mere complex molecules to plants and animals, and he described 
the Moner as formless clumps of life. The monera were later named bacteria, and in 1937 
Edouard Chatton made the distinction between prokaryotes (bacteria that lack nuclei) 
and eukaryotes (organisms with cells that have nuclei). By the end of the 1960s the work 
of Haeckel (1879), Copeland, Whittaker (1969), and many others led to the standard 
five-kingdom system of life: animals, plants, single-celled protists, fungi, and monera. 
Whittaker’s 1969 scheme shows monera at the base of the tree representing the prokary-
otes, and then eukaryotes (either unicellular or multicellular) represented by the Protista, 
Plantae, Fungi, and Animalia. An example of the tree of life from an 1879 book by Hae-
ckel is shown in the frontis to this chapter.

The tree of life was rewritten in the 1970s and 1980s by Carl Woese and colleagues (Fox 
et al., 1980; Woese et al., 1990; Woese, 1998). They studied a group of prokaryotes that were 
presumed to be bacteria because they were single-celled life forms that lack a nucleus. The 
researchers sequenced small-subunit ribosomal RNAs (SSU rRNA) and performed phyloge-
netic analyses. This revealed that archaea are as closely related to eukaryotes as they are to 
bacteria. A phylogenetic analysis of SSU rRNA sequences, which are present in all known 
life forms, provides one version of the tree of life (Fig. 15.1). There are three main branches. 
While the exact root of the tree is not known, the deepest branching bacteria and archaea are 
thermophiles, suggesting that life may have originated in a hot environment.

The term “prokaryotes” (or “procaryotes”) is used by many people to mean sin-
gle-celled organisms that are not eukaryotes. Norman Pace (2009) has argued that the 
term prokaryote should be eliminated altogether. He notes the following. (1) “Prokary-
ote” is defined in terms of what it is not (i.e., not eukaryotic). (2) Earlier, now obsolete 
models of the history of life suggested that prokaryotes preceded more complex eukary-
otes (Fig. 15.2a). The current three-domain tree of life (Fig. 15.2b) contains no phylogenet-
ically coherent group of prokaryotes. None of the three primary domains is derived from 
another; each is equally old. (3) The root of the universal tree, where the origin of life 
is placed, separates bacteria and archaea. (We will see in Chapter 17 that archaea share 
some distinct properties with eukaryotes such as: reliance on histones to package DNA; 
they share some properties with bacteria; and in some ways they are unique, such as 
their reliance on ether-linked lipids rather than ester-linked lipids to make membranes.) 
(4) The term “prokaryote” therefore connotes an incorrect model of evolution. Pace’s 
point of view has not (yet) been adopted. This is almost entirely because others in the 
research community like the conciseness of the term (arguing that it is tedious to repeat-
edly refer to “archaea and bacteria”), and because “prokaryote” is generally understood to 
mean bacteria and archaea. In this book I have largely removed the term prokaryote while 
acknowledging its continued widespread usage.

A recent, alternative model is that there are just two domains of life: archaea and 
bacteria (Williams et al., 2013). In Woese’s model the archaea are monophyletic, with 
eukaryotes as an outgroup (Fig. 15.2b). According to the Williams et al. model the archaea 
are paraphyletic (Fig. 15.2c). Eukaryotic genes, including ribosomal RNA genes and genes 
encoding proteins that function in protein translation, are placed within the archaea by 
phylogenetic analysis, originating from the Eocytes (Crenarchaeota), Thaumarchaeaota, 

A species is a group of similar 
organisms that only breed with 
one another under normal 
conditions. A genus may consist 
of between one and hundreds of 
species.
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Aigarchaeota, and/or Korarchaeota. Eukaryotes emerged from an archaeal lineage. These 
eukaryotes then served as hosts for the bacterial endosymbiont that shed many of its 
genes to become the modern mitochondrion.

Many groups have reconstructed the tree of life using large number of taxa and/or 
concatenations of large number of protein (or DNA or RNA) sequences (e.g., Driskell 
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FiGure  15.1 A global tree of life, based upon phylogenetic analysis of small-subunit rRNA 
sequences. Life is thought to have originated about 3.8 BYA in an anaerobic environment. The primor-
dial life form (progenote) displayed the defining features of life (self-replication and evolution). The 
eukaryotic mitochondrion (arrow 1) and chloroplast (arrow 2) are indicated, showing their bacterial 
origins. Data from Barns et al. (1996), Hugenholtz and Pace (1996), and Pace (1997).
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et al., 2004; Ciccarelli et al., 2006). While the tree of life provides an appealing metaphor, 
there are other global descriptions of life forms such as a bush or reticulated tree (Doolit-
tle, 1999) or a ring of life (Rivera and Lake, 2004). William Martin, Eugene Koonin, and 
others have emphasized that some fundamental evolutionary processes are not tree-like 
including the lateral transfer of genetic material among bacteria and archaea (discussed 
in Chapter 17); the endosymbiotic transfer of genes from organellar to nuclear genomes 
among eukaryotes; and the fusion of ancient genomes (Dagan and Martin, 2006; Martin, 
2011; O’Malley and Koonin, 2011; Koonin, 2012).

Viruses do not meet the definition of living organisms, and are therefore excluded 
from most trees of life. Although they replicate and evolve, viruses only survive by com-
mandeering the cell of a living organism (see Chapter 16).

A remarkable tree of life by 
Ciccarelli et al. (2006), from the 
group of Peer Bork, is available 
online at the Interactive Tree 
of Life webpage at  http://itol.
embl.de/ (WebLink 15.1; see 
Letunic and Bork, 2007). Another 
extraordinary tree based on 
ribosomal RNA from about 3000 
species is available from David 
Hillis and James Bull at  http://
www.zo.utexas.edu/faculty/
antisense/DownloadfilesToL.html 
(WebLink 15.2).

(b) Three-domains hypothesis: monophyletic archaea

(c) Two-domains, eocyte hypothesis: paraphyletic archaea

Eukaryota

Euryarchaeota

Eocytes/Crenarchaeota

Thaumarchaeota

Aigarchaeota
Korarchaeota

Bacteria

TACK

Eukaryota

Euryarchaeota

Eocytes/Crenarchaeota

Thaumarchaeota

Aigarchaeota
Korarchaeota

Bacteria

TACK

(a) Prokaryote-eukaryote model of evolution

origin

eukaryotesprokaryotes

FiGure 15.2 Models for the origin of eukaryotes invoking three or two domains of life for the origin 
of the eukaryotic host cell. Wedges represent radiations of species. (a) A model (not favored) of pro-
karyotes sequentially followed by eukaryotes. Redrawn from Pace (2009). Reproduced with permission 
from American Society for Microbiology. (b) The rooted three-domain model divides early cellular life 
into three major monophyletic groups: bacteria, archaea, and eukaryotes (the host lineage that acquired 
a bacterial endosymbiont that became the mitochondrion). According to this model, archaea and eukary-
otes are most closely related and share a common ancestor that is not shared with bacteria. TACK refers 
to a group of archaea: Thaumarcheotoa, Aigarachaeota, Eocytes/Crenarchaeota, and Korarchaeota. 
(c) A model in which there are two domains: bacteria and archaea. The closest lineage of the eukaryotes 
is one (or more) of the TACK group of archaea. Trees in both (b) and (c) are rooted on the bacterial stem. 
(b, c) Redrawn from Williams et al. (2013). Reproduced with permission from Macmillan Publishers.

http://itol.embl.de/
http://www.zo.utexas.edu/faculty/antisense/DownloadfilesToL.html
http://www.zo.utexas.edu/faculty/antisense/DownloadfilesToL.html
http://itol.embl.de/
http://www.zo.utexas.edu/faculty/antisense/DownloadfilesToL.html
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history of life on earth

Our recent view of the tree of life (Fig. 15.1) is accompanied by new interpretations of the 
history of life on Earth. All life forms share a common origin and are part of the tree of 
life. A species has an average half-life of 1–10 million years (Graur and Li, 2000), and 
more than 99% of all species that ever lived are now extinct (Wilson, 1992). In principle, 
there is one single tree of life that accurately describes the evolution of species. The object 
of phylogeny is to try to deduce the correct trees both for species and for homologous 
families of genes and proteins. Another object of phylogeny is to infer the time of diver-
gence between organisms since the time they last shared a common ancestor.

The earliest evidence of life is from about 4 billion years ago (BYA), just 0.5 billion 
years after the formation of Earth. This earliest life was centered on RNA (rather than 
DNA or protein; reviewed in Joyce, 2002). Earth’s atmosphere was anaerobic throughout 
much of early evolution, and this early life form was possibly a unicellular bacterium or 
bacterial-like organism. The first fossil evidence of life is dated about 3.5–3.8 BYA (e.g., 
Allwood et al., 2006). The last common ancestor of life, predating the divergence of the 
lineage that leads to modern bacteria and modern archaea, was probably a hyperthermo-
phile. This is suggested by the deepest branching organisms of trees (see Fig. 15.1), such as 
the bacterium Aquifex and the hyperthermophilic crenarcheota (Chapter 17). Eukaryotes 
appeared between 3 and 2 BYA and remained unicellular until almost 1 BYA. Plants and 
animals diverged approximately 1.5 BYA, as did fungi, from the lineage that gave rise 
to metazoans (animals; see Fig. 19.12). The most recent billion years of life has seen the 
evolution of an enormous variety of multicellular organisms. The so-called Cambrian 
explosion of 550 million years ago (MYA) witnessed a tremendous increase in the diver-
sity of animal life forms. In the past 250 million years, the continents coalesced into the 
giant continent Pangaea (Fig. 15.3). When Pangaea separated into northern and southern 
supercontinents (Laurasia and Gondwana), this created natural barriers to reproduction 
and influenced subsequent evolution of life. The dinosaurs were extinct by 60 MYA, and 
the mammalian radiation was well underway.

The lines leading to modern Homo sapiens, chimpanzees, and bonobos diverged 
about 5 MYA (Chapter 19). The genomes of all three of these primates have now been 
sequenced, as described in chronology below. The earliest human ancestors include 
“Lucy,” the early Australepithecus, and early hominids used stone tools over 2 MYA. 
Genomes from two extinct hominins, the Neandertals and the Denisovans, have now been 
sequenced (discussed in “Ancient DNA Projects” below). An overview of the history of 
life is shown in Figure 15.4.

Molecular Sequences as the basis of the tree of life

In past decades and centuries, the basis for proposing models of the tree of life was 
primarily morphology. Linnaeus divided animals into six classes (mammals, birds, 
fish, insects, reptiles, and worms), subdividing mammals according to features of their 
teeth, fish according to their fins, and insects by their wings. Early microscopic studies 
revealed that bacteria lack nuclei, allowing a fundamental separation of bacteria from 
the four other kingdoms of life. Bacteria could be classified based upon biochemical 
properties (e.g., by Albert Jan Kluyver (1888–1956)), and from a morphological per-
spective bacteria can be classified into several major groups. However, such criteria 
are insufficient to appreciate the dazzling diversity of millions of microbial species. 
Physical criteria by which to discover archaea as a distinct branch of life were therefore 
unavailable.

The advent of molecular sequence data has transformed our approach to the study of 
life. Such data were generated beginning in the 1950s and 1960s and, by 1978, Dayhoff’s 
Atlas used several hundred protein sequences as the basis for PAM matrices (Chapter 3). 

Multicellular organisms evolved 
independently many times. A 
variety of multicellular bacteria 
evolved several billion years 
ago, allowing selective benefits 
in feeding and in dispersion 
from predators (Kaiser, 2001; 
Chapter 17).

For another view of Pangaea, see 
Figure 16.12.
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(a) Pangaea

(b) Laurasia (modern Asia and North America) and Gondwana (modern Africa and South America)

Laurasia

Tethys Sea

Gondwana

FiGure 15.3 (a) Geological history of the earth from 225 MYA. At that time, there was one super-
continent, Pangaea. By 165 MYA, Pangaea had separated into Laurasia (modern Asia and North Amer-
ica) and Gondwana (modern Africa and South America). (b) Near the end of the Triassic (∼200 MYA), 
Laurasia and Gondwana had both begun separations that led to the present divisions among continents. 

Source: (a) Kieff, licensed under the Creative Commons Attribution-Share Alike 3.0 Generic license and (b) Lenny222, 
licensed under the Creative Commons Attribution-Share Alike 3.0 Generic license.
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FiGure 15.4 History of life on the planet. Data in part from Kumar and Hedges (1998), Hedges 
et al. (2001), and Benton and Ayala (2003).

There has been a rapid rise in available DNA sequences of the past several years, includ-
ing metagenomic data (introduced in “Metagenomics Projects” below).  Phylogenetic 
 analyses are now possible based upon both phenotypic characters and gene sequences. The 
most widely used sequences are small subunit (SSU) rRNA molecules, which are present 
across virtually all extant life forms. The slow rate of evolution of SSU rRNAs and their 
convenient size makes them appropriate for phylogenetic analyses. Genome- sequencing 
efforts are now reshaping the field of evolutionary studies,  providing  thousands of DNA 
and protein sequences for phylogenetic trees. Major resources include the Ribosomal 
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Database Project (Cole et al., 2014) and SILVA (Pruesse et al., 2012; Quast et al., 2013), 
and several large-scale genomics intiatives focus on rRNA sequencing  (Jumpstart 
 Consortium Human Microbiome Project Data Generation Working Group, 2012; Yarza 
et al., 2013).

Over 1100 complete bacterial and 100 archaeal genomes have now been sequenced 
(table 15.2). We are now beginning to appreciate lateral gene transfer (Chapter  17), a 
phenomenon in which a species does not acquire a particular gene by descent from an 
ancestor. Instead, it acquires the gene horizontally (or laterally) from another unrelated 

The Ribosomal Database Project 
can be viewed at  http://rdp.
cme.msu.edu/ (WebLink 15.3). 
It currently includes 2.9 million 
16S rRNA sequences. SILVA 
is at  http://www.arb-silva.
de/ (WebLink 15.4). Both these 
resources offer large databases 
and extensive tools for sequence 
analysis. The “All-Species Living 
Tree” project at SILVA offers 
16S and 23S rRNA datasets and 
phylogenetic trees spanning 
all sequenced type strains of 
archaea and bacteria.
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Neandertal and Homo
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Pyramids

FiGure 15.4 (Continued)

http://rdp.cme.msu.edu/
http://www.arb-silva.de/
http://www.arb-silva.de/
http://rdp.cme.msu.edu/
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species; genes can therefore be exchanged between species (Eisen, 2000; Sousa and Hey, 
2013). As a consequence, the use of different individual genes in molecular phylogeny 
often results in distinctly different tree topologies. Because of the phenomena of lateral 
gene transfer and gene loss, it might never be possible to construct a single tree of life that 
reflects the evolution of life on the planet (Wolf et al., 2002).

The Genomics Standards Consortium has been established to provide community- 
driven standards for genomics research (Field et al., 2008). When a molecule such as 
rRNA or any other gene is studied, researchers should provide minimal information 
describing experimental details of what was found along with relevant methods (Yilmaz 
et al., 2011).

role of bioinformatics in taxonomy

The field of bioinformatics is concerned with the use of computer algorithms and com-
puter databases to elucidate the principles of biology. The domain of bioinformatics 
includes the study of genes, proteins, and cells in the context of organisms across the 

You can visit the GSC website at  

http://gensc.org/ (WebLink 15.5).

table 15.2 Summary of currently sequenced genomes (excluding viruses and 
organellar genomes). 

Organism Complete

Draft 

assembly

In 

progress Total

Prokaryotes 1117 966 595 2678

Archaea 100 5 48 153

Bacteria 1017 961 547 2525

Eukaryotes 36 319 294 649

Animals 6 137 106 249

Mammals 3 41 25 69

Birds 3 13 16

Fishes 16 16 32

Insects 2 38 17 57

Flatworms 3 3 6

Roundworms 1 16 11 28

Amphibians 1 1

Reptiles 2 2

Other animals 20 24 44

Plants 5 33 80 118

Land plants 3 29 73 105

Green Algae 2 4 6 12

Fungi 17 107 59 183

Ascomycetes 13 83 38 134

Basidiomycetes 2 16 11 29

Other fungi 2 8 10 20

Protists 8 39 46 93

Apicomplexans 3 11 16 30

Kinetoplasts 4 3 2 9

Other protists 1 24 28 53

Total 1153 1285 889 3327

Source: NCBI Genome, NCBI (  http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html).

http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html
http://gensc.org/
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tree of life. Some have advocated a web-based taxonomy intended to catalog an inven-
tory of life (Blackmore, 2002). Several projects attempt to create a tree of life (see 
sidebar). Others suggest that while web-based initiatives are useful, the current system 
is adequate: zoological, botanical, or other specimens are collected, named, and studied 
according to guidelines established by international conventions (Knapp et al., 2002).

Databases such as the Catalogue of Life list the number of named species. Mora et 
al. (2011) have estimated that the total number of eukaryotic species is ∼8.7 million ± 1.3 
million (standard error). Other recent estimates have been as high as 100 million species. 
For bacteria and archaea the estimates are more uncertain.

PromInent Web resources
We now introduce several main web resources for the study of genomes in this and the 
following chapters.

ensembl Genomes

The European Bioinformatics Institute (EBI)/Ensembl offers a variety of genome 
resources. We have encountered the Ensembl website (e.g., Chapters 2, 8) with its partic-
ular focus on vertebrate species. Ensembl Genomes offers a complementary set of web 
interfaces for five nonvertebrate groups: bacteria, protists, fungi, plants, and invertebrate 
metazoan (Kersey et al., 2014).

NCbi Genome

The genomes section of the National Center for Biotechnology Information (NCBI) is 
organized with features to search eukaryotes, bacteria, archaea, and viruses with addi-
tional specialized genomics resources. The current NCBI holdings include over 3300 
eukaryotic, bacterial, and archaeal genomes of which ∼1200 have been completely 
sequenced (table 15.2). There are an additional ∼5000 completely sequenced organellar 
genomes (discussed in “1981: First Eukaryotic Organellar Genome” below).

Genome portal of DOe JGi and the integrated Microbial Genomes

The US Department of Energy Joint Genome Institute (DOE JGI) has had a prominent 
role in supporting the Human Genome Project and in sequencing genomes from plants, 
fungi, microbes, and metagenomes. Its Genome Portal offers access to 4000 projects 
(Grigoriev et al., 2012).

Within DOE JGI, the Integrated Microbial Genomes (IMG) system supports storage, 
analysis, and distribution of microbial genomes (Markowitz et al., 2014b) and metage-
nomes (Markowitz et al., 2014a). It supports projects such as the Human Microbiome 
Project (Markowitz et al., 2012), and we explore this resource in Chapter 17.

Genomes On line Database (GOlD)

The GOLD database monitors genome and metagenome sequencing projects (Pagani et 
al., 2012). Led by Nikos Kyrpides and colleagues at the DOE JGI, it is an authoritative 
repository. In addition to traditional search features it offers Genome Map and Genome 
Earth views of genome projects.

uCSC

The genome browser at the University of California, Santa Cruz has a particular empha-
sis on vertebrate genomes (see Chapters 8 and 19). It also has associated microbial and 
archaeal Genome and Table Browsers.

The Catalogue of Life (  

http://www.catalogueoflife.
org/, WebLink 15.6) lists >1.5 
million species with >140 
contributing databases. The 
Microbial Earth Project lists 
∼11,000 strains of archaea 
and bacteria, many thousands 
having genome projects, at  

http://www.microbial-earth.
org (WebLink 15.7). The Earth 
Microbiome Project emphasizes 
metagenomics projects (  

http://www.earthmicrobiome.
org, WebLink 15.8). NCBI 
taxonomy (  http://www.ncbi.
nlm.nih.gov/taxonomy, WebLink 
15.9) includes 300,000 species. 
The Convention on Biological 
Diversity (  http://www.cbd.int, 
WebLink 15.10) is an organization 
that address issues of global 
biodiversity. The Tree of Life is at 

  http://www.panspermia.org/
tree.htm (WebLink 15.11) and the 
Tree of Life Web Project (created 
by David R. Maddison) is at  

http://tolweb.org/tree/phylogeny.
html (WebLink 15.12).

Metazoa are animals. Vertebrate 
metazoan include horses and 
fish. Inverebrate metazoan 
include worms and insects.

You can access the Genomes 
page at NCBI via  http://
www.ncbi.nlm.nih.gov/genome 
(WebLink 15.15), or from the 
home page of NCBI. Select All 
Databases then Genomes.

Ensembl Genome is accessible 
from  http://ensemblgenomes.
org/ (WebLink 15.13). Ensembl 
Bacteria currently features over 
20,000 genomes and has its own 
site  http://bacteria.ensembl.
org/ (WebLink 15.14).

http://www.catalogueoflife.org/
http://www.catalogueoflife.org/
http://www.microbial-earth.org
http://www.earthmicrobiome.org
http://www.earthmicrobiome.org
http://www.ncbi.nlm.nih.gov/taxonomy
http://www.ncbi.nlm.nih.gov/taxonomy
http://www.cbd.int
http://www.panspermia.org/tree.htm
http://tolweb.org/tree/phylogeny.html
http://ensemblgenomes.org/
http://bacteria.ensembl.org/
http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
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Visit the Genome Portal at 
 http://genome.jgi.doe.gov/ 

(WebLink 15.16).

IMG is online at  https://img.jgi.
doe.gov (WebLink 15.17).

GOLD is available at  http://
genomesonline.org/ (WebLink 
15.18). Currently (February 2015) 
it lists ∼60,000 complete and 
ongoing genome projects.

The UCSC Genome Browser and 
Table Browser are at  http://
genome.ucsc.edu (WebLink 15.19). 
Its European mirror is  http://
genome-euro.ucsc.edu (WebLink 
15.20). The UCSC Microbial 
Genome Browser is at  http://
microbes.ucsc.edu/ (WebLink 
15.21) or  http://archaea.ucsc.
edu/ (WebLink 15.22) for archaea.

Genome-sequencInG Projects: chronoloGy
The advent of DNA-sequencing technologies in the 1970s, including Frederick Sanger’s 
dideoxynucleotide methodology, enabled large-scale sequencing projects to be per-
formed. This chapter provides a brief history of genome-sequencing projects, including 
the completion of the genomic sequence of the first free-living organism in 1995, Hae-
mophilus influenzae. By 2001, a draft sequence of the human genome was reported by 
two groups. The most remarkable feature of current efforts to determine the sequence of 
complete genomes is the dramatic increase in data that are collected each year (Fig. 2.3). 
The ability to sequence >1017 nucleotides of genomic DNA presents the scientific com-
munity with unprecedented opportunities and challenges.

Several themes have emerged in the past several years:

 • The amount of sequence data that are generated continues to accelerate rapidly.
 • For many genomes, even unfinished genomic sequence data – that is, versions of 
genomic sequence that include considerable gaps and sequencing errors – are imme-
diately available and useful to the scientific community. A finished sequence (defined 
in “Four Approaches to Genome Assembly” below) provides substantially better 
descriptions of genome features than an unfinished sequence.

 • Low-coverage genomes are also useful. In reporting the genome sequence of an orang-
utan, Locke et al. (2011) also provide sequence analysis of 10 unrelated orangutans.

 • Annotations have a major impact on the usefulness of sequence data (Klimke et al., 2011).
 • Comparative genome analysis is needed for solving problems such as identifying 
protein-coding genes in human and mouse or differences in virulent and nonvirulent 
strains of pathogens (Miller et al., 2004). Comparative analyses are also useful to 
define gene regulatory regions and the evolutionary history of species through the 
analysis of conserved DNA elements.

 • Polyploid genomes have now been sequenced, including the hexaploid bread wheat 
genome (17 Gb) and the loblolly pine (a conifer having a genome spanning 23.2 Gb; 
Neale et al., 2014).

brief Chronology

The progress in completing many hundreds of genome-sequencing projects has been 
rapid, and we can expect the pace to accelerate in the future. In the following sections 
we present a chronological overview to provide a framework for these events. When the 
sequencing of the first bacterial genomes was completed in 1995, there were relatively 
few other genome sequences available for comparison. Now with thousands of completed 
genomes available (including organellar genomes), we are better able to annotate and 
interpret the biological significance of genome sequences.

1976–1978: First bacteriophage and Viral Genomes

Bacteriophage are viruses that infect bacteria. Fiers et al. (1976) reported the first com-
plete bacteriophage genome, MS2. This genome of 3569 base pairs encodes just 4 genes. 
The next complete virus genome was Simian Virus 40 (SV40) by Fiers et al. (1978). That 
genome contains 5224 base pairs and contains 8 genes (7 of which encode proteins).

Frederick Sanger and colleagues also sequenced the genome of bacteriophage φX174 
(Sanger et al., 1977a). They developed several DNA-sequencing techniques, including 
the dideoxynucleotide chain termination procedure (Sanger et al., 1977b). Bacteriophage 
φX174 is 5386 bp encoding 11 genes (see GenBank accession NC_001422.1). A depiction 
of the NCBI Nucleotide and Genome entries for this viral genome is provided in Figure 15.5. 
At the time, a surprising result was the unexpected presence of overlapping genes that are 
transcribed on different reading frames.

The bacteriophage MS2 
genome has RefSeq accession 
NC_001417.2. The SV40 RefSeq 
accession is NC_001669.1.

http://genome.jgi.doe.gov/
https://img.jgi.doe.gov
http://genomesonline.org/
http://genomesonline.org/
http://genome.ucsc.edu
http://genome.ucsc.edu
http://genome-euro.ucsc.edu
http://genome-euro.ucsc.edu
http://microbes.ucsc.edu/
http://microbes.ucsc.edu/
http://archaea.ucsc.edu/
https://img.jgi.doe.gov
http://archaea.ucsc.edu/
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1981: First eukaryotic Organellar Genome

The first complete organellar genome to be sequenced was the human mitochondrion 
(Anderson et al., 1981). The genome is characterized by extremely little noncod-
ing DNA. The great majority of metazoan (i.e., multicellular animal) mitochondrial 

(a) NCBI Nucleotide graphic view

(b) NCBI Genome entry for ϕX174

FiGure  15.5 NCBI data for bacteriophage φX174. (a) The Nucleotide record was obtained by viewing the entry for accession 
NC_001422.1 in the graphics display format. This provides an overview of the predicted open reading frames (ORFs). Mousing over an entry 
displays information as shown for major spike protein. The various options of the tools menu are also shown. (b) The NCBI Genome record 
includes a summary of the accession number, length, number of proteins (11), sequence neighbors (n = 77), and host species. 

Source: NCBI.
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genomes are about 15–20 kb (kilobase) circular genomes. The human mitochrondrial 
genome is 16,569 base pairs and encodes 13 proteins, 2 ribosomal RNAs, and 22 trans-
fer RNAs. It can be accessed through the NCBI Genome site (Fig. 15.6). DNA and cor-
responding protein sequences of all the mitochondrial genes are accessible in graphical 
or tabular forms.

We discuss the human 
mitochondrial genome in 
Chapters 20 and 21. Its accession 
is NC_012920.1 (revised 
Cambridge reference sequence).

(a)

(b)

FiGure 15.6 NCBI Genome includes entries for completed organellar genomes including the mito-
chondrial genome. There are generally 13 or 14 protein-coding genes encoded by the mitochondrial 
genome. You can access the protein sequences in the FASTA format, as a multiple alignment, or in pro-
tein clusters. This list includes the reference human mitochondrial genome (rCRS/Mitomap sequence 
NC_012920.1; 16,569 base pair circular genome). 

Source: NCBI Genome, NCBI.
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Today, there are nearly 5000 completed mitochondrial genome sequences. Several 
of these are listed in table 15.3, including several exceptionally large cases. While 
the thale cress Arabidopsis thaliana has a large mitochondrial genome (367  kb), 
those of some other plants approach or exceed a megabase. There is therefore a tre-
mendous diversity of mitochondrial genomes (Lang et al., 1999). Molecular phylo-
genetic approaches suggest that mitochondria are descendants of an endosymbiotic 
α-proteobacterium.

1986: First Chloroplast Genomes

The first chloroplast genomes reported were Nicotiana tabacum (Shinozaki et al., 1986), 
followed by the liverwort Marchantia polymorpha (Ohyama et al., 1988). Most plant 
chloroplast genomes are 60,000–200,000  bp in size. Kua et al. (2012) compared 174 
chloroplast genomes, describing duplications in a inverted repeat region even in highly 
reduced parasitic orchid genome or in a massive algal chloroplast.

There are other chloroplast-like organelles in eukaryotic organisms. Unicellular pro-
tozoan parasites of the phylum Apicomplexa, such as Toxoplasma gondii (table 15.4), 
have smaller plastid genomes of which >400 are currently listed at NCBI.

Information on organellar 
genomes is available at  http://
www.ncbi.nlm.nih.gov/genomes/
ORGANELLES/organelles.html 
(WebLink 15.23).

We discuss chloroplasts and 
other plastids in the plant section 
of Chapter 19.

table 15.3 Selected mitochondrial genomes arranged by size. as of March 2015, 
~5000 metazoan (multicellular animal) organellar genomes have been sequenced, 
~180 fungi, and ~125 plants. Note that human mitochondrial genome NC_001807.4 
has been replaced by a new rCrS/Mitomap reference mitochondrial genome, 
NC_012920.1. reanalysis of the Cambridge reference sequence is described at  

http://www.mitomap.org/MitOMap/Cambridgereanalysis.

Kingdom Species Accession no. Size (bp)

Eukaryote Plasmodium falciparum (malaria 
parasite)

NC_002375.1 5,967

Metazoa (Bilateria) Caenorhabditis elegans (worm) NC_001328.1 13,794

Plant (Chlorophyta) Chlamydomonas reinhardtii 
(green alga)

NC_001638.1 15,758

Metazoa (Bilateria) Mus musculus NC_005089.1 16,299

Metazoa (Bilateria) Pan troglodytes (chimpanzee) NC-001643.1 16,554

Metazoa (Bilateria) Homo sapiens NC_012920.1 16,569

Metazoa (Cnidaria) Metridium senile (sea anenome) NC-000933.1 17,443

Metazoa (Bilateria) Drosophila melanogaster NC_001709.1 19,517

Fungi (Ascomycota) Schizosaccharomyces pombe NC_001326.1 19,431

Fungi Candida albicans NC_002653.1 40,420

Eukaryote (stramenopiles) Pylaiella littoralis (brown alga) NC_003055.1 58,507

Fungi (Chytridiomycota) Rhizophydium sp. 136 NC_003053.1 68,834

Eukaryote Reclinomonas americana (protist) NC_001823.1 69,034

Fungi (Ascomycota) Saccharomyces cerevisiae NC_001224.1 85,779

Plant (Streptophyta) Arabidopsis thaliana NC-001284.2 366,924

Plant (Streptophyta) Zea mays (corn) NC_008332.1 680,603

Plant (Streptophyta) Tripsacum dactyloides NC_008362.1 704,100

Plant (Streptophyta) Cucurbita pepo NC_014050.1 982,833

Source: NCBI Genome, NCBI (http://www.ncbi.nlm.nih.gov/Genomes/).

http://www.mitomap.org/MITOMAP/CambridgeReanalysis
http://www.ncbi.nlm.nih.gov/Genomes/
http://www.ncbi.nlm.nih.gov/genomes/ORGANELLES/organelles.html
http://www.ncbi.nlm.nih.gov/genomes/ORGANELLES/organelles.html
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1992: First eukaryotic Chromosome

The first eukaryotic chromosome was sequenced in 1992: chromosome III of the budding 
yeast S. cerevisiae (Oliver et al., 1992). There were 182 predicted open reading frames (for 
proteins larger than 100 amino acids), and the size of the sequenced DNA was 315 kb. Of 
the 182 open reading frames that were identified, only 37 corresponded to previously known 
genes and 29 showed similarity to known genes. We explore this genome in Chapter 18.

1995: Complete Genome of Free-living Organism

The first genome of a free-living organism to be completed was the bacterium Haemoph-
ilus influenzae Rd (Fleischmann et al., 1995; NC_000907.1). Its size is 1,830,138 bp (i.e., 
1.8 Mb or megabase pairs). This organism was sequenced at The Institute for Genomic 
Research using the whole-genome shotgun sequencing and assembly strategy (see “Four 
Approaches to Genome Assembly” below).

To study this genome in NCBI, go to the Genome page and “browse by organism.” 
Entering this bacterial name leads to links such as the lineage, a dendrogram of related 
bacteria, related BioProjects, and publications.

By the end of 1995, the complete DNA sequence of a second bacterial genome had 
been obtained, Mycoplasma genitalium (Fraser et al., 1995). Notably, this was one of 
the smallest known genomes of any free-living organism (we introduce several smaller 
genomes in Chapter 17).

1996: First eukaryotic Genome

The complete genome of the first eukaryote, S. cerevisiae (a yeast; see Chapter 18; Gof-
feau et al., 1996), was sequenced by 1996. This was accomplished by a collaboration of 
over 600 researchers in 100 laboratories spread across Europe, North America, and Japan.

In 1996, The Institute of Genomic Research (TIGR) researchers reported the first 
complete genome sequence for an archaeon, Methanococcus jannaschii (Bult et al., 1996). 
This offered the first opportunity to compare the three main divisions of life, includ-
ing the overall metabolic capacity of bacteria, archaea, and eukaryotes. Other genomes 
sequenced in 1996 are listed in Web Document 15.3.

1997: Escherichia coli

In 1997, the complete genomic sequences of two archaea were reported (Klenk et al., 
1997; Smith et al., 1997; Web Document 15.3). Of the five bacterial genomes that 
were reported, the most well-known is that of Escherichia coli (Blattner et al., 1997; 

We describe this bacterial 
genome as derived from a “free-
living organism” to distinguish 
it from a viral genome or an 
organellar genome. Viruses 
(Chapter 16) exist on the 
borderline of the definition of 
life, and organellar genomes are 
derived from bacteria that are no 
longer capable of independent 
life.

The M. genitalium accession is 
NC_000908.2 and its size is 580,076 
base pairs.

table 15.4 Selected chloroplast genomes.

Species Common name Accession no. Size (bp)

Arabidopsis thaliana Thale cress NC-000932.1 154,478

Guillardia theta Red alga NC-000926.1 121,524

Marchantia polymorpha Liverwort; moss NC-001319.1 121,024

Nicotiana tabacum Tobacco NC-001879.2 155,943

Oryza sativa Rice NC-001320.1 134,525

Porphyra purpurea Red alga NC-000925.1 191,028

Toxoplasma gondii Apicomplexan parasite NC-001799.1 34,996

Zea mays corn NC-001666.2 140,384
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 Koonin, 1997), which has served as a model organism in bacteriology for decades. Its 
4.6 Mb genome encodes over 4200 proteins, of which 38% had no identified function at 
the time. We explore this further in Chapter 17.

1998: First Genome of Multicellular Organism

The nematode Caenorhabditis elegans was the first multicellular organism to have its 
genome sequenced, although technically the sequencing is still not complete (because of 
the presence of repetitive DNA elements that have been difficult to resolve). The sequence 
spans 97 Mb and is predicted to encode over 20,000 genes (the C. elegans Sequencing 
Consortium, 1998).

Two more archaea brought the total to four sequenced genomes by 1998 (Web Docu-
ment 15.3). Six more bacterial genomes were also sequenced. The genome of sequence of 
Rickettsia prowazekii, the α-proteobacterium that causes typhus and was responsible for 
tens of millions of deaths in the twentieth century, is very closely related to the eukaryotic 
mitochondrial genome (Andersson et al., 1998).

1999: human Chromosome

In 1999, the sequence of the euchromatic portion of human chromosome 22 was pub-
lished (Web Document 15.3; Dunham et al., 1999). This was the first human chromosome 
to be essentially completely sequenced. We discuss each of the human chromosomes in 
Chapter 20.

2000: Fly, plant, and human Chromosome 21

In 2000, the completed genome sequences of the fruit fly Drosophila melanogaster and 
the plant A. thaliana were reported, bringing the number of eukaryotic genomes to four 
(with a yeast and a worm; Web Document 15.3). The Drosophila sequence was obtained 
by scientists at Celera Genomics and the Berkeley Drosophila Genome Project (BDGP; 
Adams et al., 2000). There are approximately 14,000 protein-coding genes (according to 
current Ensembl annotation). Arabidopsis is a thale cress of the mustard family. Its com-
pact genome serves as a model for plant genomics (Arabidopsis Genome Initiative, 2000).

Also in the year 2000, human chromosome 21 was the second human chromosome 
sequence to be reported (Hattori et al., 2000). This is the smallest of the human auto-
somes. An extra copy of this chromosome causes Down syndrome, the most common 
inherited cause of intellectual disability.

Meanwhile, bacterial genomes continued to be sequenced, and many surprising prop-
erties emerged. The genome of Neisseria meningitidis, which causes bacterial meningitis, 
contains hundreds of repetitive elements (Parkhill et al., 2000; Tettelin et al., 2000). Such 
repeats are more typically associated with eukaryotes. The Pseudomonas aeruginosa 
genome is 6.3 Mb, making it the largest of the sequenced bacterial genomes at that time 
(Stover et al., 2000).

Among the archaea, the genome of Thermoplasma acidophilum was sequenced 
(Ruepp et al., 2000). This organism thrives at 59°C and pH 2. Remarkably, it has under-
gone extensive lateral gene transfer with Sulfolobus solfataricus, an archaeon that is dis-
tantly related from a phylogenetic perspective but occupies the same ecological niche in 
coal heaps.

2001: Draft Sequences of human Genome

Two groups published the completion of a draft version of the human genome. This was 
accomplished by the International Human Genome Sequencing Consortium (2001) and 
by a consortium led by Celera Genomics (Web Document 15.3; Venter et al., 2001). The 

We describe these and 
other eukaryotic genomes in 
Chapter 19.

We discuss lateral gene transfer 
in Chapter 17.
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reports both arrive at the conclusion that there are about 30,000–40,000 protein-coding 
genes in the genome, an unexpectedly small number. Subsequently, the number of human 
genes was estimated to be 20,000 to 25,000 (International Human Genome Sequencing 
Consortium, 2004), while currently the Ensembl estimate is ∼20,300. Analysis of the 
human genome sequence will have vast implications for all aspects of human biology.

The bacterial genomes that are sequenced continue to have interesting features. 
Mycoplasma pulmonis has one of the lowest guanine–cytosine (GC) contents that have 
been described: 26.6% (Chambaud et al., 2001). The genome of Mycobacterium lep-
rae, the bacterium that causes leprosy, has undergone massive gene decay with only half 
the genome coding for genes (Cole et al., 2001). Analysis of the Pasteurella multocida 
genome suggests that the radiation of the γ subdivision of proteobacteria, which includes 
H. influenzae and E. coli and other pathogenic gram-negative bacteria, occurred at about 
680 MYA (May et al., 2001). The Sinorhizobium meliloti genome consists of a circular 
chromosome and two additional megaplasmids (Galibert et al., 2001). Together these 
three elements total 6.7 Mb, expanding our view of the diversity of bacterial genome 
organization.

Cryptomonads are a type of algae that contain one distinct eukaryotic cell (a red 
alga, with a nucleus) nested inside another cell (see Fig. 19.9). This unique arrangement 
derives from an ancient evolutionary fusion of two organisms. That red algal nucleus, 
termed a nucleomorph, is the most gene-dense eukaryotic genome known. Its genome 
was sequenced (Douglas et al., 2001) and found to be dense (1 gene per 977 base pairs) 
with ultrashort noncoding regions.

2002: Continuing rise in Completed Genomes

In the year 2002, dozens more microbial genomes were sequenced. Of the eukaryotes 
(Web Document 15.3), the fission yeast Schizosaccharomyces pombe was found to have 
the smallest number of protein-coding genes (4824; Wood et al., 2002). The genomes 
of both the malaria parasite Plasmodium falciparum and its host, the mosquito Anoph-
eles gambiae, were reported (Holt et al., 2002). Additionally, the genome of the rodent 
malaria parasite Plasmodium yoelii yoelii was determined and compared to that of P. 
falciparum (Carlton et al., 2002).

2003: hapMap

In 2003 the Human Genome Project was concluding on the 50th anniversary of Watson 
and Crick’s 1953 report on the double helix. That year the International HapMap Consor-
tium (2003) launched a project to catalog common patterns of DNA sequence variation 
in the human genome. We describe the rich results of this project in Chapter 20. In part, 
it was significant because the focus began shifting from where humans are placed in the 
tree of life (relative to species such as mouse, nematode, and plants) to what genetic and 
genomic differences occur within the human species.

2004: Chicken, rat, and Finished human Sequences

The red jungle fowl Gallus gallus, better known as chicken, last shared a common ances-
tor with humans ∼310 MYA and it is a descendant of the dinosaurs. The sequencing of its 
genome (International Chicken Genome Sequencing Consortium, 2004) revealed many 
surprising similarities (e.g., long blocks of conserved synteny with humans, and both cod-
ing and noncoding regions that are highly conserved between the two species) as well as 
notable differences (e.g., a relative paucity of retroposed pseudogenes). The rat genome 
also offered a wealth of information, in particular allowing three-way comparisons with 
the mouse and human genomes (Rat Genome Sequencing Project Consortium, 2004).
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The International Human Genome Sequencing Consortium (2004) reported a draft 
sequence of the euchromatic portion of the human genome. This included 341 gaps and a 
low error rate of 1 per 100,000 bases. This assembly corresponded to Build 35 (GRCh35) 
and was to be followed by GRCh36 (in 2006), GRCh37 (2009), and GRCh38 (2013).

2005: Chimpanzee, Dog, phase i hapMap

The genome of the chimpanzee Pan troglodytes was reported (Chimpanzee Sequencing 
and Analysis Consortium, 2005). These apes are among humans’ closest relatives and 
the relatively few differences between our genomes provide a fascinating glimpse into 
what makes us human. That year Lindblad-Toh et al. reported the 4.4 Gb dog genome 
with its 38 pairs of autosomes and two sex chromosomes. Many dog breeds are suscep-
tible to diseases that also afflict humans, and the genome sequence facilitates compar-
ative studies.

The International HapMap Consortium (2005) released its first findings, character-
izing more than 1 million SNPs in several geographic populations, including allele fre-
quency distributions.

2006: Sea urchin, honeybee, dbGap

Highlights included analyzing the honeybee genome (Honeybee Genome Sequencing 
Consortium, 2006) and the sea urchin (Sea Urchin Genome Sequencing Consortium 
et al., 2006). The NIH introduced the Database of Genotypes and Phenotypes (dbGaP; 
Mailman et al., 2007). dbGaP has emerged as a major repository for SNP and sequence 
data (Chapter 21).

2007: rhesus Macaque, First individual human Genome, eNCODe pilot

The public consortium that sequenced the human genome analyzed DNA from a pool 
of anonymous individuals, while the Celera effort relied mostly on DNA from J. Craig 
Venter. In 2007 Venter’s became the first genome of an individual person to be sequenced 
(Levy et al., 2007). While next-generation sequencing had become available, that study 
used the longer reads available from Sanger sequencing. That year the Macaca mulatta 
genome was sequenced (Rhesus Macaque Genome Sequencing and Analysis Consortium 
et al., 2007), and the ENCODE Project Consortium et al. (2007) released its findings on 
1% of the human genome (Chapter 8).

2008: platypus, First Cancer Genome, First personal Genome using NGS

In 2008 the era of individual human genome sequencing using next-generation sequenc-
ing began with the report of James Watson’s genome (Wheeler et al., 2008) as well as 
that of an Asian individual (Wang et al., 2008) and a cancer genome (Ley et al., 2008). 
The genome of the remarkable platypus was reported (Warren et al., 2008), combining 
reptilian features (such as egg-laying) with mammalian features (such as female lacta-
tion). Such genome sequences provide essential resources for comparative mammalian 
analyses.

2009: bovine, First human Methlyome Map

The sequencing of the cattle genome may lead to genetic improvement for meat and milk 
production (Bovine Genome Sequencing and Analysis Consortium et al., 2009). By 2009 
maps of the human methylome emerged (Lister et al., 2009). DNA methylation represents 
a heritable epigenetic modification often involving methylation of CpG dinucleotides. 
Aberrant methylation has been linked to disease.
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2010: 1000 Genomes pilot, Neandertal

Neandertals were the closest hominid relatives of humans until they became extinct about 
30,000 years ago. Green et al. (2010) reported a draft sequence of the Neandertal genome. 
Surprisingly, humans of European and Asian ancestry share up to 3% of their genomic 
variants with Neandertals, while individuals of African ancestry do not. This may be 
explained by interbreeding between Neandertals and those early humans who migrated 
north from Africa.

The International HapMap 3 Consortium et al. (2010) continued its characterization 
of SNPs, expanding to >1100 individuals in 11 geographic sites across the world. Mean-
while the 1000 Genomes Project Consortium et al. (2010) reported ∼15 million SNPs, 
1 million short indels, and 20,000 structural variants, describing common variation based 
on next-generation sequencing. We discuss their findings in Chapters 20 and 21.

2011: a Vision for the Future of Genomics

Eric Green (director of the National Human Genome Research Institute or NHGRI) and 
colleagues articulated a vision for accomplishments across five domains of genomics 
research (Green and Guyer, 2011). These are: (1) understanding the structure of genomes, 
largely accomplished during the Human Genome Project from 1990 to 2003; (2) under-
standing the biology of genomes, largely spanning 2004–2010; (3) understanding the 
biology of disease, projected to extend to 2020; and, beyond 2020, (4) advancing the 
science of medicine; and (5) improving the effectiveness of healthcare.

2012: Denisovan Genome, bonobo, and 1000 Genomes project

The two primate species most closely related to humans are the chimpanzee (Pan trog-
lodytes) and the bonobo (Pan paniscus). Prüfer et al. (2012) reported the genome of the 
bonobo, finding that some portions of the human genome are more closely related to 
either of these two apes. In addition to Neandertals, humans are also closely related to the 
extinct group of the Denisovans. Meyer et al. (2012) reported the first Denisovan genome. 
1000 Genomes Project Consortium et al. (2012) reported genetic variation from 1092 
human genomes across 14 populations.

2013: the Simplest animal and a 700,000-Year-Old horse

The ctenophores are the simplest animals, including comb jellies, sea walnuts, and sea 
gooseberries. Andy Baxevanis and colleagues described the genome of the comb jelly 
Mnemiopsis leidyi, showing that its lineage branched off from that leading to other ani-
mals at an early stage (Ryan et al., 2013).

Orlando et al. (2013) sequenced the oldest genome to date. This came from a horse’s 
foot bone (dated 780,000 to 560,000 years ago from the Middle Pleistocene).

2014: Mouse eNCODe, primates, plants, and ancient hominids

In 2014 the Mouse ENCODE Consortium reported its characterization of DNA elements 
in the mouse genome (Yue et al., 2014), complementing the human ENCODE project. 
The genome of the gibbon was published by Carbone et al. (2014). The genome of the 
sugar beet (a eudicot) was described by Dohm et al. (2014), as was the genome of the 
hardwood tree Eucalyptus (Myburg et al., 2014).

Ancient hominid genomes continue to be sequenced, including a Late Pleistocene 
human from Montana (Rasmussen et al., 2014), a 45,000-year-old human from Siberia 
(Fu et al., 2014), and an Upper Paleolithic Siberian human (Raghavan et al., 2014), a 
Neandertal woman’s genome (whose parents were likely half-siblings; Prüfer et al., 2014).
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2015: Diversity in africa

The bulk of genetic diversity in humans is in African individuals. The African Genome 
Variation Project reported genotypes from 1481 Africans and whole-genome sequences 
from 320 sub-Saharan Africans (Gurdasani et al., 2015).

A genome-wide association study (GWAS, introduced in Chapter 21) studied obesity 
in ∼339,000 individuals (Locke et al., 2015), while a companion paper characterized 
genetic loci associated with body fat distribution (Shungin et al., 2015). Each of these 
papers includes >400 authors and thousands of collaborators.

Neafsey et al. (2015) sequenced and assembled the genomes and transcriptomes of 
16 anopheline mosquitoes from three continents, spanning 100 million years of evolution 
and displaying genomic rates of change distinct from those of Drosophila.

These are example of the thousands of genome projects that have been undertaken. 
We next examine different types of projects and the process by which genome sequences 
are assembled and annotated.

Genome AnAlysIs Projects: IntroductIon
We have surveyed completed genome projects from a chronological point of view. We 
consider three main aspects of genome sequencing: generating the sequence; assembly 
(gathering all the reads into a coherent model of the DNA sequence across the chro-
mosomes); and annotation (identifying features such as genes, regulatory regions, and 
repetitive elements).

First there are many questions associated with genome sequencing. Which genomes 
are sequenced? How big are genomes? What types of sequencing experiments are per-
formed? Even the goals of sequence analysis are evolving as we learn what questions to 
ask and what tools are available to address those questions. Four main types of genome 
analysis projects are outlined in table 15.5.

 1. De novo sequencing involves determining the DNA sequence of an organism, as 
described chronologically in the sections above. While many more de novo genome 
sequencing projects are underway, two recently developed, specialized categories are 
the sequencing of ancient DNA (often from extinct organisms) and metagenomics 
(sampling the genomes of many organisms from a particular environmental site such 
as the human gut or an ocean region).

table 15.5 applications of genome sequencing.

Purpose Template Example

De novo sequencing Genome sequencing
Ancient DNA
Metagenomics

Sequencing >1000 influenza genomes
Extinct Neandertal genome
Human gut

Resequencing Whole genomes
Genomic regions

Individual humans
Assessment of genomic rearrangements 
or disease-associated regions

Somatic mutations Sequencing mutations in cancer

Transcriptome Full-length transcripts

Noncoding RNAs

Defining regulated messenger RNA 
transcripts
Identifying and quantifying microRNAs 
in samples

Epigenetics Methylation changes Measuring methylation changes in 
cancer
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 2. Resequencing a genome permits the variation between individuals to be assessed. 
For example, the sequences of James Watson (a co-discoverer of the double helical 
nature of DNA) and J. Craig Venter (a pioneer in genome sequencing) were deter-
mined by 2008. Currently (in early 2015) it is thought that over 100,000 human 
exomes have been sequenced, and one major sequencing center (at the Broad 
Institute; see “Genome-Sequencing Centers” below) sequences an entire human 
genome every 30 minutes. Applications of resequencing include the assessment of 
genomic changes in disease-associated regions, the sequencing of all human exons 
in multiple individuals, or the sequencing of large sets of genes associated with 
cancer.

 3. RNA-seq (Chapter  11) uses next-generation sequencing technology to measure 
mRNA transcript levels as well as other types of RNA.

 4. Epigenetics refers to heritable changes other than those involving the four DNA 
sequences per se. Such epigenetic changes include the modification of DNA or chro-
matin through DNA methylation (the addition of methyl groups to cytosine resi-
dues in CpG dinucleotides) and/or through the post-translational modification of his-
tones. High-throughput sequencing can be used to assess the methylation status of a 
genome.

large-Scale Genomics projects

The completion of the human genome project coupled with the dramatic emergence of 
next-generation sequencing has led to several large-scale genomics projects.

 • Human-centered projects include the 1000 Genomes Project, HapMap, and ENCODE 
(see Chapters 8 and 20) as well as disease-focused projects (table 15.6).

 • The Human Microbiome Project is characterizing the bacteria and archaea that 
inhabit the human body (Human Microbiome Project Consortium, 2012a, b).

 • The Genomic Encyclopedia of Bacteria and Archaea (GEBA) is characterizing the 
diversity of those domains of life.

 • For nonhuman species, projects are underway for sequencing large numbers of 
strains, inbred lines, or related organisms (table 15.7). The Million Mutation Project 
involves sequencing 2000 mutagenized C. elegans strains, yielding nearly a million 
single-nucleotide variants and indels (Thompson et al., 2013).

The HMP website is  http://
www.hmpdacc.org (WebLink 
15.24), and is discussed further in 
Chapter 17.

Visit GEBA at  http://www 
.jgi.doe.gov/programs/GEBA 
(WebLink 15.25).

table 15.6 large-scale human sequencing projects (on-going and proposed).

Project URL Goal

The 1000 Genomes Project  http://www.1000genomes.org/ Find human genetic variants 
having frequencies >1%

International Cancer Genome 
Consortium (ICGC)

 http://www.icgc.org/ Catalog mutations in tumors 
from 50 cancer types

UK10K  http://www.sanger.ac.uk/about/
press/2010/100624-uk10k.html

Sequence the genomes of 
10,000 UK individuals

100,000 Genomes Project http://www.genomicsengland 
.co.uk/

Sequence 100,000 individuals 
in the UK

Autism Genome 10K Project  http://autismgenome10k.org/ Sequence 10,000 autism-
related genomes

Personal Genome Project  http://www.personalgenomes 
.org/

Effort to sequence 100,000 
human genomes

http://www.hmpdacc.org
http://www.hmpdacc.org
http://www.jgi.doe.gov/programs/GEBA
http://www.1000genomes.org/
http://www.icgc.org/
http://www.sanger.ac.uk/about/press/2010/100624-uk10k.html
http://www.genomicsengland.co.uk/
http://autismgenome10k.org/
http://www.personalgenomes.org/
http://www.jgi.doe.gov/programs/GEBA
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Criteria for Selection of Genomes for Sequencing

The choice of which genome to sequence depends on several main factors. The selection 
criteria change over time as technological advances reduce costs and as genome-sequenc-
ing centers gain experience in this new endeavor. One set of criteria is offered by the 
NHGRI at the National Institutes of Health. These include projects to study comparative 
genome evolution, to survey human structural variation, to annotate the human genome, 
and to perform medical sequencing. The process of selecting sequencing targets includes 
the submission of proposals (“white papers,” available on the NHGRI website) as well as 
working groups that help to set priorities.

Genome Size
For a microbial genome, the size is typically several megabases (millions of base pairs), 
and a single lab can now have the resources to complete the entire project. For example, 
a small MiSeq (Illumina) benchtop sequencer can produce many billions of base pairs 
(gigabases) in a single run. For larger (typically eukaryotic) genomes, international col-
laborations are often established to share the effort.

A graphical overview of the sizes of various genomes is presented in Figure 15.7. Viral 
genomes range from 1 to an astounding 2.5 megabases (Chapter 16). In haploid genomes 
such as bacteria (Chapter 17), the genome size (or C value) is the total amount of DNA 
in the genome. Most bacterial genomes range from about 500,000 bp (M. genitalium; in 
Chapter 17 we describe a few even smaller bacterial genomes) to ∼15 Mb (currently, the 
largest sequenced bacterial genome Sorangium cellulosum is 14.8 Mb).

In diploid or polyploid organisms, the genome size is the amount of DNA in the 
unreplicated haploid genome (such as the sperm cell nucleus). Among eukaryotes, there 
is about a 75,000-fold range in genome sizes from 8 Mb for some fungi to 686 Gb (giga-
bases) for some amoebae. The so-called C value paradox is that some organisms with 
extremely large C values are morphologically simple and appear to have a modest number 
of protein-coding genes. We explored this paradox in Chapter 8.

Cost
The cost of sequencing has declined dramatically in recent years (Fig. 9.3). The total 
worldwide cost of producing a draft sequence of the human genome by a public 

The NHGRI large-scale 
genome sequencing program 
is described at  http://www.
genome.gov/10001691 (WebLink 
15.26). A list of white papers and 
sequencing targets is available 
online at  http://www.genome.
gov/10002154 (WebLink 15.27).

table 15.7 large-scale model organism sequencing projects (on-going  
and proposed).

Project URL Goal

1001 Genomes Project  http://www.1001genomes.org/ Find whole-genome 
sequence variation in 1001 
strains of Arabidopsis thaliana

Genome 10K project  https://genome10k.soe.ucsc.
edu/

Assemble sequences from 
10,000 vertebrate species

Drosophila Genetic Reference 
Panel

 http://dgrp2.gnets.ncsu.edu/ Sequence the genomes 
of 192 inbred lines from 
Drosophila

1000 Fungal Genomes 
Project

 http://1000.fungalgenomes.
org/home/

Sequence 1000 fungal 
genomes

Mouse Genomes Project  http://www.sanger.ac.uk/
resources/mouse/
genomes/

Sequence 17 mouse strains

Million Mutation Project  http://genome.sfu.ca/mmp/ C. elegans

http://www.1001genomes.org/
https://genome10k.soe.ucsc.edu/
http://dgrp2.gnets.ncsu.edu/
http://1000.fungalgenomes.org/home/
http://www.sanger.ac.uk/resources/mouse/genomes/
http://genome.sfu.ca/mmp/
http://www.genome.gov/10001691
http://www.genome.gov/10002154
http://www.genome.gov/10001691
http://www.genome.gov/10002154
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FiGure 15.7 Comparison of the sizes of various genomes. Virus genomes range from <10,000 base 
pairs to >2.5 megabases. Organellar genomes, derived from ancient bacterial endosymbionts, are reduced 
in size relative to present-day bacteria. Bacterial and archael genomes are commonly 2–5 megabases, 
with small genome sizes including 580,000 base pairs (M. genitalium, with 470 protein-coding genes) 
or less; larger bacterial genomes (e.g., cyanobacteria) exceed 13 Mb. For eukaryotic genomes, the range 
is from the 8 Mb for some fungi to 686 Gb for some amoebae. This has been called the C value paradox 
(see Chapter 8). The C value is the total amount of DNA in the genome, and the paradox is the relation 
between complexity of a eukaryote and its amount of genomic DNA.

 consortium was about US$ 300 million (or US$ 3 billion including development costs). 
In contrast, completion of a draft sequence of another primate, the rhesus macaque, 
cost US$  22 million in 2006. By 2008 the cost of sequencing a human genome by 
Sanger technology was approximately US$ 1–10 million, although Venter’s sequence 
cost ∼US$ 70 million. A stated goal of the NHGRI is to promote the development of 
technology to reduce the cost of sequencing a human genome to US$ 1000. This is 
close to the current cost of whole-exome sequencing. In 2014 Illumina introduced a 
sequencing machine (the HiSeq X Ten) that large sequencing centers can purchase and 
operate for >US$  10  million that, when operated at capacity, produces each human 
genome at a cost of under US$ 1000.

Relevance to Human Disease
All genome projects have yielded information about how an organism causes dis-
ease and/or is susceptible to disease. For example, by sequencing the chimpanzee 
genome, we may learn why these animals are not susceptible to diseases that afflict 
humans, such as malaria and AIDS. We discuss genomics aspects of human disease 
in  Chapter 21 and we consider the disease relevance of all parts of the tree of life in 
Chapters 16–19.

Read about the NHGRI Genome 
Technology Program at  http://
www.genome.gov/10000368 
(WebLink 15.28).

http://www.genome.gov/10000368
http://www.genome.gov/10000368
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Relevance to Basic Biological Questions
Each genome is unique and its analysis enables basic questions about evolution and 
genome organization to be addressed. As an example, the chicken provides a nonmam-
malian vertebrate system that is widely used in the study of development. The analysis of 
protozoan genomes can illustrate the evolutionary history of the eukaryotes.

Relevance to Agriculture
Analyses of the chicken, cow, and honeybee genome sequences are expected to benefit 
agriculture in a variety of ways, such as leading to strategies to protect these organisms from 
disease. By 2050, 90% of the world’s population will live in developing countries where 
agriculture is the most important activity. Raven et al. (2006) therefore suggest this should 
guide the choice of genome projects towards those that may benefit resource-poor farmers.

Sequencing of One Versus Many Individuals from a Species
It is important to determine the entire genomic sequence from multiple individuals of a 
species in order to define variation and to correlate the genotype with the phenotype. In 
the case of humans (Chapter 20), the International HapMap Project and 1000 Genomes 
Project involved the genotyping and sequencing of genomic DNA from individuals from 
many geographic (ethnic) backgrounds, both male and female. Many genome projects of 
eukaryotes feature deep sequencing coverage of one individual and lighter coverage of 
genomes from additional individuals.

For viruses such as human immunodeficiency virus (HIV-1 and HIV-2), the virus 
rapidly undergoes enormous numbers of DNA changes, making it necessary to sequence 
many thousands of independent isolates (Chapter 16). This is practical to achieve because 
the genome is extremely small (<10 kb). In many cases, comparison of different bacterial 
strains reveals why one is harmless to humans while another is highly pathogenic. Such 
comparisons have been performed for harmless strains of E. coli that normally inhabit 
the human gut and other strains that causes severe, sometimes fatal, disease (Chapter 17).

role of Comparative Genomics

Comparative genomics involves the comparison of genome sequences from multiple 
species, or in some cases from individuals within a species. Miller et al. (2004) have 
reviewed this discipline and described how genome comparisons have aided the annota-
tion of genomes (discussed in “Genome Analysis Projects: Annotation” below), partic-
ularly for the prediction of genes and conserved regulatory elements. They also discuss 
the impact on evolutionary analysis and function: through comparative analyses we can 
define DNA segments that are under positive or negative selection (Chapter 7).

The use of whole-genome comparisons at various evolutionary distances provides a 
powerful technique for applying many genomic analyses (Fig. 15.8, adapted from Miller 
et al., 2004; see also Alföldi and Lindblad-Toh, 2013). Phylogenetic footprinting refers 
to comparisons of genomic sequences from distantly related organisms, such as humans 
relative to fish, chicken, dog, and rodents. This is especially useful to identify conserved 
elements (under negative selection), emphasizing the relatively rare coding and noncod-
ing segments of the genome that remain shared even after hundreds of millions of years 
since species such as human and fish diverged. Phylogenetic shadowing permits com-
parisons of more closely related species such as humans and chimpanzees that diverged 
about 6 MYA. These comparisons between closely related species allow the identification 
of regions that are different between the two, such as genes under positive selection. Pop-
ulation shadowing refers to sampling multiple genomes from one species (as discussed 
above for resequencing the human genome from many individuals). We adopt a compar-
ative genomic approach throughout our exploration of the tree of life in Chapters 16–20.
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resequencing projects

In studying genomic variation between individual humans, one approach is to resequence 
the entire human genome (reviewed in Bentley, 2006). This has been accomplished for 
perhaps nearly 100,000 individuals. One goal of such an endeavor is to use genomic infor-
mation to guide medical decisions. As an alternative strategy it may be cost-effective to rese-
quence portions of the genome that are of particular interest, such as globin loci in patients 
with thalassemia. Another approach is to sequence all human exons, since this focuses on 
protein-coding regions rather than the ∼98% of the genome composed of noncoding regions 
(including introns, intergenic regions, and large expanses of repetitive DNA).

ancient DNa projects

The study of ancient DNA presents a fascinating glimpse into the history of life on Earth. 
It is now possible to isolate genomic and/or mitochondrial DNA from museum spec-
imens, fossils, and other sources of organisms that are now extinct. Svante Pääbo is a 

Fugu rubripes

Tetraodon nigroviridis

Gallus gallus

Canis familiaris

Rattus norvegicus

Mus musculus

Pan troglodytes

Homo sapiens

Phylogenetic footprinting

Phylogenetic shadowing

Population shadowing

FiGure 15.8 Comparative genomics allows the comparison of a genome (such as human) to other 
genomes of varying evolutionary distance. In phylogenetic footprinting, this includes genomes from 
organisms that diverged a relatively long time ago, such as fish (Fugu rubripes, Tetraodon nigoviridis 
that diverged from the human lineage >400 MYA), chicken (Gallus gallus), dog (Canis familiaris), rat 
and mouse (Rattus norvegicus and Mus musculus that diverged from the human lineage ∼90–100 MYA). 
In phylogenetic shadowing, more closely related genomes are compare (e.g., the chimpanzee Pan troglo-
dytes). In population shadowing, multiple genomes from one species are compared, permitting analyses 
of genotype–phenotype correlations. Redrawn from Miller et al. (2004). Reproduced with permission 
from Annual Reviews.
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pioneer in this field, in which researchers must address special challenges (Pääbo et al., 
2004; Willerslev and Cooper, 2005; Dabney et al., 2013; Shapiro and Hofreiter, 2014):

 • Ancient DNA is often degraded by nucleases. The size fragments of ancient DNA 
are therefore often small (100–500 base pairs) and the nucleotides are often dam-
aged by strand breaks (induced by microorganisms or endogenous nucleases), oxi-
dation (resulting in fragmentation of bases and/or deoxyribose groups), cross-link-
ing of nucleotides, or deamination. There are many strategies available to address 
these issues, including performing multiple independent PCR or sequencing reac-
tions from ancient DNA extracts. C to T and G to A substitutions are particularly 
prevalent, as shown for example in studies of 11 European cave bears (Hofreiter 
et al., 2001).

 • DNA isolated from ancient samples derives from unrelated organisms such as bacte-
ria that invaded the specimen after death.

 • DNA isolated from ancient specimens is easily contaminated by modern human DNA. 
Extraordinary measures must be taken to minimize laboratory or other sources of 
human contamination.

 • A large number of criteria must be applied to demonstrate authenticity of ancient 
DNA samples. These include the use of appropriate control extracts and negative 
controls; analysis of multiple extracts independently isolated from each specimen; 
quantitation of the number of amplifiable molecules; and inverse correlation between 
amplification efficiency and the length of amplification which is expected to occur 
because of the fragmented nature of ancient DNA.

Despite the considerable technical challenges, dramatic progress has been made 
in the field of ancient DNA analysis. An example is the Neandertals, hominids that 
thrived from about 400,000 years ago until 30,000 years ago, and who represent the 
closest-known relative of modern humans. Mitochondrial DNA has been extracted and 
sequenced from over one dozen Neandertal fossils. Green et al. (2006, 2008) isolated 
genomic DNA from the 38,000-year-old fossil of a Neandertal bone found in modern 
Croatia. They recovered a complete Neandertal mitochondrial genome sequence and 
dated the divergence of Neandertal and modern human lineages at 660,000 ± 140,000 
years ago.

In 2010 Pääbo and colleagues reported a draft genome sequence of a Neandertal 
genome (Green et al., 2010), followed by another (Prüfer et al., 2014). Surpringly, com-
parisons to present-day humans indicated that individuals of European and Asian (but not 
African) descent share ∼3% of their genomes with Neandertals, possibly due to interbreed-
ing between Neandertals and Eurasians who had migrated out of Africa. The Denisovans 
(named based on a cave in southern Siberia) are an extinct relative of the Neandertals 
who also admixed with the lineage, leading to present-day humans (Meyer et al., 2012). 
Between 4% and 6% of the genomic DNA of present-day Melanesians has a Denisovan 
origin (Reich et al., 2010).

Other ancient DNA projects include the sequencing of mitochondrial genomes from 
the moa (flightless birds from New Zealand; Cooper et al., 2001) and woolly mammoth 
(Krause et al., 2006), and from hair shafts of the Siberian mammoth Mammuthus primi-
genius (Gilbert et al., 2007). For all these projects, the availability of a closely related 
extant genome greatly facilitates the assembly and annotation efforts for the extinct 
genome (Fig. 15.9). A list of DNA sequences available from extinct organisms is available 
at the NCBI Taxonomy website. While ancient DNA can be extracted, ancient RNA and 
proteins have not been extracted. As a notable exception, Schweitzer et al. (2007) found 
evidence of collagen in the extracellular matrix of bone from a Tyrannosaurus rex fossil 
based on immunohistochemistry (with antisera developed against avian collagen) and 
mass spectrometry.

Tracks at UCSC are available 
for the Neandertal genome (

 http://genome.ucsc.edu/
Neandertal, WebLink 15.29) and 
for a Denisovan genome.

To see DNA entries from extinct 
organisms, visit the Taxonomy 
home at  http://www.ncbi.
nlm.nih.gov/taxonomy (WebLink 
15.30) then follow the link to 
extinct organisms. Currently 
(October 2014) there are DNA 
(or protein) data available 
from 67 mammals, 47 birds, 
assorted plants, lizards, insects, 
amphibian, and two dinosaurs, 
Brachylophosaurus canadensis 
and Tyrannosaurus rex.

http://genome.ucsc.edu/Neandertal
http://genome.ucsc.edu/Neandertal
http://www.ncbi.nlm.nih.gov/taxonomy
http://www.ncbi.nlm.nih.gov/taxonomy
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Metagenomics projects

The great majority of organisms on the planet are viruses and bacteria. Of these various 
organisms, most (probably >99%) are not cultivatable, making them extremely difficult 
to study. Metagenomics is the functional and sequence-based analysis of microorganisms 
that occur in an environmental sample (Riesenfeld et al., 2004; Hunter et al., 2012). 
Genomic sequencing efforts have been directed to a variety of environmental samples. 
We discuss these for viruses in Chapter 16 and for bacteria and archaea in Chapter 17, 
including the microbiome of organisms inhabiting the human body (Human Microbiome 
Project Consortium, 2012a, b).

Metagenomics projects may be grouped into two broad areas: environmental (also 
called ecological) and organismal. Environmental projects address the genomic commu-
nity in an ecological site such as a hot spring, an ocean, sludge, or soil. As an example of 
an environmental project, Robert Edwards and colleagues (2006) obtained sequence data 
from two neighboring sites of an iron-rich mine in Minnesota. The samples were char-
acterized by unexpectedly distinct sets of bacterial microorganisms, based principally on 
the analysis of 16S ribosomal DNA sequences.

Organismal metagenomics projects include such sites as human or mouse gut, feces, 
or lung. For example, it is estimated that the human intestinal tract contains on the order 
of 1013 to 1014 microorganisms (Gill et al., 2006).

One primary source of information on metagenomics projects is NCBI, including 
BioProject (Barrett et al., 2012). BioProject centralizes information about datasets, orga-
nizing and classifying project data submitted to NCBI, EBI, and DDBJ databases. The 
related BioSample database stores descriptions of biological materials including a range 
of types from cell lines to biopsies to environmental isolates.

Another primary source of information on metagenomcis is the Genomes On Line 
Database (GOLD; Liolios et al., 2008), which we explore in Chapter 17.

To browse metagenomics projects 
at NCBI visit BioProject at  http://
www.ncbi.nlm.nih.gov/bioproject/ 
(WebLink 15.31), browse by project 
attributes, and select metagenome 
for the project data type. There are 
currently ∼900 projects, typically 
linking to GOLD.

The GOLD database is available 
at  http://www.genomesonline.
org (WebLink 15.32), listing ∼500 
studies and >4600 samples.

MouseBushbaby

Extinct species Closest genome
Divergence

(MYA)
A. Haast’s eagle Little eagle  1.5
B. Mammoth  Asian elephant 5
C. Wooly rhino            Sumatran rhino 20
D. Steller’s sea cow Dugong  22
E. Great auk  Razorbill  25
F. Mastodon  Elephants  27
G. Passenger pigeon  Band-tailed pigeon 35
H. Ground  sloths Living sloths  40
I. Thylacine  Tasmanian devil 40
J. Dodo  Nicobar pigeon 43
K. Moa   Tinamou  60
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FiGure  15.9 Relationship between evolutionary distance and the usefulness of extant taxons as 
references genomes for genome assembly from extinct organisms. Eleven extinct genomes are depicted, 
each of which could be sequenced (based on sample availability). The closest extant genome for each 
extinct species is given, as well as the divergence time. Divergence times (MYA) are plotted on the x axis 
and read mapping is on the y axis. As the evolutionary distance decreases, the number of mappable reads 
to the reference genome increases (blue bars). Redrawn from Shapiro and Hofreiter (2014). Used with 
permission.

http://www.ncbi.nlm.nih.gov/bioproject/
http://www.ncbi.nlm.nih.gov/bioproject/
http://www.genomesonline.org
http://www.genomesonline.org
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Genome AnAlysIs Projects: sequencInG
Genome-Sequencing Centers

Large-scale sequencing projects are conducted at centers around the world. Twenty 
sequencing centers contributed to the production of a draft version of the human genome 
in 2001 (see Chapter 20). These centers were also supported by the NIH and the EBI. All 
of these centers have also been involved in sequencing the genomes of other organisms. 
Currently, the five largest genome sequencing centers account for over half the sequenc-
ing that is being performed (Fig. 15.10).

trace archive: repository for Genome Sequence Data

Raw sequence data for the genome-sequencing projects of several organisms have been 
deposited in the Trace Archive located at NCBI. All entries in this archive are given a 
Trace Identifier (Ti) number. The archive can be searched by several criteria (such as 
query by Ti or sequencing center or by BLAST).

Search the mouse Trace Archive (human WGS division) with our familiar human 
beta globin mRNA sequence (NM_000518.4) and the output contains several Ti 
matches (as shown in Fig. 9.2). By clicking on the link to a Ti record, the sequence data 
can be obtained in the FASTA format or as a trace of the dye termination reaction used 
to sequence the DNA.

We can also search the Trace Archive on the command line using a Perl script. 
Navigate to your home directory and use mkdir trace to make a new directory. There, 
create a text document using an editor such as vim, emacs, or nano. Include the 
following script.

A list of genome-sequencing 
centers is offered at the NCBI 
(  http://www.ncbi.nlm.nih.
gov/genomes/static/lcenters.
html, WebLink 15.33). URLs 
of the largest centers are  

http://genome.jgi.doe.gov/ (JGI, 
WebLink 15.34),  http://www.
jcvi.org/ (J. Craig Venter Institute, 
WebLink 15.35), and  http://
www.broad.mit.edu/ (the Broad 
Institute, WebLink 15.36).

The Trace Archive is at  http://
www.ncbi.nlm.nih.gov/Traces/ 
(WebLink 15.37). A specialized 
Trace Archive BLAST server is 
available at that site or from the 
NCBI BLAST home page.

An example of the accession for 
a Trace Archive record from an 
HBB search is gnl|ti|981051509.

The query Perl script is available 
from  http://www.ncbi.nlm.nih.
gov/Traces/trace.cgi?view=faq 
(WebLink 15.38), and is also 
provided at Web Document 15.4.

World
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FiGure  15.10 Major genome sequencing centers. JGI: Joint Genome Institute; JCVI: J. Craig 
Venter Institute; Broad: Broad Institute; University of Maryland-IGS: Institute for Genome Sciences; 
WashU: Washington University in St Louis; Sanger: Wellcome Trust Sanger Institute; BCM-HGSC: 
Baylor College of Medicine, Human Genome Sequencing Center; BGI: Beijing Genomics Institute. 
Data are from >11,000 genomic and metagenomic projects in the GOLD database, 2011. Redrawn from 
Pagani et al. (2012). Reproduced with permission from Oxford University Press.

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
use HTTP::Request::Common 'POST';

http://www.ncbi.nlm.nih.gov/genomes/static/lcenters.html
http://www.ncbi.nlm.nih.gov/genomes/static/lcenters.html
http://www.ncbi.nlm.nih.gov/genomes/static/lcenters.html
http://genome.jgi.doe.gov/
http://www.jcvi.org/
http://www.broad.mit.edu/
http://www.broad.mit.edu/
http://www.ncbi.nlm.nih.gov/Traces/
http://www.ncbi.nlm.nih.gov/Traces/
http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?view=faq
http://www.jcvi.org/
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$ENV{'LANG'}='C';
$ENV{'LC_ALL'}='C';

my $query = join ' ', @ARGV;
$query = 'help' if $query =~ /^(\-h|\-\-help|\-)$/;
$query = join('', <STDIN>) if ! $query;

my $req = POST 'http://trace.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=raw', 
[query=>$query];
my $res = LWP::UserAgent->new->request($req, sub { print $_[0] });
die "Couldn't connect to TRACE server\n" if ! $res->is_success;

Use ls -lh to list the file(s) in your directory, with h making them “human read-
able.” The permissions include one character that is d for directory or otherwise - as in in 
this case; rwx for read/write/executable in three groups describe permissions first for the 
user, then for group members, and then for others.

$ ls -lh
total 8
-rw-r–r– 1 pevsner 1357801299 642B Apr 5 08:27 query_tracedb

This pattern shows that you as the user can read or write to this file, but you cannot exe-
cute it. You can then make this script executable using the chmod utility:

$ chmod +x query_tracedb
$ ls -lh
total 8
-rwxr-xr-x 1 pevsner 1357801299 642B Apr 5 08:27 query_tracedb

Note how the permissions have changed and the script is executable. To see the help 
document, enter:

$ ./query_tracedb usage

You can also copy the executable Perl script to your ~/bin directory so you can 
invoke the script from any directory (you will not need the ./ prefix):

$ cp query_tracedb ~/bin/

How many Trace Archive records are there for several species?

$ query_tracedb "query count species_code='homo sapiens'"
 273924157

There are therefore ∼274 million Trace Archive records for human; similar searches show 
∼208 million for the mouse Mus musculus, 52 million for Rattus norvegicus, 47 for the 
chimpanzee Pan troglodytes, and 16 million for the yellow fever mosquito Aedes aegypti.

You can also use this script to retrieve data. For example, we can use the Trace 
Archive identifier to retrieve a clone overlying beta globin in the FASTA format (I show 
the first few of 783 bases in this record). Other retrieval options allow you to retrieve 
quality scores, mate pair data, xml information, and more.

$ query_tracedb "retrieve fasta 981051509"
>gnl|ti|981051509 name:17000177953277
TTTCGAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCA
AGGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGG

In an innovative approach to using these raw data, Salzberg et al. (2005) studied the 
genomic DNA records from Drosophila ananassae, D. simulans, and D. mojavensis and 

http://trace.ncbi.nlm.nih.gov/Traces/trace.cgi?cmd=raw
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searched for matches to bacterial species that might colonize these fruit flies. They iden-
tified three new species of the bacterial endosymbiont Wolbachia pipientis and were able 
to assemble sequences that covered substantial portions of the genomes.

htGS archive: repository for unfinished Genome Sequence Data

We have seen that DNA sequence data are deposited in databases such as the Trace Archive 
at NCBI. At NCBI unfinished, raw genomic DNA data are made available through the 
high-throughput genomic (HTG) sequence division. Accession numbers are assigned to 
each entry. The HTG database contains sequence data in four phases.

Phase 0 data are typically sequences derived from a single cosmid or bacterial arti-
ficial chromosome (BAC). They are likely to have sequencing errors and gaps of inde-
terminate size. However, the data may still have tremendous usefulness to the scientific 
community even in this form. For example, if you are performing BLAST searches and 
are looking for novel homologs to your query, the HTG division may contain useful 
information.

Phase 1 data may consist of sequencing reads from contigs derived from a larger 
clone (e.g., a BAC clone) in which the order of the contigs is unknown and their orienta-
tion (top strand or bottom strand) is also unknown. The sequence is defined as unfinished, 
and still contains gaps.

In the finished state (phase 2), the contigs are ordered and oriented properly and the 
error rate must be 10−4 or less. Finally, phase 3 data are transferred from HTG to a pri-
mary division. These sequences are finished and have no gaps.

Genome AnAlysIs Projects: Assembly
It is remarkable to reflect on the size of the human genome – each chromosome is from 
∼50 Mb to ∼250 Mb in length – and the fact that next-generation sequencing strategies 
used to sequence human and other genomes often produce reads that are only a few 
hundred nucleotides in length. Assembly is the process by which the reads are stitched 
together to build a comprehensive model of the sequence of a chromosome.

We introduced genome assembly strategies in Chapter  9 with respect to DNA 
sequence analysis, including the overlap/layout/consensus approach and de Bruijn 
graphs (Flicek and Birney, 2009). We next describe general strategies for sequencing 
and assembly.

Four approaches to Genome assembly

There are four main approaches to genome assembly outlined at NCBI. table 5.8 intro-
duces some of the terminology associated with genome sequencing and assembly.

 1. Hierarchical assembly (or clone-based assembly) relies on mapping large-insert 
clones such as bacterial artificial chromosomes (BACs) or fosmids. These clones are 
created by digesting genomic DNA then subcloning fragments into vectors, creating 
libraries with large inserts (e.g., 100–500 kb). Alternatively, smaller cosmid libraries 
(with insert sizes of about 50 kb) or plasmid libraries (2–10 kb inserts) are generated. 
This hierarchical strategy employs clones that are mapped to known chromosomal 
locations. Sequence assembly is therefore focused on a small region of the genome 
of known chromosomal location. Each large clone is fragmented, sequenced, and 
assembled into overlapping consensus sequences contigs. As these contigs become 
ordered and oriented they are further built into scaffolds. This approach has been 
taken for many large, eukaryotic genomes, including the public consortium’s version 
of the Human Genome Project (International Human Genome Sequence  Consortium, 

Visit the HTG Sequences division 
of NCBI at  http://www.ncbi.
nlm.nih.gov/genbank/htgs 
(WebLink 15.39).

For examples of phases 1, 2, 
and 3 sequences in GenBank, 
see  http://www.ncbi.nlm.
nih.gov/HTGS/examples.html 
(WebLink 15.40).

NCBI offers information on 
genome assembly at http://
www.ncbi.nlm.nih.gov/assembly/
basics/ (WebLink 15.41). We 
follow that document in this 
section.

http://www.ncbi.nlm.nih.gov/genbank/htgs
http://www.ncbi.nlm.nih.gov/HTGS/examples.html
http://www.ncbi.nlm.nih.gov/assembly/basics/
http://www.ncbi.nlm.nih.gov/assembly/basics/
http://www.ncbi.nlm.nih.gov/genbank/htgs
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2001). Figure 15.11 shows a figure from that paper describing the process. Clone 
sequences may be unfinished, and deposited in HTGS until finished.

 2. Whole-genome assembly (WGA) is the most commonly used strategy today. Notably 
clones are not mapped; instead, genomic DNA is fragmented, packaged into librar-
ies, sequenced, and assembled. Frederick Sanger first applied this approach in the 
sequencing of bacteriophage φX174: Randomly selected fragments of genomic DNA 
were isolated, sequenced, and then assembled to derive a complete sequence. The 

table 15.8 terminology used in genome-sequencing projects. adapted from 
http://www.ncbi.nlm.nih.gov/genome/guide/build.html,  http://www.ncbi.nlm.nih.
gov/projects/genome/glossary.shtml, and  http://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/info/definitions.shtml.

Term Definition

Alternate locus A sequence that provides an alternate representation of a locus found in 
a largely haploid assembly. These sequences don’t represent a complete 
chromosome sequence, although there is no hard limit on the size of the 
alternate locus; currently these are less than 1 Mb.

Assembly A set of chromosomes, unlocalized and unplaced (random) sequences 
and alternate loci used to represent an organism’s genome. Most current 
assemblies are a haploid representation of an organism’s genome, 
although some loci may be represented more than once (see Alternate 
locus). This representation may be obtained from a single individual (e.g., 
chimp or mouse) or multiple individuals (e.g., human reference assembly). 
Except in the case of organisms which have been bred to homozygosity, 
the haploid assembly does not typically represent a single haplotype, but 
rather a mixture of haplotypes. As sequencing technology evolves, it is 
anticipated that diploid sequences representing an individual’s genome 
will become available.

BAC end sequence The ends of a bacterial artificial chromosome (BAC) have been sequenced 
and submitted to GenBank; the internal BAC sequence may not be 
available. When both end sequences from the same BAC are available, this 
information can be used to order contigs into scaffolds.

Contig A set of overlapping clones or sequences from which a sequence can 
be obtained. NCBI contig records represent contiguous sequences 
constructed from many clone sequences. These records may include draft 
and finished sequences and may contain sequence gaps (within a clone) or 
gaps between clones when the gap is spanned by another clone which is 
not sequenced.

Draft sequence At least three- to four-fold of the estimated clone insert is covered in Phred 
Q20 bases in the shotgun sequencing stage, as defined for the human 
genome sequencing project. Note that the exact definition of “draft” 
may be different for other genome projects. Clone sequence may contain 
several pieces of the sequence separated by gaps. The true order and 
orientation of these pieces may not be known.

Finished sequence The clone insert is contiguously sequenced with a high-quality standard of 
error rate of 0.01%. There are usually no gaps in the sequence.

Fragment A contiguous stretch of a sequence within a clone sequence that does not 
contain a gap, vector, or other contaminating sequence.

Meld When two or more fragments overlap in the entire alignable region, these 
sequences are merged together to make a single longer sequence.

Order and orientation Sequence overlap information is used to order and orient (ONO) 
fragments within a large clone sequence.

Scaffold Ordered and oriented set of contigs placed on the chromosome. A 
scaffold will contain gaps, but there is typically some evidence to support 
the contig order, orientation, and gap size estimates.

http://www.ncbi.nlm.nih.gov/genome/guide/build.html
http://www.ncbi.nlm.nih.gov/projects/genome/glossary.shtml
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/info/definitions.shtml
http://www.ncbi.nlm.nih.gov/projects/genome/glossary.shtml
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/info/definitions.shtml
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application of this approach to an entire organismal genome was pioneered by Ham-
ilton O. Smith of Johns Hopkins and J. Craig Venter of the J. Craig Venter Institute 
who used this strategy to sequence H. influenzae (Fleischmann et al., 1995).

   The whole-genome assembly method was initially used for most small genomes 
(i.e., viruses, bacteria and archaea, and eukaryotic genomes that lack large portions 
of repetitive DNA). Genomic DNA is isolated from an organism and mechanically 
sheared (or digested with restriction enzymes). The fragments are subcloned into 
small-insert libraries (e.g., 2 kb fragments) and large-insert libraries (e.g., 10–20 kb). 
Clones are sequenced from both ends (i.e., both “top” strand and “bottom” strand), 
and the sequences are assembled. A typical sequencing reaction generates about 
500–800 bp of sequence data. These small amounts of sequence are assembled into 
contiguous transcripts (“contigs”) and then into a map of the complete genome.

   The WGA approach requires the computationally difficult task of fitting contigs 
together, regardless of which chromosomal region they are derived from. It was 
thought by some that this approach could not be practically applied to large eukary-
otic genomes. However, it was successfully applied to the 120 Mb D. melanogaster 
genome (Adams et al., 2000) in combination with a hierarchical approach and to the 
human genome (Weber and Myers, 1997; Venter et al., 2001). The WGS data are pro-
cessed at GenBank but are not distributed with GenBank releases. Instead, beginning 
with GenBank release 129 in 2002, WGS entries have been available from GenBank 
on a per-project basis (and are searchable by BLAST). Release 206 (February 2015) 
contains ∼870 billion base pairs (8.7 × 1011 bp), surpassing the ∼187 billion base 
pairs in the corresponding traditional GenBank release (Fig. 2.3).

Whole-genome shotgun (WGS) 
contigs are deposited in the 
WGS division of GenBank (  

http://www.ncbi.nlm.nih.gov/
genbank/wgs/, WebLink 15.42). 
Regions of heterochromatin 
contain large segments of highly 
repetitive DNA (Chapter 8) 
and, in some cases, cannot 
be effectively sequenced 
using WGS or hierarchical 
approaches. Skaletsky et al. 
(2003) applied an alternative 
technique of iterative mapping 
and sequencing to determine the 
extremely repetitive sequence of 
the human Y chromosome.
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FiGure 15.11 Schematic of the hierarchical shotgun sequencing strategy. Genomic DNA is isolated 
from an organism of interest, fragmented, and inserted into a BAC library. Each BAC clone is 100–500 kb. 
BACs are ordered (mapped). Individual BAC clones are fragmented into smaller cDNA clones and 
sequenced. Individual sequencing reactions are typically 300–700 nucleotides. These “shotgun sequences” 
are assembled. Adapted from IHGSC (2001, p. 863). Reproduced with permission from Macmillan Pub-
lishers.

http://www.ncbi.nlm.nih.gov/genbank/wgs/
http://www.ncbi.nlm.nih.gov/genbank/wgs/
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How many entries are there? We can use the word count utility wc, and that shows 
us that each file has ∼20 million rows; a FASTQ file has four rows, however. If we use 
grep to extract the rows that include the symbol @SRR (found in every FASTQ record 
for this dataset), we see that there are ~5.1 million entries. The -c modifier produces a 
count of the entries in each file. Note that using grep -c to search for and count the 
pattern @ (rather than the pattern @SRR) gives us >6.8 million entries. That is the number 
of FASTQ entries plus all the instances of @ as a symbol for a base quality score; it is not 
the expression we want for counting entries.

 3. Hybrid methods combine whole-genome and hierarchical assembly. For example, 
sequencing of the cattle genome used a combination of BAC and whole-genome shot-
gun sequences (Bovine Genome Sequencing and Analysis Consortium et al., 2009).

 4. Comparative assembly uses a finished reference genome from a relatively closely 
related species to guide assembly. Here assemblers use an alignment-consensus algo-
rithm rather than overlap-layout-consensus (see Chapter 9).

Genome assembly: From FaStQ to Contigs with Velvet

The assembly process involves the collection of individual sequences, the closing of gaps, 
and the lowering of the error rate. This process can be performed using a variety of software 
packages, such as Phrap (and its graphical viewer, Consed), Assembler, and Sequencher. 
For either the whole-genome sequencing or the hierarchical approach, after the shotgun 
phase is complete the next step is to assemble contigs. This is accomplished in a process 
called finishing. The goal of finishing is to identify gaps in the tile path and to close them. 
Ideally, this process results in a single contiguous DNA sequence that spans all the contigs.

To illustrate genome assembly we use Velvet software and analyze sequence data 
from a pathogenic E. coli strain. We follow an excellent tutorial by Edwards and Holt 
(2013). First let’s obtain E. coli sequences for assembly. We select E. coli O14:H4 strain 
TY-2482 sequence reads, obtained from the European Nucleotide Archive (ENA). Enter a 
query for SRR292770 and save the FASTQ files to your local computer. The ENA entry 
provides additional information such as the sequencing machine (Illumina HiSeq 2000) 
and experimental details.

While you can proceed in Unix, Mac, or PC operating systems, we will proceed on a 
Mac using the terminal. We navigate to our home directory, and create a new folder called 
assemblytutorial.

Phred and Phrap are available 
at  http://www.phrap.org/ 
(WebLink 15.43) and operate on 
UNIX-based systems. Many other 
assembly software programs 
are available, including Arachne 
from the Broad Institute (  http://
www.broadinstitute.org/science/
programs/genome-biology/
computational-rd/computational-
research-and-development) 
(WebLink 15.44).

The ENA website is  http://www.
ebi.ac.uk/ena/ (WebLink 15.45) 
The FASTQ files are also available 
as Web Documents 15.5 and 15.6 
(250 MB each, corresponding to 
forward and reverse reads).

$ cd ~ # This navigates to the home directory
$ mkdir assemblytutorial # This creates a new directory
# Next, the mv utility moves our downloaded FASTQ files into the newly
# created directory
$ mv ~/Downloads/SRR292770_1.fastq ~/assemblytutorial/
$ mv ~/Downloads/SRR292770_2.fastq ~/assemblytutorial/
$ head -4 SRR292770_1.fastq # We display the first four rows
@SRR292770.1 FCB067LABXX:4:1101:1155:2103/1
GGAGTCATCATACGGCGCTGATCGAGACCGCAACGACTTTAAGGTCGCA
+
FFFFCFGDCGGGFCGBGFFFAEGFG;B7A@GEFBFGGFFGFGEFCFFFB

$ wc -l SRR*
 20408164 SRR292770_1.fastq # Forward reads
 20408164 SRR292770_2.fastq # Reverse reads
 40816328 total
$ grep -c '@SRR' SRR292770_1.fastq
5102041
$ grep -c '@' SRR292770_1.fastq
6886214

mailto:@SRR292770.1
http://www.phrap.org/
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/computational-research-and-development
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/computational-research-and-development
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/computational-research-and-development
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/computational-research-and-development
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/computational-research-and-development
http://www.broadinstitute.org/science/programs/genome-biology/computational-rd/computational-research-and-development
http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
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The output of velveth includes a Roadmap file and a Sequences file which are required 
for velvetg, a program that creates and manipulates a de Bruijn graph (Chapter 9).

Next we can examine the quality of the reads with FastQC. We introduced FastQC 
in Chapter 9 as a tool that can be used in Galaxy or on the command line to assess the 
quality of FASTQ files. You can also download FastQC for the Linux, Windows, or Mac 
platforms. We can open FastQC, select a FASTQ file, and obtain quality reports.

The next step is to assemble reads into contigs. We do this using the Velvet pro-
gram (Zerbino and Birney, 2008; Zerbino, 2010), and we continue to follow the 
Edwards and Holt (2013) tutorial in an abbreviated form. We download Velvet, move 
its directory to within our assemblytutorial directory, compile it with the 
make command, and add it to the ~/bin directory so that it can be deployed from 
any directory location.

We first use velveth to specify that we want to create a hash table of the reads 
from the paired FASTQ files, using a k-mer length of 29. The results are stored in a folder 
called out_data_29.

Visit the FastQC home page at 
the Babraham Institute,  http://
www.bioinformatics.babraham.
ac.uk/projects/download.html 
(WebLink 15.46). FastQC is a java 
application that requires Jave 
Runtime Environment (JRE). 
To determine whether your 
computer has JRE installed, at 
the command prompt type $ 
java –version.

The Velvet homepage is  

https://www.ebi.ac.uk/~zerbino/
velvet/ (WebLink 15.47), linking to 
a GitHub repository for software 
downloads.

$ velveth out_data_29 29 -fastq -shortPaired -separate SRR292770_1.fastq 
SRR292770_2.fastq

$ velvetg out_data_29 -clean yes -exp_cov 21 -cov_cutoff 2.81 -min_contig_
lgth 200

Here -exp_cov is the expected coverage of unique regions; this can be useful to 
exclude highly covered reads (e.g., abundant mitochondrial sequences) from an assem-
bly. —clean refers to removing intermediary files that are not needed. —min_con-
tig_lgth is the minimum contig length exported to contigs.fa; the default is the 
hash length × 2, but here it is set to 200 nucleotides.

The main output of Velvet is a set of contigs that have been assembled. Let’s look at 
the first five lines of the contigs.fa FASTA file; it contains sequences of the contigs 
that are longer than 2k (where k is the word length used in velveth). There may be N 
residues for gaps between scaffolded contigs, although in this example there are no Ns.

$ head -5 contigs.fa
>NODE_1_length_17146_cov_33.514290
ATAAGACGCGCAAGCGTCGCATCAGGCAACACCACGTATGGATAGAGATCGTGAGTACAT
TAGAACAAACAATAGGCAATACGCCTCTGGTGAAGTTGCAGCGAATGGGGCCGGATAACG
GCAGTGAAGTGTGGTTAAAACTGGAAGGCAATAACCCGGCAGGTTCGGTGAAAGATCGTG
CGGCACTTTCGATGATCGTCGAGGCGGAAAAGCGCGGGGAAATTAAACCGGGTGATGTCT

velvetg also creates a stats.txt file describing the nodes of the assembly.

$ head -5 stats.txt
ID lgth out in long_cov short1_cov short1_Ocov short2_cov short2_Ocov 
long_nb short1_nb short2_nb
1 17146 1 1 0.000000 33.514289 33.507640 0.000000 0.000000 0 15303 0
2 31995 1 1 0.000000 33.554680 33.535396 0.000000 0.000000 0 28629 0
3 7935 1 1 0.000000 32.280403 32.253560 0.000000 0.000000 0 7050 0
4 72906 1 1 0.000000 32.900516 32.889899 0.000000 0.000000 0 64526 0

Comparative Genome assembly: Mapping Contigs to Known Genomes

Genomes can be assembled de novo (“anew,” without referring to other completed 
genomes) or by mapping reads onto a reference genome. We continue to use examples 
from the tutorial by Edwards and Holt (2013), and now use Mauve software (Darling  
et al., 2010, 2011) to map contigs to known genomes.

http://www.bioinformatics.babraham.ac.uk/projects/download.html
http://www.bioinformatics.babraham.ac.uk/projects/download.html
https://www.ebi.ac.uk/~zerbino/velvet/
https://www.ebi.ac.uk/~zerbino/velvet/
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Mauve computes and visualizes multiple genome alignments. It searches for con-
served segments between two genomes that are called “locally collinear blocks” (LCBs). 
Its strategy is anchored alignment (Chapter 6) using inexact, ungapped matches with the 
seed-and-extend method of PatternHunter introduced by Ma et al. (Fig. 5.13). Progressive 
Mauve further uses three different seed patterns. It then performs progressive alignment.

We first demonstrate the alignment of two complete genomes by Mauve. We select E. 
coli strain K12 substr. MG1655 (a standard reference strain; Fig. 15.12a, upper genome) and 
a related Shigella flexneri genome (Fig. 15.12a, lower genome). Locally collinear blocks are 
indicated by colored blocks, and inverted regions are indicated below the genome’s center 
line (Fig. 15.12a, magenta stars). There are 42 LCBs in this example, and by adjusting the 
LCB weight the sensitivity can be adjusted (e.g., by increasing the weight the number of 
LCB declines, reducing the number of true positive as well as spurious rearrangements).

Next we use FTP to download several thousand E. coli contigs from NCBI. These 
sequences were obtained by sequencing a stool sample from a patient with hemolytic 
uremic syndrome during an E. coli outbreak in Germany in 2011. We align the unplaced 
whole-genome sequencing contigs to the genome of another sequenced E. coli strain. 
When we open Mauve, we use the option under “Tools” to “Move Contigs.” Select an 
output folder, select a reference genome, then select your contigs in the FASTA for-
mat. Mauve produces a graphical output (Fig. 15.12b) and a set of output files including a 
FASTA formatted file with the ordered and oriented contigs.

Finishing: When has a Genome been Fully Sequenced?

The redundancy of genomic coverage is a function of the number of reads, the average 
read length, and the length of the region (e.g., genome) being sequenced. We described 
this in Chapter 9 (see Equations (9.4) and (9.5); table 9.5).

Genome assembly: Measures of Success

There are several main approaches to quantifying the success of an assembly.

 • The coverage estimate is relatively high. The need for coverage varies based on 
the sequencing technology (e.g., Sanger technology generating 750 base pair reads 
requires less coverage than a next-generation sequencing technology producing sev-
eral hundred base pair reads).

 • The N50 value is the length of contigs which contain half the bases in a given assem-
bly. An assembly is more complete with longer N50 values. If an average human gene 
is ~50 kb then a contig N50 of that size will have half its contigs spanning the length 
of a gene.

 • The scaffold N50 is also a measure of assembly completeness.
 • As the assembly becomes more complete, the absolute number of contigs and scaf-
folds becomes smaller.

 • The assembly is subjected to some form of annotation (discussed in “Genome Anal-
ysis Projects: Annotation” below), typically including a catalog of protein-coding 
gene models. The extent to which an assembly spans ESTs and cDNAs is a measure 
of completeness.

 • When appropriate, the extent to which gene models overlap a core set of vertebrate 
genes is measured (see “CEGMA” below).

Genome assembly: Challenges

Errors in assembly are important because we rely on each assembly for all aspects of the 
genomic landscape, including the locations of genes. We can illustrate some of the chal-
lenges in genome assembly using the example of the cattle genome.

We use files suggested by 
Edwards and Holt (2013). The 
reference genome is E. coli 
Ec55989 obtained from the NCBI 
Genomes FTP site. The unplaced 
contigs are from E. coli O104:H4, 
downloaded from  http://
www.ncbi.nlm.nih.gov/Traces/
wgs/?val=AFVS01 (WebLink 
15.51).

You can dowload the E. coli 
sequence in the FASTA format 
from  ftp://ftp.ncbi.nlm.nih.
gov/genomes/ (WebLink 15.49). 
Browse to “Bacteria” then 
select the genomes of interest. 
We'll choose E. coli strain K12 
substr. MG1655 (NC_000913.
fna to obtain it in the FASTA 
format) and Shigella flexneri 2a 
301 (NC_004337.fna; selected 
as an example from the Mauve 
user's guide). See  ftp://ftp.ncbi.
nlm.nih.gov/genomes/Bacteria/
Escherichia_coli_55989_uid59383/
NC_011748.fna (WebLink 15.50).

The Mauve homepage is  http://
gel.ahabs.wisc.edu/mauve/ 
(WebLink 15.48). It is available 
for PC, Mac, or Unix platforms. 
You may need to also install Java 
Runtime Environment (JRE) for 
Mauve to function.

http://gel.ahabs.wisc.edu/mauve/
http://gel.ahabs.wisc.edu/mauve/
ftp://ftp.ncbi.nlm.nih.gov/genomes/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_55989_uid59383/NC_011748.fna
http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=AFVS01
http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=AFVS01
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_55989_uid59383/NC_011748.fna
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The Bovine Genome Sequencing and Annotation Consortium et al. (2009) reported 
the genome sequence of taurine cattle. The cattle lineage diverged from the human lin-
eage ~97  MYA and emerged ~60  MYA as the suborder Ruminantia. Humans began 
domesticating cattle 8000 to 10,000 years ago. The genome sequencing involved bacte-
rial artificial chromosomes (BACs) and whole-genome shotgun (WGS) sequencing. The 

(a) Comparison of E. coli strain K12 substr. MG1655 (upper) and Shigella flexneri (lower)

(b) Alignment of E. coli Ec55989 (upper) and a set of E. coli O104:H4 contigs (lower)

FiGure  15.12 Genome comparisons with Mauve software. (a) Two (or more) genomes can be 
aligned by Mauve, enabling visualization of conserved syntenic loci (colored blocks) and inversions 
(blocks near magenta stars). E. coli strain K12 substr. MG1655 (upper portion) is aligned to Shigella 
flexneri (lower portion). (b) When genome sequences are assembled into contigs, these contigs can then 
be mapped to a completed reference genome. Here unordered contigs from E. coli O104:H4 are mapped 
to a completed E. coli Ec55989 genome. 

Source: Based on software described by Darling et al. (2010).
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contig N50 was ~49 kb and the scaffold N50 was 1.9 Mb, and this consortium provided 
detailed genome annotation.

That same year Zimin et al. (2009) reported significant errors in the consortium 
assembly (called BCM4). Ten of the 30 cattle chromosomes had large (>500 kb) inver-
sions, deletions, or translocations. Zimin et al. obtained raw sequence reads from the 
Trace Archive and produced a different assembly (UMD2) that was substantially more 
accurate and complete. For example, UMD2 placed 136 Mb of sequence on the X chro-
mosome, while the BCM4 assembly placed only 83 Mb. The differences included the 
strategies employed by the assembly software and the helpful reliance by UMD2 on con-
served synteny with the human genome assembly. Florea et al. (2011) subsequently pro-
duced an even more accurate assembly (UMD3) having fewer contigs, larger contig N50 
values, fewer scaffolds, larger scaffold N50s, and fewer gaps.

The effects of improved assembly can be seen in better annotation of protein-coding 
genes and SNPs. A conclusion from these studies is that assembly remains challeng-
ing and should not be viewed as producing a static, final determination of the genome 
sequence. Instead it is a process that requires re-evaluation and improvement, whether by 
incrementally improving an existing assembly or by creating a de novo assembly.

As another example, Zhang et al. (2012) assessed a published rhesus macaque draft 
genome and reported that half the gene models are missing, incomplete, or incorrect. 
They suggest that this magnitude of error is common to any draft vertebrate genome that 
is subject to an automated gene annotation pipeline.

Compounding these deep concerns, most papers reporting draft genome sequences 
do not include detailed methods for assembly and annotation. This makes the challenge 
of improving these areas even greater.

Genome AnAlysIs Projects: AnnotAtIon
When a genome is sequenced, we learn its size and we obtain the complete (or nearly 
complete) nucleotide sequence as associated with particular chromosomes. Genome 
annotation is the process by which the landscape of genomic DNA is surveyed, and key 
features of the DNA are described (Yandell and Ence, 2012). These basic features of 
genomic DNA include the following:

 • The number of chromosomes to which the genomic DNA is mapped is known for 
many species. In some cases the chromosome number is not yet known, and within 
some species the chromosome number and/or length varies greatly between isolates.

 • The overall GC content or other nucleotide composition has been assessed since the 
pioneering work of Noboru Sueoka in the 1960s. Many eukaryotic genomes are char-
acterized by a GC content of about 35–45%, while bacteria display a far wider range 
(Fig. 15.13).

 • The repetitive elements of a genome can constitute well over 50% of the DNA. These 
can be identified and classified with software such as RepeatMasker, incorporated 
into many analysis pipelines and software tools.

 • The identification of genes is a major concern of annotation efforts.

A first approach to identifying protein-coding genes is by the alignment of expressed 
sequence tags (ESTs) to the genome. Transcripts that are expressed (i.e., RNA molecules) 
are converted to cDNA, incorporated into libraries, and sequenced. Such cDNAs are ESTs. 
While they do not inherently reveal information about the corresponding genomic DNA, 
such as the sequence of introns or the chromosomal locus, they are invaluable in identify-
ing expressed genes (see “Annotation of Genes in Eukaryotes: Ensembl Pipeline” below).

A second “intrinsic” approach to predicting gene structures (exons and introns) is 
through analysis of genomic DNA, searching for features such as open reading frames, 

We showed examples of repetitive 
DNA, and the software used to 
identify and mask it, in Chapter 8.
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exon/intron boundaries, start and stop codons, and codon usage typical of coding 
regions. A third approach is comparative, mapping genes from one organism to con-
served syntenic regions of a closely related organism whose genome has previously 
been sequenced.

The features of genomic DNA are substantially different between bacteria (and 
archaea) and eukaryotes. We consider them in more detail in Chapters 17 (on bacteria and 
archaea) and 18–19 (on eukaryotes).

annotation of Genes in eukaryotes: ensembl pipeline

The Ensembl website provides descriptions of its gene annotation pipeline for a variety 
of organisms (Curwen et al., 2004; Potter et al., 2004). For human gene annotation there 
are 12 steps.

 1. In the raw computes stage (requiring 3 weeks), genomic sequence data are screened 
for sequence patterns with RepeatMasker (Chapter 8), Tandem Repeats Finder, and 
other software.

 2. (7 weeks) Coding models are generated using evidence such as UniProt and RefSeq 
for proteins and ENA/GenBank/DDBJ and RefSeq for complementary DNAs.

 3. (2 weeks) Additional coding models are generated based on database searches of 
mammalian (or other vertebrate) UniProt entries from other species. These analyses 
also include EST and cDNA evidence.

 4. (2–3 weeks) cDNA and EST sequences are downloaded, poly(A)+ tails are clipped 
from the 3’ ends, and they are aligned to the genome using Exonerate software. 
Alignments of cDNA required 98% nucleotide identity (and 97% identity with 90% 
coverage for ESTs which are often shorter and more fragmented than cDNAs).

The e!62 and e!63 human 
GRCh37 assembly pipeline 
is described at Ensembl (  

http://www.ensembl.org/info/
genome/genebuild/assembly.
html, WebLink 15.52) and is also 
available as Web Document 15.7. 
The estimates of how long each 
step requires are included in the 
documentation.
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FiGure 15.13 Guanine plus cytosine (GC) content of bacteria, plants, invertebrates, and  vertebrates. 
Note that most eukaryotic genomes have 40–45% GC content, while bacteria and archaea have a far 
wider range. This figure is adapted from Bernardi and Bernardi (1990) based on studies in the 1960s to 
1980s. Recent eukaryotic genome sequencing projects (described in Chapter 19) reveal that GC content 
for various organisms includes 19.4% (P. falciparum), 22.2% (the slime mold  Dictyostelium  discoideum), 
34.9% (A. thaliana), 36% (C. elegans), 38.3% (S. cerevisiae), 41.1% (human), 42% (M. musculus), and 
43.3% (O. sativa). For sequenced bacteria, GC content values range from 26% (Ureaplasma urealyticum 
parvum) to 72% (Streptomyces coelicolor). Adapted from Bernardi and  Bernardi (1990), with permis-
sion from Springer Science and Business Media.

http://www.ensembl.org/info/genome/genebuild/assembly.html
http://www.ensembl.org/info/genome/genebuild/assembly.html
http://www.ensembl.org/info/genome/genebuild/assembly.html
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 5. (2 weeks) Coding models are manually filtered to remove dubious matches to pro-
teins or cDNAs.

 6. (2 weeks) Coding models are extended by adding untranslated regions.
 7. (4–5 weeks) Redundant transcript models are collapsed, and unique sets of transcript 

models are clustered into multi-transcript genes. (Each transcript in a gene has at 
least one coding exon that overlaps a coding exon from another transcript within the 
same gene.)

 8. (3 weeks) The gene set is screened for pseudogenes and retrotransposed genes. 
Immunogobulin genes are annotated using a specialized workflow.

 9. (10 weeks) The completed Ensembl gene set is finalized by merging (at the transcript 
level) manual annotations from the Vega database. Long intergenic noncoding RNA 
genes (lincRNAs) are annotated. As a quality control step, Ensembl protein-coding 
transcripts are translated and these proteins are aligned against NCBI RefSeq and 
UniProt/Swiss-Prot protein sequences.

 10. (4 weeks) Annotations are added including cross-references to external databases. 
Stable accessions are assigned to each gene, transcript, exon, and translation.

 11. (1–2 weeks) Haplotype regions are annotated, particularly on chromosomes 6, 14, 
and 17.

 12. (3–4 weeks) Post genebuild filtering is used to remove poorly supported models. This 
stage includes comparative genomics analyses.

This Ensembl annotation pipeline is applied to the human genome, and you can also 
find documentation for the Ensembl annotation of other genomes. Every gene model is 
supported by biological sequence evidence, and you can view this information in the 
“Supporting evidence” link on the sidebar of any gene or transcript page. Note the long 
number of weeks required for each of the 12 steps; creating a full assembly is com-
plex and time-consuming. Builds (assemblies) for each organism are therefore released 
infrequently.

annotation of Genes in eukaryotes: NCbi pipeline

The NCBI eukaryotic genome annotation pipeline is conceptually similar to that of 
Ensembl. A chart shows the integration of data from assemblies including nucleotide and 
protein databases and the Sequence Read Archive (Fig. 15.14).

The NCBI workflow includes the alignment of transcripts, proteins, short reads, and 
RefSeq genomic sequences to the assembled genome.

 • Masking employs RepeatMasker or WindowMasker software.
 • Transcript alignment may include transcripts from other organisms; RefSeq tran-
scripts; ESTs; and other sources. These are mapped to the genome sequence with 
Splign. Kapustin et al. (2008) benchmarked this against five related software tools, 
finding that Splign is accurate yet tolerant to sequencing errors and polymorphic sites.

 • Short reads from RNA-seq are also aligned using Splign.
 • Proteins are aligned using ProSplign.
 • NCBI uses Gnomon for gene prediction.This combines homology searching with ab 
initio modeling.

Different annotation pipelines produce results that can differ greatly (e.g., see Rice 
Annotation Project et al., 2008, which compares Gnomon to a separate workflow). As a 
result, many groups strive to validate annotation data.

Core eukaryotic Genes Mapping approach (CeGMa)

Eukaryotic genomes include sets of genes that are highly conserved across species, as 
first catalogued in detail by Margaret Dayhoff and colleagues (Chapter 3). Parra et al. 

Figure 15.14 is adapted from 
 http://www.ncbi.nlm.nih.

gov/genome/annotation_euk/
process/ (WebLink 15.53). The 
NCBI annotation pipeline is also 
described in an online NCBI 
book at  http://www.ncbi.
nlm.nih.gov/books/NBK169439/ 
(WebLink 15.54).

Splign is available as an online 
tool at  http://www.ncbi.nlm.
nih.gov/sutils/splign/splign.cgi 
(WebLink 15.55). Try it using alpha 
2 globin (HBA2) mRNA as a query 
(NM_000517.4) against the human 
genome, and see how it aligns to 
the closely related HBA1 locus.

Visit the ProSplign site at  http://
www.ncbi.nlm.nih.gov/sutils/
static/prosplign/prosplign.html 
(WebLink 15.56).

You can learn more about Gnomon 
at  http://www.ncbi.nlm.nih.
gov/genome/guide/gnomon.shtml 
(WebLink 15.57).

http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
http://www.ncbi.nlm.nih.gov/books/NBK169439/
http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi
http://www.ncbi.nlm.nih.gov/sutils/static/prosplign/prosplign.html
http://www.ncbi.nlm.nih.gov/sutils/static/prosplign/prosplign.html
http://www.ncbi.nlm.nih.gov/genome/guide/gnomon.shtml
http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
http://www.ncbi.nlm.nih.gov/books/NBK169439/
http://www.ncbi.nlm.nih.gov/genome/guide/gnomon.shtml
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FiGure  15.14 The eukaryotic genome annotation pipeline from NCBI. Genomic sequences are 
masked (gray). Transcripts (blue), proteins (green), and short reads (orange) are aligned to the genome, 
as well as RefSeq genomic sequences (when available; pink). Next, gene model prediction is performed 
(brown). Models are selected, named, and assigned accessions (purple). Annotated entries are formatted 
and made publicly available (yellow). 

Source: Redrawn from NCBI.

(2007) (from the group of Ian Korf) introduced CEGMA to build a highly reliable set 
of gene annotations from sequenced eukaryotic genomes. They selected protein families 
from the eukaryotic orthologous groups (KOGs) project at NCBI, aligned them with 
T-COFFEE (Chapter 6), added quality control steps, and selected 458 protein groups 
(“core eukaryotic genes” that are conserved between Arabidopsis thaliana, Caenorhab-
ditis elegans, Drosophila melanogaster, Homo sapiens, Saccharomyces cerevisiae, and 
Schizosaccharomyces pombe). The CEGMA method allows the exon-intron structures 
of the genes encoding these core proteins to be mapped to a novel genome sequence.
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CEGMA has been useful in assessing the completeness of draft and finished genomes 
including Anopheles gambiae, Ciona intestinalis, and Toxoplasma gondii. When core 
genes are missing, this likely reflects false negative findings from an annotation pipeline.

assemblies from the Genome reference Consortium

The Genome Reference Consortium (GRC) provides assemblies for human, mouse, and 
zebrafish genomes. The initial sequencing and assembly of these genomes focused on iden-
tifying a single tiling path (sometimes called the “golden path” for the human genome) to 
represent the genome. The GRC now focuses on representing the regions of complex allelic 
diversity, such as the major histocompatibility locus (MHC) on human chromosome 6 or 
improving the annotation of the complex pericentric region of human chromosome 9.

assembly hubs and transfers at uCSC, ensembl, and NCbi

The focus of UCSC Genome Browser is on vertebrate genomes, although many addi-
tional genomes are supported. An option is to create and view assembly hubs. These are 
available by clicking “track hubs” from a standard genome browser page.

Within the standard UCSC Genome Browser you can apply tracks (from the Mapping 
and Sequencing group) to display differences between assemblies (e.g., “Hg38 Diff”). 
You can also switch between assemblies with the View > “In other genomes (convert)” 
tool. The Liftover tool also converts genome coordinates between assemblies.

Similarly, NCBI and Ensembl offer re-mapping services to navigate between assem-
blies for a variety of organisms. For example, we can take a BED file that was generated 
with GRCh37/hg19 coordinates of the human genome and convert it to GRCh38/hg38.

annotation of Genes in bacteria and archaea

Bacterial and archaeal genomes have both genes and additional, relatively small inter-
genic regions. Typically, these genomes are circular, and there is about one gene in each 
kilobase of genomic DNA. For bacteria and archaea, genes are most simply identified 
by the presence of long open reading frames (ORFs) that are greater in length than some 
cutoff value such as 90 nucleotides (30 amino acids; a protein of about 3 kilodaltons). 
Programs such as GLIMMER and GenMark efficiently locate genes in bacterial genomic 
sequence. We describe this in Chapter 17, as well as RAST annotation software. As with 
eukaryotic genomes, there are challenges associated with annotating draft and finished 
microbial genomes (Mavromatis et al., 2012).

Genome annotation Standards

An archival genome record reflects a particular state of a genome sequence and its anno-
tation. To ensure high-quality annotation of genomes, investigators at several institutions 
proposed a series of standards (Klimke et al., 2011) described as “Minimum Information 
about an Environmental Sequence” (MIENS; Yilmaz et al., 2011).

 1. A complete bacterial or archaeal genome should include ribosomal RNAs (at least 
one each of 5S, 16S, and 32S), tRNAs (at least one per amino acid), protein-coding 
genes at the expected density (based on precedence of similar genomes), and annota-
tion of core genes.

 2. Annotations should follow guidelines of the International Nucleotide Sequence Data-
base Collaboration (INSDC; Chapter 2).

 3. Methodologies and standard operating procedures should be documented.
 4. Exceptions (unusual annotations such as atypical GC content) should be documented 

and given strong supporting evidence.

CEGMA can be downloaded from 
 http://korflab.ucdavis.edu/

datasets/cegma/ (WebLink 15.58).

The GRC (  http://www.ncbi.
nlm.nih.gov/projects/genome/
assembly/grc/, WebLink 15.59), 
hosted at NCBI, consists of four 
groups: The Wellcome Trust 
Sanger Institute (  http://www.
sanger.ac.uk/research/areas/
bioinformatics/grc, WebLink 
15.60), The Genome Institute 
at Washington University (

 http://genome.wustl.edu/, 
WebLink 15.61), The European 
Bioinformatics Institute (  

http://www.ebi.ac.uk/, WebLink 
15.62), and the National Center 
for Biotechnology Information (

 http://www.ncbi.nlm.nih.gov/ , 
WebLink 15.63).

UCSC assembly hubs are 
described at  http://genomewiki.
ucsc.edu/index.php/Assembly_
Hubs (WebLink 15.64). After 
selecting an assembly hub you 
can access it as a group from the 
Browser Gateway.

Liftover at UCSC is available at 
 http://genome.ucsc.edu/cgi-

bin/hgLiftOver (WebLink 15.65). 
The input is a BED file. LiftOver 
can also be downloaded as an 
executable for Linux systems.

Visit the NCBI Genome 
Remapping Service at  http://
www.ncbi.nlm.nih.gov/genome/
tools/remap (WebLink 15.66). An 
Assembly Converter is available 
from Ensembl (  http://www.
ensembl.org/Homo_sapiens/Tools/
AssemblyConverter?db=core, 
WebLink 15.67).

http://korflab.ucdavis.edu/datasets/cegma/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
http://www.sanger.ac.uk/research/areas/bioinformatics/grc
http://www.sanger.ac.uk/research/areas/bioinformatics/grc
http://www.sanger.ac.uk/research/areas/bioinformatics/grc
http://genome.wustl.edu/
http://www.ebi.ac.uk/
http://www.ncbi.nlm.nih.gov/
http://genomewiki.ucsc.edu/index.php/Assembly_Hubs
http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://genome.ucsc.edu/cgi-bin/hgLiftOver
http://www.ncbi.nlm.nih.gov/genome/tools/remap
http://www.ncbi.nlm.nih.gov/genome/tools/remap
http://www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter?db=core
http://www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter?db=core
http://www.ensembl.org/Homo_sapiens/Tools/AssemblyConverter?db=core
http://korflab.ucdavis.edu/datasets/cegma/
http://genomewiki.ucsc.edu/index.php/Assembly_Hubs
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 5. Pseudogenes should be annotated following accepted formats.
 6. Enriched annotations should follow INSDC guidelines.
 7. A set of databases, tools, and resources for annotation (given by Klimke et al.) should 

be used.
 8. Validation checks should be performed using recently developed software.

Other large-scale sequencing centers (such as JCVI) also provide standard operat-
ing procedures for genome annotation (Tanenbaum et al., 2010). Another example is the 
Metadata Coverage Index introduced by Liolios et al. (2012) as a metric to assess meta-
data availability and utility.

PersPectIve
In 1995 we entered an era in which the completed genome sequences could be deter-
mined. Thousands of complete genome sequences are now available. Since the comple-
tion of the human genome sequencing in the year 2003, some call the present state of 
biology the “postgenomic era.”

In recent years, the number of completed eukaryotic, archaeal, and bacterial genomes 
has continued to increase, with a particularly large number of genome projects that are cur-
rently in the assembly phase (near completion) or otherwise in progress. There are tens of 
thousands of such projects, excluding thousands of ongoing and completed viral and organ-
ellar genome projects. Several trends contribute to the rapid development of this field. (1) In 
sequencing a genome of interest, the availability of completed genomes of closely related 
organisms greatly aids the assembly and annotation process. For example, the assembly 
of the chimpanzee genome relied heavily on using the very closely related human refer-
ence genome as a template (Chapter 19). (2) Sequencing technologies have continuously 
improved; an entire bacterial genome can be sequenced in just several hours using tech-
nologies described in Chapter 9. (3) There has been progress in selecting, obtaining, and 
preparing genomic DNA from a spectacular range of biological sources. This has led to the 
creation of the new disciplines of the genomics of ancient, extinct organisms (such as the 
Neandertal and Denisovan genomes) to metagenomics projects that define the community 
of organisms living in sites such as the oceans or the human gut.

A major consequence of genome-sequencing projects is that molecular phylog-
eny has been revolutionized. The present version of the tree of life includes three main 
branches (bacteria, archaea, and eukaryotes). In the coming years, molecular data will 
help to clarify some of the key questions about life on Earth:

 • How many species exist on the planet?
 • How did life evolve from 4 BYA up to the present time?
 • Why are some organisms pathogenic while close relatives are harmless?
 • What mutations cause disease in humans and other organisms?

PItfAlls
While the research community is generating massive amounts of DNA sequence data, 
there are many pitfalls associated with interpretation of those data. There is an error 
rate associated with genome sequences (typically less than one nucleotide per 10,000 
in finished DNA). In evaluating possible polymorphisms or mutations in genomic DNA 
sequences, it is therefore important to assess the quality of the sequence data. Even if the 
sequence is correct, algorithms do not yet have complete success in problems such as 
finding protein-coding genes in eukaryotic DNA; there are many examples of genome-se-
quencing projects (such as cattle, Drosphila, rice and human) in which the predicted exons 
and gene models improve dramatically with each subsequent revision of the genome 
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assembly. (For bacterial genomes, which generally lack introns, the success rate is much 
higher.) Once protein-coding genes or other types of genes are identified, there are very 
large numbers of errors in genome annotation. It will be important to carefully assess the 
basis of functional annotation of genes; ultimately, the problem of gene function must be 
assessed by biological as well as computational criteria.

AdvIce for students
While Parts I and II of this book focused on bioinformatics, this third and final part covers 
the tree of life from a genomics perspective. Think about how the tools of bioinformatics 
inform the discipline of genomics. Try to get a sense of the broad scope of the tree of life, 
including the history of life on Earth. What species thrived 100 MYA, 1 billion years ago, 
or even earlier?

In this chapter we discussed genome assembly and annotation. Several studies have 
suggested that half the gene models in some assemblies are incorrect. Try to go further by 
becoming familiar with software for some stage of assembly and/or annotation. Read the 
published literature and the manual, download and use the software, and try to understand 
why assembly and annotation are so challenging.

Discussion Questions
[15.1] What would a tree of life look like 
if it included all species (both extant and 
extinct) since the first life emerged to the 
present?

[15.2] If you could sequence the genomes of 100 indi-
viduals from any species, which species would you 
choose? What hypotheses would you test, how would 
you perform data analyses, and what resources would 
you require in terms of hardware, software, and collab-
orators? What ethical issues might arise in sequencing 
human genomes?

prObleMS/COMputer lab
[15.1] Figure 15.1 shows a tree of life based on rRNA 
sequences. Construct a tree of life based on glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) protein sequences. 
One approach is to identify this family in Pfam, which 
includes two different GAPDH domains. For the NAD 
binding domain (PF00044) there are currently 112 seed 
proteins and >14,000 full proteins. Export either some or 
all of the sequences in an aligned format. (Alternatively, 
perform a multiple sequence alignment using MUSCLE 
or Clustal Omega; see Chapter 6). Create and evaluate a 
neighbor-joining tree using MEGA (Chapter 7). How sim-
ilar is your tree to that depicted in Figure 15.1? What might 
account for their differences?

[15.2] Obtain approximately 1000 bases of DNA sequence 
in the FASTA format from the bacterium Escherichia coli 
K12 (the accession number of the complete genome is 

NC_000913). Use this as a query in a BLASTN search of 
the Trace Archive at NCBI. Can you identify a eukaryotic 
sequencing project that includes bacterial DNA? For exam-
ple, search against human whole-genome shotgun (WGS) 
sequences. How would you determine the total amount of 
bacterial DNA in any given eukaryotic entry in the Trace 
Archive?

[15.3] We have seen that some mitochondrial and chlo-
roplast genomes are exceptionally large. Lilly and Har-
vey (2001) have described repetitive DNA in some plant 
organellar genomes. The Zea mays chloroplast genome 
(NC_001666.2; table 15.4) is 140 kb. What major repeats does 
it contain? Use MegaBLAST to search it against itself, then 
use RepeatMasker to characterize its repeats. Separately, use 
MegaBLAST to examine repeats within the Saccharomyces 
cerevisiae mitochondrial genome (NC_001224.1, table 15.3). 
How do you interpret the dot matrix view of the yeast organ-
ellar genome? One of its repeat units follows:
ATTATTATTATAGTAATAATAAAAATATTCTAAATATATTATATATATTAT
TATTTTTTTTATTATTAAT
AAAATATTATAATAAATTTAAATAAGTTTATAATTTTTGATAAGTATTGTT 
ATATTTTTTATTTCCAAAT
ATATAAGTCCCGGTTTCTTACGAAACCGGGACCTCGGAGACGTAATAGGGG 
GAGGGGGTGGGTGATAAGA
ACCAAACTATTCAATAAATATAGAGCACACATTAGTTAATATTTAATAATA 
TAACTAATATATAATAATT
ATAAAATAATTAATTATATAATATAATATAAAGTCCCCGCCCCGGCGGGGA 
CCCCAAAGGAGTATTAACA
ATATAATATATTGTATAAAATAAATTATAAATATTAAATAAAAACCAAATA 
AATAATATAATAAATGATA
AACAAGAAGATATCCGGGTCCCAATAATAATTATTATTGAAAATAATAATT 
GGGACCCCCATCTAAAATA
TATATATAACTAATAATATATTATATATATTAATATATAATAATATTATTA 
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AAATATAATATTATTAAAA
AAAAAGTATATATAAAATAAGATATATATATATAAATATATATATTCTTAA 
TAAATATTATATATAATAA
TAATAAATTATTTCATAATAAATTATTTCTTTTTATTAATAA

[15.4] Use the Splign tool to align an mRNA sequence (from 
human alpha 2 globin HBA2) against the human genome. 
HBA2 is adjacent to and very closely related to HBA1; these 
genes encode proteins with 100% amino acid identity. How 
does the HBA2 mRNA map to the human genome?

[15.5] Which RefSeq genomes include a gene named 
HBB? Use E-Direct (Chapter 2). This problem is adapted 
from http://www.ncbi.nlm.nih.gov/books/NBK179288/. 
Use the following code:

Self-test Quiz
[15.1] The first complete genome to be 
sequenced was:

(a)  Saccharomyces cerevisiae chromosome III;

(b) Haemophilus influenza;

(c) a bacteriophage; or

(d) the human mitochondrial genome.

[15.2] A typical eukaryotic mitochondrial genome 
encodes about how many proteins (excluding RNAs)?

(a) from 5 to 20;

(b) from 50 to 100;

(c) from 500 to 1000; or

(d) 10,000.

[15.3] Thousands of genomes have now been completely 
sequenced. The majority of these are:

(a) viral;

(b) bacterial;

(c) archaeal;

(d) organellar (mitochondrial and plastid); or

(e) eukaryotic

[15.4] Ancient DNA projects allow the sequencing of 
 historical samples. A special challenge is:

(a) the DNA is often fragmented;

(b) the DNA is often contaminated by modern human 
DNA;

(c) the DNA is often contaminated by bacterial DNA; or

(d) all of the above.

[15.5] Velvet:

(a) maps reads onto contigs;

(b) assembles reads into contigs;

(c) merges contigs into reads; or

(d) reads contigs into assemblies.

[15.6] The term “whole-genome shotgun sequencing” 
refers to a strategy to sequence an entire genome by:

(a) breaking up DNA and sequencing using oligonucle-
otide primers that span the genomic DNA;

(b) breaking up DNA, cloning it into libraries, and 
sequencing using oligonucleotide primers that 
correspond to known chromosomal locations 
(contigs);

$ esearch -db nuccore -query "HBB [GENE] AND 
NC_0:NC_999999999 [PACC]" | \
 efetch -format docsum | \
 xtract -pattern DocumentSummary -element TaxId 
| \
 sort -n | uniq | \
 epost -db taxonomy | \

 efetch -format docsum | \
 xtract -pattern DocumentSummary -element 
ScientificName | \
 sort
Borrelia afzelii HLJ01
Borrelia afzelii PKo
Borrelia burgdorferi B31
Borrelia burgdorferi ZS7
Bos taurus
Callithrix jacchus
Equus caballus
Felis catus
Gallus gallus
Gorilla gorilla gorilla
Homo sapiens
Macaca fascicularis
Macaca mulatta
Nomascus leucogenys
Oryctolagus cuniculus
Pan troglodytes
Papio anubis
Pongo abelii
Rattus norvegicus
Sus scrofa

http://www.ncbi.nlm.nih.gov/books/NBK179288/
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suGGested reAdInG
The Green and Guyer (2011) paper on the future of genomics is highly recommended. For 
a review of ancient DNA, see Shapiro and Hofreiter (2014).

In this chapter we followed a guide to comparative bacterial genome analysis by 
David Edwards and Kathryn Holt (2013), including an accompanying tutorial. Yandell 
and Ence (2012) provide an overview of eukaryotic genome annotation.
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As early as 1885 Adolf Mayer showed that 
mosaic disease of the tobacco plant is con-
tagious; we now know that it is caused by 
tobacco mosaic virus. Martinus  Beijerinck 
(1851–1931) further isolated a “conta-
gium vivum fluidum” (virus) from tobacco 
leaves, distinguishing the  causative agent 
from bacteria. Due to their small size, 
almost all viruses cannot be visualized by 
conventional microscopy. Beginning in 
the 1930s Helmut Ruska pioneered the 
use of the electron microscope to visu-
alize viruses (Kruger et al., 2000). Early 
studies of the structure of viruses based 
on X-ray crystallography were performed 
by John D. Bernal (1901–1971). He also 
trained Maurice Wilkins and Rosalind 
Franklin (who confirmed the structure 
of the double helix of DNA) and Nobel 
laureate Dorothy Crowfoot Hodgkin 
(who solved the structure of vitamin B12). 
Together with Rosalind Franklin, Bernal 
studied tobacco mosaic virus in the 1950s. 
This figure shows a variety of  purified 
viruses and X-ray analyses from Bernal 
and Fankuchen (1941, table 4). This set of 
images shows: (a) shifts of intermolecular 
reflections; (b) varying concentrations of 
viruses; (c) enation mosaic virus; (d) dry 
gels of various virus proteins; (e) tobacco 
mosaic virus; (f ) cucumber mosaic virus; 
and (g) potato virus X. 

Source: Bernal and Fankuchen (1941).
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Probably, the outstanding feature of the evolutionary process in parasitic microorganisms 
is the unimportance of the individual. A few influenza-virus particles initiate infection 
in one individual of a susceptible human community, and an epidemic of some thou-
sands of cases results. From the point of view of the virus, we have a series of precipitate 
 population increases, followed by catastrophic destruction. In each individual infected, 
the peak population of virus particles probably exceeds 1010, but it is certainly rare for 
even 10 of these to find opportunity for continued multiplication. When an active epidemic 
is in progress over a populated area, we might conceivably have 1017 virus particles 
in a viable state. A few weeks later, there may be no viable particles whatever in this 
 particular environment.

— Sir MacFarlane Burnet, 1953 (p. 385).

Completed Genomes: 
Viruses

C h a p t e r

16

LEARNiNG oBJECTiVEs

After studying this chapter you should be able to:
 ■ define viruses;
 ■ explain the basis of the classification of viruses;
 ■ describe the genomes of HiV, influenza, measles, Ebola, and herpesviruses;
 ■ describe bioinformatics approaches to determining the function of viral genes and proteins;
 ■ describe key bioinformatics resources for studying viruses; and
 ■ compare and contrast DNA and RNA viruses.

IntroductIon
In this chapter we will consider bioinformatic approaches to viruses. Viruses are small, 
infectious, obligate intracellular parasites. They depend on host cells for their ability to 
replicate. The virion (virus particle) consists of a nucleic acid genome surrounded by coat 
proteins (capsid) that may be enveloped in a lipid bilayer (derived from the host cell) stud-
ded with viral glycoproteins. Unlike other genomes, viral genomes can consist of either 
DNA or RNA. Furthermore, they can be single, double, or partially double stranded, 
and can be circular, linear, or segmented (having different genes on distinct nucleic acid 
segments).

Viruses lack the biochemical machinery that is necessary for independent existence. 
This is the fundamental distinction between viruses and free‐living organisms. While they 

http://www.wiley.com/go/pevsnerbioinformatics


Genome AnAlysis756

replicate and evolve, viruses therefore exist on the borderline of the definition of life. 
The largest virus has a genome size of almost 2.5 megabases (Pandoravirus salinus; see 
“Giant Viruses” below), and other large viruses (such as pox viruses and Mimivirus) have 
genome sizes of several hundred kilobases to over a megabase. Some of these exceed the 
genome sizes of the smallest archaeal and bacterial genomes (e.g., Nanoarchaeum equi-
tans and Mycoplasma genitalium; Chapter 17). It is not a coincidence that those smallest 
bacterial genomes are from organisms that (like viruses) are small, infectious, obligate 
intracellular agents. The largest Pandoravirus genomes even exceed eukaryotic genome 
sizes such as those of the microsporidian Encephalitozoon (Chapter 18). Notably, many 
of these very small bacterial genomes are in the process of transferring their genes to 
some host genome as they forego their capacity for independent existence.

While there may be tens or hundreds of millions of species of bacteria and archaea, 
only a few thousand species of virus are known. This disparity probably reflects their spe-
cialized requirement for invading a host. Also, recent metagenomics projects (described 
in “Metagenomics and Virus Diversity” below) suggest that we have an extremely limited 
understanding of both the number of virus species and the diversity of viral genes and 
genomes. Viruses infect all forms of life, including bacteria, archaea (Prangishvili et al., 
2006), and eukaryotes from plants to humans to fungi. A virus has even been found to 
infect a second virus (see “Giant Viruses” section below). Although we have catalogued 
relatively few viral species, viruses are nonetheless the most abundant biological entities 
on the earth (Edwards and Rohwer, 2005).

In this chapter we first discuss virus taxonomy, then classification of viruses (based 
on morphology, nucleic acid composition, genome size, and disease relevance). We 
describe the diversity and evolution of viruses, including viral metagenomics. After intro-
ducing bioinformatics approaches to problems in virology, we address specific viruses 
from small to large: influenza virus, human immunodeficiency virus (HIV), Ebola virus, 
measles virus, herpesvirus, and giant viruses. Each of these viruses allows us to gain 
insight into genomic principles of viruses. We also explore a series of bioinformatics tools 
to study viruses.

International Committee on taxonomy of Viruses (ICtV) and Virus Species

Established in 1971, the ICTV is a committee of the International Union of Microbio-
logical Societies whose purpose is to classify viruses into taxa (King et al., 2011). These 
have followed the Linnaean system of order, family, subfamily, genus and species. The 
ICTV database (2012 report) subdivides viruses into 7 orders, 96 families, 420 genera, 
and >2600 species of viruses. An example of the current taxonomy scheme is shown in 
Figure 16.1 (note that there are 2–5 families per order as well as 71 families not assigned 
to an order). In the case of the genus Simplexvirus, the species Human herpesvirus 1 is 
indicated with a yellow star as the type species of that genus.

According to its 1991 definition, “A virus species is a polythetic class of viruses that 
constitutes a replicating lineage and occupies a particular ecological niche” (cited in Van 
Regenmortgel et al., 2013 who expand upon the meaning of “polythetic” as members 
having some properties in common but not necessarily a single common shared prop-
erty). The ICTV recently introduced changes to the way viruses are defined. A species 
is “the lowest taxonomic level in the hierarchy approved by the ICTV. A species is a 
 monophyletic group of viruses whose properties can be distinguished from those of other 
species by multiple criteria” (Adams et al., 2013). These criteria may include natural 
and experimental host range, pathogenicity, antigenicity, vector specificity, cell and tissue 
tropism, and degree of relatedness of the genomes or genes. A species is monophyletic in 
that it is derived from a common ancestor; species are therefore discrete,  nonoverlapping 
groups and phylogenetic analysis is explicitly required in identifying a new species. 

The ICTV website is at  http://
ictvonline.org/ (WebLink 16.1).

http://ictvonline.org/
http://ictvonline.org/
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Gibbs (2013) notes that ICTV‐defined species and genera comprise virus groups that 
share most of their genes, but the broader categories of families and orders are not so 
discrete with some genes present in multiple families or orders. Van Regenmortgel et al. 
(2013) strongly critique the idea of monophyletic virus species. Additional detailed pro-
posals for virus nomenclature are being actively developed (Kuhn et al., 2013).

The ICTV has also recently changed the way viruses are named (Adams et al., 2013). 
Virus species names are italicized with the first letter capitalized (e.g., Rabbit  hemorrhagic 
disease virus). In contrast to virus species names, virus names are not italicized and are 

FIgure 16.1 Virus taxonomy from the ICTV website (2012 release). The menus are opened to show human herpesvirus species. 

Source: ICTV. Reproduced with permission from The International Committee on Taxonomy of Viruses (ICTV).
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given in lower case (e.g., rabbit hemorrhagic disease virus which may be abbreviated 
RHDV). Kuhn and Jahrling (2010) and Van Regenmortgel et al. (2010) discuss this dis-
tinction of virus and virus species.

The National Center for Biotechnology Information (NCBI) held an Annotation 
Workshop to guide the development of viral genome annotation standards (including 
nomenclature issues raised by ICTV). Tatiana Tatusova and colleagues emphasized the 
importance of consistent, comprehensive annotation, particularly as next‐generation 
sequencing enables the determination of thousands of viral genome sequences (Brister 
et al., 2010).

classIfIcatIon of VIruses
We present four approaches to classifying viruses based on morphology, nucleic acid 
composition, genome size, and disease relevance.

Classification of Viruses Based on Morphology

Before the sequencing era, morphology was an important criterion for the classification 
of viruses. Since 1959, electron microscopy has been employed to describe the structure 
of over 5500 bacteriophages (viruses that invade bacteria; Ackermann, 2007) as well as 
additional viruses that invade plants and animals. Ninety‐six percent of bacteriophages 
are tailed viruses, with the remainder having filamentous, icosahedral, or pleiomorphic 
shapes. Many electron microscopic images of viruses are available online, and several are 
presented in Figure 16.2.

Classification of Viruses Based on Nucleic acid Composition

Another fundamental basis for classifying viruses is to define the type of nucleic acid 
genome that is packaged into the virion. Virions contain DNA or RNA; the nucleic acid 
may be single or double stranded, and translation may occur from the sense strand, the 
antisense strand, or both (Fig. 16.2). Double‐stranded viral genomes replicate by using 
the individual strands of the DNA or RNA duplex as a template to synthesize daugh-
ter strands. Single‐stranded DNA or RNA viruses use their strand of nucleic acid as a 
template for a polymerase to copy a complementary strand. Replication may involve 
the stable or transient formation of double‐stranded intermediates. Some viruses with 
single‐stranded RNA genomes convert the RNA strand to DNA using reverse transcrip-
tase (RNA‐dependent DNA polymerase). In the case of HIV‐1, the pol gene encodes a 
reverse transcriptase.

Classification of Viruses Based on genome Size

Some of the major groups of viruses are shown in Figure 16.2 and table 16.1. Some have 
a very small genome size, such as rubella and hepatitis B (∼2–3 kb). The first complete 
virus genome (Simian Virus 40 or SV40, 5243  bp) and first complete bacteriophage 
genome (bacteriophage MS2, 3569  bp), sequenced in the 1970s, are relatively small. 
Others are over 350 kb in size. A decade ago a giant virus (called Mimivirus for Mimick-
ing microbe) was described, having a double‐stranded circular genome of 1,181,404 base 
pairs (1.2 megabases) (La Scola et al., 2003; Raoult et al., 2004). Since then even larger 
related members of this group, now proposed to be called the order Megavirales, have 
been discovered. The largest has a genome size of 2.4 Mb (a pandoravirus, discussed in 
“Giant Viruses” below).

Although viruses are relatively simple agents, they are more complex than two 
other pathogenic agents: viroids and prions. Viroids are small, circular RNA molecules 

According to George Gaylord 
Simpson (1963, p. 7), “Species are 
groups of actually or potentially 
inbreeding populations, which 
are reproductively isolated 
from other such groups. An 
evolutionary species is a lineage 
(an ancestral‐descendant 
sequence of populations) evolving 
separately from others and with 
its own unitary evolutionary role 
and tendencies.”

Electron micrographs of viruses 
are available at sites such as All 
the Virology on the WWW  
(  http://www.virology.net/, 
WebLink 16.2).

SV40 was sequenced by Fiers 
et al. (1978) while MS2 was 
sequenced by Fiers et al. (1976).

http://www.virology.net/
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Class I Class II Class III Class IV Class V Class VI Class VII

dsDNA ssDNA dsRNA (+)ssRNA (-)ssRNA ssRNA-RT dsDNA-RT

mRNA

dsDNA (-)ssRNA DNA/RNA

dsDNA

Adenoviridae

Herpesviridae

Poxviridae

Parvoviridae Reoviridae Picornaviridae
Togaviridae

Orthomyxo-
viridae

Rhabdoviridae

Retroviridae Hepadnaviridae

Hepatitis B
Adenovirus poliovirus:

Enterovirus C
NC_002058.3

7,440 nt
1 protein

Zaire Ebolavirus
NC_002549.1

18,959 nt
9 proteins

Rotavirus B
PRJNA209367

17,932 nt
13 proteins

HIV-1
NC_001802.1
9,181 nt
10 proteins

Hepatitis B virus
NC_003977.1
3,215 nt
7 proteins

Human parvo-
virus 4

NC_007018.1
5,268 nt

2 proteins

Human herpes-
virus 8
NC_009333.1
137,969 nt
86 proteins

FIgure 16.2 Classification of viruses. According to the classification system of David Baltimore, there are seven groups that vary 
in nucleic acid (DNA or RNA), strandedness (single‐ or double‐stranded), sense (+ or – strand), and replication method. Class I viruses 
(e.g., the families Adenoviridae, Herpesviridae, and Poxviridae) have genomes composed of double‐stranded DNA. The  transmission 
electron microscopy (TEM) image of human herpesvirus 8 (HHV‐8) shows a virion being internalized into a human ocular cell, with 
protrusions indicated by arrowheads. Class II viral genomes have single‐stranded DNA that becomes double‐stranded, as in the family 
Parvoviridae. The TEM image of purified human parvovirus‐4‐like particles has a scale bar of 200 nm. Class III viruses have double‐
stranded RNA and include the family Reoviridae. Rotaviruses are members of this family. This TEM image at 455,882× magnification 
shows rotovirus icosahedral protein capsid particles. Class IV viruses have single‐stranded RNA on the + (sense) strand. These include 
the families Picornaviridae and Togaviridae. A prominent example is Enterovirus, the cause of polio. Class V viruses have negative‐, 
single‐stranded RNA. Examples are the families Orthomyxoviridae (including influenza viruses) and Rhabdoviridae. We show an image 
of Ebola virus. Class VI includes  retroviruses that use single‐stranded RNA genomes with reverse transcription (RT) to form DNA or 
RNA intermediates. Human immunodeficiency virus‐1 (HIV‐1) is an example, shown in a scanning electron micrograph (SEM) with 
virions on the surface of cultured lymphocytes. Class VII viruses have double‐stranded DNA genomes that use reverse transcription. 
They include the family Hepadnaviridae, including hepatitis viruses. TEM of hepatitis B is shown; this infects 300 million people 
 worldwide and is responsible for 1 million deaths annually. 

Source: the upper portion of the figure is adapted from a Wikipedia article on viruses (  http://en.wikipedia.org/wiki/Virus). Image sources: HHV8, NIH  
(  http://openi.nlm.nih.gov/detailedresult.php?img=3312246_CDI2012‐651691.002&req=4); human parvovirus 4, NIH (  http://openi.nlm.nih.gov/ 
detailedresult.php?img=3204632_10‐0750‐F1&query=parvovirus&it=xg&req=4&npos=15); Rotavirus, Dr Erskine L. Palmer of Centers for Disease  Control 
(CDC) in 1978 (  http://phil.cdc.gov/phil/details.asp); Enterovirus, CDC (  http://www2c.cdc.gov/podcasts/rssiframe.asp?c=303); Ebola virus, CDC via 
NIH (  http://www.niaid.nih.gov/news/newsreleases/2010/Pages/EbolaImage.aspx); HIV, CDC (  http://www2c.cdc.gov/podcasts/rssiframe.asp?c=303); 
 Hepatitis B, CDC (  http://www.cdc.gov/nchhstp/newsroom/DiseaseAgents.htm). Adapted from Thomas Splettstoesser (www.scistyle.com) under the terms 
of the Creative  Commons CC‐BY‐SA‐3.0 licence. Images from NLM, NIH and CDC.

http://en.wikipedia.org/wiki/Virus
http://openi.nlm.nih.gov/detailedresult.php?img=3312246_CDI2012%E2%80%90651691.002&req=4
http://openi.nlm.nih.gov/%C2%ADdetailedresult.php?img=3204632_10%E2%80%900750%E2%80%90F1&query=parvovirus&it=xg&req=4&npos=15
http://openi.nlm.nih.gov/%C2%ADdetailedresult.php?img=3204632_10%E2%80%900750%E2%80%90F1&query=parvovirus&it=xg&req=4&npos=15
http://phil.cdc.gov/phil/details.asp
http://www2c.cdc.gov/podcasts/rssiframe.asp?c=303
http://www.niaid.nih.gov/news/newsreleases/2010/Pages/EbolaImage.aspx
http://www2c.cdc.gov/podcasts/rssiframe.asp?c=303
http://www.cdc.gov/nchhstp/newsroom/DiseaseAgents.htm
http://www.scistyle.com
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of 200–400 nucleotides that cause diseases in plants (Flores, 2001; Daròs et al., 2006; 
Ding, 2010). This minuscule genome does not encode any proteins, and the noncoding 
RNA itself has enzymatic activity. Gago et al. (2009) measured the extraordinarily high 
mutation rate of a hammerhead viroid (Fig. 16.3). We consider the mutation rates of other 
viruses in “Diversity and Evolution of Viruses” below.

Prions are infectious protein molecules (Prusiner, 1998; DeArmond and Prusiner, 
2003). Cruetzfeld–Jakob disease is the most common human prion disease (Johnson and 
Gibbs, 1998). It has a worldwide incidence of one in one million individuals and usually 
presents as dementia. Scrapie in sheep and bovine spongiform encephalopathy (BSE; 
“mad cow” disease) are the most common prion diseases in animals.

Classification of Viruses Based on Disease relevance

A different approach to classifying viruses is to identify those that cause human disease. 
Many viral diseases can be prevented by vaccination (table 16.2). Others, such as small-
pox, are of concern because of their potential use by bioterrorists (Cieslak et al., 2002). 
Smallpox, caused by the variola virus, was eradicated in 1977; routine vaccination was 
discontinued in 1972 in the United States.

In general, RNA viruses (such as influenza virus, measles virus, Ebola virus, and 
HIV) present a greater disease burden in humans than DNA viruses (such as herpesvi-
ruses; Holmes, 2008).

Seven viruses are now known to cause cancer, collectively accounting for 10–15% of 
all cancers worldwide (Moore and Chang, 2010; table 16.3). These include human herpesvi-
rus 4 (HHV4, also called Epstein‐Barr virus) found in cell lines from patients with Burkitt’s 
lymphoma. Moore and Chang note that, surprisingly, human cancer viruses derive from 
a multitude of viral classes. They include exogenous retroviruses, positive‐stranded RNA 
viruses, and double‐stranded DNA viruses. All have close relatives that do not cause cancer.

NCBI currently lists RefSeq 
accessions for 44 RNA viroid 
genomes, almost all <400 
nucleotides. To see them visit 
NCBI Genomes (  http://www 
.ncbi.nlm.nih.gov/genome, 
WebLink 16.3) and follow the 
links to viruses then viroids.

Stanley Prusiner won the Nobel 
Prize in Physiology or Medicine 
1997 “for his discovery of Prions 
‐ a new biological principle 
of infection.” See  http://
nobelprize.org/nobel_prizes/
medicine/laureates/1997/ 
(WebLink 16.4).

The National Institute of Allergy 
and Infectious Diseases (NIAID) 
at the National Institutes of 
Health offers information on viral 
and other diseases at  http://
www.niaid.nih.gov/topics/Pages/
default.aspx (WebLink 16.5).

taBle 16.1 Classification of viruses based on nucleic acid composition. Note that NCBI Bioproject accessions begin 
prJNa and typically encompass several segments. adapted from Schaechter et al. (1999) with permission from 
Wolters Kluwer and with data from NCBI.

Nucleic acid Strands Family Example Accession Base pairs

RNA Single Picornaviridae Human poliovirus 1 NC_002058.3 7,440

Togaviridae Rubella virus NC_001545.2 9,762

Flaviviridae Yellow fever virus NC_002031.1 10,862

Coronaviridae Coronavirus NC_002645.1 27,317

Rhabdoviridae Rabies virus NC_001542.1 11,932

Paramyxoviridae Measles virus NC_001498.1 15,894

Orthomyxoviridae Influenza A virus PRJNA14892 13,498

Bunyaviridae Tula virus (a hantavirus) PRJNA14936 12,066

Arenaviridae Lassa fever virus PRJNA14864 10,681

Retroviridae HIV NC_001802.1 9,181

Double Reoviridae Rotavirus C PRJNA16140 17,910

DNA Single Parvoviridae Parvovirus H1 NC_001358.1 5,176

Mixed Hepadnaviridae Hepatitis B NC_003977.1 3,215

Double Papovaviridae JC virus NC_001699.1 5,130

Adenoviridae Human adenovirus, type 17 AC_000006.1 35,100

Herpesviruses Human herpesvirus 1 NC_001806.1 152,261

Poxviridae Vaccinia NC_006998.1 194,711

http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
http://nobelprize.org/nobel_prizes/medicine/laureates/1997/
http://nobelprize.org/nobel_prizes/medicine/laureates/1997/
http://www.niaid.nih.gov/topics/Pages/default.aspx
http://www.niaid.nih.gov/topics/Pages/default.aspx
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taBle 16.2 Vaccine-preventable viral diseases. Data from  http://www.cdc.gov/
vaccines/vpd-vac/default.htm (Weblink 16.26).

Disease Virus Comment

Hepatitis A Hepatitis A virus Causes liver disease

Hepatitis B Hepatitis B virus Causes liver disease

Influenza Influenza type A or B Causes 20,000 deaths per year (US)

Measles Measles virus See below

Mumps Rubulavirus A disease of the lymph nodes

Poliomyelitis Poliovirus (three 
serotypes)

Inflammation of the gray matter of the spinal cord; 
kills neurons

Rotavirus Rotavirus Most common cause of diarrhea in children; kills 
600,000 children annually worldwide

Rubella Genus rubivirus Also called German measles

Smallpox Variola virus Eradicated in 1977

Varicella Varicella‐zoster virus About 75% of all children contract varicella by age 15

FIgure 16.3 Per‐site mutation rate as a function of genome size. The small viroid with the extremely 
high mutation rate is hammerhead viroid CChMVd. RNA viruses include tobacco mosaic virus, human 
rhinovirus, poliovirus, vesicular stomatitis virus, bacteriophage Φ6, and measles virus. Single‐stranded 
DNA viruses are bacteriophage ΦX174 and bacteriophage m13. Double‐stranded DNA viruses are 
 bacteriophage λ, herpes simplex virus, bacteriophage T2, and bacteriophage T4. Bacteria is Escherichia 
coli. Lower eukaryotes are Saccharomyces cerevisiae and Neurospora crassa. Higher eukaryotes are 
 Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and Homo sapiens. Redrawn from 
Gago et al. (2009). Reproduced with permission from AAAS.
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Viruses infect plants and inflict disease, causing great economic losses. Some plant 
viruses have limited economic impact but are considered important scientifically as 
model systems to understand the biology of viruses, plants, and/or their interactions. 
Scholthof et al. (2011) polled the virology community and proposed a list of the most 
important plant viruses, including the following. (1) Tobacco mosaic virus, identified as 
an infectious entity in 1898, is an important model. It was the first plant virus RNA to be 

http://www.cdc.gov/vaccines/vpd-vac/default.htm
http://www.cdc.gov/vaccines/vpd-vac/default.htm
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sequenced. (2) Tomato spotted wilt virus causes >US$ 1 billion in crop losses annually. 
(3) Tomato yellow leaf curl virus, transmitted by the whitefly Bemisia tabaci, is a rapidly 
emerging disease of tomatoes. (4) Cucumber mosaic virus infects >1200 plant species in 
>100 families including tomato, tobacco and pepper. (5) Potato virus Y, transmitted by 
over 40 aphid species, infects Solanaceae including potatoes. Listing these viruses helps 
to establish research priorities; see Scholthof et al. for more information about these par-
ticular agents.

Diversity and evolution of Viruses

A practical way to access the diversity of known viruses is through the NCBI website. 
We introduced the NCBI Genome resources in Chapter 15. This site includes dedicated 
resources for viruses (Fig. 16.4) as well as specialized sites for influenza virus, retrovi-
ruses, SARS, Ebola virus, and links to the ICTV database.

A premise of taxonomy is that it should represent phylogeny. In the case of viruses, 
their unique, elusive, and sometimes fragile nature makes it difficult to trace their 
 evolution in as comprehensive a fashion as can be accomplished with archaea,  bacteria, 
and  eukaryotes. Like living organisms, viruses are subject to mutation (genetic variabil-
ity) and selection. Viral genomes present special difficulties for evolutionary studies, 
however:

 • Viruses tend not to survive in archeological or historical samples. There is con-
siderable evidence for the existence of viruses over 10,000 years ago, based upon 
human skeletal remains, historical accounts, and other historical artifacts. However, 
ancient viral DNA or RNA has not been recovered. As discussed in “Influenza Virus”, 
 influenza virus from the deadly 1918 pandemic has been isolated, sequenced, and 

Currently (October 2014) there 
are ~4200 viral genomes and 
additional phage genomes listed 
at the NCBI Genome site. The 
NCBI Genome homepage is  

 http://www.ncbi.nlm.nih.gov/
genome/ (WebLink 16.3) with a 
link to virus resources.

taBle 16.3 Seven viruses that cause cancer in humans. Note that eBV is also called human herpesvirus 4 (hhV-4). 
adapted from Moore and Chang (2010) with permission from Macmillan publishers.

Virus Genome Notable cancers

Year first 

described

Epstein–Barr virus (EBV) Double‐stranded DNA 
herpesvirus

Most Buritt’s lymphoma and nasopharyngeal 
carcinoma; most lymphoproliferative 
disorders; some Hodgkin’s disease; 
some nonHodgkin’s lymphoma; some 
gastrointestinal lymphoma

1964

Hepatitis B virus (HBV) Single‐stranded and double‐
stranded DNA hepadenovirus

Some hepatocellular carcinoma 1965

Human T‐lymphotropic 
virus-I (HTLV-I)

Positive-strand, single-stranded 
RNA retrovirus

Adult T cell leukaemia 1980

High-risk human 
papillomaviruses (HPV) 
16 and HPV 18 (some 
other α‐HPV types are 
also carcinogens)

Double‐stranded DNA 
papillomavirus

Most cervical cancer and penile cancers and 
some other anogenital and head and neck 
cancers

1983–1984

Hepatitis C virus (HCV) Positive‐strand, single‐stranded 
RNA flavivirus

Some hepatocellular carcinoma and some 
lymphomas

1989

Kaposi’s sarcoma 
herpesvirus (KSHV; 
also known as human 
herpesvirus 8 (HHV‐8))

Double‐stranded DNA 
herpesvirus

Kaposi’s sarcoma, primary effusion 
lymphoma and some multicentric 
Castleman’s disease

1994

Merkel cell polyomavirus 
(MCV)

Double‐stranded DNA 
polyomavirus

Most Merkel cell carcinoma 2008

http://www.ncbi.nlm.nih.gov/genome/
http://www.ncbi.nlm.nih.gov/genome/
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functionally analyzed. We also describe below a giant virus recovered from 30,000‐
year‐old permafrost.

 • The great diversity of viral genomes precludes us from making comprehensive phy-
logenetic trees based upon molecular sequence data that span the entire set of viruses. 
This reflects the complex molecular evolutionary events that form viral genomes 
(McClure, 2000).

 • Many viral genomes are segmented. This allows segments to be shuffled among 
progeny, producing a great diversity of viral subtypes (see influenza virus and HIV 
sections below). Pond et al. (2012) discuss recombination and HyPhy software for 
the detection of recombination and selection.

For a variety of viral families, phylogenetic trees have been generated. These are 
 indispensable in establishing the evolution, host specificity, virulence, and other biological 
properties of viral species. We examine phylogenetic reconstructions of the herpesviruses 
and HIV. Phylogenetic trees have been generated for other viruses from measles to hepatitis.

HyPhy (Hypothesis testing using 
Phylogenies) software is available 
from  http://hyphy.org/  
(WebLink 16.6). Some HyPhy 
analyses are incorporated in 
MEGA (Chapter 7).

FIgure 16.4 The viral genomes page at NCBI provides information and resources for the study of viruses. There are links to tools (such 
as PASC for comparisons of viral genomes) and to specialized NCBI sites on retroviruses, SARS, and influenza viruses. 

Source: Viral Genomes, NCBI.

http://hyphy.org/
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We showed the exceptionally large mutation rate for a viroid (Fig. 16.3). There are 
progressively lesser mutation rates in RNA viruses, single‐stranded DNA viruses, double‐
stranded DNA viruses, bacteria, and eukaryotes. As shown in the figure, higher mutation 
rates tend to be associated with smaller genome sizes. Duffy et al. (2008) reviewed the rates 
of evolutionary change in viruses. The mutation rate also correlates with the fidelity of the 
polymerase used in replication. RNA viruses use RNA‐dependent RNA polymerases, and 
these typically lack proofreading activity. This leads to a mutation rate that may be 1 million 
to 10 million times greater than that of DNA genomes (McClure, 2000).  Retroviruses such 
as HIV use RNA‐dependent DNA polymerases, that is, reverse transcriptases, also with low 
fidelity. DNA viruses use DNA polymerases, whether encoded by virus or host.

In addition to a high mutation rate, many viruses also have an extremely high rate 
of replication. A single host cell can produce 10,000 poliovirus particles, and an HIV‐
infected individual can produce 109 virus particles per day. For hepatitis C, 1012 virions 
per day can be produced (Neumann et al., 1998). This can lead to the formation of quasi‐
species (a population of related but nonidentical viruses).

Viruses are often subjected to intense selective pressures such as host immune 
responses or antiviral drug therapies. The rapid mutation rate of HIV‐1 ensures that some 
versions of the virus are likely to contain mutations conferring resistance to retroviral 
drugs, and these HIV‐1 molecules will be selected for.

Metagenomics and Virus Diversity

Historically, we have classified viruses based on observation of their effects (e.g., by study-
ing plant or human diseases caused by viruses), based on morphology, or based on the nature 
of the nucleic acid in purified virus particles. Metagenomics projects survey large amounts 
of genomic sequence from environmental samples or from host organisms  (Chapter 15). 
Several metagenomics studies have resulted in the identification of large numbers of virus 
genomes (reviewed in Edwards and Rohwer, 2005; Mokili et al., 2012; Willner and Hugen-
holtz, 2013). Rosario and Breitbart (2011) summarize 24 published viral metagenomes, 
noting that half the sequences are previously unknown. Other novel viral genome sequences 
unexpectedly include metabolic genes found in cellular  organisms.

A major metagenomics approach is to characterize DNA sequences in environmen-
tal samples. J. Craig Venter and colleagues surveyed marine planktonic microbiota in a 
Global Ocean Sampling expedition (Rusch et al., 2007). Forty‐one samples were collected 
over a range of 8000 km, and 7.7 million sequencing reads were obtained. Combining 
their results with the previous Sargasso Sea survey (Venter et al., 2004), they reported the 
identification of 6.1 million proteins. There was a disproptionately large number of novel 
protein sequences assigned to viral genomes, consistent with the view that we have not 
yet achieved a broad sampling of viral diversity. Venter’s group extended their study to the 
Indian Ocean, sampling viral fractions of different size classes and identifying putative 
host genera such as Proclorococcus and Acanthochlois (Williamson et al., 2012). Culley 
et al. (2006) also reported a diverse set of previously unknown RNA viruses in seawater.

Another metagenomic approach is to sample genomic DNA from individual organ-
isms. In particular the human gut is colonized by hundreds or thousands of microbial spe-
cies, including bacteria and archaea. Many of these species are infected by viruses (Reyes 
et al., 2012). One goal is to identify viral pathogens in patients (Bibby, 2013). This can 
be done for clinical diagnostics, to detect and respond to viral pathogen outbreaks, or to 
discover new viruses. For example, acute diarrhea causes ∼1.8 million deaths in children 
each year (see Fig. 21.3), and causes are known in ∼60% of cases. For the remaining 40% 
of cases the etiology is undetermined and could involve unknown viruses. Various groups 
have therefore performed sequencing of viral particles from feces of those who are healthy 
or have diarrhea (Breitbart et al., 2003; Zhang et al., 2006; Finkbeiner et al., 2008).



CoMpLETED GENoMEs: ViRusEs 765

Correlation does not imply causation: the presence of a novel virus in the feces of a 
patient does not imply that it necessarily causes diarrhea. According to Koch’s postulates, 
there are several criteria needed to establish a causal relationship between a microbe and 
a disease. Jakob Henle and his student Robert Koch developed these rules in the late nine-
teenth century in studies of anthrax and tuberculosis, and they have also been applied to 
viruses. The postulates, quoted from Evans (1976), are:

 1. The parasite occurs in every case of the disease in question and under circumstances 
which can account for the pathological changes and clinical course of the disease.

 2. It occurs in no other disease as a fortuitous and nonpathogenic parasite.
 3. After being fully isolated from the body and repeatedly grown in pure culture, it can 

induce the disease anew.

This third postulate was often difficult to achieve because many bacteria could not be 
grown in culture, and often the disease could not be reproduced in an animal model. For 
viruses, which require a host in which to propagate, the Henle–Koch postulates were even 
harder to fulfill. In the late 1950s Robert Huebner suggested guidelines for establishing a 
virus as a cause of a human disease, including the following (adapted from Evans, 1976):

 1. The virus must be a “real” entity established by passage in animal or tissue cultures.
 2. The virus must originate from human specimens (as opposed to representing a viral 

contaminant of experimental animals, cells, or media it is grown in).
 3. Active infection should produce an antibody response.
 4. A new virus should be fully characterized and compared with other agents (e.g., host 

and host‐cell ranges, pathologic lesions).
 5. The virus must be constantly associated with a specific illness.
 6. Human volunteers inoculated with the newly recognized agent in double‐blind stud-

ies should reproduce the clinical syndrome. (Such studies may be prohibited today on 
ethical grounds.)

 7. Epidemiological studies should identify patterns of infection and disesase.
 8. A specific vaccine should prevent the disease, therefore establishing an agent as the 

cause.

Today metagenomics studies can identify viruses in patients with a disease (Tang and 
Chiu, 2010). The Huebner guidelines may be helpful in evaluating the relevance of the 
virus to the clinical phenotype.

BIoInformatIcs approaches to proBlems  
In VIrology
The tools of bioinformatics are well suited to address some of the outstanding problems 
in virology:

 • Why does a virus such as HIV‐1 infect one species selectively (human) while a closely 
related virus (simian immunodeficiency virus) infects monkeys but not humans? Analysis 
of the sequence of the viruses as well as the host cell receptors can address this question.

 • Why do some viruses change their natural host? In 1997 a chicken influenza virus 
infected 18 humans, killing 6. Are there changes in the genome of the virus, of the 
host, or both that facilitate cross‐species changes in specificity?

 • Why are some viral strains deadlier than others? We explore the properties of the 
1918 influenza virus that killed as many as 50 million people.

 • What are the mechanisms of viral evasion of host immune systems? We see below 
(“Herpesvirus”) how some herpesviruses acquire viral homologs of human immune 
system molecules and therefore interfere with human antiviral mechanisms.
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 • Where did viruses originate? There are several theories (Holmes, 2011). Their origin 
could be ancient, even predating the last universal cellular ancestor (often abbrevi-
ated LUCA). The discovery of giant viruses such as mimivirus (described in “Giant 
Viruses” below) could support this model. Alternatively, viruses could have emerged 
relatively recently, having been derived from more complex intracellular parasites 
that eliminated many nonessential features. They could also be derived from normal 
cellular components that now replicate autonomously. Phylogenetic analyses could 
help resolve these theories. Edward Holmes (2008) has reviewed the evolutionary 
history of DNA and RNA viruses.

 • Which vaccines are most likely to be effective? There are two main approaches to 
developing vaccines for viruses that display a great amount of molecular sequence 
diversity. One approach is to select isolates of a particular subtype based on regional 
prevalence. A second approach is to deduce an ancestral sequence or a consensus 
sequence for use as an antigen in vaccine development (Gaschen et al., 2002). These 
approaches depend on molecular phylogeny.

In the remainder of this chapter we examine six specific viruses of interest, pre-
sented in order from smallest to largest genome size. (1) Human Immunodeficiency Virus 
(HIV) is a retrovirus associated with Acquired Immune Deficiency Syndrome (AIDS). 
(2) Influenza viruses cause human sickness and death each year, with a constant threat of 
potentially causing a pandemic such as that which caused tens of millions of deaths one 
century ago. (3) Measles virus, responsible for killing as many as half a million children 
each year, is an example of a virus that changes its antigenicity very slowly. (4) We intro-
duce Ebola virus, a recently emerging threat. (5) We explore herpesviruses, and introduce 
PASC for pairwise comparison of viruses. (6) We explore pandoraviruses which have rel-
atively enormous sizes and mysterious roles in biology, introducing MUMmer software 
to compare two large genome sequences.

human ImmunodefIcIency VIrus (hIV)
Human immunodeficiency virus is the cause of AIDS (reviewed in Meissner and Coffin, 
1999). Early after its prominent emergence in the 1980s, HIV was uniformly fatal. Most 
of the symptoms of AIDS are not caused directly by the virus, but instead are a conse-
quence of the ability of the virus to compromise the host immune system. HIV infection 
therefore leads to disease caused by opportunistic organisms.

Currently, over 34 million people are infected with HIV worldwide, with 2.5 million 
new cases in 2011. Nearly 30 million people have died from AIDS since the the 1980s, with 
the greatest burden in sub‐Saharan Africa. The prevalence of AIDS is increasing by about 
3% per year. Although mortality rates are declining, HIV/AIDS still ranks as the fifth leading 
cause of global disability‐adjusted life years (DALYS) in 2010 (Ortblad et al., 2013). There 
have been many multinational efforts to combat HIV/AIDS across disciplines from treatment 
to prevention (Piot et al., 2004). For broad surveys of the state of HIV policy and research, 
see the compendia of articles in Science and Nature (Mandavilli, 2010; Roberts, 2012). 
Barré‐Sinoussi et al. (2013) and Ciuffi and Telenti (2013) review aspects of HIV research.

HIV‐1 and HIV‐2 are retroviruses of the group lentivirus. The viruses probably orig-
inated in sub‐Saharan Africa, where the diversity of viral strains is greatest and the infec-
tion rates are highest (Sharp et al., 2001). The primate lentiviruses occur in five major 
lineages, as shown by a phylogenetic tree based on full‐length pol protein sequences 
(Fig. 16.5a; see arrows 1–5; Hahn et al., 2000; see also Rambaut et al., 2004; Heeney et al., 
2006 and a review by Castro‐Nallar et al., 2012). These five lineages are:

 1. Simian immunodeficiency virus (SIV) from the chimpanzee Pan troglodytes 
(SIVcpz), together with HIV‐1;

Information about AIDS is 
available at  http://www.niaid 
.nih.gov/topics/HIVAIDS/Pages/
Default.aspx (WebLink 16.7), 
an NIH website. Information 
on prevalence is from the 
Centers for Disease Control and 
Prevention at  http://www 
.cdc.gov/hiv/library/factsheets/ 
(WebLink 16.8) and UNAIDS and 
the World Health Organization 
at  http://www.unaids.org/ 
(WebLink 16.9). We discuss 
DALYS in Chapter 21.

http://www.niaid.nih.gov/topics/HIVAIDS/Pages/Default.aspx
http://www.cdc.gov/hiv/library/factsheets/
http://www.unaids.org/
http://www.niaid.nih.gov/topics/HIVAIDS/Pages/Default.aspx
http://www.cdc.gov/hiv/library/factsheets/
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 2. SIV from the sooty mangabeys Cerecocebus atys (SIVsm), together with HIV‐2 and 
SIV from the macaques (genus Macaca; SIVmac);

 3. SIV from African green monkeys (genus Chlorocebus; SIVagm);
 4. SIV from Sykes’ monkeys, Cercopithecus albogularis (SIVsyk); and
 5. SIV from l’Hoest monkeys, Cercopithecus lhoesti (SIVlhoest); SIV from suntailed 

monkeys (Cercopithecus solatus; SIVsun); and SIV from a mandrill (Mandrillus 
sphinx; SIVmnd).

A prominent feature of phylogenetic analyses such as those in Fig. 16.5a is that viruses 
appear to have evolved in a host‐dependent manner, as we discuss below in  “Herpesvirus.” 
HIV‐related viruses infecting any particular nonhuman primate species are more closely 

Prevalence of a disease (or 
infection) is the proportion of 
individuals in a population who 
have a disease at a particular 
time. Prevalence does not 
describe when individuals 
contracted a disease. Incidence 
is the frequency of new cases 
of a disease that occur over a 
particular time. For example, the 
incidence of a disease might 
be described as 10 new cases 
per 1000 people in the general 
population in a given year.

(a)

(b)
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FIgure 16.5 Evolutionary relationships of primate lentiviruses. (a) Full-length Pol protein sequences 
were aligned and a tree was created using the maximum‐likelihood method. There are five major  lineages 
(arrows 1–5). The scale bar indicates 0.1 amino acid replacements per site after correction for multiple 
hits. (b) The HIV‐1/SIVcpz lineage is displayed based on a maximum‐likelihood tree using Env protein 
sequences. Note that the three major HIV‐1 groups (M, N, O; arrows 6–8) are distinguished. The scale 
bar is the same as in (a). From Hahn et al. (2000).
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related to one another than to viruses from other species. For HIV‐2, transmission from 
the sooty mangabeys was indicated by five lines of evidence (Hahn et al., 2000):

 1. similarities in the genome structures of HIV‐2 and SIVsm;
 2. phylogenetic relatedness of HIV‐2 and SIVsm (see Fig. 16.5, arrow 4);
 3. prevalence of SIVsm in the natural host;
 4. geographic coincidence of those affected and the natural host; and
 5. plausible routes of transmission, such as exposure of humans to chimpanzee blood in 

markets.

Similar arguments have been applied to HIV‐1, which probably appeared in Africa in 
1930–1940 as a cross‐species contamination by SIVcpz. HIV‐1 occurs in three major sub-
types, called M, N, and O. This is consistent with the occurrence of three separate SIVcpz 
transmissions to humans: M is the main group of HIV‐1 viruses; O is an outlier group; and N is 
also distinct from M and O. The three main HIV‐1 subtypes are apparent in a phylogenetic tree 
generated from full‐length Env protein sequences (Fig. 16.5b, arrows 6–8; Hahn et al., 2000).

SIV has an unexpectedly deep history. Worobey et al. (2010) identified SIV in pri-
mates living on an island of Equatorial Guinea that was isolated by rising sea levels 
12,000 years ago. Their phylogenetic analyses suggested that SIV has been present in 
primates for some 32,000 years. Human may therefore have encountered SIV many times 
in the past, at least sporadically.

We discussed the NCBI entry for HIV‐1 in Chapter 2 (“HIV‐1 pol”); the genome is 
9181 bases and contains 9 open reading frames that encode proteins. The structure and 
function of these proteins have been characterized (Briggs and Kräusslich, 2011; Engel-
man and Cherepanov, 2012). While the HIV‐1 genome is small and there are few gene 
products, GenBank currently has ∼600,000 nucleotide sequence records and ∼700,000 
protein records. The reason for this enormous quantity of data is that HIV‐1 mutates 
extremely rapidly, producing many subtypes of the M, N, and O variants. Researchers 
therefore sequence HIV variants very often. A major challenge for virologists is to learn 
how to manipulate such large amounts of data and how to use those data to find mean-
ingful approaches to treating or curing AIDS. As shown in Figure 16.3, other RNA viruses 
have even higher mutation rates. This highlights the additional important roles of recom-
bination and natural section from immune evasion (Holmes, 2009).

While HIV‐1 exhibits great diversity both globally and within each infected  individual, 
it is possible to characterize the genome using next‐generation sequencing. Gall et al. 
(2012) developed a method to amplify, sequence, and assemble any HIV‐1 genome 
regardless of sequence or subtype. This approach also reveals muations  associated with 
drug resistance in clinical samples.

We next describe two bioinformatics resources for the study of HIV molecular 
sequence data: NCBI and LANL.

NCBI and laNl resources for hIV-1

The NCBI website offers several ways to study retroviruses, including HIV. You can 
access information on HIV‐1 via the Genome site at NCBI, as we also describe below in 
the relevant sections for influenza viruses, HHV‐8, and megaviruses.

NCBI also offers a dedicated resource for the study of retroviruses (Fig. 16.6). This 
site includes the following:

 • a genotyping tool based upon BLAST searching;
 • a multiple sequence alignment tool specific to retroviral sequences;
 • a reference set of retroviral genomes;
 • specific pages with tools to study HIV‐1, HIV‐2, SIV, human T‐cell lymphotropic 
virus type 1 (HTLV), and STLV;

 • a listing of the previous week’s publications on retroviruses;

To see NCBI Nucleotide records 
for HIV‐1, visit the Taxonomy 
browser page and enter HIV‐1. If 
you limit the output in a search of 
the Entrez nucleotide database 
to RefSeq entries, there is only 
one entry: the complete HIV‐1 
genome (NC_001802.1).

The NCBI Genome section  
(  http://www.ncbi.nlm.nih.
gov/genome, WebLink 16.3) 
has a virus link as well as a 
browse feature to link to HIV‐1 
(NC_001802). Clicking on the 
name of the virus provides a link 
to the NCBI taxonomy browser, 
which includes information on 
the lineage of HIV‐1 (Viruses; 
Retroid viruses; Retroviridae; 
Lentivirus; Primate lentivirus 
group) as well as links to dozens 
of HIV‐1 variants. From the 
Genome page, by clicking on the 
accession number NC_001802 a 
link to the Nucleotide (GenBank) 
entry for HIV‐1 is provided.

http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
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 • a listing of the previous week’s GenBank releases (many hundreds of new HIV‐1 
sequences are deposited weekly); and

 • links to external retroviral website resources.

A fundamental resource for the study of several virus types including HIV is the Los 
Alamos National Laboratory (LANL) which operates a group of HIV databases. The HIV 
Sequence Database is an important, comprehensive repository of HIV sequence data. It 
allows searches for sequences by common names, accession number, PubMed identifier, 
country in which each case was sampled, and likely country in which infection occurred. 
Sequences may be retrieved as part of a multiple sequence alignment or unaligned, and 
groups of sequences derived from an individual patient may be retrieved. The site includes 
a variety of specialized tools, including:

 • an HIV BLAST server;
 • SNAP (Synonymous/Nonsynonymous Analysis Program), a program that calculates 
synonymous and nonsynonymous substitution rates;

 • Recombinant Identification Program (RIP), a program that identifies mosaic viral 
sequences that may have arisen through recombination;

 • a multiple alignment program called MPAlign (Gaschen et al., 2001) that uses 
HMMER software (Chapter 6);

 • PCoord (Principal Coordinate Analysis), a program that performs a procedure similar to 
principal components analysis (Chapter 11) on sequence data based on distance scores; and

 • a geography tool that shows both total HIV infection levels (either worldwide or by 
continent) as well as the subtype distribution of HIV (Fig. 16.7a, b).

 “Retrovirus Resources” are 
available at  http://www 
.ncbi.nlm.nih.gov/retroviruses/ 
(WebLink 16.10). NCBI also 
offers a database of interactions 
between HIV and human proteins 
(  http://www.ncbi.nlm.nih.gov/
projects/RefSeq/HIVInteractions/,  
WebLink 16.11).

The LANL HIV databases are 
available at  http://hiv‐web.lanl 
.gov/ (WebLink 16.12). This site 
offers three databases: sequence, 
immunology, and vaccine trials. 
In the HIV Sequence Database 
you can find the geography tool 
by selecting “Tools” and then 
“Geography.”

FIgure 16.6 Retroviruses resource. 

Source: Retroviruses, NCBI (  http://www.ncbi.nlm.nih.gov/retroviruses/).

http://www.ncbi.nlm.nih.gov/retroviruses/
http://www.ncbi.nlm.nih.gov/retroviruses/
http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/
http://www.ncbi.nlm.nih.gov/projects/RefSeq/HIVInteractions/
http://hiv%E2%80%90web.lanl.gov/
http://www.ncbi.nlm.nih.gov/retroviruses/
http://hiv%E2%80%90web.lanl.gov/
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(a) LANL map of HIV infection subtypes (worldwide)

(b) LANL map of HIV infection subtypes (Europe)

01_AE 23902   3.9%
02_AG 13657   2.8%
A 36098   7.5%
B 279610  57.5%
C 74696   15.4%
D 17796   3.7%
F 4511   0.9%
G 5399   1.1%
other 28726   5.9%
 ------  -----
total 484395  100.0%

5000 km

1000 km

world

FIgure 16.7 The geography tool at LANL allows you to view HIV infection subtypes (a) globally or (b) by continent (Europe is shown). 
In (a), the total and dominant subtypes are indicated. The subtype distribution is displayed using pie charts. 

Source: Los Alamos National Security, LLC, for the US Department of Energy (  http://www.hiv.lanl.gov/).

http://www.hiv.lanl.gov/
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Influenza VIrus
The “Spanish” influenza pandemic of 1918–1919 infected hundreds of millions of peo-
ple, and is estimated to have killed 50 million people. The death rate among otherwise 
healthy young adults was especially high. Why was it so deadly? Influenza virus pan-
demics returned in the 1957 “Asian” flu and the 1968 “Hong Kong” flu. More recently, 
the avian influenza subtype H5N1 infected over 300 humans and killed over 200, and 
also led to the slaughter of millions of birds. In 2013 an H7N9 influenza virus of avian 
origin struck in China, killing 37 of 132 infected people. Many wild birds such as 
ducks, geese, swans, and gulls are infected with influenza A (Olsen et al., 2006), often 
not causing symptoms in birds. Will an avian influenza virus such as H5N1 or H7N9 
infect humans globally? What are the properties of the influenza genome, and how can 
genome analyses help us to predict the next epidemic and devise strategies to prevent 
and/or treat its effects? In addition to the deadly avian flu strains, other subtypes of 
influenza virus are estimated to cause 250,000–500,000 deaths annually (36,000 deaths 
annually in the United States).

The influenza virus (of the family Orthomyxoviridae) presents in three types (A, B, 
and C) based on genetic and antigenic differences (Pleschka, 2013; table 16.4).  Influenza 
virus A is most responsible for human disease. Each influenza virus strain consists of 
about 12,500–14,500 bases of single‐stranded negative‐sense RNA and encoding 9–12 
genes (table 16.5). The genome of influenza A consists of eight  segments (ranging in 
length from 890 to 2341 nucleotides) named PB1, PB2, PA, HA, NP, NA, M, and NS 
(Fig. 16.8). The hemagglutinin (HA) and neuraminidase (NA) segments encode two key 
surface glycoproteins that together define viral subtypes. The HA and NA segments occur 

For information on influenza 
virus see the Centers for Disease 
Control website  http://www 
.cdc.gov/flu/about/viruses/ 
(WebLink 16.13). The World Health 
Organization (WHO) maintains a 
listing of confirmed human cases 
of avian influenza A (H5N1)  
(  http://www.who.int/topics/
influenza/en/, WebLink 16.14) with 
links to updates including maps of 
global influenza cases. From 2003 
to 2009 there were 489 cases and 
289 deaths attributed to H5N1.

taBle 16.4 Influenza viruses: examples of family Orthomyxoviridae complete genomes.

Virus Source information Segments

Length

(nt) Proteins

Influenzavirus A

Influenza A virus  
(A/Goose/Guangdong/1/1996(H5N1))

Strain:  
A/Goose/Guangdong/1/96(H5N1)

8 13,590 12

Influenza A virus 
(A/Hong Kong/1073/99(H9N2))

Serotype: H9N2; Strain:  
A/Hong Kong/1073/99

8 13,460 12

Influenza A virus 
(A/Korea/426/1968(H2N2))

Serotype: H2N2; Strain:  
A/Korea/426/68

8 13,460 12

Influenza A virus 
(A/New York/392/2004(H3N2))

Serotype: H3N2; Strain:  
A/New York/392/2004

8 13,627 12

Influenza A virus 
(A/Puerto Rico/8/1934(H1N1))

Serotype: H1N1; Strain:  
A/Puerto Rico/8/34

8 13,588 12

Influenzavirus B

Influenza B virus Strain: B/Lee/40 8 14,452 11

Influenzavirus C

Influenza C virus Strain: C/Ann Arbor/1/50 7 12,555  9

Isavirus

Infectious salmon anemia virus Isolate: CCBB 8 12,716 10

Thogotovirus

Thogoto virus Strain: SiAr 126 6 10,461  7

Source: NCBI Genomes, NCBI (  http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=11308, WebLink 16.27).

http://www.cdc.gov/flu/about/viruses/
http://www.who.int/topics/influenza/en/
http://www.who.int/topics/influenza/en/
http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=11308
http://www.cdc.gov/flu/about/viruses/
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taBle 16.5 genes in a representative Influenza a virus complete genome (a/puerto rico/8/34(h1N1)), taxonomy 
identifier 211044. 

Gene Segment Protein Accession

Length 

(amino acids) Name

PB2 1 NP_040987 759 RNA‐dependent RNA polymerase subunit PB2

PB1 2 NP_040985 757 RNA‐dependent RNA polymerase subunit PB1

PB1‐F2 2 YP_418248  87 PB1‐F2 protein

PA 3 NP_040986 716 RNA‐dependent RNA polymerase subunit PA

PA‐X 3 YP_006495785 252 RNA‐dependent RNA polymerase subunit PA‐X

HA 4 NP_040980 566 Haemagglutinin

NP 5 NP_040982 498 Nucleocapsid protein

NA 6 NP_040981 454 Neuraminidase

M2 7 NP_040979  97 Matrix protein 2

M1 7 NP_040978 252 Matrix protein 1

NS1 8 NP_040984 230 Nonstructural protein NS1

NS2 8 NP_040983 121 Nonstructural protein NS2

Source: NCBI Genomes, NCBI (  http://www.ncbi.nlm.nih.gov/genome/proteins/10290?project_id=15521).

FIgure 16.8 Schematic of the eight segments from a typical Influenza A virus (from NCBI). Note the link to “protein details” which 
provides tabular and graphical overviews of the protein content of each genome. The gene names and their corresponding products are NA 
(neuraminidase), PB2 (polymerase Pb2), PA (polymerase PA), PA‐X (PA‐X protein), NS2 (nonstructural protein 2), M2 (matrix protein 2), 
M1 (matrix protein 1), NP (nucleoprotein), PB1 (polymerase Pb1), and HA (hemagglutinin). 

Source: NCBI.

NA
PB2

PA
NS2
M2
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PA-X
NS1
M1

PB1-F2

http://www.ncbi.nlm.nih.gov/genome/proteins/10290?project_id=15521
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in particular combinations that account for the antigenic variation of the virus. These 
combinations include H1N1, H1N2, and H3N2. The 1918 pandemic was of the H1N1 
subtype, while subsequent 1957 and 1968 pandemics were dominated by the H2N2 and 
H3N2 subtypes, respectively (Fig. 16.9). In the 1957 and 1968 pandemics the viruses 
resembled human strains into which avian HA, NA, and PB1 molecules became incorpo-
rated, while the recent Asian outbreaks are caused by avian strains that infected humans.

Further insight into the structure of influenza virus helps explain its mechanisms of 
viral transcription and replication (Ruigrok et al., 2010). Moeller et al. (2012) performed 
cryogenic electron microscopy to determine the structure of ribonucleoprotein complexes 
(including the viral genome, polymerase, and nucleoprotein NP).

An NIH Influenza Genome Sequencing Project (IGSP) sequenced ∼14,000 full 
influenza genomes (by early 2015), an extraordinary achievement in genomics. All the 
sequence data are available through GenBank (Bao et al., 2008). This project provides an 
opportunity to address a range of fundamental questions about influenza viruses (summa-
rized from Holmes, 2009; see also Janies et al., 2010), as follows.

 1. Reassortment of viral segments is common, often altering antigenic properties so that 
vaccines fail. In earlier studies, Ghedin et al. (2005) sequenced 209 human influenza 
A genomes taken from one geographic location (New York State) over a period of 
several years (1998–2004). They plotted the amino acid positions from 207 viruses 
as a function of year and presented evidence for segment exchange between viruses. 
Reassortment among recent H3N2 strains was also reported by Holmes et al. (2005). 
Large‐scale surveillance through genome sequencing permits the frequency of muta-
tions and segment exchanges to be estimated, both within human influenza strains 
and between avian and human subtypes.

 2. Multiple, diverse lineages of the same subtype often circulate in human populations, 
with similar viral diversity in relatively isolated communities as in major cities.

 3. East and Southeast Asia likely serve as a global source for human influenza A virus. 
Determining such sources may facilitate vaccine design.

 4. Drug resistance can follow complicated patterns. For example, resistance to a class of 
antiviral drugs (adamantanes) was caused by a Ser31Asn amino acid substitution in 
the viral M2 protein encoding an ion channel. This mutation may have been linked to 
a second mutation elsewhere in the viral genome however, such that drug resistance 
emerged even in locations where these drugs are only rarely used.

 5. It is of interest to relate the viral genomic sequence data (i.e., the genotype) to the 
clinical presenation (i.e., the phenotype) which may range from subclinical to severe. 
The continued sequencing of influenza genomes may facilitate genotype–phenotype 
studies.

Analysis of genomes of avian influenza isolates has yielded important information 
about the evolution of influenza A genes. Obenauer et al. (2006) analyzed 169 complete 
avian influenza genomes and reported strong positive selection for an alternatively spliced 
transcript of the PB1 gene (the nonsynonymous to synonymous substitution rate ratio dN/
dS was over 9; see Chapter 7). In addition to performing phylogenetic analyses to distin-
guish emerging viral clades, Obenauer et al. described “proteotyping” in which unique 
amino acid signatures of viral proteins are determined.

Reverse genetics approaches to influenza virus involve introducing targeted mutations 
into the genome (reviewed in Engelhardt, 2013). In a dramatic effort to understand the 
nature of the 1918 influenza virus, Jeffery Taubenberger, Terrence Tumpey and  colleagues 
isolated and determined its full genome sequence. Viral nucleic acid was purified from 
historic samples including an Alaskan woman and several soldiers who died of the 1918 
flu. Taubenberger et al. (2005) proposed that the 1918 virus was entirely of avian origin 
(in contrast to the 1957 and 1968 strains that were reassortant viruses). Tumpey et al. 

The National Institute of Allergy 
and Infectious Disease (NIAID)  
at NIH hosts the Influenza 
Genome Sequencing Project  
(  http://www.niaid.nih.gov/
labsandresources/resources/
dmid/gsc/influenza/Pages/default 
.aspx, WebLink 16.15). Its genome 
sequences have been deposited 
in GenBank and can be accessed 
through the NCBI influenza virus 
resource (  http://www.ncbi.nlm 
.nih.gov/genomes/FLU/FLU.html, 
WebLink 16.16) which currently 
includes 300,000 flu records. This 
NCBI resource includes tools 
to select and align influenza 
virus genome sequences and to 
produce phylogenetic trees.

FIgure  16.9 Summary of 
influenza A strains. Analysis of 
archived tissue samples indicates 
that the H3 strain predominated 
prior to 1918, while the great pan-
demic of 1918 was of the H1N1 
subtype. Subsequent pandemics 
were associated with the H2N2 
and H3N2 subtypes, while the 
H1N1 subtype has gained in recent 
decades. Adapted from Enserink 
(2006). Used with permission.
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http://www.niaid.nih.gov/labsandresources/resources/dmid/gsc/influenza/Pages/default.aspx
http://www.niaid.nih.gov/labsandresources/resources/dmid/gsc/influenza/Pages/default.aspx
http://www.niaid.nih.gov/labsandresources/resources/dmid/gsc/influenza/Pages/default.aspx
http://www.niaid.nih.gov/labsandresources/resources/dmid/gsc/influenza/Pages/default.aspx
http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html
http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.html


Genome AnAlysis774

(2005) created a viral strain having the complete coding sequences of the eight viral seg-
ments of the 1918 virus. They introduced the 1918 virus into mice, where it caused a titer 
from 125 to 39,000 higher than in mice exposed to a contemporary, less virulent strain. 
Lethality was 100‐fold greater, with all mice dying within six days of infection (but none 
dying from the less‐virulent strain). This work carries considerable risk, but allows anal-
ysis of mutations that confer virulence. For example, a mutation found in the polymerase 
gene PB2 was also found in the virus isolated from a recent fatal case of bird flu involving 
the H7N7 subtype (von Bubnoff, 2005). Such analyses may aid surveillance efforts as we 
prepare for the next influenza pandemic (Taubenberger et al., 2007).

measles VIrus
Measles virus is one of the deadliest viruses in human history. Today, it is a leading cause 
of death in children in many countries. In 2008 all World Health Organization (WHO) 
members agreed to try to reduce measles mortality by 90% over the following decade. 
Simons et al. (2012) report progress from 535,300 deaths (95% confidence interval 
347,200–976,400) in 2000 to 139,300 deaths (71,200–447,800) in 2010. Liu  et al. (2012) 
described a similar estimate of global burden of death caused by measles of 114,000 
(92,000–176,000) in 2010.

Vaccines have helped to reduce the mortality and morbidity rates, but the presence of 
an immature immune system and maternal antibodies prevent successful immunization in 
newborns before nine months of age. The virus spreads by respiratory droplets, infecting 
epithelial cells in the respiratory tract. This disease has been considered a leading vac-
cine‐preventable cause of child mortality (Moss and Griffin, 2006).

The measles virus is a Morbillivirus of the Paramyxoviridae family, which includes 
mumps and respiratory syncytial virus. Rota and Bellini (2003) reviewed the worldwide 
distribution of 14 different measles virus genotypes. You can access a reference genome 
through the NCBI genomes resource (accession NC_001498.1). Measles virus consists 
of a nonsegmented, negative‐sense RNA genome protected by nucleocapsids and an 
envelope. The genome has 15,894 bases and six genes that encode eight proteins. These 
sequences can be accessed from the NCBI record (Fig. 16.10). Six genes are designated 
N (nucleocapsid), P (phosphoprotein), M (matrix), F (fusion), H (hemagglutinin), and 
L (large polymerase). The P gene is predicted to encode a: (1) ∼70 kDa phosphoprotein 
involved in transcription; (2) ∼20 kDa protein (nonstructural C protein) using an alter-
native start site on a different reading frame; and (3) ∼46 kDa protein consisting of the 
amino‐terminal region of P and a different, cysteine‐rich carboxy terminus.This third pro-
tein is generated by editing the measles genome to add one G to three G residues specified 
by the genome (Cattaneo et al., 1989).

The functions of the measles virus proteins have been assigned: N binds to genomic 
RNA and surrounds it; P and L form a complex involved in RNA synthesis; L is responsi-
ble for replication as well as transcription; M links the ribonucleoprotein to the envelope 
glycoproteins H and F which are inserted in the virus membrane on the surface of the 
virion; H binds the cell surface receptor through which the virus enters its host; and F is a 
fusion protein that promotes insertion of the virus into the host cell membrane. Rima and 
Duprex (2009) describe the roles of these proteins in the measles virus replication cycle 
and in transcription. In our discussion of protein structure (Chapter  13) we described 
intrinsically disordered proteins as lacking a fixed three‐dimensional shape. Ferron et al. 
(2006) and Bourhis et al. (2006) noted that N and P are both characterized by intrinsic 
disorder spanning regions of 50–230 residues, contributing to their multiple functions.

The functions of each of these proteins can also be inferred by performing BLAST 
searches. For the nonstructural C protein, a DELTA‐BLAST nonredundant (nr) search 
reveals homology to proteins encoded by the genomes of rinderpest virus, canine and 

Before the measles vaccination 
was introduced in the United 
States, there were 450,000 cases 
annually (and about 450 deaths). 
See  http://www.cdc.gov/nchs/
fastats/measles.htm  
(WebLink 16.17).

http://www.cdc.gov/nchs/fastats/measles.htm
http://www.cdc.gov/nchs/fastats/measles.htm
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phocine distemper virus, and dolphin morbillivirus. A DELTA‐BLAST nr search with the 
viral hemagglutinin reveals membership in a Pfam family (pfam00423, Hemagglutinin‐
neuraminidase), and there are several hundred matches to measles virus hemagglutinin. 
Repeat the search with the Entrez limit “hemagglutinin NOT measles virus[Organism]” 
and the results are reduced to hemagglutinins from the homologous morbilliviruses other 
than measles. A DELTA‐BLAST search identifies hundreds of additional hemagglutinins 
from viruses such as human parainfluenza, mumps, and a turkey rhinotracheitis virus.

Another member of the Paramyxoviridae family is rinderpest virus.This causes rin-
derpest, an ancient plague of cattle and dozens of other domestic and wild artiodactyl 
species (Barrett and Rossiter, 1999). This virus has had a devastating impact, killing vast 
numbers of ruminants and leading to human famine. In May 2011 it was announced that 
rinderpest has been eradicated, making it the second disease (after smallpox) to ever be 
eradicated (reviewed in Morens et al., 2011; Mariner et al., 2012). You can study the 
rinderpest genome through nucleotide accession NC_006296.2 or BioProject accession 
PRJNA15050.

eBola VIrus
Ebola is a filovirus that is transmitted between people by contact with body fluids. The 
first reported outbreak occurred in 1976. The largest outbreak began in 2014, centered 
initially in West Africa, and has generated worldwide concern about the spread of deadly 
epidemics. The virus causes hemorragic fever that is often fatal. Ebola virus is an envel-
oped, single‐stranded RNA negative‐strand virus of the family Filoviridae. The Zaire 
Ebola virus reference genome is 18,959 bases in length (accession NC_002549.1), with 
seven genes encoding nine proteins. The longest of these proteins, named L (accession 
NP_066251.1), is an RNA‐dependent RNA polymerase sharing 44–73% identity with 

FIgure 16.10 Eight proteins encoded by six genes of the measles virus genome. 

Source: Genome Annotation Report, NCBI Genome, NCBI.
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L proteins from other Ebola strains. Virus particles include a nucleocapsid consisting of 
the RNA genome and viral proteins L, NP and VP30 (two nucleoproteins), and VP35 (a 
polymerase complex protein). An outer viral envelope includes viral glycoproteins, with 
VP40 and VP24 (a matrix protein and a membrane protein) localized between the nucle-
ocapsid and the envelope.

Several bioinformatics resources are available to study the Ebola virus genome. NCBI 
offers an Ebola virus resource including databases of nucleotide and protein sequences 
and a genome browser. The University of California, Santa Cruz (UCSC) Genome 
 Bioinformatics site includes an Ebola genome browser. That includes Multiz multiple 
sequence alignments of 160 Ebola virus strains as well as the closely related Marburg 
virus. Other tracks include data on variants, immune epitope data, as well as links to 
three‐dimensional protein structures. Knowledge of the structure and function of the few 
genes and proteins that comprise this virus may lead to accelerated vaccine development 
and antiviral drug development.

herpesVIrus: from phylogeny to gene expressIon
RNA viruses such as influenza virus or HIV‐1 tend to have small genome sizes with a 
high evolutionary rate (Fig. 16.3). Infections tend to be acute, virulence can be very high, 
and cross‐species transmission is common (reviewed in Holmes, 2008). DNA viruses 
such as our next topic, herpesviruses, can have larger genome sizes. They tend to have 
lower evolutionary rates (e.g., 10–7 to 10–9 substitutions per site per year), persistent rather 
than acute infections, long‐term codivergence of viral subtypes with different species, and 
low virulence.

Herpesviruses are a diverse group of linear, double‐stranded DNA viruses that 
include herpes simplex, cytomegalovirus, and Epstein‐Barr virus (McGeoch et al., 2006). 
The herpesviruses are morphologically distinct from other viruses, having a genome 
(125–290 kb) packaged in an icosahedral capsid that is further surrounded by a tegument 
(a proteinaceous matrix) and a lipid envelope.

The herpesviruses have recently been reclassified by the ICTV (Davison et al., 
2009; Davison, 2010). The order Herpesvirales includes three families: Herpesviridae 
(including mammal, bird, and reptile viruses); Alloherpesviridae (piscine and amphib-
ian viruses); and Malacoherpesviridae (comprising a lone virus that infects invertebrate 
bivalves). There are a further 3 subfamilies, 17 genera, and 90 species.

McGeoch et al. (2006) analyzed well‐conserved genes to deduce a phylogeny 
of  the herpesviruses. Their phylogenetic reconstruction includes three subfamilies: 
  α‐herpesviruses (formally called Alphaherpesvirinae); β‐herpesviruses (Betaherpesvir-
inae); and γ‐herpesviruses (Gammaherpesvirinae). This and similar analyses (Davison, 
2002; McGeoch et al., 1995) provide great insight into the origin, diversity, and function 
of herpesviruses. Each herpesvirus is associated with a single host species (although some 
hosts, including humans, are infected by a variety of herpesviruses). This specificity sug-
gests that herpesviruses have coevolved with their hosts over millions of years. Within 
each of the three subfamilies, the branching order showing the emergence of various 
herpesvirus subtypes corresponds to the emergence of the corresponding host organ-
isms (Fig. 16.11). This suggests coevolution of the virus and host lineages. Figure 16.11a 
shows the timescale for the emergence of major Eutherian (placental mammal) lineages. 
 Figure 16.11b–d shows the three herpesvirus subfamilies with molecular clocks. Note for 
example that in Figure 16.11b there is a clade (thick red lines) of herpesviruses of the genus 
Varicellovirus (containing artiodactyls, perissocdactyl, and carnivore viruses). There is 
a correspondence of this clade structure to the evolution of those host organisms in Fig-
ure 16.11a. McGeoch et al. (2006) estimate that the herpesviruses shown in Figure 16.11 
arose about 400 million years ago (MYA). Grose (2012) described this co‐evolution with 

The NCBI Ebola virus resource is 
at  http://www.ncbi.nlm.nih 
.gov/genome/viruses/variation/
ebola/ (WebLink 16.18). Visit 
the UCSC Ebola Genome Portal 
at  http://genome.ucsc.edu/
ebolaPortal/ (WebLink 16.19). 
ExPASy (Chapter 12) offers 
a description of Ebola virus 
molecular biology at  http://
viralzone.expasy.org/all_by_
species/207.html (WebLink 16.20).

http://www.ncbi.nlm.nih.gov/genome/viruses/variation/ebola/
http://genome.ucsc.edu/ebolaPortal/
http://viralzone.expasy.org/all_by_species/207.html
http://viralzone.expasy.org/all_by_species/207.html
http://www.ncbi.nlm.nih.gov/genome/viruses/variation/ebola/
http://genome.ucsc.edu/ebolaPortal/
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a particular emphasis on varicella‐zoster virus and its emergence from Africa (Fig. 16.12). 
The supercontinent  Pangaea separated into Laurasia (to the north) and Gondwana (to the 
south) ∼175 MYA. When  Gondwanaland further separated to form Africa and other modern 
continents, ancestral alphaherpesviruses are hypothesized to have coevolved in primates and 
subsequently evolved into distinct forms with specificity for assorted primate hosts.

Consider human herpesvirus 8 (HHV‐8), a γ‐herpesvirus (Fig. 16.11d). HHV‐8 is also 
called Kaposi’s sarcoma‐associated herpesvirus, and it was initially identified by repre-
sentational difference analysis in Kaposi’s sarcoma lesions of AIDS patients (Chang et 
al., 1994). HHV‐8 causes AIDS‐associated Kaposi’s sarcoma and other disorders such 
as primary effusion lymphoma and multicentric Castleman’s disease. HHV‐8 is closely 
related to rhesus rhadinovirus (RRV). The divergence of the HHV‐8 and RRV may have 
coincided with speciation of humans and rhesus monkeys (Davison, 2002). The presence 
of both HHV‐8 and an HHV‐8‐related virus in chimpanzees suggests that an additional 
RRV‐like virus may be identified that infects humans.

What is the molecular basis for the cycle of latent and lytic infection by HHV‐8? 
The genome is about 140,000 bp (NC_009333.1) and encodes over 80 proteins (Russo 

Kaposi’s sarcoma is the most 
common tumor related to AIDS. 
It is a vascular malignancy that is 
typically first apparent in the skin.

FIgure 16.11 Phylogeny of the herpesviruses and comparison to the evolution of host genomes. 
(a) Phylogenetic tree for eight orders of the Eutheria (placental mammals), all of which are hosts to 
herpesviruses. Three deep clades are indicated in thick red, thin red, and gray. (b) Alpha‐, (c) Beta‐, and 
(d) Gammaherpesvirinae are indicated with the hosts and examples of viruses. The divergence scales (in 
units of substitutions per site) are indicated. NW: New World; OW: Old World. For virus abbreviations 
see the source of this figure. 

Source: Redrawn from McGeoch et al. (2006). Reproduced with permission from Elsevier.
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et al., 1996). We can explore the genome at the NCBI Genome (Chapter  15). From a 
genomes home page you can browse to HHV‐8 (taxonomy identifier or txid: 37296) and 
view an organism summary (Fig. 16.13a). You can further view the open reading frames 
encoded by its genome in a graphic form or as a table (Fig. 16.13b).

The HHV‐8 proteins include virion structural and metabolic proteins. Interestingly, 
it also contains a variety of viral homologs of human host proteins such as complement‐
binding proteins, the apoptosis inhibitor Bcl‐2, dihydrofolate reductase, interferon regula-
tory factors, an interleukin 8 (IL‐8) receptor, a neural cell adhesion molecule‐like adhesin, 
and a D‐type cyclin.

How can viral genomes acquire a motif or an entire gene from a host organism? This 
can occur by a variety of mechanisms, including recombination, transposition, splicing, 
translocation, and inversion (McClure, 2000). Consider the IL‐8 receptor, encoded by a 
eukaryotic gene that functions in cell growth and survival. This receptor is a member of 
the large family of G‐protein‐coupled receptors, including rhodopsin (that responds to 
light), the beta‐adrenergic receptor (that binds adrenalin), and a variety of neurotrans-
mitter receptors. A DELTA‐BLAST search using HHV‐8 ORF74 as a query shows that 
homologs of this protein exist across many vertebrates (Fig. 16.14). Separately, a DELTA‐
BLAST search restricted to viruses reveals viral homologs of this receptor, including a 
murine γ‐herpesvirus. Presumably, when the virus infects a mammalian cell this viral 
IL‐8 receptor is expressed and confers growth and survival that is advantageous to the 
virus (Wakeling et al., 2001; Montaner et al., 2013).

Two complementary approaches have been taken to further study the function 
of viral genes (such as v‐IL‐8 receptor) as well as mechanisms of HHV‐8 infection. 
 Paulose‐ Murphy et al. (2001) synthesized a microarray that represents 88 HHV‐8 
open reading frames and measured the transcriptional response of viral genes that are 

See Chapter 5 for a description 
of DELTA‐BLAST.

FIgure 16.12 Map of Pangaea, a supercontinent that formed ∼400 million years ago (MYA) and sepa-
rated ∼175 MYA into a northern supercontinent (Laurasia) and a southern supercontinent (Gondwanaland, 
from which Africa derived). According to an out‐of‐Africa hypothesis, herpesviruses infected marine 
invertebrates such as oyster and abalone as early as 500 MYA, and various members of the Herpesviridae 
(listed to the right) establishing host species specificity. EA: Europe/Asia; NA: North America; SA: South 
America; AF: Africa; AN: Antarctica; AU: Australia. Virus abbreviations include CMV (cytomegalovirus), 
EBV (Epstein‐Barr virus), HHV‐8 (human herpesvirus 8), and VZV  (varicella‐zoster virus). 

Source: Grose (2012). Reproduced with permission from American Society for Microbiology.
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 activated during the lytic replication cycle of HHV‐8 in human cells. They measured 
gene expression across a time series after inducing lytic infection and described clus-
ters of genes that are coexpressed. Such genes may be functionally related. Clusters 
of genes coexpressed at early time points include several implicated in activation of 
the lytic viral cycle; another group of genes encode proteins that function in virion 
 assembly. The viral homologs of human proteins were expressed throughout the induced 
lytic cycle.  Gatherer et al. (2011), Marcinowski et al. (2012) and Stern‐Ginossar et al. 
(2012) performed similar studies on human cytomegalovirus transcriptional  profiles 

FIgure  16.13 HHV‐8 data at NCBI. (a) The organism overview for HHV‐8 includes links to its 
 BioProject and a graphical representation of its 96 genes. (b) The protein details (linked from the Genome 
Annotation Report) include a clickable histogram of the proteins as well as a table (showing 6 of the 86 
proteins). 

Source: NCBI.

(a) HHV8 genome overview (NCBI)

(b) HHV8 proteins (graphic and tabular summaries)
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using microarrays and RNA‐seq. Stern‐Ginossar et al. extended this approach by com-
bining RNA‐seq, which allowed them to identify hundreds of novel cytomegalovirus 
transcripts, with proteomics techniques such as mass spectrometry and transient expres-
sion assays to localize newly identified proteins.

In a second approach to characterizing RNA transcripts, Poole et al. (2002) charac-
terized the host cell responses to infection. They infected human dermal microvascular 
endothelial cells with HHV‐8 and measured the transcriptional response of human cells 
to both latent and lytic virus infection. HHV‐8 transforms the endothelial cells from a 
cobblestone shape to a characteristic spindle shape. Kaposi’s sarcoma is associated with 
many additional pathological features, including angiogenesis and immune dysregula-
tion. The endothelial genes regulated by HHV‐8 infection included those such as inter-
feron‐responsive genes involved in immune function and genes encoding proteins with 
roles in cytoskeletal function, apoptosis, and angiogenesis. Such studies may be useful in 
defining the cellular response to viral infection.

the pairwise Sequence Comparison (paSC) tool

NCBI offers the Pairwise Sequence Comparison (PASC) tool to help classify viruses 
in a broad range of families or genera (Bao et al., 2012). For a range of complete virus 

Apoptosis is a type of 
programmed cell death 
in which the cell actively 
commits suicide. It serves as 
a mechanism by which a host 
cell can destroy infected cells, 
preventing a pathogen from 
spreading throughout the body. 
However, viruses have adapted 
to manipulate the cellular 
death pathway. Angiogenesis 
is the development of blood 
vessels. Infectious viruses (and 
cancerous tumors) require the 
presence of an adequate blood 
supply and sometimes promote 
angiogenesis.
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FIgure 16.14 A viral protein (HHV‐8 open reading frame 74 or ORF74; RefSeq accession YP_001129433.1) is a G‐protein coupled 
receptor that is homologous to a superfamily of mammalian G‐protein coupled receptors, including a high‐affinity interleukin 8 (IL‐8) recep-
tor. Database matches from a DELTA‐BLAST search against the RefSeq database include HHV‐8 ORF74 itself (arrow 1) and c‐X‐C chemo-
kine receptor or interleukin 8 receptor from a variety of vertebrates including the primate Otolemur garnettii (arrow 2). The gene encoding 
this receptor was presumably of mammalian origin and integrated into the genomes of several viruses. Upon viral infection, this receptor may 
promote growth and survival of infected cells.

Source: NCBI.
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(a) PASC tool at NCBI for comparison of viral genomes

(b) Report on a genome pair (from arrow 1)

(c) Dot plot and alignment of two cytomegalovirus genomes from different species

1

FIgure 16.15 The NCBI PASC tool allows comparisons of complete viral genomes from a vari-
ety of families. (a) Data for the genus cytomegalovirus of the Herpesviridae. Relationships based on 
BLAST (upper panel) or Needleman–Wunsch global alignment (lower panel) are shown. The x axis 
shows percent identity of the alignments. Green bars represent pairs of genomes that are assigned to the 
same species (87–93% identity in the BLAST‐based alignments). Yellow bars represent genome pairs 
of the same genus that are classified as different species (17–59% identity, with an outlier having 91% 
identity indicated by arrow 1). (b) That outlier can be clicked on, providing annotation data. (c) Pairwise 
alignment of the two genomes indicated by arrow 1, including a dotplot to visualize their relatedness. 

Source: PASC, NCBI.

genomes, it uses two methods to compute relatedness between viruses: local alignment 
using BLAST; and global alignment using the Needleman–Wunsch algorithm  (Chapter 3).

We can demonstrate the use of PASC by selecting Herpesviridae and choosing the 
genus Cytomegalovirus. The genomes include members of the same genus and species 
(shaded green in Fig. 16.15a) or the same genus but a different species (shaded yellow; 
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arrow 1 highlights a genome comparison in that category involving two genomes). Click-
ing that entry shows that these two genomes share 91% identity (Fig. 16.15b), and the 
pairwise alignment can also be displayed (Fig. 16.15c). In this instance, it might be appro-
priate for these two genomes sharing such high nucleotide identity to be classified in the 
same species. The usefulness of the PASC tool is in exploring such relationships. Notably, 
the results for global pairwise alignment tend to inflate percent identities (at least partly 
because two random sequences of the same length are expected to share 25% nucleotide 
identity by chance). The scores therefore tend to be shifted to the right for global relative 
to local alignments in Figure 16.15a.

gIant VIruses
Historically, from the first characterization of viruses in the late 1800s to the modern 
era of molecular biology, we have thought of viruses as extremely small entities. That 
view has been firmly shifted by the recent description of a group of giant viruses. They 
are exceptional in terms of the size of the viral particle (sometimes 750 nanometers or 
nm in diameter), such that they are the only viruses visible by conventional light micros-
copy. They are also exceptional in terms of the size of the genome, which tends to be 
greater than 1  megabase (table 16.6). Colson et al. (2013a) proposed the introduction 
of a new viral order, Megavirales; previously, these were known as nucleocytoplasmic 
large DNA viruses (NCLDVs). The first to be discovered was named Mimivirus for 
“microbe  mimicking.” This giant virus infects phagocytic protists such as the amoebae 
 Acanthamoeba polyphaga.

Acanthamoeba polyphaga Mimivirus has mature particles that are an enormous 
400 nm in diameter, with an outer layer of dense fibrils that brings the total diameter to 
750 nm. Seibert et al. (2011) determined its structure by X‐ray diffraction, even though 
the virus represented a noncrystalline sample. Its genome size of 1.2 Mb is larger than 
that of many bacteria (the Mycoplasma genitalium genome is 580 kb) and archaea (the 
Nanoarchaeum equitans genome is 490 kb), and it is almost half the size of the smallest 
eukaryotic genome (that of Encephalitozoon cuniculi, 2.5 Mb). Raoult et al. (2004) char-
acterized its genome. Of its 1262 open reading frames of length ≥100 amino acids, just 
194 had similarity to proteins of known function.

In the decade since its discovery, more giant viruses have been described and had 
their genomes sequenced (table 16.6).These include Acanthamoeba polyphaga moumou-
virus (Yoosuf et al., 2012), Marseillesvirus (Boyer et al., 2009), Megavirus chiliensis 
(Arslan et al., 2011), Lausannevirus (Thomas et al., 2011), Acanthamoeba castellanii 
mamavirus (Colson et al., 2011), and Courdo11 virus (Yoosuf et al., 2014). The largest of 

PASC is available from the NCBI 
Genome home page at  http://
www.ncbi.nlm.nih.gov/genome 
(WebLink 16.21).

The Mimivirus GenBank 
accession number is 
NC_014649.1.

taBle 16.6 largest virus genomes. all are double-stranded DNa (no rNa stage).  
the order Megavirales has been proposed to reflect the genome size of at least  
1 megabase.

Genus, species Accession Base pairs

Acanthamoeba polyphaga 
moumouvirus

NC_020104.1 1,021,348

Acanthamoeba polyphaga mimivirus NC_014649.1 1,181,549

Acanthamoeba castellanii mamavirus JF801956.1 1,191,693

Megavirus chiliensis NC_016072.1 1,259,197

Pandoravirus dulcis NC_021858.1 1,908,524

Pandoravirus salinus NC_022098.1 2,473,870

http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
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the recently described viruses are Pandoravirus salinus and Pandoravirus dulcis (Philippe 
et al., 2013). P. salinus was discovered off the coast of central Chile where it infects 
Acanthamoeba castellanii. Using Illumina, 454 and Pacific Biosciences next‐generation 
sequencing, the 2.5 Mb genome was sequenced and assembled, although the presence of 
repeats suggests a minimum genome size of 2.8 Mb. The P. dulcis virus, discovered in a 
freshwater pond in Australia, has a genome size of 1.9 Mb. These two viral genomes are 
predicted to encode ∼2500 and ∼1500 proteins, respectively.

The discovery of Megavirales is significant in several ways.

 • It redefines the nature of viruses, both in terms of genome size and gene content. 
While these large viruses do not produce ribosomes, they do encode some aminoacyl‐
tRNA synthetases and related proteins, hinting at functions beyond those normally 
attributed to viruses. It is notable that smaller relatives of the family Mimivirdae have 
been identified as sharing gene families with their larger relatives (Yutin et al., 2013).

 • The question arises as to the origin of these viruses. Some of the Megavirales genes 
(perhaps 15%) have been acquired by lateral gene transfer (Chapter 17). Other genes 
might have been acquired from host (e.g., amoeba) genomes, but this does not seem 
to have occurred appreciably (<1%). Jean-Michel Claverie and colleagues therefore 
suggested that Mimivirus and related viruses could be descended from a cellular 
organism in a separate branch of life. That organism, it is hypothesized, lost most 
of its genes (Legendre et al., 2012, reviewed in Pennisi, 2013). Those that remain 
include many with no detectable homology to eukaryotes, bacteria, archaea, or even 
to other viruses.

 • In addition to giant viruses that infect amoebae, a pathogenic deltaproteobacterium 
called BABL1 (accession GQ495224.1) has been identified that invades the same 
amoebae (Slimani et al., 2013). There is also a small virus that infects Acanthamoeba 
polyphaga Mimivirus within the amoeba. This virus is referred to a virophage (a virus 
that infects another virus; Slimani et al., 2013).

 • As we discover more of these viruses globally, it is possible they will be found to 
infect other eukaryotes. Colson et al. (2013b) provide evidence for Megavirales in 
human stool and metagenome samples.

Jean‐Michel Claverie and colleagues searched for giant viruses in a region of the 
Siberian permafrost that has been dated as 30,000 years old. Using Acanthamoeba cas-
tellanii as a bait they identified a virus named Pithovirus sibericum that has a 1.5 μm 
particle length (1500  nm) and a 610,033 base pair, AT‐rich (64%) double‐stranded 
DNA genome (Legendre et al., 2014). This extends the possibilities of the locations 
of giant viruses, and demonstrates that viruses from the deep past can be revived. The 
consequence for the health of humans and other organisms susceptible to infection 
today is unknown.

Comparing genomes with MuMmer

A major challenge in aligning genomes (whether viral, bacterial, archaeal, or eukaryotic) 
is the excessive amount of time required to perform an alignment of millions of base pairs 
using dynamic programming (Chapter 3). We introduced several fast algorithms such as 
BLAT in Chapter 5. However, additional tools to accomplish large‐scale genome align-
ment are needed. MUMmer is a software package that offers rapid, accurate alignments 
of microbial genomes (Delcher et al., 1999). It has been adapted to aligning eukaryotic 
sequences (Delcher et al., 2002; Kurtz et al., 2004).

MUMmer accepts two sequences as input. The algorithm finds all subsequences that 
are longer than a specified minimum length k and that are perfectly matched. By defini-
tion, these matches are maximal because extending them further in either direction causes 

The accession number of  
P. sibericum is NC_023423.1.

MUMmer was written by Steven 
Salzberg and colleagues. You  
can download the software from 

 http://mummer.sourceforge.net/ 
(WebLink 16.22).

http://mummer.sourceforge.net/
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a mismatch. The algorithm uses a suffix tree, which is a search structure that identifies 
all the maximal unique matches (“MUM”s) in the pairwise alignment. The MUMs are 
ordered, and the algorithm closes gaps by identifying large inserts, repeats, small mutated 
regions, and single‐nucleotide polymorphisms (SNPs).

MUMmer output consists of a dot matrix plot showing the alignment of the two 
genomic sequences with some minimum alignment length (e.g., 15 or 100 bp). The kinds 
of results that can be obtained include:

 1. SNPs;
 2. regions where sequences diverge by more than a SNP;
 3. large insertions (e.g., by transposition, sequence reversal, or lateral gene transfer);
 4. repeats (e.g., a duplication in one genome); or
 5. tandem repeats (in different copy number).

Let’s compare Acanthamoeba polyphaga mimivirus (about 1.2 Mb) with  Acanthamoeba 
castellanii mamavirus and then with Acanthamoeba polyphaga  moumouvirus using 
MUMmer. First, install MUMmer on your Linux or Mac OS/X computer.

Next, we obtain FASTA formatted files containing the mimivirus, mamavirus, and 
moumouvirus DNA sequences. You can use the accession numbers given in table 16.6. 
Sequences can also be downloaded from NCBI by FTP, or the NCBI Nucleotide page 
offers a “send to” option to send the FASTA format of the sequence to a file which can then 
be transferred to a directory on a Linux machine. We place them in a directory called data 
with the names mimivirus.fasta, mamavirus.fasta, and  moumouvirus.
fasta.

We then use MUMmer to compare two virus sequences. To see the basic commands, 
view the help documentation:

If you are working on a Mac 
OS/X, after downloading you 
will need the make program 
and other dependencies (listed 
in the MUMmer documentation; 
WebLink 16.7). These are 
currently not included on Mac 
OS/X, and to obtain make and 
other programs you will first 
need to install Xcode software.

$ mummer -h

$ mummer -mum -b -c ~/data/mimivirus.fasta ~/data/mamavirus.fasta > ~/data/ 
mimimama.mums

To compare the first two sequences, type:

Here the –mum command computes maximal matches that are unique in both 
sequences, the –b command computes both forward and reverse complement matches, 
the –c command reports query positions of a reverse complement relative to the original 
query sequence, and the > symbol indicates that we will specify the name of the output 
file. The output includes a dotplot showing that these two viral genomes are largely col-
linear, that is, there are MUMs shaded red with a positive slope indicating well‐aligned 
segments (Fig. 16.16a). This is consistent with the analyses of Colson et al. (2011) who 
reported ∼99% nucleotide identity between these aligned genomes.

We can repeat the comparison of the genomes with mimivirus versus moumouvirus:

$ mummer -mum -b -c ~/data/mimivirus.fasta ~/data/moumouvirus.fasta > ~/data/ 
mimimoumou.mums

Here, the output shows limited collinearity (red segments) with a prominent inversion 
(shaded blue; Fig. 16.16b). Additionally, a forward (red) segment that is displaced from the 
main diagonal indicates a translocation (arrow 1). Yoosuf et al. (2012) reported a similar 
plot that was instead based on orthologous proteins from BLASTP searches, revealing the 
same inversion and overall extent of collinearity.

MUMmer software is useful for many kinds of genomic comparisons, and we will 
return to it in Chapters 17 and 19.
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perspectIVes
Several thousand species of viruses are known. In contrast, there may be tens or hundreds 
of millions of species of bacteria and archaea (Chapter 15) and perhaps tens of millions of 
eukaryotic species (Chapters 18–20). There are probably relatively few species of viruses 
because of their specialized requirements for replication in host cells.

FIgure 16.16 Comparison of megabase‐size viral genome sequences using MUMmer  software. 
(a) Comparison of Acanthamoeba polyphaga Mimivirus (reference, x axis) versus the query 
 Acanthamoeba castellanii mamavirus (y axis). Note that the two genomes are largely collinear.  
(b) Comparison of Acanthamoeba polyphaga Mimivirus (reference) versus Acanthamoeba polyph-
aga moumouvirus (query). Forward MUMs are indicated in red, while reverse MUMs are colored 
blue. A prominent inversion is evident near the middle of the two genomes as well as a translocation 
(arrow 1). Created using  MUMmer.
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Essentially, all the bioinformatic tools that are applied to eukaryotic or bacterial pro-
tein and nucleic acid sequences are also applicable to the study of viruses (Kellam, 2001).

 • BLAST, DELTA‐BLAST, and other database searches may be applied to define the 
homology of viral sequences to other molecules.

 • Microarrays have been used to represent viral genes, and now RNA‐seq also allows 
an assessment of viral gene transcription during different phases of the viral life cycle.

 • In independent approaches, the transcriptional response of host cells to viral infection 
has begun to be characterized.

 • Structural genomics approaches to viruses result in the identification of three‐ 
dimensional structures of viral proteins. Some structures are solved in the presence of 
pharmacological inhibitors. The Entrez protein division of NCBI currently includes 
over 6700 virus structural records.

For some viruses such as HIV, molecular studies have permitted detailed studies of 
phylogeny to complement knowledge of viral life cycles and pathogenesis. At the same 
time genomics has not yet contributed to the challenge of successfully creating a vaccine.

pItfalls
Viruses evolve extremely rapidly, in large part because some RNA virus polymerases 
tend to operate with low fidelity. It is for this reason that a person infected with HIV may 
harbor millions of distinct forms of the virus, each with its own unique RNA sequence. 
It may therefore be difficult to define a single canonical sequence for some viruses. This 
complicates attempts to study the evolution of viruses and gene function, or to develop 
vaccines.

While the tree of life has been described using rRNA or other sequences  (Chapter 15), 
viruses are almost entirely absent from this tree. This is because there are no genes or pro-
teins that all viruses share in common with other life forms or with each other.

adVIce for students
Viruses impact all of our lives, and in a real sense they threaten us. Just a century ago, 
a single influenza epidemic killed many tens of millions of people. As discussed in this 
chapter, viral diseases such as measles continue to kill and cause immense suffering. To 
actively approach this topic, choose a viral genome that interests you the most, and try the 
following. (1) Read the primary literature on its genome. I recommend a review on the 
measles virus replication cycle by Rima and Duprex (2009); while the focus is more on 
biochemistry and virology than on bioinformatics, the article explains the extraordinary 
properties of the tiny measles virus and the challenges it faces. (2) Explore its genome in 
depth. For measles use NCBI; for HIV the LANL site offers a wide range of resources. 
Use the tools we learnt in Part I, such as database searching, to predict the function of 
poorly characterized genes.

A separate exercise is to integrate your studies of viruses with next‐generatrion 
sequencing. Download the collection of all virus DNA sequences in the FASTA format. 
Choose one or more human whole‐genome sequences, and align the short reads to your 
virus reference database. What do you find?

WeB resources
We have focused on ICTVdb, NCBI, and LANL tools. Many specialized databases have 
been established for the study of viruses including those listed in table 16.7. For exam-
ple, the Viral Bioinformatics Resource Center offers software tools, including the Viral 
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taBle 16.7 Virus resources available on web.

Resource Description URL

ICTVdb Universal virus database http://ictvonline.org/

All the Virology on the 
WWW

Provides many virology links and 
resources

http://www.virology.net/

The Big Picture Book 
of Viruses

General virus resource http://www.virology.net/Big_Virology/ 
BVHomePage.html

VIrus Particle 
ExploreER (VIPER)

High‐resolution virus structures 
in the Protein Data Bank (PDB)

http://viperdb.scripps.edu/

Viral Bioinformatics 
Resource Center

Databases and software to 
analyze viruses

http://athena.bioc.uvic.ca/

Virusworld A research institute at the 
University of Wisconsin‐Madison

http://www.virology.wisc.edu/
virusworld/viruslist.php

Stanford HIV Drug 
Resistance Database

A curated database with 
information on drug targets

http://hivdb.stanford.edu/

Genome Organizer, for the graphical display of viral sequences (Upton et al., 2000). This 
site also contains a Viral Genome DataBase (VGDB) with analyses of the properties of 
viral genomes such as GC content. The Stanford HIV RT and Protease Sequence Data-
base offers an algorithm that can be queried with an input viral DNA sequence (Rhee et 
al., 2003). The output describes possible mutations in the viral gene and an interpretation 
of likely susceptibility of that protein to drug resistance.

Discussion Questions
[16-1] There is no comprehensive 
molecular phylogenetic tree of all 
viruses. Why not?

[16-2] If you wanted to generate phylo-
genetic trees that are as comprehensive as possible, using 
DNA or RNA or protein sequences available in GenBank, 
what molecule(s) would you select? What database(s) 
would you search?

[16-3] In a metagenomic study, Cox‐Foster et al. (2007) 
determined DNA sequences associated with colony col-
lapse disorder, a recent phenomenon in which honey bee 
colonies collapse. This now affects about a quarter of bee‐
keeping operations in the United States. RNA samples 
were collected from hives that are either affected or not, 
and pyrosequencing was performed. In addition to bacte-
rial and fungal sequences, a group of RNA viruses were 
identified including one (Israeli acute paralysis virus) asso-
ciated with risk for colony collapse disorder. What criteria 
would you use to decide if this virus has a causal role in 
the disorder?

proBleMS/CoMputer laB
[16-1] We mention colony collapse disorder in the discus-
sion question above. The accession for Israeli acute paraly-
sis virus is NC_009025, and it is a picorna‐like virus. How 
many proteins does this genome encode? What are their 
functions?

[16-2] NCBI offers the PopSet resource at  http://www 
.ncbi.nlm.nih.gov/popset (WebLink 16.23). PopSet  collects 
DNA sequences for evolutionary analyses of populations. 
Enter a query for megavirus in the home page of NCBI and 
link to a set of 22 megavirus‐related polymerase sequences 
(“DsDNA viruses, no RNA stage B‐family DNA poly-
merase gene, complete cds.”). Choose the “Send to” option 
to download the sequences in the FASTA format, and input 
them to MEGA (Chapter 7). Perform a multiple sequence 
alignment with MUSCLE within MEGA and perform phy-
logenetic analyses of this gene family.

[16-3] This problem introduces you to finding how many 
proteins are associated with viruses. (1) How many HIV‐1 
proteins are in the NCBI Protein resource? (2) Given the 

http://ictvonline.org/
http://www.virology.net/
http://www.virology.net/Big_Virology/BVHomePage.html
http://viperdb.scripps.edu/
http://athena.bioc.uvic.ca/
http://www.virology.wisc.edu/virusworld/viruslist.php
http://hivdb.stanford.edu/
http://www.ncbi.nlm.nih.gov/popset
http://www.ncbi.nlm.nih.gov/popset
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tremendous heterogeneity of HIV‐1, you might expect 
there to be thousands of variant forms of each protein. How 
many are actually assigned RefSeq accession numbers? 
(3)  How many measles virus RefSeq proteins are there? 
(4) Query NCBI Genome with the search term “measles” 
and view the Genome Annotation Report. There is a link to 
“see protein details.” What are the sizes of the smallest and 
largest measles proteins?

[16-4] Find an HIV‐1 protein with a RefSeq identifier in 
NCBI Protein (such as the Vif protein, NP_057851; you 
should select your own example). Perform a BLASTP 
search with it, and inspect the results using the taxonomy 
report. Next repeat the search, excluding HIV from the 
output. How broadly is the gene or protein you selected 
represented among viruses? Do you expect some genes to 
be HIV-specific while other genes are shared broadly by 
viruses?

[16-5] Analyze a set of influenza viruses using the 
NCBI Influenza Virus Resource (  http://www.ncbi.nlm. nih 
.gov/genomes/FLU/FLU.html, WebLink 16.24). (1) Click 
tree to begin choosing sequences. Select the virus  species 
(Influenza A), host (human), country/region (e.g., 
Europe), and segment (HA). Include the options of full‐
length sequences only, and remove identical sequences. 

Click “Get sequences.” (2) Construct a multiple sequence 
alignment and phylogenetic tree. Use neighbor‐joining. 
In the case of HA, does the tree form clades correspond-
ing to H1N1, H3N2, and H7N7 subtypes? Optionally, 
export the sequences in the FASTA format, perform 
your own  multiple sequence alignments using MAFFT 
or MUSCLE (Chapter 6), then import the alignment into 
MEGA (or other software) to perform phylogenetic anal-
yses yourself.

[16-6] Analyze HIV sequences at the HIV Sequence 
Database (  http://www.hiv.lanl.gov/, WebLink 16.25). 
Select the search interface, then choose genomic regions 
with the Vif coding sequence (Vif CDS). Restrict the out-
put to ten sequences. Select these, and click “Make tree.” 
Include the reference sequences HXB2. Choose a distance 
model (the default is Felsenstein 1984) and either equal 
site rates or a gamma distribution. How many clades 
do you observe? What do these clades represent? Note 
that you can download the multiple sequence alignment 
used to generate the tree to perform further phylogenetic 
analyses.

[16-7] Select a reference sequence of a virus and a strain 
that has undergone reassortment. Align the genomic 
sequences using MUMmer as outlined in this chapter.

Self-test Quiz
[16-1] There are several thousand known 
viruses, while there are many  millions of 
bacterial, archaeal, and eukaryotic  species. 
The most likely explanation for the small 

number of viruses is that:

(a) we have not yet learned how to detect most viruses;

(b) we have not yet learned how to sequence most viruses;

(c) there are few viruses because their needs for survival 
are highly specialized; or

(d) viruses use an alternative genetic code.

[16-2] RNA viruses, when compared to DNA viruses, 
tend to:

(a) be less virulent;

(b) be less persistent;

(c) be less mutable; or

(d) have larger genome sizes.

[16-3] The HIV genome contains nine protein‐coding 
genes. The number of GenBank nucleotide accession num-
bers for these nine genes is approximately:

(a) 9;

(b) 900;

(c) 9000; or

(d) >600,000.

16-4] For functional genomics analyses of viruses, it is 
possible to measure gene expression:

(a) of viral genes upon viral infection of human 
 tissues;

(b) of human genes upon viral infection of human tissues; 
or

(c) of viral genes and human genes, measured upon 
viral infection of human tissue.

http://www.ncbi.nlm.�nih.gov/genomes/FLU/FLU.html
http://www.ncbi.nlm.�nih.gov/genomes/FLU/FLU.html
http://www.hiv.lanl.gov/
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[16-5] Herpesviruses probably first appeared about:

(a) 500 million years ago;

(b) 5 million years ago;

(c) 50,000 years ago; or

(d) 500 years ago.

[16-6] HIV‐1 in its present form probably first appeared 
about:

(a) 70 million years ago;

(b) 7 million years ago;

(c) 700,000 years ago; or

(d) 70 years ago.

[16-7] Phylogeny of HIV virus subtypes:

(a) establishes that HIV emerged from a cattle  
virus;

(b) can be used to develop vaccines directed against 
ancestral protein sequences; or

(c) establishes which human tissues are most suscepti-
ble to infection.

[16-8] Specialized virus databases such as that at 
Oak  Ridge National Laboratory offer resources for the 
study of HIV that are not available at NCBI or EBI. An 
example is:

(a) a listing of thousands of variant forms for each HIV 
gene;

(b) a listing of literature and citations from the previous 
week;

(c) graphical displays of the genome; or

(d) a description of where HIV variants have been iden-
tified across the world.

suggested readIng
Gibbs (2013) discusses new ICTV changes to virus species nomenclature. Duffy et al. 
(2008) provide an exceptional review on the evolution of viruses, including rates of 
 mutation and substitution. Jeffrey Gordon and colleagues (Reyes et al. 2012) provide an 
outstanding overview of viral metagenomics with respect to the human microbiome. For 
viral metagenomics methods, see Willner and Hugenholtz (2013). Edward Holmes (2008) 
reviews the evolutionary history and phylogeography of human viruses, highlighting the 
differences between RNA viruses and DNA viruses. For an overview of HIV, particularly 
from a molecular phylogenetics perspective, see Castro‐Nallar et al. (2012).
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Antony van Leeuwenhoek (1622–1723) has 
been called the Father of protozoology and 
 bacteriology. This figure shows bacteria he 
observed taken from his own mouth. Figure  A 
indicates a motile Bacillus. Figure B shows 
 Selenomonas sputigena, while C and D show 
the path of its motion. Figure E shows two 
micrococci, F shows Leptotrichia buccalis, and 
G shows a  spirochete. He describes these 
 “animalcules,” found in his and others’ mouths, 
in a letter written 17  September 1683:

While I was talking to an old man (who 
leads a sober life, and never drinks brandy 
or [smokes] tobacco, and very seldom any 
wine), my eye fell upon his teeth, which 
were all coated over; so I asked him when 
he had last cleaned his mouth? And I got for 
answer that he’d never washed his mouth in 

all his life. So I took some spittle out of his mouth and examined it; but I could find 
in it nought but what I had found in my own and other people’s. I also took some 
of the matter that was lodged between and against his teeth, and mixing it with 
his own spit, and also with fair water (in which there were no animalcules), I found 
an unbelievably great company of living animalcules, a-swimming more nimbly 
than any I had ever seen up to this time. The biggest sort (where of there were a 
great plenty) bent their body into curves in going forwards, as in Fig. G. Moreover, 
the other animalcules were in such enormous numbers, that all the water (not-
withstanding only a very little of the matter taken from between the teeth was 
mingled with it) seemed to be alive.

Source: Leeuwenhoek, trans. Dobell (1932). Reproduced with permission from Dover 
 Publications.
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And now you may be disposed to ask: To what end is this discourse on the anatomy of 
beings too minute for ordinary vision, and of whose very existence we should be igno-
rant unless it were revealed to us by a powerful microscope? What part in nature can 
such apparently insignificant animalcules play, that can in any way interest us in their 
organization, or repay us for the pains of acquiring a knowledge of it? I shall endeav-
our briefly to answer these questions. The Polygastric Infusoria, notwithstanding their 
extreme minuteness, take a great share in important offices of the economy of nature, on 
which our own well-being more or less immediately depends.

Consider their incredible numbers, their universal distribution, their insatiable 
voracity; and that it is the particles of decaying vegetable and animal bodies which they 
are appointed to devour and assimilate.

Surely we must in some degree be indebted to those ever active invisible scavengers 
for the salubrity of our atmosphere. Nor is this all: they perform a still more important 
office, in preventing the gradual diminution of the present amount of organized matter 
upon the earth. For when this matter is dissolved or suspended in water, in that state of 
comminution and decay which immediately precedes its final decomposition into the ele-
mentary gases, and its consequent return from the organic to the inorganic world, these 
wakeful members of nature’s invisible police are every where ready to arrest the fugitive 
organized particles, and turn them back into the ascending stream of animal life.

—Richard Owen (1843, p. 27)

LEARnInG oBjECTIvES

After studying this chapter, you should be able to:
 ■ define bacteria and archaea;
 ■ explain the bases of their classification;
 ■ describe the genomes of Escherichia coli and other bacteria;
 ■ describe bioinformatics approaches to identifying and characterizing bacterial and archaeal 

genes and proteins; and
 ■ compare bacterial genomes.

C h a p t e r

17

IntroductIon
In this chapter we consider bioinformatic approaches to two of the three main branches 
of life: bacteria and archaea. Bacteria and archaea are grouped together because they 
are single-celled organisms (in most contexts) that lack nuclei. Bacteria and archaea are 
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sometimes also termed microorganisms. The term microbe refers to those microorgan-
isms that cause disease in humans; microbes include many eukaryotes such as fungi and 
protozoa (Chapters 18 and 19) as well as some bacteria and archaea. In Chapter 15 we 
discussed a proposal by Norman Pace (2009) that the term “prokaryote” (or “procaryote”) 
should be abandoned because it implies an incorrect model of evolution. While the com-
munity continues to maintain the term (with its sense of referring to bacteria and archaea), 
in this book we limit its use in support of Pace’s argument.

It has been estimated that bacteria account for 60% of Earth’s biomass. Bacteria 
occupy every conceivable ecological niche in the planet, and there may be from 107 
to 109 distinct bacterial species (Fraser et al., 2000), although some suggest there may 
be fewer species (Schloss and Handelsman, 2004). The great majority of bacteria and 
archaea (>99%) have never been cultured or characterized (DeLong and Pace, 2001). 
A compelling reason to study bacteria is that many cause disease in humans and other 
animals.

This chapter provides an overview of bioinformatic approaches to the study of bacte-
ria and archaea. We review aspects of bacterial and archaeal biology such as genome size 
and complexity, and tools for the analysis and comparison of these genomes. The analysis 
of whole genomes, bolstered by next-generation sequencing, has had profound effects 
on our understanding of bacteria and archaea (reviewed in Bentley and Parkhill, 2004; 
Fraser-Liggett, 2005; Ward and Fraser, 2005; Binnewies et al., 2006; Medini et al., 2008; 
Fournier and Raoult, 2011; Loman et al., 2012; Mavromatis et al., 2012; Stepanauskas, 
2012). Some of the main issues are: (1) gaining an improved sampling of species diversity 
through genomic sequence analyses, along with improved phylogeny and classification; 
and (2) achieving a better understanding of the forces that shape microbial genomes. 
These forces include the following:

 • loss of genes and reductions in genome size, especially in species that are dependent 
on their hosts for survival such as obligate intracellular parasites;

 • gains in genome size, especially in free-living organisms that may require many 
genomic resources to cope with variable environmental conditions;

 • lateral gene transfer, in which genetic material is transferred horizontally between 
organisms that share an environmental niche and not vertically through descent from 
ancestors; and

 • chromosomal rearragements such as inversions that often occur in related species or 
strains.

In this chapter we discuss these topics as well as bioinformatics tools that are avail-
able to investigate them.

classIfIcatIon of BacterIa and archaea
In Chapter  15 we described many of the genome-sequencing projects for bacteria 
and archaea in chronological order, beginning with the sequencing of Haemophilus 
 influenzae in 1995. We now consider the classification of bacteria and archaea by six 
different  criteria: (1) morphology; (2) genome size; (3) lifestyle; (4) relevance to human 
 disease; (5) molecular phylogeny using rRNA; and (6) molecular phylogeny using other 
molecules. There are many other ways to classify bacteria and archaea (Box 17.1).

We use bioinformatics tools to analyze individual microbial genomes and to com-
pare two or more genomes. It is through comparative genomics that we are beginning to 
appreciate some of the important principles of microbial biology, such as the adaptation 
of bacteria and archaea to highly specific ecological niches, the lateral transfer of genes 
between organisms, genome expansion and reduction, and the molecular basis of patho-
genicity (Bentley and Parkhill, 2004; Binnewies et al., 2006).

William Martin and Eugene 
Koonin (2006) briefly discuss the 
definition of the term prokaryote. 
We contrasted eukaryotes 
to bacteria and archaea in 
Chapter 8.

It has been estimated that there 
are 1030 bacteria, comprising the 
majority of the biomass on the 
planet (Sherratt, 2001).

Pathogenicity is the ability of 
an organism to cause disease. 
Virulence is the degree of 
pathogenicity.
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Box 17.1 classIfIcatIon of BacterIa and archaea

While we choose six basic ways to classify bacteria and archaea, there are many other approaches. These include the energy source 
(respiration, fermentation, photosynthesis), their formation of characteristic products (e.g., acids), the presence of immunological mark-
ers such as proteins or lipopolysaccharides, their ecological niche (also related to lifestyle), and their nutritional growth requirements. 
The growth requirements include obligate and/or facultative aerobes (requiring oxygen) or anaerobes (growing in environments with-
out oxygen), chemotrophs (deriving energy from the breakdown of organic molecules such as proteins, lipids, and carbohydrates), or 
autotrophs (synthesizing organic molecules through the use of an external energy source and inorganic compounds such as carbon 
dioxide and nitrates). Autotrophs (from the Greek for “self feeder”) are either photoautotrophs (obtaining energy through photosynthe-
sis, requiring carbon dioxide and expiring oxygen) or chemautotrophs (obtaining energy from inorganic compounds and carbon from 
carbon dioxide). Heterotrophs, unlike autotrophs, must feed on other organisms to obtain energy.

Several resources provide broad information about the current state of bacterial and 
archaeal genomics.

 • The National Center for Biotechnology Information (NCBI) Genome resource 
 currently lists >2600 complete bacterial genomes and 168 archaeal genomes 
(NCBI Resource Coordinators, 2014). NCBI describes major divisions of bacteria 
(table 17.1) as well as archaea (table 17.2). These tables provide an overview as we 
begin to  classify these organisms by various criteria.

 • The Genomes Online Database (GOLD) includes >2600 complete and published 
bacterial genome projects, as well as >9000 permanent draft projects and >19,000 
incomplete projects (Pagani et al., 2012).

 • EnsemblBacteria includes >9000 genome sequences from bacteria and archaea 
(Kersey et al., 2014).

table 17.1 Classification of bacteria. bacteria are described as a kingdom, followed by “intermediate ranks.”

Intermediate rank 1 Intermediate rank 2 Genus, species, and strain (examples) Genome size (Mb) GenBank accession

Actinobacteria Actinobacteridae Mycobacterium tuberculosis CDC1551 4.4 NC_002755

Aquificae Aquificales Aquifex aeolicus VF5 1.5 NC_000918

Bacteroidetes Bacteroides Porphyromonas gingivalis W83 2.3 NC_002950.2

Chlamydiae Chlamydiales Chlamydia trachomatis serovar D 1.0 NC_000117

Chlorobi Chlorobia Chlorobium tepidum TLS 2.1 NC_002932

Cyanobacteria Chroococcales Synechocystis sp. PCC6803 3.5 NC_000911

Nostocales Nostoc sp. PCC 7120 6.4 NC_003272

Deinococcus-Thermus Deinococci Deinococcus radiodurans R1 2.6 NC_001263

Firmicutes Bacillales Bacillus subtilis 168 4.2 NC_000964

Clostridia Clostridium perfringens 13 3.0 NC_003366

Lactobacillales Streptococcus pneumoniae R6 2.0 NC_003098

Mollicutes Mycoplasma genitalium G-37 0.58 NC_000908

Fusobacteria Fusobacteria Fusobacterium nucleatum ATCC 25586  2.1 NC_003454

Proteobacteria Alphaproteobacteria Rickettsia prowazekii Madrid E  1.1 NC_000963

Betaproteobacteria Neisseria meningitidis MC58  2.2 NC_003112

Epsilon subdivision Helicobacter pylori J99  1.6 NC_000921

Gamma subdivision Escherichia coli K-12-MG1655  4.6 NC_000913

Magnetotactic cocci Magnetococcus sp. MC-1 NA NC_008576

Spirochaetales Spirochaetaceae Borrelia burgdorferi B31 0.91 NC_001318

Thermotogales Thermotoga Thermotoga maritima MSB8  1.8 NC_000853

Source: NCBI (  http://www.ncbi.nlm.nih.gov).

http://www.ncbi.nlm.nih.gov
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table 17.3 Major categories of bacteria based on morphological criteria (the disease 
is indicated in parentheses).

Type Examples

Gram-positive cocci Streptococcus pyogenes, Staphylococcus aureus

Gram-positive rods Corynebacterium diphtheriae, Bacillus anthracis (anthrax), Clostriduium 
botulinum

Gram-negative cocci Neisseria, Gonococcus

Gram-negative rods Escherichia coli, Vibrio cholerae, Helicobacter pylori

Other Mycobacterium leprae (leprosy), Borrelia burgdorferi (Lyme disease), 
Chlamydia trachomatis (sexually transmitted disease), Mycoplasma 
pneumoniae

table 17.2 Classification of archaea. archaea are described as a kingdom, followed by “intermediate ranks.” 

Intermediate rank 1 Intermediate rank 2 Genus, Species, and strain (example) Genome size (Mb) GenBank accession

Crenarchaeota Thermoprotei Aeropyrum pernix K1 1.6 NC_000854

Euryarchaeota Archaeoglobi Archaeoglobus fulgidus DSM4304 2.2 NC_000917

Halobacteria Halobacterium sp. NRC-1 2.0 NC_002607

Methanobacteria Methanobacterium thermoautotrophicum delta H 1.7 NC_000916

Methanococci Methanococcus jannaschii DSM2661 1.6 NC_000909

Methanopyri Methanopyrus kandleri AV19 1.6 NC_003551

Thermococci Pyrococcus abyssi GE5 1.7 NC_000868

Thermoplasmata Thermoplasma volcanium GSS1 1.5 NC_002689

Source: NCBI (  http://www.ncbi.nlm.nih.gov).

 • The Pathosystems Resource Integration Center (PATRIC) currently lists >4200 
 bacterial genomes (Gillespie et al., 2011) and includes a set of analysis tools.

 • The Integrated Microbial Genomes (IMG) system includes a broad set of genome and 
metagenome analysis tools (Markowitz et al., 2014).

Classification of bacteria by Morphological Criteria

Most bacteria are classified into four main types: Gram-positive and Gram-negative cocci 
or rods (reviewed in Schaechter, 1999). Examples of these different bacteria are presented 
in table 17.3. The Gram stain is absorbed by about half of all bacteria and reflects the 
protein and peptidoglycan composition of the cell wall. Many other bacteria do not fit the 
categories of Gram-positive or Gram-negative cocci or rods because they have atypical 
shapes or staining patterns. As an example, spirochetes such as the Lyme disease agent 
Borrelia burgdorferi have a characteristic outer membrane sheath, protoplasmic cell cyl-
inder, and periplasmic flagella (Charon and Goldstein, 2002).

The classification of microbes based on molecular phylogeny is far more comprehen-
sive, as described in “Classification of Bacteria and Archaea Based on Ribosomal RNA 
Sequences” below. Molecular differences can reveal the extent of microbial diversity both 
between species (showing the breadth of the bacterial branch of the tree of life) and within 
species (e.g., showing molecular differences in pathogenic isolates and in closely related, 
nonvirulent strains). However, beyond molecular criteria there are many additional ways 
to differentiate bacteria based on microscopy and studies of physiology, for example dis-
tinguishing those microbes that are capable of oxygenic photosynthesis (Cyanobacteria) 
or those that produce methane.

An NCBI microbial resource is 
available at  http://www 
.ncbi.nlm.nih.gov/genomes/
MICROBES/microbial_taxtree 
.html (WebLink 17.1). Genomes 
Online Database is available 
at  http://genomesonline.org/ 
(WebLink 17.2). EnsemblBacteria 
is online at  http://bacteria 
.ensembl.org/ (WebLink 17.3). 
PATRIC is available at  http://
patricbrc.vbi.vt.edu/ (WebLink 
17.4). The IMG home page is  
http://img.jgi.doe.gov/ (WebLink 
17.5). Another major resource 
for bacterial, archaeal, and 
eukaryotic genomes is PEDANT 
at the Munich Information 
Center for Protein Sequences 
(MIPS;  http://pedant.gsf.de/, 
WebLink 17.6).

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html
http://genomesonline.org/
http://bacteria.ensembl.org/
http://patricbrc.vbi.vt.edu/
http://patricbrc.vbi.vt.edu/
http://img.jgi.doe.gov/
http://pedant.gsf.de/
http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html
http://bacteria.ensembl.org/
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The diversity of morphologies in bacterial life forms is spectacular. We can provide 
examples of two predatory bacteria that prey on other bacteria. Each of these examples 
is intended to highlight both the diversity of morphologies that may occur, and the role 
that genome sequence analysis may have in elucidating mechanisms of structural change.

 1. The Myxobacteria are single-celled δ-proteobacteria that are highly successful, with 
millions of cells per gram of cultivated soil. Upon encountering low nutrient con-
ditions, up to 100,000 individuals of Myxococcus xanthus join to form a fruiting 
body which is essentially a multicellular organism having a spherical shape and that 
is resistant to different kinds of stress. In favorable nutrient conditions, individual 
spores within the fruiting body germinate and thousands of M. xanthus spores swarm. 
This swarm can surround, lyse, and consume prey bacteria. Goldman et al. (2006) 
reported the complete genome sequence of M. xanthus and provided insight into 
genes that encode motor proteins and allow the organism to glide, use retractable pili, 
and secrete mucus. Also, the large genome size (9.1 megabases or Mb) contrasts with 
the much smaller size of other related δ subgroup proteobacteria (3.7–5.0 Mb). Gold-
man et al. characterized the nature of the M. xanthus genome expansion and its pos-
sible relation to this organism’s extraordinary behavior and morphology (reviewed by 
Kaiser, 2013).

 2. Bdellovibrio bacteriovorus provides a second example of a bacterium with an 
extraordinary morphology. This is also a predatory delta-proteobacterium that eats 
Gram-negative bacteria. Its genome of about 3.8 Mb is predicted to encode over 3500 
proteins (Rendulic et al., 2004). The bacterium attacks its prey (by swimming to them 
at high speed), adheres irreversibly, opens a pore in the prey’s outer membrane and 
peptidoglycan layer, then enters the periplasm and replicates. B. bacteriovorus then 
forms a structure called a bdelloplast in which the rod-shaped prey becomes rounded 
and the predator grows to several multiples of its normal size as it consumes the 
prey nutrients. Later, the predator exits the bdelloplast. The analysis of this genome 
allowed Rendulic et al. to identify genes encoding catabolic enzymes (e.g., proteases, 
nucleases, glycanases, and lipases) implicated in its lifestyle, as well as a host inter-
action locus containing genes implicated in pilus and adherence genes.

Classification of bacteria and archaea based on Genome Size  
and Geometry

In haploid organisms such as bacteria and archaea, the genome size (or C value) is the total 
amount of DNA in the genome. Bacterial and archaeal genomes vary in size from under 
500,000 bp (0.5 Mb) to almost 15 Mb (table 17.4) (Casjens, 1998). The genome sizes of 
23 named major bacterial phyla and some of their subgroups are shown in Figure 17.1. 
As indicated in the figure, most bacterial genomes are circular although some are linear; 

The M. xanthus DK 1622 complete, 
circular genome (length 9,139,763 
nucleotides) has accession 
NC_008095.1. Note that by 
entering that accession number 
into the Entrez search engine 
from the home page of NCBI, you 
can link to the Genome Project 
page that provides an overview 
of the organism. The slime mold 
Dictyostelium discoideum, a 
eukaryote, also includes a lifestyle 
that can alternate between 
single-celled and multicellular 
(Chapter 19).

The B. bacteriovorus accession 
is NC_005363.1. Its lifecycle is 
described at the NCBI Genome 
project page for this organism.

table 17.4 range of genome sizes in bacteria and archaea. adapted from Graur and 
li (2000) with permission from Sinauer associates.

Taxon Genome size range (Mb) Ratio (highest/lowest)

Bacteria 0.16–13.2 83

Mollicutes 0.58–2.2  4

Gram negative 0.16–9.5 59

Gram positive 1.6–11.6  7

Cyanobacteria 3.1–13.2  4

Archaea 0.49–5.75 12
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FiGure 17.1 Bacterial chromosome size and geometry. The 23 named major bacterial phyla are represented as well as some of their 
subgroups. The tree is based on rRNA sequences and is unrooted. The branch lengths do not depict phylogenetic distances, and the fig leaf at 
the center indicates uncertain branching patterns. The chromosome geometry (circular or linear, in some cases with multiple chromosomes) 
is indicated at the end of each branch. The chromosome sizes of representative genera are given (in kilobases). Linear extrachromosomal 
elements, common in borrelias and actinomycetes, are indicated. Adapted from Casjens (1998) with permission from Annual Reviews.

some bacterial genomes consist of multiple circular chromosomes. Plasmids (small circu-
lar extrachromosomal elements) have been found in most bacterial phyla, although linear 
extrachromosomal elements are more rare.

Some bacterial genomes are comparable in size or even larger than eukaryotic 
genomes. The genome of the fungus Encephalitozoon cuniculi is just 2.5  Mb and 
encodes about 2000 proteins (see Chapter 18), and at least a dozen eukaryotic genomes 
that are currently being sequenced are under 10 Mb. The genomes of two strains of the 
 myxobacterium Sorangium cellulosum have been sequenced and are among the largest 
bacterial genomes that have been sequenced to date. One is >13 Mb and includes over 
9700 genes (Schneiker et al., 2007), while another is ∼14.8 Mb and includes >10,500 
genes (Han et al., 2013; table 17.5). The cyanobacterium Mastigocoleus testarum BC008 
has a genome size of 15.9 Mb. In general, those bacteria having notably large genome 
sizes exhibit great behavioral or phenotypic complexity, participating in complex social 
behavior (such as multicellular interactions) or processes such as differentiation.

Overall, the number of genes encoded in a bacterial genome ranges from the extraor-
dinarily small number of 182 to >10,000 in exceptional cases. This range is compara-
ble to the range in C values. For a large number of bacteria with completely sequenced 

In diploid or polyploid organisms, 
the genome size is the amount of 
DNA in the unreplicated haploid 
genome (such as the sperm cell 
nucleus). We discuss eukaryotic 
genome sizes in Chapters 18–19.
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table 17.5 Genome size of selected bacteria and archaea having relatively large or small genomes. (a): archaeal; 
(b): eubacterial. adapted from  http://www.sanger.ac.uk/projects/Microbes/ with permission from Dr a. bateman 
and adapted from the NCbi website (pubMed, NCbi Genome).

Species Genome size (Mb) Coding regions GC content Reference

Sorangium cellulosum So0157-2 (B) 14.8 10,400 72.1 Han et al., 2013

Sorangium cellulosum So ce56 (B) 13.0 9,380 71.4 Schneiker et al., 2007

Solibacter usitatus (B) 10 7,888 61.9 Unpublished; accession NC_008536

Myxococcus xanthus DK 1622 (B) 9.1 7,388 68.9 Goldman et al., 2006

Streptomyces coelicolor (B) 8.67 7,825 72 Bentley et al., 2002

Methanosarcina acetivorans C2A (A) 5.75 4,524 42.7 Galagan et al., 2002

Ureaplasma urealyticum parvum 
biovar serovar 3 (B)

0.752 613 26 Glass et al., 2000

Mycoplasma pneumoniae M129 (B) 0.816 677 40 Himmelreich et al., 1996

Mycoplasma genitalium G-37 (B) 0.58 470 32 Fraser et al., 1995

Nanarchaeum equitans (A) 0.49 552 31.6 Huber et al., 2002; Waters et al., 2003

Buchnera aphidicola (B) 0.42 362 20 Pérez-Brocal et al., 2006

Carsonella ruddii (B) 0.16 182 16.5 Nakabachi et al., 2006

genomes, protein-coding genes constitute about 85–95% of the genome. Intergenic and 
nongenic fractions are therefore small. An exception is the pathogen that causes leprosy, 
Mycobacterium leprae. Its genome underwent massive gene decay, and protein-coding 
genes constitute only 49.5% of the genome (Cole et al., 2001; Singh and Cole, 2011). 
Another exception is the parasite Rickettsia prowazekii, described below, that has 24% 
noncoding DNA. The aphid symbiont Serratia symbiotica has a coding density of ∼61% 
and 550 pseudogenes (Burke and Moran, 2011).

The density of genes in microbial genomes is consistently about one gene per 
kilobase. As an example, the genome of Escherichia coli K-12 substr. MG1655 (acces-
sion NC_000913.3) is 4.64 Mb and encompasses 4497 genes (one gene per 1032 base 
pairs). Even in very small genomes such as Mycoplasma genitalium, reduced genome 
sizes are not associated with changes either in gene density or in the average size of genes 
(Fraser et al., 1995). The genome sizes of selected large or small bacteria and archaea are 
shown in table 17.5.

Examination of the sizes of several hundred bacterial and archaeal genomes in rela-
tion to the number of genes shows a linear relationship (Fig. 17.2). This figure (adapted 
from Giovannoni et al., 2005) further distinguishes free-living, host-associated, and obli-
gate symbiont organisms. The smallest bacterial genomes are from intracellular parasites 
or symbionts having an obligate relationship with a host. In general bacteria and archaea, 
having very small genome sizes, live in extremely stable environments in which the host 
provides reliable resources (e.g., nutrients) and homeostatic benefits (e.g., a constant pH). 
Organisms with small genomes evolved from ancestors with larger genomes. One of 
the smallest sequenced genomes of a free-living organism (and one of the first genomes 
to have been sequenced) is that of Mycoplasma genitalium, a urogenital pathogen. The 
 M. genitalium has 580,070 bp encoding 470 protein-coding genes, 3 rRNA genes, and 
33 tRNA genes (Fraser et al., 1995). Mycoplasmas are bacteria of the class Mollicutes. 
They lack a cell wall and have a low GC content (32%) characteristic of this class.

Of the smallest bacterial genomes, Buchnera aphidicola has a genome of just 422,434 
base pairs with 362 protein-coding genes (Pérez-Brocal et al., 2006). The genome is orga-
nized in a circular chromosome and an additional 6 kb plasmid for leucine biosynthesis. 

http://www.sanger.ac.uk/Projects/Microbes/
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FiGure 17.2 Number of predicted protein-encoding genes versus genome size for 246 complete 
published genomes from bacteria and archaea. Giovannoni et al. (2005) reported that P. ubique has the 
smallest number of genes (1354 open reading frames) for any free-living organism that has been studied 
in the laboratory. Recent data from the smallest bacterial genomes are included.  Adapted from Giovan-
noni et al. (2005) with permission from AAAS and S. Giovannoni.

There is an obligate endosymbiotic relationship between B. aphidicola and the cedar 
aphid Cinara cedri. The bacterium has lost most of its metabolic functions, depending 
on those provided by its host, while in turn it provides metabolites (the aphid diet is 
restricted to plant sap, so it needs essential amino acids and other nutrients). The rela-
tionship between host and bacterium is thought to have been established over 200 million 
years ago, with a continual reduction in the size of the bacterial genome such that it no 
longer possesses the capability to synthesize its own cell wall.

Another very small bacterial genome is that of another endosymbiont, Carsonella 
ruddii (indicated in Fig. 17.2). Its genome consists of a single circular chromosome of 
159,662 base pairs with only 182 open reading frames (Nakabachi et al., 2006). Both the 
small genome size and the low guanine plus cytosine content (GC content 16.5%) are 
exceptional. Half of the open reading frames encode proteins implicated in translation 
and amino acid metabolism. Like B. aphidicola, C. ruddii is an obligate endosymbiont of 
a sap-feeding insect, the psyllid Pachypsylla venusta.

Recently two even smaller genomes have been identified, again inside plant-feed-
ing insects.Candidatus Tremblaya princeps has just under 139,000 base pairs and 121 
protein-coding genes (see NC_015736.1; Bennett and Moran, 2013). The Nasuia delto-
cephalinicola genome consists of 112,000 base pairs and 137 protein-coding genes. 
Tremblaya is a betaproteobacterium that resides inside a mealybug (Planococcus citri). 
Remarkably a gammaproteobacterium, Candidatus Moranella endobia lives inside 
Tremblaya. McCutcheon and von Dohlen (2011) describe this amazing case of nested 
symbiosis.

Among the archaea, the smallest genome is that of a hyperthermophilic organism that 
was cultured from a submarine hot vent, Nanoarchaeum equitans (Huber et al., 2002). 
This archaeon appears to grow attached to another archeon, Ignicoccus. Because of its 

Aphids are metazoans (animals) 
within the class Insecta. The 
B. aphidicola accession is 
NC_008513.1.
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small cell size (400 nm) and small genome size, Huber et al. (2002) suggested that N. 
equitans resembles an intermediate between the smallest living organisms (such as M. 
genitalium) and large viruses (such as the pox virus). Nonetheless, even parasitic intracel-
lular bacteria and archaea originated as free-living organisms, so are classified as distinct 
from viruses.

By comparing small bacterial and archaeal genomes, it is possible to estimate the 
minimal number of genes required for life (Box 17.2). The B. aphidicola and C. ruddii 
genomes do not encode many proteins that serve transport functions, suggesting that their 
metabolites may freely diffuse to their hosts. Many required gene products could have 
been transferred to their hosts’ nuclear genomes. Such a process has occurred in mito-
chondria, which depend on many proteins encoded by a eukaryotic nuclear genome.

Classification of bacteria and archaea based on lifestyle

In addition to the criteria of morphology and genome size and geometry, a third approach 
to classifying bacteria (and archaea) is based on their lifestyle. One main advantage of this 
approach is that it conveniently highlights the principle of extreme reduction in genome 

See Andersson (2006) for a review 
of the B. aphidicola and C. ruddii 
genomes.

Box 17.2 small Genome sIzes, mInImal Genome sIzes, and essentIal Genes 

How many genes are required in the genome of the smallest living organism, that is, the smallest autonomous self-replicating organism? 
One approach is to identify the smallest genomes in nature. The C. ruddii, N. deltocephalinicola, and Candidatus Tremblaya princeps 
genomes encode only 182, 137, and 121 proteins, respectively. However, they are constrained to living within particular insect cells 
which support their survival. Bacteria of the genus Mycoplasma tend to have both small sizes and small genomes, and have therefore 
been studied in terms of minimal gene sets. At present, the genomes from 46 species of this genus have been sequenced. M. genitalium 
encodes 523–548 genes (depending on the strain) and has the smallest genome size of an autonomously replicating bacterium. The 
forces driving the evolution of small genome size include genome reduction from larger ancestral genomes in a process that may pro-
mote fitness of the organism. In thinking about a minimal genome size, we must always consider the ecological niche occupied by the 
organism; this will have an enormous influence on the particular genes of the endosymbiont as well as the mechanisms of reductive 
evolution.

A second approach involves comparative genomics by identifying the orthologs in common between several microbes. In the earliest 
days of complete genome sequencing, Mushegian and Koonin (1996) identified 239 genes in common between Escherichia coli, H. 
influenzae, and M. genitalium. This is considered one estimate of the minimal genome size. The functions of these 239 genes include 
several basic categories: translation, DNA replication, recombination and DNA repair, transcription, anaerobic metabolism, lipid and 
cofactor biosynthesis, and transmembrane transporters. Huang et al. (2013) described the overlap of the 517 M. genitalium genes with 
conserved core gene sets of Gram-negative and Gram-positive bacteria, reporting 151 common bacterial core genes (a total of 39 of 
these encode the 30S and 50S ribosomal subunits). A Database of Essential Genes (  http://www.essentialgene.org) lists these genes 
(Luo et al., 2014).

A third approach to determining the minimal number of genes required for life is experimental. Itaya (1995) randomly knocked 
out protein-coding genes in the bacterium Bacillus subtilis. Mutations in only 6 of 79 loci prevented growth of the bacteria and were 
indispensible. Extrapolating to the size of the complete B. subtilis genome, about 250 genes were estimated to be essential for life. 
Attempts are underway to create life forms from a specific set of genes. Pósfai et al. (2006) from the group of Frederick Blattner have 
experimentally reduced the genome size of Escherichia coli K-12 (by 20% to about 4 Mb), targeting the removal of insertion sequence 
elements and other mobile DNA elements as well as repeats that mediate structural changes (such as inversions, duplications, and dele-
tions). Mizoguchi et al. (2007) further reduced the genome size to 3.6 Mb. For M. tuberculosis, random transposon mutagenesis has 
been employed to identify essential genes (Lamichhane et al., 2003). This and related approaches can provide information on which 
genes and gene products are likely to be most useful as drug targets (Lamichhane and Bishai, 2007).

D’Elia et al. (2009) and Acevedo-Rocha et al. (2013) both note the importance of the context in defining a gene as essential. Many 
essential genes encode proteins having poorly characterized functions, and the physiological state of the bacterium likely influences the 
circumstances in which that gene acts.

Several groups have studied core sets of genes required for life, including Koonin (2003) and Gil et al. (2004). Koonin lists 63 genes 
that are present across all of ∼100 genomes sequenced at the time. These include genes having functions in translation (e.g., ribosomal 
proteins and aminoacyl-transfer RNA synthetases and translation factors), transcription (RNA polymerase subunits), and replication 
and repair (DNA polymerase subunits, exonuclease, topoisomerase).

http://www.essentialgene.org


Genome AnAlysis806

size that is associated with three lifestyles: extremophiles; and intracellular and epicellu-
lar bacteria and archaea.

 • Extremophiles are microbes that live in extreme environments (Canganella and 
Wiegel, 2011). Archaea have been identified in hypersaline conditions (halophilic 
archaea), geothermal areas such as hot vents (hyperthermophilic archaea), and anoxic 
habitats (methanogens) (DeLong and Pace, 2001). One of the most  extraordinary 
extremophiles is Deinoccoccus radiodurans that can survive dessication as well as 
massive doses of ionizing radiation (it thrives in nuclear waste). It achieves this feat by 
reassembling shattered chromosomes through a novel repair mechanism  (Zahradka 
et al., 2006).

 • Intracellular bacteria invade eukaryotic cells; a well-known example is the 
α-proteobacterium that is thought to have invaded eukaryotic cells and evolved into 
the present-day mitochondrion.

 • Epicellular bacteria (and archaea) are parasites that live in close proximity to their 
hosts, but not inside host cells.

We may distinguish six basic lifestyles of bacteria and archaea (table 17.6):

 1. Extracellular: For example, E. coli commonly inhabits the human intestine without 
entering cells. Many free-living bacteria have relatively large genomes (as indicated in 
Fig. 17.2), such as the δ-proteobacterium Myxococcus xanthus described above. Hav-
ing a larger genome may provide a reservoir of genes that can be utilized to meet the 
needs of changing environments. As another example, the Gram-positive bacterium 
Propionibacterium acnes inhabits human skin and can cause acne. Its 2.5 Mb genome 
allows P. acnes the flexibility to grow under aerobic or aneaerobic conditions and to 
utilize a variety of substrates available from skin cells (Brüggemann et al., 2004).

 2. Facultatively intracellular bacteria can enter host cells, but their behavior depends 
on environmental conditions. Mycobacterium tuberculosis, the cause of tuberculosis, 
can remain dormant within infected macrophages, only to activate and cause disease 
many decades later.

 3. Extremophilic microbes: Initially, archaea were all identified in extreme environmental 
conditions. Some archaea have been found to grow at temperatures as high as 113°C, 
at pH 0, and in salt concentrations as high as 5 M sodium chloride. Methanocaldococ-
cus jannaschii, the first archeal organism to have its genome completely sequenced 
(Bult et al., 1996), grows at pressures over 200 atm and at an optimum temperature 
near 85°C. Archaea have subsequently been identified in less extreme habitats, includ-
ing forest soil and ocean seawater (DeLong, 1998; Robertson et al., 2005).

 4. Epicellular bacteria and archaea grow outside of their hosts, but in association 
with them. Mycoplasma pneumoniae, a bacterium with a genome size of ∼816,000 
bp, is a major cause of respiratory infections. The bacterium is a surface parasite 
that attaches to the respiratory epithelium of its host. The genome was sequenced 
 (Himmelreich et al., 1996) and subsequently reannotated by Peer Bork and  colleagues 
 (Dandekar et al., 2000).

 5. Obligately intracellular and symbiotic: Tamas et al. (2002) compared the complete 
genome sequences of two bacteria, Buchnera aphidicola (Sg) and Buchnera aphid-
icola (Ap), that are endosymbionts of the aphids Schizaphis graminum (Sg) and 
Acyrthosiphon pisum (Ap). Each of these bacteria has a small genome size of about 
640,000 bp. They have 564 and 545 genes, respectively, of which they share almost 
all (526). Remarkably, these bacteria diverged about 50 MYA yet they share complete 
conservation of genome architecture. There have been no inversions, translocations, 
duplications, or gene acquisitions in either bacterial genome since their divergence 
(Tamas et al., 2002). This provides a dramatic example of genomic stasis. Although 

Worldwide, one-third of all 
people are infected with 
tuberculosis (and 9 million were 
sick with the disease in a single 
recent year) (see  http://www.
cdc.gov/tb/, WebLink 17.7). The 
M. tuberculosis genome was 
sequenced by Cole et al. (1998).

http://www.cdc.gov/tb/
http://www.cdc.gov/tb/
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table 17.6 Classification of bacteria and archaea based on ecological niche.  
adapted from  http://www.chlamydiae.com.

Lifestyle Bacterium Genome size (Mb) Reference

Extracellular Escherichia coli 4.6 Blattner et al., 1997

Vibrio cholerae 4.0 Heidelberg et al., 2000

Pseudomonas aeruginosa 6.3 Stover et al., 2000

Bacillus subtilis 4.2 Kunst et al., 1997

Clostridium acetobutylicum 4.0 Nolling et al., 2001

Deinococcus radiodurans 3.3 White et al., 1999

Facultatively intracellular Salmonella enterica 4.8 Parkhill et al., 2001a

Yersinia pestis 4.7 Parkhill et al., 2001b

Legionella pneumophila 3.9 Bender et al., 1990

Mycobacterium tuberculosis 4.4 Cole et al., 1998

Listeria monocytogenes 2.9 Glaser et al., 2001

Extremophile Aeropyrum pernix 1.7 Kawarabayasi et al., 1999

Methanococcus janneschi 1.7 Bult et al., 1996

Archeoglobus fulgidus 2.2 Klenk et al., 1997

Thermotoga maritima 1.9 Nelson et al., 1999

Aquifex aeolius 1.6 Deckert et al., 1998

Epicellular Neisseria meningitidis 2.2 Tettelin et al., 2000

Haemophilus influenzae 1.8 Fleischmann et al., 1995

Mycoplasma genitalium 0.6 Fraser et al., 1995

Mycoplasma pneumoniae 0.8 Himmelreich et al., 1996

Ureaplasma urealyticum 0.8 Glass et al., 2000

Mycoplasma pulmonis 1.0 Chambaud et al., 2001

Borrelia burgdorferi 0.9 Fraser et al., 1997; Casjens et al., 2000

Treponema pallidum 1.1 Fraser et al., 1998

Helicobacter pylori 1.7 Tomb et al., 1997; Alm et al., 1999

Pasteurella multocida 2.3 May et al., 2001

Obligate intracellular, symbiotic Buchnera sp. 0.6 Shigenobu et al., 2000

Wolbachia spp. 1.1 Sun et al., 2001

Wigglesworthia glossinidia 0.7 Akman et al., 2002

Sodalis glossinidius 2.0 Akman et al., 2001

Obligate intracellular, parasitic Rickettsia prowazekii 1.1 Andersson et al., 1998

Rickettsia conorii 1.3 Ogata et al., 2001

Ehrlichia chaffeensis 1.2 Hotopp et al., 2006

Cowdria ruminantium 1.6 de Villiers et al., 2000

Chlamydia trachomatis 1.1 Stephens et al., 1998; Read et al., 2000

Chlamydophila pneumoniae 1.3 Kalman et al., 1999; Read et al., 2000; 
Shirai et al., 2000

it is extremely rare for obligate intracellular bacteria to share such genome conser-
vation, it is common for endosymbionts to have relatively small genome sizes. This 
may reflect the dependence of these bacteria on nutrients derived from the host.

 6. Obligately intracellular and parasitic: Rickettsia prowazekii is the bacterium 
that causes epidemic typhus. Its genome is relatively small, consisting of 1.1  Mb 
(Andersson et al., 1998). Like other Rickettsia, it is an α-proteobacterium that infects 
eukaryotic cells selectively. It is also of interest because it is closely related to the 

http://www.chlamydiae.com
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mitochondrial genome. A closely related species, Rickettsia conorii, is an obligate 
intracellular parasite that causes Mediterranean spotted fever in humans. Its genome 
was sequenced by Ogata et al. (2001). Similar to the Buchnera aphidicola subspe-
cies, the genome organization of the two Rickettsia parasites is well conserved.

Why are some bacterial genome sizes severely reduced? Intracellular parasites are 
subject to deleterious mutations and substitutions that cause gene loss, tending toward 
genome reduction (Andersson and Kurland, 1998; McCutcheon and Moran, 2011). A 
similar process occurred as a primordial α-proteobacterium evolved into the modern 
mitochondrion, maintaining only a minuscule mitochondrial genome size (Chapter 15).

Classification of bacteria based on human Disease relevance

Bacteria and eukaryotes have engaged in an ongoing war for millions of years. Bacteria 
occupy the nutritive environment of the human body in an effort to reproduce. Typical 
sites of bacterial colonization include the skin, respiratory tract, digestive tract (mouth, 
large intestine), urinary tract, and genital system (Eisenstein and Schaechter, 1999). It has 
been estimated that each human has more bacterial cells than human cells in the body. 
In the majority of cases, these bacteria are harmless to humans. However, many bacteria 
cause infections, often with devastating consequences.

In recent years, the widespread use of antibiotics has led to an increased prevalence 
of drug resistance among bacteria. It is therefore imperative to identify bacterial viru-
lence factors and to develop strategies for vaccination (Bush et al., 2011). One approach 
to this problem is to compare pathogenic and nonpathogenic strains of bacteria (see 
 “Comparison of Bacterial Genomes” below). table 17.7 lists some of the bacterial diseases 
for which vaccinations are routinely administered. The worldwide disease burden caused 
by bacteria is enormous. For example, there are 690,000 new cases of leprosy reported 
annually worldwide; the causative agent is Mycobacterium leprae. There are millions 
of cases of salmonellosis each year, caused by Salmonella enterica. A pathogenic strain 
of E. coli (O157:H7) causes haemorrhagic colitis and infects 75,000 individuals in the 
United States each year. As mentioned above, M. tuberculosis infects billions of people 
and kills millions.

PATRIC is a bacterial bioinformatics resource center (Gillespie et al., 2011). It cen-
tralizes information about large numbers of strains of pathogenic bacteria, including 
expert curation and analyses of metabolic pathways in those organisms. Annotations are 
performed using Rapid Annotation using Subsystem Technology (RAST; Overbeek et al., 
2014; see “Gene Annotation” below).

You can read about a variety 
of bacterial diseases at the 
Centers for Disease Control and 
Prevention website (  http://
www.cdc.gov/DataStatistics/, 
WebLink 17.8).

PATRIC is available online at 
 http://patricbrc.vbi.vt.edu/ 

(WebLink 17.4).

table 17.7 Vaccine-preventable bacterial diseases. adapted from CDC-DpDx,  http://www.cdc.gov/vaccines/
vpd-vac/vpd-list.htm and  http://www.cdc.gov/DiseasesConditions/. 

Disease Species

Anthrax Bacillus anthracis

Diarrheal disease (cholera) Vibrio cholerae

Diphtheria Corynebacterium diphtheriae

Community acquired pneumonia Haemophilus influenzae type B, Streptococcus pneumoniae

Lyme disease Borrelia burgdorferi

Meningitis Haemophilus influenzae type B (HIB), Streptococcus pneumoniae, Neisseria meningitidis

Pertussis Bordetella pertussis

Tetanus Clostridium tetani

Tuberculosis Mycobacterium tuberculosis

Typhoid Salmonella typhi

http://www.cdc.gov/vaccines/vpd-vac/vpd-list.htm
http://www.cdc.gov/DiseasesConditions/
http://www.cdc.gov/DataStatistics/
http://www.cdc.gov/DataStatistics/
http://patricbrc.vbi.vt.edu/
http://www.cdc.gov/vaccines/vpd-vac/vpd-list.htm
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An emerging theme in the biology of bacteria and archaea is that, in addition to 
mutation, bacterial populations undergo recombination, causing genetic diversification 
(Fraser et al., 2007). Species can be defined as clusters of genetically related strains, and 
the exchange of DNA by homologous recombination or other processes can complicate 
species definitions. Joyce et al. (2002) have reviewed recombination in the context of 
pathogenic bacteria such as Helicobacter pylori (a leading cause of gastric ulcers), Strep-
tococcus pneumoniae, and Salmonella enterica. While eukaryotes achieve genetic diver-
sity through sexual reproduction, bacteria and archaea also achieve tremendous genetic 
diversity through both recombination and lateral gene transfer (see section on “Lateral 
Gene Transfer” below).

We can consider bacteria that infect humans. Additionally, there are many pathogenic 
bacteria of plants which can cause human suffering by devastating crops. Mansfield et al. 
(2012) reported the results of a poll of the research community for the most economically 
and scientifically important plant pathogens. These included a group of Pseudomonas 
syringae pathovars in first place and three Xanthomonas species.

Classification of bacteria and archaea based on ribosomal rNa Sequences

A main way to describe the diversity of microbial life is by molecular phylogeny. Trees 
have been generated based on multiple sequence alignments of 16S rRNA and other small 
rRNAs from various species. Ribosomal RNA has excellent characteristics as a molecule 
of choice for phylogeny: it is distributed globally; it is highly conserved yet still exhib-
its enough variability to reveal informative differences; and it is only rarely transferred 
between species. An example of a rRNA-based tree is shown in Figure 17.1, and we saw a 
similar tree reconstruction in Figure 15.1. Through rRNA and other genome-based trees, 
bacterial and archaeal genomics are having a major impact on microbial systematics 
(Klenk and Göker, 2010; Zhi et al., 2012).

A major conclusion of early rRNA studies by Carl Woese and colleagues (Woese and 
Fox, 1977; Fox et al., 1980) is that bacteria and archaea are distinct groups. The deepest 
branching phyla are hyperthermophilic microbes, consistent with the hypothesis that the 
universal ancestor of life existed at hot temperatures (Achenbach-Richter et al., 1987).

A great advance in our appreciation of microbial diversity came from the realiza-
tion that the vast majority of bacteria and archaea are noncultivatable (Hugenholtz et 
al., 1998). It is straightforward to obtain microbes from natural sources and grow some 
of them in the presence of different kinds of culture medium. For the great majority of 
microbes however, perhaps >99%, culture conditions are not known. It is still possible 
to sample uncultivated (or uncultivatable) microbes by extracting nucleic acids directly 
from naturally occurring habitats (DeLong and Pace, 2001). Norman Pace and colleagues 
pioneered the analysis of rRNA to characterize uncultivated species.

Because there is a sampling bias towards cultivatable microbes, just four bacterial 
phyla have been characterized most fully: Proteobacteria, Firmicutes, Actinobacteria, and 
Bacteroidetes (Hugenholtz, 2002). These major groups account for over 90% of all known 
bacteria (discussed in Gupta and Griffiths, 2002). However, 35 bacterial and 18 archaeal 
phylum-level lineages are currently known (Hugenholtz, 2002). Analyses of uncultivated 
microbes will expand our view of bacterial and archaeal diversity.

In an approach that may be called diversity-driven phylogenomics, Jonathan Eisen 
and colleagues initiated the Genomic Encyclopedia of Bacteria and Archaea (GEBA) 
project (Wu et al., 2009). Its goal is to generate and analyze complete genome sequences 
from the tree of life based on phylogenetic diversity. They identified the most divergent 
lineages that lacked sequenced genomes, and selected cultivatable representatives for 
analysis. The first report included 56 complete genomes having ∼16,800 protein families, 
∼1700 of which displayed no significant sequence similarity to any known proteins.

Reysenbach and Shock (2002) 
described a phylogenetic tree of 
extremophilic microbes based on 
16S rRNA sequences. They used 
a software package designed 
for rRNA studies, called ARB 
(Chapter 10). You can obtain this 
software at  http://www.arb-
home.de/ (WebLink 17.9).

The Joint Genomics Institute (JGI) 
offers a GEBA website at  http://
genome.jgi.doe.gov/programs/
bacteria-archaea/GEBA.jsf 
(WebLink 17.10).

http://www.arb-home.de/
http://www.arb-home.de/
http://www.arb-home.de/
http://genome.jgi.doe.gov/programs/bacteria-archaea/GEBA.jsf
http://genome.jgi.doe.gov/programs/bacteria-archaea/GEBA.jsf
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How much bacterial and archaeal diversity has yet to be characterized? The GEBA 
project has used small subunit rRNA gene sequences as a measure of organismal diversity 
(Fig. 17.3, y axis; Wu et al., 2009). They estimated that half the genetic diversity of known, 
cultured bacteria and archaea could be captured by sequencing ∼1500 isolates based on 
the criterion of phylogentic diversity. The extent of diversity from uncultured species (as 
indicated by the analysis of rRNA sequences) is vastly greater. The authors estimated 
that sequencing ∼9200 genomes from archaea and bacteria that are not cultured would 
encompass 50% of this additional diversity (Fig. 17.3).

In another example of diversity-driven phylogenomics, Shih et al. (2013) sequenced 
the genomes of 54 diverse strains of cyanobacteria. This study focused on a single phy-
lum, and was called the CyanoGEBA dataset since it was inspired by the broader GEBA 
approach. About 21,000 of the identified proteins (out of a total of ∼193,000 proteins) 
had no detectable homology to known proteins. The cyanobacteria are oxygenic photo-
synthetic organisms, and the genome sequences provided insight into the origins of plant 
plastids (photosynthetic organelles) that derive from cyanobacteria.

Classification of bacteria and archaea based on Other  
Molecular Sequences

In addition to rRNA, many other DNA, RNA, or protein sequences can be used for molec-
ular phylogeny studies. One motivation to do this is that the analysis of 16S ribosomal 
RNA sequence occasionally yields conflicting results. For example, the α-proteobacterium 
Hyphomonas neptunium is classified as a member of the order Rhodobacterales based on 
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FiGure 17.3 Estimates of the phylogenetic diversity of bacteria and archaea from small subunit 
ribosomal RNA (SSU rRNA) genes. The plot is based on analysis of a phylogenetic tree of unique 
SSU rRNA sequences. Phylogenetic diversity (based on SSU rRNA sequences) was estimated from: 
(1) genome sequences before GEBA (blue); (2) 56 complete genomes contributed by the GEBA project 
(red); (3) all cultured organisms (gray); and (4) all available SSU rRNA genes (light gray). 

Source: Wu et al. (2009). Reproduced with permission from Macmillan Publishers.
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16S rRNA but Caulobacterales based on 23S rRNA as well as according to ribosomal 
proteins HSP70 and EF-Tu (Badger et al., 2005). This is potentially due to lateral gene 
transfer (see section on this topic below). In other instances, 16S rRNA of unusual com-
position has been identified (Baker et al., 2006). Because of concerns about the properties 
of 16S rRNA for phylogenetic analysis, Teeling and Gloeckner (2006) introduced Rib-
Align, a database of ribosomal protein sequences. The HOGENOM database is another 
resource that is useful for phylogenetic studies. It includes large numbers of protein fam-
ilies across the tree of life.

The use of individual proteins (or genes) for such studies sometimes yields tree 
 topologies that conflict with each other and with topologies obtained using rRNA 
sequences. These discrepancies are usually attributed either to lateral gene transfer (see 
below), which can confound phylogenetic reconstruction, or to the loss of  phylogenetic 
signals due to saturating levels of substitutions in the gene or protein sequences. A 
strategy to  circumvent this problem is to use combined gene or protein sets. Brown 
et al. (2001) aligned 23 orthologous proteins conserved across 45 species. Their trees 
 supported  thermophiles as the earliest evolved bacteria lineages (Fig. 17.4). Matrices 
of  concatenated, conserved protein alignments are commonly used for phylogenomic 
 studies. The Shih et al. (2013) study of cyanobacteria (see above) relied on 31 conserved 
proteins for phylogenetic reconstructions.

There are many other approaches to bacterial phylogeny. One is to identify conserved 
insertions and deletions in a large group of proteins. Such “signature sequences” can dis-
tinguish bacterial groups and form the basis of a tree (see Web Document 17.1; Gupta 
and Griffiths, 2002). This tree shows the relative branching order of bacterial species 
from completed genomes. In an early study, Eugene Koonin and colleagues (Wolf et al., 
2001) used five independent approaches to construct trees for 30 completely sequenced 
bacterial genomes and 10 sequenced archaeal genomes. Their approach included: (1) 
assessing genes that are present or absent in various categories of functional annotation; 
(2) assessing the conservation of local gene order (i.e., pairs of adjacent genes) among 
the genomes; (3) measuring the distribution of percent identity between likely ortho-
logs; (4) aligning 32 ribosomal proteins into a multiple sequence alignment consisting 
of 4821 columns (characters) and then generating a tree using the maximum-likelihood 
approach; and (5) comparing multiple trees generated from a series of protein align-
ments. These approaches can produce complementary information about phylogenetic 
reconstructions.

the human mIcroBIome
Most of us think of our bodies as consisting of mostly human cells, occasionally hous-
ing some bacteria in our mouths and guts. However, it has been estimated that there 
are ten times more bacterial cells than human cells in our bodies; citing earlier sources, 
Savage (1977) suggested a typical person has 1013 animal cells and 1014 bacterial cells. 
These bacteria, as well as some archaea, viruses, and eukaryotes, collectively may con-
tain greater than two orders of magnitude more genes than are encoded by our human 
genome (Gill et al., 2006). This collection of foreign genomes in our bodies is referred 
to as the human microbiome. Most are commensal, coexisting and helping to digest food 
and facilitate our metabolism; some are pathogenic. Together they weigh about 1.5 kg in 
a typical human gut.

Two large-scale projects have characterized our microbiome: the Human Microbi-
ome Project (HMP) and the Metagenomics of the Human Intestinal Tract (MetaHIT). 
The HMP analyzed the microbiome of 242 healthy adults, sampling 15 or 18 body sites 
up to three times (Human Microbiome Project Consortium, 2012a). Their goal was to 

RibAlign is available at  http://
www.megx.net/ribalign (WebLink 
17.11). Its multiple sequence 
alignments of ribosomal 
proteins use MAFFT (Chapter 6). 
Homologous Sequences in 
Complete Genomes Database 
(HOGENOM) is available at  
http://pbil.univ-lyon1.fr/databases/
hogenom/home.php  
(WebLink 17.12).

We study eukaryotes from the 
perspective of a tree that uses a 
combined protein dataset  
(Fig. 19.1).

http://www.megx.net/ribalign
http://www.megx.net/ribalign
http://pbil.univ-lyon1.fr/databases/hogenom/home.php
http://pbil.univ-lyon1.fr/databases/hogenom/home.php
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establish viral, bacterial, and eukaryotic reference genomes using 16S rRNA sequenc-
ing, whole-genome shotgun (WGS) sequencing, or metagenomic sequencing. The sam-
pled sites spanned five body areas such as the oral cavity (from saliva to throat), nares 
(nostrils), skin specimens (from the retroauricalular creases behind each ear and from the 
inner elbows), stool, and, for women, three vaginal sites (Human Microbiome Project 
Consortium, 2012a). The MetaHIT consortium focused on the gut microbiome by analyz-
ing fecal samples from 124 European individuals (Qin et al., 2010).

 The HMP website is  http://
commonfund.nih.gov/hmp/index 
(WebLink 17.13). Sponsored by 
the National Institutes of Health, 
it cost US$ 170 million. The 
MetaHIT consortium was funded 
by the European Commission (for 
€ 21.2 million), and its website 
is  http://www.metahit.eu/ 
(WebLink 17.14).
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FiGure 17.4 An unrooted tree of life redrawn from Brown et al. (2001) is based on an alignment 
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proteins, there are many phylogenetically informative sites. The tree consists of three major, monophy-
letic branches of life as described in Chapter 15. The tree was generated in PAUP by maximum parsi-
mony (described in Chapter 7). Numbers along the branches show percentage of nodes in 1000 bootstrap 
replicates. Scale bar corresponds to 100 amino acid substitutions. Adapted from Brown et al. (2001).

http://commonfund.nih.gov/hmp/index
http://commonfund.nih.gov/hmp/index
http://www.metahit.eu/
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We may summarize some of the major findings of these consortia as follows (Pennisi, 
2012; Morgan et al., 2013; also see Dave et al., 2012). Five leaders in this field provide 
an overview of findings and trends in the field (Blaser et al., 2013).

 1. There are extraordinary bioinformatics challenges associated with these types of proj-
ects, which for HMP involved collecting over 3.5 terabases of DNA sequence by 2012 
(Human Microbiome Project Consortium, 2012a). Weinstock (2012), Teeling and 
Glöckner (2012) as well as Rob Knight and colleagues (Kuczynski et al., 2012) have 
reviewed some of the bioinformatics tools required for this research. IMG/M is an 
example of a set of software tools for metagenome analysis (Markowitz et al., 2014).

 2. Most of the microbiome is bacterial. The MetaHIT consortium reported that 0.14% 
of reads were human contamination (following standard efforts to remove human 
sequences), with additional sequences from other eukaryotes (accounting for 0.5% 
of reads), archaea (0.8%), and viruses (up to 5.8%) (Arumugam et al., 2011).

 3. There is no single reference microbiome because there is such enormous diversity of 
species within each individual and between individuals (Morgan et al., 2013).

 4. Each body region does have characteristic bacterial species within each  individual, 
and these often occur in common between individuals. Despite the great  diversity, 
bacterial species are therefore not randomly distributed. A plot from the HMP 
 showing bacterial phyla across seven body regions shows some of the dominant 
phyla (Fig. 17.5a). For any given body region there tends to be a single major phylum 
(and often genus), although that phylum often differs between individuals. In feces, 
Bacteriodes is the most abundant and the most variable species, and the amounts of 
these as well as Prevotella and Ruminococcus define three clusters or enterotypes of 
microbes (Arumugam et al., 2011).

 5. While bacterial phyla and genera vary greatly across body regions, the HMP made 
the remarkable discovery that most metabolic pathways are evenly distributed and 
evenly prevalent across body regions and between individuals (Human Microbi-
ome Project Consortium, 2012a; Fig. 17.5b). Future efforts to alter the microbiome 
to promote health might therefore focus on understanding the status of functional 

IMG is online at  http://img.jgi 
.doe.gov/ (WebLink 17.5).
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pathways then modifying them as needed, rather than trying to promote or eliminate 
particular species.

 6. There has been great interest in the possible role of the microbiome in human dis-
ease including obesity, psoriasis, asthma, and bowel diseases (Cho and Blaser, 2012; 
Zhao, 2013). Turnbaugh et al. (2009) studied microbiomes from fecal samples of 
female monozygotic and dizygotic twin pairs concordant for leanness or obesity. 
They found that the gut microbial community is shared by family members, with 
reduced microbial diversity in obese individuals. The MetaHIT consortium reported 
consistent findings (Le Chatelier et al., 2013), suggesting that even a few bacterial 
species can distinguish individuals who are lean versus obese (as well as distinguish-
ing those with high versus low bacterial richness).

analysIs of BacterIal and archaeal Genomes
Some of the main attributes of a bacterial or archaeal genome are its genome size, nucleo-
tide composition, gene content, extent of lateral gene transfer, and functional annotation. 
We can approach this subject by considering Escherichia coli, arguably the best-charac-
terized bacterium.

We begin with a phylogenetic perspective (Chaudhuri and Henderson, 2012). The 
intial genome sequence analysis by Blattner et al. (1997) was of E. coli K-12 strain 
MG1655, and it continues to be annotated and used as a reference genome (Riley et al., 
2006). The annotation process includes an effort by the community to correct sequence 
errors, to update the boundaries for genes and transcripts (based for example on models 
for gene structures in related bacteria), and to assign functional descriptions for all genes 
(as described in Chapter 14). There are online resources that centralize information about 
E. coli such as EcoCyc (Keseler et al., 2013), RegulonDB (Salgado et al., 2006), and 
EcoGene (Rudd, 2000).

The next E. coli genomes to be sequenced were pathogenic EHEC O157:H7 strains 
Sakai (RIMD 0509952) and EDL933 (Fig. 17.6, clade B). The E. coli O157:H7 strain 
appears in contaminated food, causing disease such as hemorrhagic colitis. These strains 
diverged from E. coli K-12 MG1655 about 4.5 MYA (Reid et al., 2000). Both genomes 
were sequenced and compared (Blattner et al., 1997; Hayashi et al., 2001; Perna et al., 
2001; reviewed in Eisen, 2001). Escherichia coli 0157:H7 is about 859,000 bp larger 
than E. coli K-12. The two bacteria share a common backbone of about 4.1 Mb, while E. 
coli 0157:H7 has an additional 1.4 Mb sequence comprised largely of genes acquired by 
lateral gene transfer.

The next E. coli genome to be sequenced was that of strain CFT073 (clade B2). 
Unexpectedly, only 10% of the CFT073-specific genes relative to MG 1655 were also 
shared by the O157:H7 genome. Chaudhuri and Henderson (2012) traced the efforts to 
characterize additional E. coli genomes. Shigella, identified in the late nineteenth century, 
was thought to belong to a distinct genus because of phenotypic differences (e.g., it is 
nonmotile in constrast to E. coli, and cannot ferment lactose). However, phylogenetic 
analyses clearly place Shigella spp. in the same genus as E. coli, as shown in Figure 17.6.

In May 2011 there was a large outbreak of Shiga toxin-producing E. coli O104:H4. 
There were over 4000 cases and 50 deaths; symptoms included diarrhea and a hemolyt-
ic-uremic syndrome. Several groups, including Rasko et al. (2011) promptly sequenced 
the German outbreak strain (see clade B1) as well as 12 additional E. coli genomes. They 
identified structural variation between O104:H4 and other enteroaggregative O104:H4 
isolates. The outbreak strain included two lambdalike prophage elements, including one 
containing the genes for Shiga toxin. They concluded that this strain acquired its viru-
lence by lateral transfer (see “Lateral Gene Transfer” below). This episode highlights the 

EcoCyc is online at  http://
ecocyc.org/ (WebLink 17.15), 
Regulon is at  http://regulondb 
.ccg.unam.mx/ (WebLink 17.16), 
and EcoGene is available at  
http://ecogene.org/ (WebLink 
17.17). For each database try 
entering a query for the gene 
BLC and you will see a variety 
of data including its genomic 
context, links to structural 
genomics projects, and BLAST 
links. Julio Collado-Vides and 
colleagues have expertly curated 
the transcription initiation sites 
and operon organization of E. coli 
with an emphasis on elucidating 
the regulatory networks.

http://ecocyc.org/
http://ecocyc.org/
http://regulondb.ccg.unam.mx/
http://ecogene.org/
http://regulondb.ccg.unam.mx/
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FiGure 17.6 Phylogenetic relationships of E. coli strains. The tree was generated by aligning com-
plete and draft genome sequences spanning 2.78 Mb (excluding positions with gaps), then using a max-
imum likelihood tree-building approach. Bootstrap replicates (not shown) were all 100. Note that group 
B1 includes two strains involved in a haemorrhagic uraemic syndrome outbreak in Germany in 2011 
(TY 2482 and O104 H4 str LB226692) that are closely related to enteroaggregative E. coli (EAEC) 
strain 55989, a pathovar. Redrawn from Chaudhuri and Henderson (2012). Reproduced with permissions 
from Elsevier.
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emerging role of next-generation sequencing in rapidly identifying disease-associated 
pathogens; the authors reported requiring five hours to sequence each isolate.

As we focus on E. coli K-12 MG1655, we can select from a series of extremely rich 
resources.

 • A search of the Genomes Online Database (GOLD) for the organism Escherichia 
coli shows an interactive world map of where E. coli has been isolated, and also lists 
>2400 projects (62 complete and published genomes, ∼1200 permanent drafts, and 
many incomplete projects). Following the link to Escherichia coli K-12, MG1655 
(Goldstamp Gc00008), we find a page with a wealth of information on its genome 
including summaries of the DNA molecule (4640 kilobase pairs; 51% GC content; 
4497 open reading frames) and external links.
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 • The NCBI Project for that organism provides access to raw DNA sequence (e.g., 
SRA files when available).

 • The Integrated Microbial Genomes (IMG) site includes genomic data as shown 
in Figure 17.7 including a web browser, lists of putative laterally transferred genes, 
 annotation data, and analyses of the phylogenetic distribution of genes.

 • EcoCyc is a major resource for E. coli (Keseler et al., 2013). EcoCyc is a part of 
 BioCyc which encompases ∼3000 databases of pathways and organisms  (Latendresse 
et al., 2012).

FiGure 17.7 The Integrated Microbial Genomes (IMG) website offers data on bacterial genomes 
such as E. coli K-12 MG1655. IMG also offers extensive tools for metagenomics analyses. 

Source: IMG.
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 • EnsemblBacteria includes large numbers of E. coli strains. For MG1655 it includes 
access to the sequence (in FASTA format or from the European Nucleotide Archive), 
comparative genomics tools such as gene trees, and data on the genome build.

 • The UCSC Genome Browser include a microbial browser. There is also an annotation 
hub that can be used to compare genomic features for dozens of E. coli strains. An 
example comparing K-12 MG1655 and O157:H7 is shown in Figure 17.8.

 • Galaxy includes access to the UCSC Archaea Table Browser as well as access to 
BoMart, UCSC, and EBI resources.

Deciding which to use depends on your preferences and the nature of the project (e.g., 
IMG offers particularly strong metagenomics resources). Popular bioinformatics resources 
Ensembl, NCBI, and UCSC offer familiarity for those used to working with them.

Nucleotide Composition

In the analysis of a completed genome, the nucleotide composition has characteristic properties. 
The GC content is the mean percentage of guanine and cytosine and, as first reported by  Noboru 
Sueoka (1961) it typically varies from 25 to 75% in bacteria (Fig. 17.9). Eukaryotes almost 
always have a larger and more variable genome size than bacteria, but their GC content is very 
uniform (around 40–45%). Within each species, nucleotide composition tends to be uniform.

Visit the EnsemblBacteria at 
 http://bacteria.ensembl.org 

(WebLink 17.3).

We showed the range of GC 
content in Figure 15.13.

FiGure 17.8 The UCSC Genome Browser offers an E. coli hub, currently with access to 72 E. coli genomes. Features include alignability, 
conservation, GC percent in windows, repeat elements from RepeatMasker (several of which are shown), and comparative assembly data (here 
with K-12 MG1655 and O157:H7 EDL933). UCSC also offers a microbial browser. 

Source:  http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
http://bacteria.ensembl.org
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GC content varies within an individual genome. Regions having atypical GC con-
tent sometimes reflect invasions of foreign DNA (such as phage DNA incorporating into 
bacterial genomes). The GC content is highest (AT content lowest) in intergenic regions, 
possibly because of the requirements of transcription factor-binding sites (Mitchison, 
2005). GC content is also related to the frequency of codon utilization; we explore this in 
a computer lab exercise (17.3) at the end of this chapter.

We analyze the GC content of an E. coli strain using an R package, seqinr. We can 
divide our task into three parts: (1) obtaining a genome sequence in the FASTA format; 
(2) determining the overall GC content; and (3) measuring the GC content in windows 
across the genome.

We can search for a standard strain of E. coli by entering the search term “esche-
richia coli K12” to the home page of NCBI. From there we find accession NC_000913.3 
corresponding to Escherichia coli str. K-12 substr. MG1655. The corresponding NCBI 
Nucleotide entry (at  http://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3) includes the 
option Send > Complete Record > Destination: File > Format: FASTA > Create File. This 
file is 4.7 MB; save it (or copy it) to your R working directory.

Next open the R program. You can install seqinr using the “Packages” pull-down 
menu from the RGui console, or RStudio offers a convenient option to select packages 
for installation.

Determine GC content with the 
Emboss program GEECEE  
(  http://mobyle.pasteur.fr/cgi-
bin/portal.py?#forms::geecee, 
WebLink 17.18) or with other 
programs such as GLIMMER 
(see the following section).

We modify an excellent online 
tutorial by Avril Coghlan, 
available at  http://a-little-
book-of-r-for-bioinformatics.
readthedocs.org/en/latest/src/
chapter2.html (WebLink 17.19).
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FiGure 17.9 GC content for ∼15,000 bacterial and archaeal genomes. Data from NCBI Genome.

> library(“seqinr”)
> ?seqinr # Explore features of this package
> ecoli <-read.fasta(file = "NC_000913.fasta")

We have created the object ecoli which includes the sequence. The command 
str(ecoli) will show us its of length 4.6 million. Next we place the sequence in 
a vector called ecoliseq. We can see this with the length command, and can also 
obtain the GC content:

> ecoliseq <- ecoli[[1]] # This puts the sequence in a vector
> ecoliseq[1:10] # This displays the first 10 nucleotides
 [1] "a" "g" "c" "t" "t" "t" "t" "c" "a" "t"
> length(ecoliseq)
[1] 4641652
> GC(ecoliseq)
[1] 0.5079071

http://www.ncbi.nlm.nih.gov/nuccore/NC_000913.3
http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::geecee
http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::geecee
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter2.html
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Finding Genes

Bacteria and archaea are characterized by a high gene density (about one gene per 
kilobase), an absence of introns, and very little repetitive DNA. The problem of find-
ing genes is therefore relatively simple in comparison to searching eukaryotic DNA 
(Chapter 8). Several programs are available for microbial gene identification, as listed in 
table 17.8.

There are four main features of genomic DNA that are useful for gene recognition 
(Baytaluk et al., 2002). These features apply to both bacterial and eukaryotic gene finding:

 1. Open reading frame (ORF) length. An ORF is not necessarily a gene; for example, 
many short ORFs are not part of authentic genes (discussed further below). An ORF 
is defined by a start codon (i.e., ATG encoding a methionine) and a stop codon (TAA, 
TAG, TGA). In bacteria however, alternative start codons may be employed such as 
GTG or TTG, and there are rarely used alternative stop codons.

This strain of E. coli therefore has a GC content of about 50.8%. We may also want 
to evaluate the GC content across windows of fixed size. We begin with a size of 20,000 
base pairs.

The plot of GC content is shown in Figure 17.10. Note that these windows are non-
overlapping (for some applications it may be useful to work with overlapping windows).

FiGure 17.10 GC content of E. coli strain K-12. The sequence of an E. coli strain was downloaded 
from NCBI, input to the R program seqinr, a for loop was used to calculate GC content in windows 
of 20,000 base pairs, and the data were plotted (see text for details).

> starts <- seq(1, length(ecoliseq)-20000, by = 20000)
> n <- length(starts) # n is the length of the vector.
> n
[1] 232
> chunkGCs <- numeric(n)
# This creates a vector of the same length as starts.
> for (i in 1:n) {
 chunk <- ecoliseq[starts[i]:(starts[i]+1999)]
 chunkGC <- GC(chunk)
 print(chunkGC)
 chunkGCs[i] <- chunkGC
 }
# This “for loop” iteratively determines the GC content in each window
> plot(starts,chunkGCs,type="b",xlab=“start position",ylab="GC 
percent",col=forestgreen) # the type “b” specifies a plot with the data  
# points connected by lines. col specifies the color.
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 2. Presence of a consensus sequence for ribosome binding in the immediate vicinity of 
the start codon. In some cases, it is possible to identify two in-frame ATG codons, 
either of which could represent the start codon. Identifying a ribosome binding site 
can be an important indicator of which is the likely start site. In bacteria, the ribo-
some binding site is called a Shine–Dalgarno sequence. It is a purine-rich stretch of 
nucleotides that is complementary to the 3′ end of 16S rRNA, extending from the –20 
position (i.e., 5′ to the initiation codon) to the +13 position (i.e., 13 nucleotides down-
stream in the 3′ direction). Samuel Karlin and colleagues (Ma et al., 2002) studied 
30 prokaryotic genomes and correlated the features of the Shine–Dalgarno sequence 
with expression levels of genes based on codon usage bias (see below), type of codon, 
functional gene class, and type of start codon. They have shown a positive correlation 
between the presence of a strong Shine–Dalgarno sequence and high levels of gene 
expression.

 3. Presence of a pattern of codon usage that is consistent with genes. Hidden Markov 
models (Chapter 6 and see below) have been particularly useful in defining the cod-
ing potential of putative protein-coding DNA sequences.

 4. Homology of the putative gene to other known genes. Genomic DNA sequences, 
including putative genes, can be searched against protein databases using BLASTX 
(see Chapter  4). This approach is especially helpful in finding genes in eukaryotic 
organisms. For example, exons can be matched to expressed sequence tags  (Chapter 8).

The first three of these features are studied using intrinsic approaches to gene finding. 
They are called intrinsic because the features do not necessarily depend on comparisons 
to gene sequences from other organisms. The fourth feature, relationship to other genes, 
is called an extrinsic approach. Bacterial gene-finding programs sometimes combine both 
intrinsic and extrinsic approaches.

The GLIMMER system is one of the premier gene-finding algorithms, and identi-
fies over 99% of all genes in a bacterial genome (Delcher et al., 1999, 2007). The latest 
version has excellent senstitivity (determined based on comparisons to well-annotated 
bacterial genomes) and specificity (there are relatively few false positive results, i.e., gene 
predictions that do not correspond to authentic genes). The algorithm uses interpolated 
Markov models (IMMs). A Markov chain can describe the probability distribution for 
each nucleotide in a genomic DNA sequence. This probability can depend on the preced-
ing k variables (nucleotides) in the sequence. A fixed-order Markov chain would describe 
the k-base context for each nucleotide position; for example, a fixed fifth-order Markov 
chain model describes 45 = 1024 probability distributions, one for each possible 5-mer. 
GLIMMER uses a fifth-order Markov chain because that corresponds to a model of two 
consecutive codons (six nucleotide positions). The k-mers are used as a training set to 
teach the algorithm the rules for which probability distributions are most likely to be rel-
evant to this particular genomic sequence. Larger values for k are more informative but, 
since they occur more rarely, it is more difficult to sample enough data for a training set in 
order to model the probability of the next base in the sequence. IMMs are a specialization 

Intrinsic approaches are also 
sometimes called ab initio 
approaches.

table 17.8 programs for gene finding in bacterial and archaeal genomes.

Program Description URL

EasyGene A web server from Anders Krogh 
and colleaguges

http://www.cbs.dtu.dk/services/
EasyGene/

FrameD Locates genes and frameshifts; 
optimized for GC-rich genomes

http://bioinfo.genopole-toulouse.
prd.fr/apps/FrameD/FrameD.html

GeneMarkP, GeneMarkS Uses hidden Markov models http://exon.gatech.edu/GeneMark/

GLIMMER At Johns Hopkins University http://ccb.jhu.edu/software.shtml

http://www.cbs.dtu.dk/services/EasyGene/
http://bioinfo.genopole-toulouse.prd.fr/apps/FrameD/FrameD.html
http://exon.gatech.edu/GeneMark/
http://ccb.jhu.edu/software.shtml
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of Markov models in which rare k-mers tend to be ignored and more common k-mers are 
weighted more heavily.

GLIMMER builds an IMM from a training set, then scans a genomic DNA sequence 
to predict genes. Criteria for gene-finding include the presence of an initiation codon 
and some particular minimal length for an open reading frame. GLIMMER further 
assigns functions to predicted genes through BLAST searches and HMM searches, and 
also searches for noncoding RNAs (e.g., using tRNAscan; Chapter  10), paralogs, and 
PROSITE motifs (Chapter 12).

A simplified form of GLIMMER is available online at the NCBI website. We can 
enter the accession number for E. coli str. K-12 substr. MG1655 (the complete genome 
of a well-known strain). We can then download the whole-genome sequence (4,641,652 
base pairs) in the FASTA format and save it as a text file (Fig. 17.11a). Visiting the NCBI 
GLIMMER site, we can then upload the text file and perform analyses of open reading 
frames in this DNA (Fig. 17.11b).

GLIMMER was written by Owen 
White, Steven Salzberg and 
colleagues when at The Institute 
for Genomic Research. GLIMMER 
is an acronym for Gene Locator 
and Interpolated Markov Modeler.

To find GLIMMER at NCBI, visit 
the Genome page at  http://
www.ncbi.nlm.nih.gov/genome 
(WebLink 17.20) then follow the 
link to microbes.

FiGure 17.11 Identifying E. coli genes using the web-based GLIMMER3 program at NCBI. (a) Starting from the accession number of 
an E. coli strain (NC_000913.3) the “send to” option is selected to download a text file with the nucleotide sequence in the FASTA format. 
(b) The first ten open reading frame predictions (of 4482 total) are shown. 

Source: GLIMMER3, NCBI.

http://www.ncbi.nlm.nih.gov/genome
http://www.ncbi.nlm.nih.gov/genome
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A new directory called glimmer3.02 is now created. Next, compile the program.

GLIMMER was designed for command-line usage on Linux (or related) operating 
systems. We download GLIMMER from its website and transfer it to a folder called 
glimmer.

GLIMMER is available at  http://
ccb.jhu.edu/software/glimmer/
index.shtml (WebLink 17.21).

$ mkdir glimmer # this makes a new directory called glimmer
$ cd Downloads/ # change directory to the Downloads directory
$ cp glimmer302b.tar ∼/glimmer/ # copy the downloaded glimmer program to  
# the glimmer directory
$ cp sequence-6.fasta ∼/glimmer/ # transfer (copy) the fasta file to the 
# glimmer directory
$ mv sequence-6.fasta ecoliK12MG1655.fasta # we rename the downloaded 
# sequence
$ tar xzf glimmer302b.tar.gz # uncompress the distribution file

$ cd src/
$ make # the program is compiled. (If make command fails, see the 
# documentation for help.)

We now run GLIMMER in two steps, as described in the following sections.

Interpolated Context Model (ICM)
First, we build an interpolated context model (ICM) which is a probability model of cod-
ing sequences. We select a set of E. coli nucleotide sequences in the FASTA format to 
train the model. We are doing this to demonstrate how GLIMMER3 works. In general, if 
you have a new genome for which you want to annotate genes, there are several options: 
you can identify a set of known genes from BLAST searches; you can select known genes 
from a closely related species; or, you can use the program long-orfs within GLIM-
MER3 to identify long open reading frames that represent candidate genes. To see its help 
documentation, type:

$ ./glimmer3.02/bin/long-orfs –h # Once you copy the executable to your 
# home/bin directory you can invoke glimmer without needing the ./ prefix 
# that specifies the location of the executable

From the NCBI Nucleotide page for Escherichia coli str. K-12 substr. MG1655 
(  http://www.ncbi.nlm.nih.gov/nuccore/556503834?report=fasta, NC_000913.3), choose 
“Send” to send the coding sequences to a file as we described above. This file can be viewed 
in a text editor, renamed Ecoli.fna.train (where fna indicates a set of FASTA 
 nucleotide sequences), and moved to our current directory:

$ cp ∼/Downloads/Ecoli.fna.train . # the . symbol indicates that the file 
# should be moved to the current directory which is ~/glimmer

We create a second file (Ecoli2.fna.train) that has about half the number of 
entries. To see how many are in each file we can use grep, a utility that searches our 
plain text document for a regular expression such as the > symbol that appears at the start 
of each nucleotide entry.

$ grep ">" Ecoli.fna.train | wc -l
 4141

The regular expression we wish to grep is “>”. The pipe symbol | sends the output 
directly to the word count (wc) utility, and the -l modifier specifies that we want to know 

http://ccb.jhu.edu/software/glimmer/index.shtml
http://ccb.jhu.edu/software/glimmer/index.shtml
http://www.ncbi.nlm.nih.gov/nuccore/556503834?report=fastaa, NC_000913.3
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Let’s look at the first ten lines of one of these files with the head command:

how many lines are in the file (without that modifier we would see the numbers of lines, 
words, and characters).

$ grep ">" Ecoli2.fna.train | wc -l
 2051

$ head Ecoli.fna.train
>lcl|NC_000913.3_cdsid_NP_414542.1 [gene=thrL] [protein=thr operon leader 
peptide] [protein_id=NP_414542.1] [location=190..255]
ATGAAACGCATTAGCACCACCATTACCACCACCATCACCATTACCACAGGTAACGGTGCGGGCTGA
>lcl|NC_000913.3_cdsid_NP_414543.1 [gene=thrA] [protein=fused 
aspartokinase I and homoserine dehydrogenase I] [protein_id=NP_414543.1] 
[location=337..2799]
ATGCGAGTGTTGAAGTTCGGCGGTACATCAGTGGCAAATGCAGAACGTTTTCTGCGTGTTGCCGATATTC
TGGAAAGCAATGCCAGGCAGGGGCAGGTGGCCACCGTCCTCTCTGCCCCCGCCAAAATCACCAACCACCT
GGTGGCGATGATTGAAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATT
TTTGCCGAACTTTTGACGGGACTCGCCGCCGCCCAGCCGGGGTTCCCGCTGGCGCAATTGAAAACTTTCG
TCGATCAGGAATTTGCCCAAATAAAACATGTCCTGCATGGCATTAGTTTGTTGGGGCAGTGCCCGGATAG
CATCAACGCTGCGCTGATTTGCCGTGGCGAGAAAATGTCGATCGCCATTATGGCCGGCGTATTAGAAGCG
CGCGGTCACAACGTTACTGTTATCGATCCGGTCGAAAAACTGCTGGCAGTGGGGCATTACCTCGAATCTA

Next we can build our interpolated context model (ICM).

$ glimmer3.02/bin/build-icm ––text my_icm.txt < Ecoli2.fna.train

This program takes just a few seconds to run. We used the ––text option to  produce 
a text-based version that we can look at (we redo the command without the ––text 
option to create an ICM that GLIMMER3 can use). Let’s use head and then tail to 
look at the top and bottom lines of this file.

$ head my_icm.txt
ver = 2.00 len = 12 depth = 7 periodicity = 3 nodes = 21845
0   ———|———|———|-*?   0.0519   0.183   0.265   0.288   0.263
1   ———|———|———|*a?   0.0994   0.315   0.212   0.195   0.278
2   ———|———|———|*c?   0.0350   0.193   0.280   0.353   0.174
3   ———|———|———|*g?   0.0828   0.081   0.403   0.185   0.331
4   ———|———|———|*t?   0.0803   0.111   0.222   0.390   0.277
5   ———|———|––*|aa?   0.0093   0.407   0.258   0.118   0.217
6  ———|———|––*|ca?   0.0297   0.235   0.139   0.430   0.196
7   ———|———|––*|ga?   0.0115   0.366   0.173   0.162   0.299
8   ———|———|––*|ta?   0.0103   0.067   0.385   0.007   0.541
$ tail my_icm.txt
21835 -|––*|cgt|ttt|t? 0.1115   0.259   0.308   0.132   0.301
21836 -|––*|ctt|ttt|t? 0.1780   0.247   0.327   0.126   0.300
21837 a|-*-|g-t|ttt|t? 0.1728   0.301   0.281   0.107   0.312
21838 c|––*|g-t|ttt|t? 0.1276   0.303   0.297   0.093   0.307
21839 g|-*-|g-t|ttt|t? 0.0833   0.289   0.293   0.108   0.310
21840 t|––*|g-t|ttt|t? 0.1093   0.273   0.288   0.114   0.325
21841 *|———|tat|ttt|t? 0.1656   0.254   0.302   0.152   0.291
21842 -|*––|tct|ttt|t? 0.3216   0.251   0.300   0.152   0.296
21843 -|*––|tgt|ttt|t? 0.6490   0.256   0.298   0.153   0.293
21844 *|———|ttt|ttt|t? 0.2363   0.260   0.304   0.161   0.275

There are seven columns. The first is an ID number. Second is a contextual pattern, 
starting with a single base and eventually including six bases in various patterns. Vertical 
lines demarcate the codons. The ? symbol corresponds to the nucleotide that is being 
predicted, and the asterisk shows the position that has maximum mutual information with 
the predicted position. The third column displays mutual information, and columns 4–7 
display the probabilities of A, C, G, and T.
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GLIMMER3
Now we can run GLIMMER3.

$ glimmer3.02/bin/glimmer3 ecoliK12MG1655.fasta my_icm myoutput

$ less myoutput.detail
Command: glimmer3.02/bin/glimmer3 ecoliK12MG1655.fasta my_icm myoutput
Sequence file = ecoliK12MG1655.fasta
Number of sequences = 1
ICM model file = my_icm
Excluded regions file = none
List of orfs file = none
Input is NOT separate orfs
Independent (noncoding) scores are used
Circular genome = true
Truncated orfs = false
Minimum gene length = 100 bp
Maximum overlap bases = 30
Threshold score = 30
Use first start codon = false
Start codons = atg,gtg,ttg
Start probs = 0.600,0.300,0.100
Stop codons = taa,tag,tga
GC percentage = 50.8%
Ignore score on orfs longer than 750
>gi|556503834|ref|NC_000913.3| Escherichia coli str. 
K-12 substr. MG1655, complete genome
Sequence length = 4641652
 —– Start —–– — Length —-—-—- ————-—-—-—- Scores ————-—-—-—
ID  Frame  of Orf of Gene  Stop  of Orf of Gene Raw InFrm F1 F2 F3 R1 R2 R3 NC
  +2 4641564 4641606 76 162 120 -7.17 0 - 0 0 - - - 99
  -2 463 334 230 231 102 -4.25 1 - - - 0 1 0 98
  +2 350 374 487 135 111 -3.57 2 0 2 0 0 - 0 97
  -1 516 474 364 150 108 -16.90 0 0 1 0 0 - 0 98
  -3 620 236 108 510 126 -8.51 0  - - - - - 0 99
  -1 747 654 517 228 135 -11.06 0 0 - 0 0 - - 99
  -3 761 734 621 138 111 -11.40 0 0 - - 0 - 0 99

myoutput is an example of a tag that you choose for naming the output files. 
This run is completed in several seconds. There are many options (e.g., linear 
 versus circular genome, specifying ribosome binding sites, start and stop codons, 
 minimum gene length, maximum overlap, and GC content). These options highlight 
the  usefulness of command-line software relative to the simple web-based version of 
GLIMMER at NCBI (that offers no options). There are two output files. The first is 
myoutput.detail.

It shows the command used to run GLIMMER3; the list of parameters used by the 
program; and the FASTA header of the input file. It then shows a table with the following 
columns: ID (identifier for genes); Frame (+ for forward strand and – for reverse strand); 
start and stop positions of the ORF and the gene; the length of both the ORF and the gene 
(not including the bases in the stop codon); and then a series of scores for the six possible 
frames as well as NC (a normalized independent model score).

The second output file is myoutput.predict. Here are the first few lines:

$ less myoutput.predict
>gi|556503834|ref|NC_000913.3| Escherichia coli str. K-12 substr. MG1655, 
complete genome
orf00001   337  2799 +1  2.98
orf00002   2801 3733 +2  2.95
orf00004   3734 5020 +2  2.96
orf00005   6459 5683 -1  2.93
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orf00006   7959 6529 -1   2.96
orf00007   8175 9191 +3  2.88
orf00010   12163 14079 +1  2.97
orf00012   14138 15298 +2  2.90
orf00013   15445 16557 +1  2.95
orf00014   17489 18655 +2  2.90

This file includes the final gene predictions. The columns are (1) the identifier 
 (matching those of the .detail file); (2) the start and (3) the end position of the gene; 
(4) the reading frame; and (5) the per-base raw score of the gene.

Challenges of bacterial and archaeal Gene prediction

There are several pitfalls associated with bacterial and archaeal gene prediction:

 • There may be multiple genes that are encoded by one genomic DNA segment in an 
alternate reading frame on the same strand or opposite strand. GLIMMER includes 
features to address this situation.

 • It is difficult to assess whether a short ORF is genuinely transcribed. According 
to Skovgaard et al. (2001), there are far too many short genes annotated in many 
genomes. For E. coli, they suggest that there are 3800 true protein-coding genes 
rather than the 4300 genes that have been annotated. Since stop codons (TAA, TAG, 
TGA) are AT rich, genomes that are GC rich tend to have fewer stop codons and more 
predicted long ORFs. For all predicted proteins in a genome, the proportion of hypo-
thetical proteins (defined as predicted proteins for which there is no experimental 
evidence that they are expressed) rises greatly as sequence length is smaller.

 • Frameshifts can occur, in which the genomic DNA is predicted to encode a gene 
with a stop codon in one frame but a continuing sequence in another frame on the 
same strand. A frameshift could be present because of a sequencing error or because 
of a mutation that leads to the formation of a pseudogene (a nonfunctional gene). 
GLIMMER extends gene prediction loci several hundred base pairs upstream and 
downstream to search for homology to known proteins, and is therefore designed to 
detect possible frameshifts.

 • Some genes are part of operons that often have related functional roles in bacteria (or 
archaea). Operons have promoter and terminator sequence motifs, but these are not 
well characterized. Steven Salzberg and colleagues (Ermolaeva et al., 2001) analyzed 
7600 pairs of genes in 34 bacterial and archaeal genomes that are likely to belong to 
the same operon.

 • Lateral gene transfer, also called horizontal gene transfer, commonly occurs in bacte-
ria and archaea. We discuss this in the relevant section below.

Gene annotation

Gene annotation is used to assign functions to genes and, in some cases, to reconstruct 
metabolic pathways or other higher levels of gene function. Gene annotation pipelines 
seek to maximize accuracy, consistency, and completeness. An example of the functional 
groups assigned to E. coli genes by the EcoCyc database is shown in Figure 17.12.

The Rapid Annotations using Subsystems (RAST) server offers automated annotation 
of bacterial and archaeal genomes (Aziz et al., 2008, 2012; Overbeek et al., 2014). RAST 
annotation includes the following 16 steps. The input is a set of contigs in the FASTA 
format. (1) RAST identifies selenoproteins and other specialized proteins. (2) RAST esti-
mates 30 closest phylogenetic neighbors using GLIMMER3. (3) It calls tRNA genes 
(using tRNAscan-SE; see Chapter 10) and rRNA genes (using BLASTN against a rRNA 
database). (4–7) Protein candidates are further evaluated, including iterative retraining of 

An operon is a cluster of 
contiguous genes, transcribed 
from one promoter, that gives rise 
to a polycistronic mRNA.
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GLIMMER3. (8) Gene candidates with frameshifts are evaluated and processed. (9) Loci 
with >1500 base pairs but lacking an annotated gene are assessed using BLASTX against 
the 30 nearest neighbors. (10–13) Assessments of gene function are made using BLASTP 
and other approaches. (14) Metabolic reconstructions are performed. (15) Comparisons 
to other annotated projects are made. (16) Genome annotations are exported in GenBank, 
GFF3, GTF, and other formats.

We can save the E. coli genome in the FASTA format as described above, then upload 
it to the RAST server. The output includes annotation spreadsheets as well as a metabolic 
model (Fig. 17.13).

Automated annotation pipelines are subject to many types of artifacts. Richardson 
and Watson (2013) provide the following examples.

 • Pipelines rely heavily on homology to closely related species. However, often the 
genome of a new strain is sequenced because of its genetic or functional differences 
from its closest reference genomes. Such differences may correspond to loci that are 
absent from the reference and therefore not annotated in the new strain. While the 
leading annotation pipelines are automated, manual intervention is still necessary 
and direct comparisons of pipelines can lead to differing results (Kisand and Lettieri, 
2013).

 • Inconsistent annotation occurs such as genes and domains that are either split or 
fused. Richardson and Watson cite a block of genes in E. coli K-12 MG1655 and E. 
coli O157:H7 Sakai that share 97% nucleotide identity, yet have different gene names 
(e.g., tbpA versus thiB) or gene names corresponding to locus tags. Each anno-
tated geneome may have different types and amounts of information. It is therefore 

The RAST annotation server is at 
 http://rast.nmpdr.org (WebLink 

17.22). By early 2014 >12,000 
users have annotated >60,000 
genomes using RAST (Overbeek 
et al., 2014). The SEED project, 
which is is the underlying 
annotation database, is available 
at  http://pubseed.theseed.org 
(WebLink 17.23).

Amino Acids Biosynthesis

Signal transduction pathways

Carbohydrates Biosynthesis

Nucleosides and Nucleotides Biosynthesis

Other
Biosynthesis

Amines and 
Polyamines
Biosynthesis

Metabolic
Regulators

Biosynthesis
Fatty Acids and Lipids Biosynthesis

Cell Structures BiosynthesisCofactors, Prosthetic Groups, Electron Carriers Biosynthesis

Cellular overview of Escherichia coli K-12 substr. MG1655 (EcoCyc)

Secondary Metabolites
Biosynthesis

FiGure 17.12 The EcoCyc database includes a cellular overview of E. coli K-12 MG1655. This site 
organizes E. coli proteins according to function. Data may be explored based on biochemical pathways, 
reactions, genes, enzymes, or compounds. 

Source: Adapted from SRI International (  http://ecocyc.org/).

http://ecocyc.org/
http://rast.nmpdr.org
http://pubseed.theseed.org
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important to select an optimal reference genome or even multiple reference genomes 
for annotation.

 • Spelling mistakes occur, such as “syntase” instead of “synthase.” Such errors often 
propagate within and across databases. To see examples of this, search NCBI Nucle-
otide with the terms “syntase” or “psuedogene” (instead of “pseudogene”).

 • The same gene name may be assigned different product names. The int gene has 12 
different protein product names (e.g., integrase, putative phage integrase protein) in 
17 Salmonella RefSeq entries.

 • There are tens of thousands of “hypothetical proteins” that are predicted but lack 
homologs of known function. The naming and description of these proteins is vari-
able between annotators. Some are artifacts that are propagated in databases.

lateral Gene transfer

Lateral, or horizontal, gene transfer (LGT) is the phenomenon in which a genome acquires 
a gene from another organism directly, rather than by descent (Eisen, 2000; Koonin et al., 
2001; Boucher et al., 2003). There are many situations in which examination of a genome 
shows that a particular gene is very closely related to orthologs in distantly related organ-
isms. The simplest explanation for how a species acquired such a gene is through lateral 
gene transfer. This mechanism represents a major force in genome evolution. The gene 
transfer is unidirectional, rather than involving a reciprocal exchange of DNA, and it does 
not involve the usual pattern of inheritance from a parental lineage. Over 50% of archaeal 

FiGure 17.13 Automated annotation of bacterial and archaeal genomes is performed by services such as the RAST server. Raw nucleo-
tide sequence is input, and the output includes functional annotation (as shown here) as well as tabular descriptions of functional assignments. 

Source: SEED/RAST. The Fellowship for the Interpretation of Genomes and Argonne National Laboratory.
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and a smaller percentage of bacterial species have one or more protein domains acquired 
by lateral gene transfer, in contrast to <10% of eukaryotic species (Choi and Kim, 2007; 
Andersson, 2009).

Lateral gene transfer is a significant phenomenon for several reasons:

 1. This mechanism vastly differs from the normal mode of inheritance in which genes 
are transmitted from parent to offspring. Lateral gene transfer therefore represents a 
major shift in our conception of evolution.

 2. This mechanism is very common, and many examples have also been described in 
eukaryotes. It has been observed within and between each of the three main branches 
of life, but is particularly prevalent in bacteria and archaea relative to eukaryotes 
(Choi and Kim, 2007).

 3. Lateral gene transfer can greatly confound phylogenetic studies (Dagan, 2011). If a 
DNA, RNA, or protein is selected for phylogenetic analysis that has undergone lat-
eral gene transfer, then the tree will not accurately represent the natural history of the 
species under consideration. An extreme interpretation of lateral gene transfer is that, 
if it is common enough, then it is impossible in principle to derive a single true tree of 
life. Daubin et al. (2003) and Choi and Kim (2007) have suggested that although lat-
eral gene transfer is common it is not so prevalent that it greatly interferes with phy-
logenetic studies of organisms. Lateral gene transfer can be useful in phylogenetic 
studies to infer monophyletic groups and to elucidate the evolutionary history of both 
donor and recipient species (Huang and Gogarten, 2006). Dagan (2011) suggests that 
network-based rather than tree-based models of phylogeny are needed to reconstruct 
both vertical and lateral evolution.

 4. Lateral gene transfer can profoundly affect the properties of basic biological pro-
cesses, as reviewed extensively by Boucher et al. (2003). They describe its impor-
tance in a variety of processes such as photosynthesis, aerobic respiration, nitrogen 
fixation, sulfate reduction, and isoprenoid biosynthesis.

Lateral gene transfer occurs as a multistep process (Fig. 17.14; Eisen, 2000). A gene 
that evolves in one lineage (by the traditional Darwinian process of vertical descent) may 

Species 1 Species 2 Species 3 Species 4

1

2

6

3,4,5

FiGure  17.14 Lateral gene transfer occurs in stages. In this hypothetical scenario, four species 
evolved from a common ancestor. Genes in each species descend in a vertical fashion over time (arrow 
1). At some point in time, a gene transfers horizontally from the lineage of species 4 to the lineage of 
species 3 (arrow 2). Transferred genes must then be fixed in some individual genomes (arrow 3), main-
tained under strong positive selection (arrow 4), and spread through the population of species 3 (arrow 
5). The laterally transferred gene then evolves as an integral part of the new genome (arrow 6). This gene 
may be distinguished from other genes in species 3 by having a nucleotide composition or codon usage 
profile that is characteristic of species 4. Adapted from Eisen (2000), with permission from Elsevier.
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transfer to the lineage of a second species. This DNA transfer could be mediated by a viral 
vector or by a mechanism such as homologous recombination. Mobile genetic elements 
with transfer and recombination activities have key mechanistic roles (Toussaint and 
Chandler, 2012). Once a new gene is incorporated into the genome of individuals with a 
population (e.g., species 3 in Fig. 17.14), positive selection maintains its presence within 
those individuals. A transferred gene presumably must confer benefits to the new species 
in order to be maintained, propagated, and spread throughout the population of the new 
species. Finally, the new gene adapts to its new lineage, a process called “amelioration” 
(Eisen, 2000; Fig. 17.14, arrow 6).

How is lateral gene transfer identified? The main criteria are that a gene has an 
unusual nucleotide composition, codon usage, phylogenetic position, or intron features 
that distinguish it from most other genes in a genome. There are three principal methods 
by which lateral gene transfer may be inferred:

 1. Phylogenetic trees of different genes may be compared. This is the favored approach 
(Eisen, 2000; Beiko and Ragan, 2008). If a tree based on a gene (or protein) has a 
topology different from that observed using ribosomal RNA, this discrepancy could 
be caused by lateral gene transfer.

 2. Patterns of best matches for each gene in a genome may be used. A gene may have a 
highly unusual nucleotide composition or frequency of codon utilization, consistent 
with its origin in a distantly related genome.

 3. The distribution pattern of genes across species can be assessed to search for genes 
that have undergone lateral gene transfer. If a gene is present in crenarcheota and 
a group of plants but not in other archaea, bacteria, or eukaryotes, this may be 
taken as evidence favoring a lateral gene transfer mechanism from crenarcheota to 
plants.

There are several reasons for caution in assigning a mechanism of lateral gene transfer. 
Consider the case of a gene widely distributed in bacteria that is observed in humans.

 • If orthologs of the bacterial gene were present in an insect such as Drosophila or a 
plant, then the argument in favor of lateral gene transfer to humans would be consid-
erably weakened. A concern in positing lateral gene transfer has been that the candi-
date gene might be present throughout the tree of life, but we might have insufficient 
sequence data to find it in other species; the recent flood of sequence data makes the 
possible lack of data less likely. Over time it will be progressively easier to assess 
evolutionary relationships.

 • It is also possible that the gene in question has undergone rapid mutation, such 
that the phylogenetic signal is lost. This mechanism may lead to artifactual results 
(false positives) if gene loss or rapid mutation has occurred, but not lateral gene 
transfer.

The eukaryotic alga Galdieria sulphuraria provides a dramatic example of lateral 
gene transfer. This unicellular red alga lives in an extreme environment that is hot and 
acid (56°C, pH  0–4) such as volcanic hot sulfur springs. Schönknecht et al. (2013) 
sequenced its 13.7  Mb genome and identified 75 separate LGT events from bacteria 
and archaea. These transferred genes had fewer introns (an average of 0.8 versus 2.1), 
higher GC content (40.6% versus 39.9%), and differing dinucleotide usage. The laterally 
transferred genes include those that confer tolerance to high salt, heat, and otherwise 
toxic metals. As an example, the alga acquired a sarcosine dimethylglycine methyl-
transferase gene from halophilic cyanobacteria (i.e., those living in high salt concentra-
tions). This is evident from a BLASTP search using a G. sulphuraria protein as a query 
 (Fig. 17.15); there are close matches to many bacterial (and archaeal) species, but not to 
other  eukaryotes.

Carl Woese (2002) suggested that 
in early evolution lateral gene 
transfer predominated to such 
an extent that primitive cellular 
evolution was a communal 
process, followed only later by 
vertical (Darwinian) evolution.

See the computer laboratory 
exercise (17.4) at the end of this 
chapter for another example of 
lateral gene transfer.
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comparIson of BacterIal Genomes
One of the most important lessons of whole-genome sequencing is that comparative anal-
yses greatly enhance our understanding of genomes. It can be useful to compare genomes 
whether they are from closely or distantly related organisms. Some of the species that 
have had the genomes of closely related strains completely sequenced are indicated in 
table 17.9. It will be significant to compare such genomes for several reasons:

 • We may be able to discover why some strains are pathogenic.
 • Eventually, we may be able to predict the clinical outcome of infections based on the 
genotype of the pathogen.

 • We may develop strategies for vaccine development.

For an example of comparisons of bacterial genomes (and proteomes) we can con-
sider Chlamydiae, obligate intracellular bacteria that are phylogenetically distinct from 
other bacterial divisions. Chlamydia pneumoniae infects humans, causing pneumonia 
and bronchitis. Chlamydia trachomatis causes trachoma (an ocular disease that leads to 
blindness) and sexually transmitted diseases. Why do these closely related bacteria affect 
different body regions and cause such distinct pathologies? Their genomes have been 
sequenced and compared (Stephens et al., 1998; Kalman et al., 1999; Read et al., 2000). 
There are hundreds of genes present uniquely in each bacterium, including a family of 
outer membrane proteins that could be important in tissue tropism (Kalman et al., 1999).

taxplot

The NCBI offers a powerful tool for genome comparison that is easy to use. From the 
NCBI Genome page, select TaxPlot and you will be able to compare two proteomes (such 

In the United States, 10% of all 
pneumonia cases and 5% of 
bronchitis cases are attributed to 
C. pneumoniae.

Methyltransferase type 11 [Nitrospina gracilis]
CFB group bacteria, cyanobacteria | 5 leaves

a-proteobacteria, d-proteobacteria, high GC Gram+ | 10 leaves
choanoflagellates, cyanobacteria, d-proteobacteria, euryarchaeotes, g-proteobacteria, 
green sulfur bacteria, high GC Gram+, planctomycetes | 72 leaves
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FiGure 17.15 Lateral gene transfer of a gene encoding a sarcosine dimethylglycine methyltransferase from cyanobacteria to the eukary-
ote G. sulphuraria. The G. sulphuraria protein (Gasu_07590; XP_005708533.1) was used as a query in a BLASTP search against the RefSeq 
database at the NCBI website. The resulting hits are viewed as a neighbor-joining tree using Kimura protein distances (redrawn from the 
BLASTP output). The scale bar represents 0.1 changes per site. Schönknecht et al. (2013) reported a similar phylogenetic tree, including 
additional more distantly related orthologs from eukaryotes. This particular gene encodes an enzyme that is part of the S-adenosylmethi-
onine-dependent methyltransferase (SAM) family. 

Source: BLASTP, NCBI.
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table 17.9 bacterial and archaeal species for which genomes of at least two closely 
related strains have been determined.

Organism Accession Genome size (base pairs)

Chlamydophila pneumoniae AR39 NC-002179 1,229,858

C. pneumoniae CWL029 NC-000922 1,230,230

C. pneumoniae J138 NC-002491 1,226,565

Escherichia coli K-12 NC-000913 4,639,221

E. coli O157:H7 NC-002695 5,498,450

E. coli O157:H7 EDL933 NC-002655 5,528,445

Helicobacter pylori 26695 NC-000915 1,667,867

H. pylori J99 NC-000921 1,643,831

Mycobacterium tuberculosis CDC1551 NC-002755 4,403,836

M. tuberculosis H37Rv NC-000962 4,411,529

Neisseria meningitidis MC58 NC-003112 2,272,351

N. meningitidis Z2491 NC-003116 2,184,406

Staphylococcus aureus aureus MW2 NC-003923 2,820,462

S. aureus aureus Mu50 NC-002758 2,878,040

S. aureus aureus N315 NC-002745 2,813,641

Streptococcus agalactiae 2603V/R NC-004116 2,160,267

S. agalactiae NEM316 NC-004368 2,211,485

S. pneumoniae R6 NC-003098 2,038,615

S. pneumoniae TIGR4 NC-003028 2,160,837

S. pyogenes M1 GAS NC-002737 1,852,441

S. pyogenes MGAS315 NC-004070 1,900,521

S. pyogenes MGAS8232 NC-003485 1,895,017

as C. trachomatis A/HAR-13 and C. pneumoniae AR39) against a reference proteome 
(the anthrax bacterium B. anthracis in the example of Fig. 17.16). In this plot, each point 
represents a protein from the reference genome. The x and y coordinates show the BLAST 
score for the closest match of each protein to the two Chlamydia proteomes being com-
pared. Most proteins are found along a diagonal line, indicating that they have equal (or 
nearly equal) scores between the reference protein and either of the Chlamydia proteins. 
However, there are notable outliers which could represent genes important in the distinc-
tive behavior of these two organisms. These points are clickable (see circled data point 
in Fig. 17.16, arrow 2), and the selected data point is highlighted (Fig. 17.16, arrow 3). This 
protein is identified as an arginine/ornithine antiporter in B. anthracis and C. trachomatis, 
and as an amino acid permease in C. pneumoniae. There are further links to the pairwise 
BLAST comparisons (not shown).

Another powerful application of TaxPlot is to select a genome for both reference and 
for one of the queries, then select a second genome for the second query. This is illustrated 
in Figure 17.17 for a C. trachomatis strain versus C. pneumoniae. All the data points fall on 
the diagonal (indicating that they share identity between the two species) or in the upper 
left section. No data points are in the lower right section because no C. trachomatis query 
protein can possibly be more related to C. pneumoniae than to its own protein sequence. 
The outliers, such as those indicated with arrows 1–4, are of particular interest because 
they are highly divergent between the two species, having high BLASTP scores in one but 
low scores in the other. All four of the arrows point to polymorphic outer membrane pro-
teins. Several additional outlying data points correspond to proteins that are annotated as 

There are several ways to access 
TaxPlot, including from the Tools 
link on the left sidebar of the main 
NCBI home page as well as from 

 http://www.ncbi.nlm.nih.gov/
Genome (WebLink 17.24).

http://www.ncbi.nlm.nih.gov/Genome
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FiGure 17.16 The TaxPlot tool at NCBI allows the comparison of two bacteria (C. trachomatis A/HAR-13 and C. pneumoniae AR39) 
to a reference genome (B. anthracis strain Ames in this case; Read et al., 2002). The plot shows the distribution of BLASTP scores of 
each bacterial proteome against the reference proteome. Twenty-nine matches are identical, while 476 hits are at least marginally closer to  
C. trachomatis and 653 hits are closer to C. pneumoniae. The query genome (arrow 1) and the two species for comparison are selected using 
a pull-down menu. Most data points are placed along the unit diagonal line, indicating that the BLASTP score relative to the query (anthrax) 
proteome yields equivalent scores. A match of interest that has a higher pairwise BLASTP score in one proteome relative to the other compar-
ison group can be clicked (arrow 2) leading to a zoom feature (arrow 3). The highlighted protein is identified in all three species (not shown) 
and there are links to the pairwise alignments from BLAST (Chapter 3). The significance of identifying outlier data points (such as that 
indicated by arrow 2) is that this protein has diverged greatly in one of the comparison species relative to the other, suggesting the possibility 
of functional differences. 

Source: TaxPlot, Entrez, NCBI.
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FiGure 17.17 TaxPlot (NCBI) can be used with one proteome serving as both the reference and the first query (in this case, C. trachomatis 
A/HAR-13) while another proteome forms the second query (in this case, C. pneumoniae AR39). Points that fall off the diagonal line (e.g., see 
arrows 1–4) have a high BLASTP score in one proteome but a relatively low score in the other, indicating that they are relatively poorly con-
served. Such proteins may be of great interest in explaining the particular physiology or behavior of a strain or species. 

Source: TaxPlot, Entrez, NCBI.

hypothetical (therefore function has not been assigned). These are potentially important 
in distinguishing the functional differences between these two species.

TaxPlot is therefore an easy way to identify proteins that are different in two micro-
bial genomes of interest. The tool has also been extended to eukaryotes.

MuMmer

We introduced MUMmer in Chapter 16 as a command-line tool to compare two segments of 
DNA such as bacterial genomes. Several web-based MUMmer applications are also available.

Two strains of E. coli are compared in the example of Figure 17.18: the harmless  
E. coli K-12 strain and E. coli O157:H7. The MUMmer output is useful to identify regions 
of the two genomes that are shared as well as regions in which the orientation is inverted. 
Eisen et al. (2000) used such analyses to describe symmetrical chromosomal inversions 

You can use MUMmer at IMG.
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FiGure 17.18 The MUMmer program allows you to select two microbial genomes of interest for 
comparison on a dotplot. The minimal alignment length can be adjusted. The MUMmer output consists 
of a dotplot that displays maximally unique matching subsequences (MUMs) between two genomes. 
This tool rapidly describes the relationship between two genomes, including information on the relative 
orientation of the genomic DNA and the presence of insertions or deletions. Here E. coli K-12 MG1655 
is represented on the x axis, and the pathogenic strain E. coli 0157:H7 EDL933 is on the y axis. There is 
a major 45° line where the two closely related genomes align. A line segment near the center is oriented 
at a 90° angle. This represents an inversion in which the orientation of a genomic segment in one of the 
two strains is reversed relative to the other. Created using MUMmer.

near the origin of replication in comparisons of closely related species including C. pneu-
moniae versus C. trachomatis.

There are two further extensions of MUMmer. NUCmer (NUCleotide MUMmer) 
allows multiple reference and query sequences to be aligned. One application is to align a 
group of contigs. PROtein MUMmer (PROmer) is similar to NUCmer, but uses six-frame 
translations of each nucleotide sequence, offering superior sensitivity in aligning distantly 
related sequences.

perspectIve
The recent and ongoing sequencing of thousands of bacterial and archaeal genomes has 
had a profound effect on virtually all aspects of microbiology. We can summarize the 
benefits of whole-genome sequencing of microbes as follows:

 • Upon identifying the entire DNA sequence of a bacterial or archaeal genome, we 
obtain a comprehensive survey of all the genes and regulatory elements. This is 
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 similar to obtaining a parts list of a machine, although we do not have the instruction 
manual.

 • Through comparative genomics, we may learn the principles by which the “machine” 
is assembled and by which it functions.

 • We can understand the diversity of microbial species through comparative genom-
ics. We can therefore begin to uncover the principles of genome organization, 
and can compare pathogenic versus nonpathogenic strains. We can also appreciate 
the dramatic differences in genome properties between two strains from the same 
species.

 • We are gaining insights into the evolution of both genes and species, and can now 
appreciate lateral gene transfer as one of the driving forces of microbial evolution. 
We can study gene duplication and gene loss. Having the complete genome available 
is important both to learn what genes comprise an organism as well as to learn what 
genes are absent.

 • Complete genome sequences offer a starting point for biological investigations.

pItfalls
As complete bacterial and archaeal genomes are sequenced, two of the most important 
tasks are gene identification and genome annotation. Gene identification has become rou-
tine, but can be difficult for several reasons. It can be difficult to assess whether short 
ORFs correspond to transcripts that are actively transcribed. For example, in contrast to 
eukaryotes, bacteria and archaea do not always use AUG as a start codon.

Genome annotation is the critical process by which functions are assigned to pre-
dicted proteins. When genome sequences were first obtained in the 1990s, it was com-
mon for half of all predicted proteins to have no known homologs and their function was 
entirely obscure. Perhaps surprisingly this situation has persisted to a large extent, with 
many genes annotated as “hypothetical” or having unknown function.

Gene annotation performed computationally should always be viewed as generating 
a hypothesis that needs to be experimentally tested. There are several kinds of common 
errors (Brenner, 1999; Peri et al., 2001; Richardson and Watson, 2013). These incude tran-
sitive catastrophes (inappropriately assigning a function to a gene based upon homology 
to another gene with a known function) and misidentification of small ORFs as authentic 
genes when they are not transcribed.

advIce for students
As with the advice in the previous chapter, choose a bacterial species (whether E. coli, 
Y. pestis, or any other) and: (1) read the primary genomics literature; and (2) download 
its genomic sequence and analyze it in depth. Try to annotate its genes using RAST, then 
repeat the annotation using different reference species. Select several genes that (accord-
ing to the literature) were acquired by lateral gene transfer, then assess the evidence for 
lateral transfer by determining their GC content, dinucleotide frequencies, or phyloge-
netic positions.

WeB resources
The Genomes Online Database (GOLD) provides an important starting point for any 
study of microbial genomes (  http://genomesonline.org/; WebLink 17.2). IMG (  http://
img.jgi.doe.gov/; WebLink 17.5) offers useful analysis tools.

http://genomesonline.org/
http://img.jgi.doe.gov/
http://img.jgi.doe.gov/
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Discussion Questions
[17-1] Anthrax strains vary in their 
pathogenicity. What bioinformatics 
approaches could you take to understand 
the basis of this difference? What spe-

cific proteins are involved in its pathogenicity?

[17-2] How can you assess whether bacterial genes have 
incorporated into the human genome through lateral gene 
transfer? What alternative explanations could there be for 
the presence of a human protein that is most closely related 
to a group of bacterial proteins, without having other 
eukaryotic orthologs?

[17-3] Consider the differences between E. coli K-12 and 
E. coli O157:H7 and other closely related pairs of bacte-
ria. They undergo lateral gene transfer to different degrees, 
they have distinct patterns of pathogenicity, and these two 
strains even differ in genome size by over a million base 
pairs. What is the definition of a species? Is E. coli a spe-
cies?

prObleMS/COMputer lab
[17-1] How many regions of E. coli K-12 are homologous 
to viruses? Visit the UCSC microbial browser (  http://
microbes.ucsc.edu), select the Table Browser, choose the 
Bacteria-Proteobacteria-Gamma clade and Escherichia 
coli K-12, set the group to Comparative Genomics and 
the track to BlastP Viruses. Output options include plain 
text, browser extensible data (BED), or hyperlinks to the 
genome browser.

[17-2] Analyze a gene from E. coli in depth. First, find an 
E. coli gene that is known to have a homolog in eukaryotes 
(for example, DELTA-BLAST search human beta globin 
against the RefSeq database restricted to E. coli). Use the 
resources described in this chapter to characterize its paral-
ogs, orthologs, and function.

[17-3] Explore the GC content and codon utilization of a 
bacterium. Search the genomes for Yersinia pestis, and select 
Y. pestis CO92. How many chromosomes and plasmids does 
it contain? Use the R tools described in this chapter (see  
Fig. 17.10) and compare the range of GC percent across the 
main chromosome and across plasmid pPCP1. Which has a 
higher GC content? Try using several window sizes.

[17-4] The bacterium Wolbachia pipientis is an endo-
symbiont that lives inside insect and nematode hosts. A 
large fraction of its genome has transferred to the nuclear 
genome of some hosts (Hotopp et al., 2007). Select a Wol-
bachia protein (e.g., NP_965857.1) and provide evidence 
that an ortholog has been laterally transferred to a Drosoph-
ila species. As one strategy, first perform BLASTP with 
the protein as a query, restricting the output to bacteria and 
then restricting the output to eukaryotes. Try performing a 
TBLASTN search against the trace archives (a link is pro-
vided on the main NCBI blast web page). Try a TBLASTN 
search against the whole-genome shotgun read database 
restricted to the insects.

[17-5] Compare two completed genomes. Begin at NCBI 
Genome. Choose bacteria, then choose an organism such as 
Rickettsia prowazekii. Use TaxPlot to perform a three-way 
genome comparison. Repeat your analysis with MUMmer 
and Artemis at IMG. Identify the chromosomal segments 
that harbor outliers based on the TaxPlot analysis.

[17-6] We noted that the Candidatus Carsonella ruddii 
genome is extremely small (see accession NC_008512.1). 
First note how many genes are annotated based on NCBI’s 
Entrez database. Next, obtain the sequence (159,662 nucle-
otides) in FASTA format and input it to the GLIMMER pro-
gram for gene prediction (either via the command line or via 
the NCBI genomes site). How many genes does the GLIM-
MER program annotate relative to the NCBI annotation?

Self-test Quiz
[17-1] A typical bacterial genome is 
composed of approximately how many 
base pairs of DNA?

(a) 20,000 base pairs;

(b) 200,000 base pairs;

(c) 2,000,000 base pairs (2 Mb); or

(d) 20,000,000 base pairs (20 Mb).

[17-2] Myxococcus xanthus has a relatively large genome 
size, even compared to other proteobacteria. One reason 
for this size may be:

(a) M. xanthus acquired repetitive DNA sequences;

(b) M. xanthus is a bacterium with a relatively large 
diameter size;

http://microbes.ucsc.edu
http://microbes.ucsc.edu
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suGGested readInG
There is a large literature on bacterial genomics. Important reviews are by Fraser-Liggett 
(2005), Ward and Fraser (2005), and Bentley and Parkhill (2004). Casjens (1998) provided 
an excellent introduction, and this was updated and expanded by Bentley and Parkhill 
on comparative genomics. Susannah Tringe and Edward Rubin (2005) and Riesenfeld 
et al. (2004) provide introductions to metagenomics. Five leaders in the field of the human 
microbiome (Martin Blaser, Peer Bork, Claire Fraser, Rob Knight, and Jun Wang) offer 
their opinions of key findings and trends (Blaser et al., 2013).

David Edwards and Kathryn Holt (2013) offer an excellent guide to comparative 
bacterial genome analysis using next-generation sequence data. Their review discusses 
genome assembly, contigs, annotation, and comparative genomics. The supplement to 
their paper provides a detailed tutorial that introduces a wide range of bioinformatics 
software tools, and is highly recommended.
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Some 200 fungal species are known to 
be pathogenic for humans, distressing  
millions of people. From the times of Greek 
and Roman antiquity to the middle of the 
nineteenth century, only two fungal dis-
eases were known: ringworm (tinea) and 
thrush (oral candidiasis) (Ainsworth, 1993). 
Ringworm is caused by fungi of the genera 
Microsporum, Trichophyton, and Epider-
mophyton. Candidiasis (including thrush) 
is caused by Candida albicans and other 
Candida species. This image from Kuchen-
meister (1857, plate IV) shows the thrush 
fungus, at that time called Oidium albicans 
(fig. 3 to 8). 

Source: Kuchenmeister (1857).
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The chromosome III sequence has revealed 145 novel protein-encoding genes and a start 
has been made on their functional analysis. The results so far indicate that there are vast 
areas of yeast genetics of which we are completely ignorant and emphasize the need for 
molecular genetics and physiological studies to proceed hand-in-hand. The data also 
call for a radical reappraisal of our view of the yeast genetic map. The availability of the 
sequence establishes unequivocally the locations of the different genes on the chromo-
some. In consequence, the genetic map acquires a different emphasis; it becomes much 
more of a tool with which to study recombination and the dynamics of chromosome evo-
lution. The goal of sequencing the entire yeast genome is achievable with present tech-
nology and this sequence will prove at least as important to the future development of 
eukaryotic molecular biology as the classical S. cerevisiae genetic map has in the past. 
The complete sequence of the yeast genome will open up new areas of molecular genetics 
and establish a foundation for the interpretation of sequence data from higher organisms.

— Stephen Oliver et al. (1992) reporting the complete sequence of S. cerevisiae 
chromosome III, the first eukaryotic chromosome to be sequenced.

LeARnInG objeCTIVeS

After reading this chapter you should be able to:
 ■ provide an overview of how fungi are classified;
 ■ describe the features of the Saccharomyces cerevisiae genome;
 ■ discuss genome duplication in S. cerevisiae;
 ■ describe comparative genomics of the genus Saccharomyces; and
 ■ describe comparative genomics of other fungal phyla.

C h a p t e r

18

IntroductIon
According to the classification system of Whittaker (1969), there are five kingdoms of 
life: monera (prokaryotes); protoctists; animals; fungi; and plants. We have examined the 
bacteria and archaea in Chapter 17, and introduced the eukaryotic chromosome in Chap-
ter 8. In this chapter we begin our exploration of eukaryotes by studying the kingdom of 
fungi. This diverse and interesting group of organisms last shared a common ancestor 
with plants and animals 1.5 billion years ago (BYA) (Wang et al., 1999, discussed in 
Chapter 19). Some may think of fungi as organisms such as mushrooms that might be 
studied by botanists. Surprisingly, fungi are far more closely related to animals than to 

eukaryotic Genomes: 
Fungi

http://www.wiley.com/go/pevsnerbioinformatics
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plants. In Chapter 19 we extend our study to the entire kingdom of eukaryotes, including 
animals, plants, and a variety of protozoa. We then discuss humans (Chapter 20).

The first eukaryotic genome to be fully sequenced was the 13-million-base-pair (Mb) 
genome of a fungus, the budding yeast Saccharomyces cerevisiae. Its genome is very 
small compared with that of humans (3 billion base pairs or gigabase pairs Gb), and its 
size is only severalfold larger than a typical bacterial genome. This yeast has served as 
a model eukaryotic organism for genetics studies because it grows rapidly, it can easily 
be genetically modified, and many of its cellular functions are conserved with metazoans 
and other eukaryotes. More recently, it became a model organism for functional genomics 
studies (Chapter 14). Every one of its approximately 6000 genes has been deleted, over-
expressed, and characterized functionally using a variety of assays.

Now, as whole-genome sequencing has become routine, the sequencing of yeasts 
and other fungi has progressed at an accelerated pace. While the fungi are eukaryotes and 
share many properties in common with the metazoans (animals), most have relatively 
small genome sizes. Through comparative analysis we are gaining new insights into many 
basic properties of genome structure and evolution, including whole-genome duplications 
and the fate of duplicated genes (Dujon, 2006).

This chapter begins with an overview of the fungi. We then describe bioinformatic 
approaches to analyzing the S. cerevisiae genome. Finally, we describe the sequencing of 
other fungal genomes and the early lessons of comparative genomics in fungi.

descrIptIon and classIfIcatIon of fungI
Fungi are eukaryotic organisms that can be filamentous (as in the case of molds) or uni-
cellular (as in the case of yeasts such as S. cerevisiae). The main criteria for classifying 
fungi are based on morphology (e.g., ultrastructure), biochemistry (e.g., growth prop-
erties or cell wall composition), and molecular sequence data (DNA, RNA, and protein 
sequences). Most fungi are aerobic, and all are heterotrophs that absorb their food. Fungi 
are typically very hardy, forming spores composed of chitin. They have a major role in 
the ecosystem in degrading organic waste material. Fungi are important causative agents 
of disease to humans, other animals, and plants (van de Wouw and Howlett, 2011). Fungi 
also have key roles in fermentation; the fungal mold Rhizopus nigricans is used in the 
manufacture of steroids such as cortisone, and Penicillium chrysogenum produces the 
antibiotic penicillin.

The relationships of many species throughout the tree of life have been described 
in phylogenetic analyses based on small-subunit ribosomal RNA (Fig. 15.1). In a com-
plementary approach, W. F. Doolittle and colleagues defined a phylogeny of the eukary-
otes based upon the concatenated amino acid sequences from four proteins: elongation 
factor-1α, actin, α-tubulin, and β-tubulin (Baldauf et al., 2000). A portion of the tree 
shows that fungi form a monophyletic clade that is a sister group to animals (metazoan; 
Fig. 18.1). This close relationship between fungi and animals has been somewhat surpris-
ing given the apparently simple, unicellular nature of many fungi. However, fungi and 
animals share many similarities. Chitin is the main component of the fungal cell wall, 
and it is also a constituent of the arthropod exoskeleton. (Plant cell walls use cellulose.) 
Many of the fundamental processes of yeast, such as cell cycle control, DNA repair, and 
intracellular vesicle trafficking, are closely conserved with mammalian cells.

Advances in genomics have enabled continued progress in taxonomy, including 
sequence-based phylogenies (Casaregola et al., 2011). According to the phylogenetic 
classification of Hibbett et al. (2007), the kingdom Fungi has seven phyla (see Box 18.1 
for a discussion of fungal taxonomy). Of these phyla the subkingdom Dikarya includes 
the Ascomycota (including Saccharomyces cerevisieae) and Basidiomycota. The Hibbett 
et al. classification was consistent with a sampling of nearly 200 fungal species of every 

Mycology (from the Greek word 
μύκης meaning “fungus”) is 
the study of fungi. Mycosis is 
a disease or ailment caused 
by fungi. The suffix -mycota 
refers to fungi: The kingdom 
fungi is also called the kingdom 
Eumycota (“true fungi”).

Morphologically, fungi are 
characterized by hyphae 
(filaments) that grow and 
may branch. The Museum of 
Paleontology at the University 
of California, Berkeley, offers an 
introduction to fungi, including 
photographs of many species, at 

 http://www.ucmp.berkeley 
.edu/fungi/fungi.html  
(WebLink 18.1).

Fungi are grown on food 
products such as Camembert 
and Brie cheeses to provide 
flavor. Fungi are used to produce 
soy sauce and many other foods 
and medicines.

We explore this comprehensive 
tree in detail in Chapter 19  
(Fig. 19.1).

http://www.ucmp.berkeley.edu/fungi/fungi.html
http://www.ucmp.berkeley.edu/fungi/fungi.html
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Figure 18.1 Phylogenetic analysis of the fungi reveals that they form a sister group with the meta-
zoa (animals). This tree is a detailed view of a broad analysis of the eukaryotes (see Fig. 19.1) by Baldauf 
et al. (2000). The tree was generated using a multiple sequence alignment of four concatenated protein 
sequences: elongation factor 1α (EF-1α; abbreviated E in tree), actin (C), α-tubulin (A), and β-tubulin 
(B). Microsporidia were formerly classified as deep-branching eukaryotes but are now grouped with 
fungi. The fungal phylum Chytridiomycota is not shown in this tree. 

Source: Baldauf et al. (2000). Reproduced with permission from AAAS.
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Box 18.1 fungal taxonomy

Approximately 70,000 fungal species were described in 1995, although the total number of species is estimated to be at least 1.5 million. 
These fungi were classified in four phyla: Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota (described and illustrated by 
Guarro et al., 1999). (1) Ascomycota includes yeasts, blue-green molds, truffles, and lichens; about 30,000 species are known, including 
the genera Aspergillus, Candida, Cryptosporium, Histoplasma, Neurospora, and Saccharomyces. (2) Basidiomycota includes rusts, 
smuts, and mushrooms; they are distinguished by club-shaped reproductive structures called basidia. (3) The phylum Chytridiomy-
cota, sometimes classified in the kingdom Protoctista (Margulis and Schwartz, 1998), includes the genera Allomyces and Polyphagus.  
(4) Finally, fungi of the phylum Zygomycota lack septa (cross walls), typically feed on decaying vegetation and include the genera 
Glomus, Mucor, and Rhizopus.

The phylum Ascomycota is of particular interest because it includes the yeasts. The phylum is further divided into four classes: 
Hemiascomycetae (e.g., S. cerevisiae), Euascomycetae (e.g., Neurospora crassa), Loculoascomycetae (e.g., Elsinoe proteae), and 
Laboulbeniomycetae (parasites of insects).

Hibbett et al. (2007), in a paper with 67 authors, proposed a reclassification of the Fungi into one kingdom (Fungi), one subkingdom 
(Dikarya, encompassing the clade containing Ascomycota and Basidiomycota), seven phyla, 35 classes, and 129 orders. The seven phyla 
are the Chytridiomycota, Neocallimastigomycota, Blastocladiiomycota, Microsporidia, Glomeromycota, Ascomycota, and Basidiomy-
cota.

The Dikarya encompass about 98% of all known fungal species. The Hibbett et al. classification is consistent with the phylogeny of 
James et al. (2006) who analyzed sequence data from six genes in 199 taxa: 18S rRNA, 28S rRNA, 5.8S rRNA, elongation factor 1-α, 
and the two RNA polymerase II subunits RPB1 and RPB2.

major clade of Fungi by James et al. (2006). Phylogenetic analysis relied on a set of six 
genes (Box 18.1). Figure 18.2 depicts a phylogenetic tree based on James et al.

IntroductIon to BuddIng yeast SaccharomyceS 
cereviSiae
The budding yeast S. cerevisiae was the first species domesticated by humans at least 
10,000 years ago. It is commonly called brewer’s yeast or baker’s yeast, and it ferments 
glucose to ethanol and carbon dioxide. For almost 200 years, researchers have exploited 
this organism for biochemical, genetic, molecular, and cell biological studies. Because 
many of its characteristics are also conserved in human cells, yeast has emerged as a 
powerful instrument for basic research.

For web resources that address 
fungal taxonomy, visit the Index 
Fungorum (  http://www.
indexfungorum.org/, WebLink 
18.2), MycoBank (  http://www 
.mycobank.org/, WebLink 18.3), 
and the Global Biodiversity 
Information Facility (  http://
www.gbif.org, WebLink 18.4).

From the time of Anton van 
Leeuwenhoek (1632–1723), yeast 
were thought to be chemical 
substances that are not living. 
Theodor Schwann (1810–1882) 
and Baron Charles Cagniard-
Latour (1777–1859) independently 
discovered in 1836–1837 that 
yeast are composed of living cells. 
Schwann studied fermenting 
yeast and called them Zuckerpilz 
(sugar fungus), from which the 
term Saccharomyces is derived 
(Bulloch, 1938).

http://www.indexfungorum.org/
http://www.indexfungorum.org/
http://www.mycobank.org/
http://www.mycobank.org/
http://www.gbif.org
http://www.gbif.org
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           Hygrocybe aff. conica
            Calostoma cinnabarinum
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     Hygrophoropsis aurantiaca
      Suillus pictus
    Fibulorhizoctonia sp.
       Echinodontium tinctorium
        Lactarius deceptivus
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                                                          Caenorhabditis elegans
                                            Ciona intestinalis
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                                                 Drosophila melanogaster
                            Monosiga brevicollis
                                       Dictyostelium discoideum
                                                   Cryptosporidium parvum
                                                  Toxoplasma gondii
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                                         Thalassiosira pseudonana
                               Cyanidioschyzon merolae
    Arabidopsis thaliana
 Populus trichocarpa
 Oryza sativa
                   Chlamydomonas reinhardtii

                                  Ustilago maydis
                                   Cintractia sorghi vulgaris
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                     Tilletiaria anomala
                                   Agaricostilbum hyphaenes
                     Colacogloea peniophorae
                    Rhodotorula hordea
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                    Piptocephalis corymbifera
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                                      Entomophthora muscae
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Fungi

Dikarya

Figure 18.2 Fungal phylogeny. Nearly 200 fungal species were sampled, and six molecules were analyzed (see Box 18.1). The majority 
of known fungal species are from the phyla Ascomycota and Basidiomycota of the subkingdom Dikarya. Adapted from James et al. (2006) 
with permission from Macmillan Publishers.
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Sequencing Yeast genome

Currently, genomes are sequenced using next-generation sequencing (Chapter 9). In con-
trast, the yeast genome was sequenced in the early to mid-1990s by chromosome. This was 
accomplished by a worldwide consortium of over 600 researchers (Mewes et al., 1997). 
The work proceeded in several phases. First, a crude physical map of its 16 chromosomes 
was constructed using rare-cutter restriction enzymes. Second, a library of ∼10-kilobase 
genomic DNA inserts was constructed in phage lambda, and the inserts were fingerprinted 
using restriction enzymes. Clones with overlapping inserts were identified and assembled 
into 16 large contigs. A set of clones covering the genome with minimal overlap was 
selected and parsed out to individual laboratories for sequencing followed by assembly 
and annotation using a standardized nomenclature. (The final error rate was less than 3 per 
10,000 bases, or 0.03%; Mewes et al., 1997.) Today, this approach would be considered 
arduous, inefficient, and expensive. However, the collaboration worked extremely well.

Features of Budding Yeast genome

The S. cerevisiae genome consists of about 13 Mb of DNA in 16 chromosomes. With the 
complete sequencing of the genome, the physical map (determined directly from DNA 
sequencing) was unified with the genetic map (determined by tetrad analysis to derive 
genetic distances between genes; Cherry et al., 1997). The final sequence was assembled 
from 300,000 independent sequence reads (Mewes et al., 1997). Some of the features of 
the S. cerevisiae sequence are listed in table 18.1, based on the initial annotation of the 
genome (Goffeau et al., 1996) as well as recent updates.

In the nearly two decades since the initial sequence analysis, the annotation has been 
regularly updated as models of genes are corrected and additional information (e.g., based 
on comparative analyses with other fungal genomes) allows a more accurate assessment 
of genome features. In 2010 the reference genome sequence of the major strain S. cerevi-
siae strain S288C was updated (and called S288C 2010; Engel et al., 2013).

Saccharomyces cerevisiae is 
often called a “budding yeast” 
to distinguish it from a “fission 
yeast,” Schizosaccharomyces 
pombe, the second fungal genome 
to be sequenced (see “Fission 
Yeast Schizosaccharomyces 
pombe” below). Saccharomyces 
cerevisiae is a single-celled 
organism that “buds” off in the 
process of replication.

taBle 18.1 Features of S. cerevisiae genome. OrF: open reading frame; snorNa: small 
nucleolar rNa; trNa: transfer rNa; ty: retrotransposons; utr: untranslated region. 

Feature Amount

Sequenced length* 12,157,105 base pairs

Length of repeats 1321 kb

Total length 13,389 kb

Total ORFs* 6,607 ORFs

Verified ORFs* 5,072 ORFs

Uncharacterized ORFs* 748 ORFs

Dubious ORFs* 787 ORFs

Introns in ORFs 220 introns

Introns in UTRs 15 introns

Pseudogenes* 19 pseudogenes

Autonomously replicating sequence 337 sequences

Intact Ty elements* 50 elements

tRNA genes* 299 genes

snRNA genes * 6 genes

snoRNA genes* 77 genes

noncoding RNA* 9 genes

Source: Adapted from Goffeau et al. (1996) and (*) Saccharomyces Genome Database, 2014 (  http://
www.yeastgenome.org).

http://www.yeastgenome.org
http://www.yeastgenome.org
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A notable feature of the yeast genome is its high gene density (about one gene every 
2 kb). While bacteria have a density of about one gene per kilobase, most higher eukary-
otes have a much sparser density of genes. At the time the genomic sequence was initially 
annotated, there were 6275 predicted open reading frames (ORFs). An ORF was defined 
as ≥100 codons (300 nucleotides) in length, thus specifying a protein of at least ∼11,500 
daltons. Of these, 390 were listed as questionable (table 18.1) because they were short and 
unlikely to encode proteins (Dujon et al., 1994). Questionable ORFs display an unlikely 
preference for codon usage based on a “codon adaptation index” of <0.11.

Is it possible that short ORFs encode authentic proteins? These questions are funda-
mental to our understanding of any eukaryotic genome. In annotating the yeast genome, 
there are false positives (identified ORFs that do not encode an authentic gene) and false 
negatives (true genes with short ORFs that are not annotated). The Saccharomyces Genome 
Database (introduced below) lists categories of verified ORFs, uncharacterized ORFs, and 
dubious ORFs. There are 40,000 ORFs longer than 20 codons (Mackiewicz et al., 2002). 
Below the arbitrary cutoff of 100 codons, there are many ORFs that meet the criteria of 
having a codon adaptation index of >0.11 and which do not overlap a longer ORF (Harri-
son et al., 2002). The main criteria for deciding whether they are protein-coding genes are: 
(1) evidence of conservation in other organisms; and/or (2) experimental evidence of gene 
expression and/or expression of the corresponding protein by mass spectrometry.

The NCBI Genome entry for S. cerevisiae S288c lists 5906 proteins with a range 
of 16 to 4910 amino acid residues (average 494, median 405 residues; Fig. 18.3). A total 
of 69 of these proteins have a length of 16–50 amino acid residues. Are these authen-
tic? Two are ribosomal 60S subunit proteins, and most are hypothetical proteins. For 
example, YJR151W-A (NP_878108.1) is a 16 amino acid peptide annotated at NCBI as 
a “hypothetical protein; identified by fungal homology and RT-PCR; predicted to have 

By definition, all ORFs begin with 
a start codon (typically AUG 
encoding methionine) and end 
with a stop codon (usually UAG, 
UAA, or UGA).

Figure 18.3 Proteins in S. cerevisiae 288c. The NCBI Genome entry for this yeast species includes 
a genome annotation providing a histogram of proteins based on size. By clicking on the right-most 
portion of the histogram the entry for the largest protein is shown (AAA family ATPase midasin having 
a length of 4910 residues). In the case of small predicted proteins (e.g., <100 codons) it is important to 
confirm that the gene is transcribed and translated in vivo and does not represent a fortuitous open read-
ing frame that is not biologically meaningful. 

Source: NCBI Genome, NCBI.
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a role in transcription based on computational ‘guilt by association’ analysis.” Strong 
evidence therefore supports the biological relevance of this and other very small ORFs.

The largest gene in the S. cerevisiae genome, YLR106c, is assigned to chromosome 
XII. This gene encodes a protein with 4910 amino acids (Mdn1p; accession NP_013207.1; 
Garbarino and Gibbons, 2002). Midasin, a human ortholog, is 5596 amino acids long 
(over 600 kDa; RefSeq accession NP_055426.1).

The most common protein families in S. cerevisiae are listed in table 18.2.
Introns are a basic feature of almost all eukaryotic protein-coding genes; in the human 

genome there are ∼8 introns per gene. S. cerevisiae offers a stark exception: only 4% of 
its genes are interrupted by introns. In the fission yeast S. pombe (introduced below), 40% 
of the genes have introns. The lack of introns makes S. cerevisiae an attractive model 
organism for the identification of genes from genomic DNA. Neuvéglise et al. (2011) 
characterized the intron content of 13 hemiascomycetous yeast genomes. They found that 
the more rapidly evolving species tend to lose their introns (Fig. 18.4). Kelkar and Ochman 
(2012) analyze intron frequency in terms of genetic drift: in general, genome expansions 
in fungi are associated with decreases in gene density and increases in intron frequency.

Cécile Neuvéglise introduced 
Génosplicing, a website 
describing spliceosomal introns 
of hemiascomycetous yeasts 
(  http://genome.jouy.inra.fr/
genosplicing/, WebLink 18.5). 
According to the SacCer_
Apr2011-Primary assembly there 
are 279 RefSeq coding introns and 
60 RefSeq noncoding introns  
(  http://www.ncbi.nlm.nih 
.gov/mapview/stats/BuildStats.
cgi?taxid=4932&build=3&ver=1, 
WebLink 18.6).

taBle 18.2 ten most common protein domains in S. cerevisiae from interpro. 

ID InterPro name Number of genes Number of Ensembl hits

IPR011009 Protein kinase-like domain 130 131

IPR000719 Protein kinase, catalytic domain 117 236

IPR011046 WD40 repeat-like-containing domain 110 116

IPR008271 Serine/threonine-protein kinase, active site 108 108

IPR016024 Armadillo-type fold 104 119

IPR001680 WD40 repeat 100 1038

IPR017441 Protein kinase, ATP binding site 87 87

IPR003593 ATPase, AAA+ type, core 86 120

IPR016196 Major facilitator superfamily domain, general substrate transporter 85 89

IPR017986 WD40-repeat-containing domain 81 89

Source: Ensembl Release 75; Flicek et al. (2014). Reproduced with permission from Ensembl.

Evolutionary distances

Pe
rc

en
t o

f i
nt

ro
n-

co
nt

ai
ni

ng
 g

en
es

S. cerevisiae

C. glabrata

L. kluyveri
L. thermotolerans

K. lactis

E. gossypii

P. sorbitophila
D. hanseniiC. albicans

A. adeninivorans

Y. lipolytica

P. pastoris

Protoploid genomes

CTG genomes

Early-branching genomes

Duplicated genomes

Z. rouxii

18

16

14

12

10

8

6

4

2

0
0.24 0.440.400.360.320.28

Figure 18.4 S. cerevisiae has very few introns. The percent of intron-containing genes (y axis) in  
13 yeast genomes is plotted vesus evolutionary distances (x axis) based on a phylogenetic analysis using 
the alignment of 84 proteins. Genomes with the fewest introns in their genes tend to have the largest 
evolutionary distances (the correlation coefficient r2 = 0.662). Adapted from Neuvéglise et al. (2011) 
with permission from Elsevier and C. Neuvéglise.

http://genome.jouy.inra.fr/genosplicing/
http://genome.jouy.inra.fr/genosplicing/
http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=4932&build=3&ver=1
http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=4932&build=3&ver=1
http://www.ncbi.nlm.nih.gov/mapview/stats/BuildStats.cgi?taxid=4932&build=3&ver=1
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In addition to protein-coding genes, there are many transcribed genes that encode 
functional RNA molecules but are not subsequently translated into protein. In addition 
to the 299 tRNA genes shown in table 18.1, there are 140 tandemly repeated copies of 
rRNA genes as well as small nucleolar (snoRNA; Lowe and Eddy, 1999) and other RNA 
species. In common with the human, mouse, and nematode genomes, the yeast genome 
is pervasively transcribed, likely controlling gene expression and/or chromatin domain 
formation (Tisseur et al., 2011; Wu et al., 2012).

The S. cerevisiae genome encodes 50 intact retrotransposons (called Ty1, Ty2, Ty3, 
Ty4, and Ty5). These are endogenous retrovirus-like elements that mediate transposition 
(i.e., insertion into a new genomic location; Roth, 2000). They are flanked by long-termi-
nal repeats (LTRs) that function in integration of the retrotransposon into a new genomic 
site. Retrotransposons have shaped the genomic landscape of all eukaryotic genomes.

We previously introduced lateral gene transfer (Chapter 17). Extensive lateral gene 
transfer has occurred from bacteria, plants, and other fungi into fungal genomes (Fitzpat-
rick, 2012). This includes biotin synthesis pathway genes into S. cerevisiae.

exploring typical Yeast Chromosome

We select chromosome XII (Johnston et al., 1997) to explore the features of a typical 
yeast chromosome.

Web Resources for Analyzing a Chromosome
You can access the DNA sequence of any S. cerevisiae chromosome through several web-
sites, along with assorted annotation. These sites include the following.

 • NCBI offers data from its Genome page or through “Map Viewer.” We select chrXII 
(or any of the 16 chromosomes; Fig. 18.5). The resulting browser entry displays the 
chromosome (and includes a table listing the 564 genes annotated across its 1.08 Mb 
length). The NCBI page for this chromosome offers various annotation tracks. NCBI 
offers additional dedicated fungal genome resoureces that are described by Robbertse 
and Tatusova (2011).

Almost half the human genome 
is composed of transposable 
elements; we explore them in 
more detail in Chapter 20.

NCBI Genome resources on 
fungi are at  http://www.ncbi 
.nlm.nih.gov/genome?term= 
saccharomyces%20cerevisiae 
(WebLink 18.7).

Figure 18.5 The NCBI Map Viewer site includes this page on S. cerevisiae. Each of the 16 chromo-
somes can be explored separately. The left sidebar includes links to resources for S. cerevisiae and other fungi. 

Source: NCBI Map Viewer, NCBI.

http://www.ncbi.nlm.nih.gov/genome?term=saccharomyces%20cerevisiae
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The NCBI Genome Workbench offers convenient access to genomic data. We 
can view chromosome XII (Fig. 18.6) or zoom to see a typical gene on that chromo-
some, VPS33/YLR396C encoding Vps33p (Fig. 18.7). (For the nomenclature system 
used for S. cerevisiae genes and proteins, see Box 18.2.) There are links to tools such 
as BLAST, MUSCLE, genomic aligners, and phylogenetics tools.

(a) Search view of Genome Workbench: query Saccharomyces cerevisiae

(b) Genome Workbench view of genes on chromosome XII

(c) Additional tracks available on graphical view

2

1

3

Figure  18.6 The Genome Workbench at NCBI can be used to analyze sequences of interest.  
(a) Select “Entrez Genome” in the search view and enter “saccharomyces cerevisiae” (without quotes), 
and press enter to load that genome into a Data subfolder on the left sidebar. (b) The assembly name 
(R64-1-1) is given to the dataset. Right-click (on a PC) R64-1-1 on the left sidebar and select “open new 
view.” Choose “graphical view.” There is a list of the 16 chromosomes plus the mitochondrial chromo-
some; select chrXII (NC_001144.5). The global view of the chromosome is shown; bars in green, blue, 
and red correspond to data on the gene, mRNA, and protein. The largest yeast protein, midasin, is evident 
in the top row of gene models at ∼350,000 base pairs (arrow 1). (c) Additional tracks can be shown via 
a menu (arrow 2). These include long terminal repeats, replication orgins, mobile elements, centromeric 
elements (arrow 3), and telomeres. 

Source: Genome Workbench, NCBI.
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 • The Saccharomyces Genome Database (SGD) (Engel and Cherry, 2013) is one of the 
pre-eminent model organism databases and is arguably the most central resource for 
information about S. cerevisiae (see Chapter 14 for more information).

 • The UCSC Genome Browser includes a S. cerevisiae browser. It includes tracks such 
as genes, mRNAs and expressed sequence tags, regulatory regions, and conservation.

 • Ensembl includes a page for S. cerevisiae (Fig. 18.8). This includes the familiar format 
of the Ensembl browser.

Information in these databases is often cross-referenced; for example, the UCSC 
tracks include SGD data. Each of these various browsers offers unique feature (Box 18.3).

For SGD, visit  http://www.
yeastgenome.org/  
(WebLink 18.8).

We can visit Ensembl at  http://
www.ensembl.org (WebLink 18.9) 
then browse to S. cerevisiae.

1 2

Figure 18.7 Genome Workbench display for a single gene on chromosome XII (VPS33/YLR396C). 
Tracks for the gene, mRNA, and protein are available. Mousing over the protein track reveals information 
(arrow 1) including a link to the Saccharomyces Genome Database entry. The related gene SEC1 is shown 
(arrow 2), and mousing over also shows relevant data including a link to the Conserved Domain Database. 

Source: Genome Workbench, NCBI.

Box 18.2 gene nomenclature In SaccharomyceS cereviSiae 

All ORFs that are ≥100 codons were assigned unique names consisting of three letters followed by a numeral and a subscript to describe 
its genomic position. For example, the gene name YKL159c refers to the ORF number 159 (from the centromere) on the left arm (L) of 
chromosome XI (K is the 11th letter of the alphabet) of yeast (Y). The designations c or w (“Crick” or “Watson”) reflect the orientation 
of the gene on the chromosome. Once a gene has been characterized and assigned some kind of function, the investigators may assign 
a new name that reflects the function (in this case RCN1 for “regulator of calcineurin”). Dominant alleles (typically the wildtype allele) 
are listed with three uppercase letters while recessive alleles (typically knockout mutations or loss of function alleles) are listed with 
three lowercase letters. The protein product of the gene is designated without italics and with only the first letter in uppercase, and with 
“p” appended to designate protein. Many genes have multiple names (synonyms) because investigators have identified them in indepen-
dent functional screens. Some examples of nomenclature are as follows.

Wildtype allele Protein product Mutant alleles

CNA1 Cna1p cna1Δ

RCN1 Rcn1p rcn1, rcn1::URA3

YKL159c Ykl159cp ykl159c

http://www.yeastgenome.org/
http://www.ensembl.org
http://www.ensembl.org
http://www.yeastgenome.org/
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Figure 18.8 Ensembl includes resources for S. cerevisiae (as for many other organisms) including 
genome assembly data, comparative genomics, regulation, annotation, and variation. 

Source: Ensembl Release 73; Flicek et al. (2014). Reproduced with permission from Ensembl.

Box 18.3 multIple yeast genome Browsers

Prominent yeast genome browsers incude those at NCBI, MIPS, SGD, and UCSC. Each offers different advantages, and there is no 
single best resource. The SGD is arguably the central web resource for the yeast genomics community. The strength of NCBI is its 
critical role in the bioinformatics community. The UCSC Genome Browser is an increasingly essential resource for the visualization, 
annotation, and analysis of vertebrate genomes, although its application to fungi is currently limited. MIPS offers expert curation. 
Notably, its web browser is based on the Generic Model Organism Database project (GMOD;  http://www.gmod.org/, O’Connor 
et al., 2008). GMOD is a set of interconnected applications and databases including the Generic Genome Browser (GBrowse). The 
research communities involved in a variety of organisms have contributed to GMOD (including the SGD and model organism projects 
described in Chapter 19 such as FlyBase, WormBase, and TAIR). Recently toolkits have been developed to facilitate the development 
of model organism websites, including using the Drupal content management system (Papanicolaou and Heckel, 2010; Ficklin et al., 
2011; Sanderson et al., 2013).

Exploring Variation in a Chromosome with Command-Line Tools
We now explore the Ensembl resource in more detail. To explore genomic variants on 
chromosome XII of S. cerevisiae, we can use a genome browser. Alternatively, we can 
explore the variants in a command-line environment. Follow the link to “Download all 
variants (GVF).” On a Unix platform, we can copy the link location and use the wget 
utility. On a Macintosh we can click to send the variation files to a download directory, 
and then use the mkdir command to create a directory called yeast and the cp utility 
to copy them there. There is a README file we can view using cat README, telling 
us that the files include all germline variations in the current Ensembl release. The file 
format is Genome Variation Format (GVF) (Reese et al., 2010).

Since the variation files are compressed, we can unpack them:

The GVF format is described at 
 http://www.sequenceontology.

org/gvf.html (WebLink 18.10). We 
referred to it in Chapter 9 since 
(along with VCF files) it serves as 
input to VAAST.

$ gunzip Saccharomyces_cerevisiae.gvf.gz

http://www.sequenceontology.org/gvf.html
http://www.gmod.org/
http://www.sequenceontology.org/gvf.html
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The wc –l result tells us that this file has ∼263,000 rows. The less command shows us 
the beginning of the file, with a series of header lines (each beginning with the ## sym-
bols) at the start of each line. We then see entries listing single-nucleotide variants (SNVs) 
in the genome. For example, the first variant that is described is an A residue at position 
84 of chromosome I where the reference nucleotide is a G residue.

Which variants are assigned to chromosome XII? We can use the grep utility to 
select the rows having the expression “XII”. However this will include entries from 
chromosomes XII and also XIII, so we can selectively exclude XIII with the grep –v 
command. To learn how to use any utility such as grep, simply try a web browser search 
engine where you will find questions similar to yours and answers from experts. On a 
Linux platform, be sure to type man grep to read the manual.

Here gunzip is a utility to unpack a zipped (compressed) file. We can then inspect 
the file:

The file yeast_chrXII_SNVs.gvf 
is available as Web Document 
18.1 at  http://bioinfbook.org 
(WebLink 18.11). You can view it 
in a text editor such as NotePad 
(PC) or TextEdit (Mac) or vim, 
emacs, or nano (Linux).

$ wc -l Saccharomyces_cerevisiae.gvf
 263033 Saccharomyces_cerevisiae.gvf
$ less Saccharomyces_cerevisiae.gvf
##gff-version 3
##gvf-version 1.07
##file-date 2013-12-01
##genome-build ensembl EF4
##species http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=4932
##feature-ontology http://song.cvs.sourceforge.net/viewvc/song/ontology/
so.obo?revision=1.283
##data-source Source=ensembl;version=74;url=http://e74.ensembl.org/
Saccharomyces_cerevisiae
##file-version 74
##sequence-region I 1 230218
##sequence-region II 1 813184
… # these dots indicate that we omit a series of additional comment lines
I SGRP SNV 84 84 . + . ID=1;Variant_seq=A;Dbxref=SGRP:s01-84;Reference_seq=G
I SGRP SNV 109 109 . + . ID=2;Variant_seq=C;Dbxref=SGRP:s01-109;Reference_seq=G
I SGRP SNV 111 111 . + . ID=3;Variant_seq=T;Dbxref=SGRP:s01-111;Reference_seq=C
I SGRP SNV 114 114 . + . ID=4;Variant_seq=C;Dbxref=SGRP:s01-114;Reference_seq=T
I SGRP SNV 115 115 . + . ID=5;Variant_seq=G;Dbxref=SGRP:s01-115;Reference_seq=C

$ grep "XII" Saccharomyces_cerevisiae.gvf | grep -v "XIII" | wc -l
 22336

$ grep "XII" Saccharomyces_cerevisiae.gvf | grep -v "XIII"  
> yeast_chrXII_SNVs.gvf

There are therefore ∼22,000 variants on chromosome XII, and adding the modifier grep 
–v “SNV” confirms that all are single-nucleotide variants. We can end our previous 
command with > to send the output to a text file:

A GVF-formatted file is useful in many ways, including: you can upload a GVF to 
the UCSC Genome Browser as a custom track; in Chapter 9 we introduced BEDtools 
which can be used to analyze the relation of the nucleotide variants to a variety of other 
features; and you can upload a GVF file to Galaxy.

Finding Genes in a Chromosome with Command-Line Tools
As another example of using command-line tools, we can return to the Ensembl page 
for S. cerevisiae and select “Download genes, cDNAs, ncRNA, proteins (FASTA).” This 
provides files listing cDNA, peptides, coding sequences (CDS), DNA, or noncoding 
DNA. Once downloaded you can transfer the files to a directory (such as yeast) that you 
create (with the mkdir command) and unpack them (e.g., gunzip the file). We focus on 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=4932
http://song.cvs.sourceforge.net/viewvc/song/ontology/
http://e74.ensembl.org/
http://bioinfbook.org
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This tells us that the file has 1977 rows. But how many entries does it have? Each entry is 
preceded by the > symbol, so we can use grep.

a file having entries in the FASTA format (note the extension .fa) containing noncoding 
RNAs (ncrna).

$ wc -l Saccharomyces_cerevisiae.EF4.74.ncrna.fa
 1977 Saccharomyces_cerevisiae.EF4.74.ncrna.fa

$ grep “>” Saccharomyces_cerevisiae.EF4.74.ncrna.fa | wc -l
 413

There are therefore 413 entries. We can look at the contents of the file, one page at a time, 
using less:

$ less Saccharomyces_cerevisiae.EF4.74.ncrna.fa

This tells us that there are several different types of noncoding RNA (rRNA, tRNA, 
snRNA, snoRNA; for descriptions see Chapter 10). We can determine how many of each 
type there are in the file. For example:

$ grep "biotype:snRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | wc -l
 6
$ grep "biotype:tRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | wc -l
 299
$ grep "biotype:rRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | wc -l
 16
$ grep "biotype:ncRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | wc -l
 15

We can further restrict our output to chromosome XII entries, count them, send them to a 
file, view them with less, or (as shown next) we can view the first few lines.

$ grep "snRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | grep "XII" | 
grep -v "XIII" | less
>snR6 sgd:snRNA chromosome:EF4:XII:366235:366346:1 gene:snR6 gene_
biotype:snRNA transcript_biotype:snRNA
$ grep "snoRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | grep "XII" | 
grep -v "XIII" | head -3
>snR30 sgd:snoRNA chromosome:EF4:XII:198784:199389:1 gene:snR30 gene_
biotype:snoRNA transcript_biotype:snoRNA
>snR34 sgd:snoRNA chromosome:EF4:XII:899180:899382:1 gene:snR34 gene_
biotype:snoRNA transcript_biotype:snoRNA
>snR44 sgd:snoRNA chromosome:EF4:XII:856710:856920:1 gene:snR44 gene_
biotype:snoRNA transcript_biotype:snoRNA
$ grep "tRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | grep "XII" | grep 
-v "XIII" | head -3
>tR(ACG)L sgd:tRNA chromosome:EF4:XII:374355:374427:1 gene:tR(ACG)L gene_
biotype:tRNA transcript_biotype:tRNA
>tL(UAA)L sgd:tRNA chromosome:EF4:XII:962972:963055:-1 gene:tL(UAA)L gene_
biotype:tRNA transcript_biotype:tRNA
>tP(UGG)L sgd:tRNA chromosome:EF4:XII:92548:92650:1 gene:tP(UGG)L gene_
biotype:tRNA transcript_biotype:tRNA
$ grep "rRNA" Saccharomyces_cerevisiae.EF4.74.ncrna.fa | grep "XII" | grep 
-v "XIII" | head -3
>RDN25-1 sgd:rRNA chromosome:EF4:XII:451786:455181:-1 gene:RDN25-1 gene_
biotype:rRNA transcript_biotype:rRNA
>RDN18-2 sgd:rRNA chromosome:EF4:XII:465070:466869:-1 gene:RDN18-2 gene_
biotype:rRNA transcript_biotype:rRNA
>RDN5-4 sgd:rRNA chromosome:EF4:XII:482045:482163:1 gene:RDN5-4 gene_
biotype:rRNA transcript_biotype:rRNA
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Such command-line queries are flexible, powerful, and allow you to perform queries 
with a broad range of other command-line tools.

Properties of Yeast Chromosome XII
We can now turn to some of the properties of Chromosome XII.

 • The overall GC content of chromosome XII is 38%. The GC content tends to be 
highest in localized regions corresponding to a high density of protein-coding genes. 
There are three regions of particularly low GC content (below 37%); one of these 
corresponds to the centromere. This feature is typical of all eukaryotic centromeres. 
Yeast centromeres in particular contain structural elements called CDEI, CDEII, and 
CDEIII that are required for assembly, and they are evident in the graphical view of 
chromosome XII in Figure 18.6c (arrow 3) at nucleotide position ∼150,000.

 • Overall, there is very little repetitive DNA throughout the S. cerevisiae genome. The 
rDNA repeats are all on chromosome XII (encoding rRNAs). This region of the chro-
mosome also has the highest GC content (approximately 42%). In addition, S. cere-
visiae chromosomes have telomeric and subtelomeric repetitive DNA elements. This 
feature is typical of essentially all eukaryotic chromosomes.

 • There are few spliceosomal introns (∼235 total). These are probably due to homolo-
gous recombination of cDNAs produced by reverse transcription of spliced mRNAs. 
On chromosome XII, 17 ORFs (3.2% of the total) contain introns; half of these genes 
encode ribosomal proteins. The extreme lack of introns contrasts with other fungi such as 
Cryptococcus neoformans (see “Cryptococcus neoformans” below) which averages 6.3 
exons and 5.3 introns for its 6572 predicted protein-coding genes (Loftus et al., 2005).

 • There are six transposable elements (Ty elements) on chromsome XII. Additionally, 
there are hundreds of fragments of transposable elements.

 • The density of ORFs is extremely high. Seventy-two percent of chromosome XII 
contains protein-coding genes, a fraction that is typical of the other yeast chromo-
somes. There are 534 ORFs of 100 or more codons on chromosome XII, with an 
average codon size of 485 codons.

gene duplIcatIon and genome duplIcatIon of 
S. cereviSiae
As the genome sequence of S. cerevisiae was analyzed, it became apparent that there are 
many duplications of DNA sequence involving both ORFs and larger genomic regions. 
In many cases, the gene order and orientation (top or bottom strand) is preserved between 
the duplicated regions. The duplications are both intrachromosomal (occurring within a 
chromosome) and interchromosomal (occurring between chromosomes).

These changes in genetic material are fundamental in explaining the evolution of spe-
cies in yeast or in any branch of life. We will see that in the human genome and a variety 
of other eukaryotic genomes, as many as 25% of the genes are duplicated (Chapters 19 and 
20). There are two compelling questions (Conant and Wolfe, 2008): by what mechanisms 
does duplication occur, and how does selection optimize the novelty of newly duplicated 
DNA? We first address the origin of new, duplicate genes. There are two main mechanisms.

 1. Segments of a genome can duplicate. We discuss segmental duplication of the human 
genome in Chapter 20; it is sometimes defined as consisting of two loci sharing 90% 
or more identity over a length of 1000 base pairs or more. About 5% of the human 
genome is segmentally duplicated.

 2. An entire genome can duplicate, a process called polyploidy (Fig. 18.9; Hufton and 
Panopoulou, 2009). In the case of S. cerevisiae, this is a tetraploidization. If this 

Chromosome XII (accession 
number NC_001144.5) has 
1,078,177 bp.

The centromere is the site at 
which chromosomes attach to 
the mitotic or meiotic spindle. In 
yeast, the centromere divides 
each chromosome into the left 
and right arm; in humans, it 
divides each chromosome into  
a short (or p) arm and a long  
(or q) arm.

The telomere is the terminal 
region of each chromosome 
arm (Chapter 8). These arms are 
important in the maintenance 
of chromosome structure. 
They have been implicated in 
processes ranging from aging to 
intellectual disability.
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resulted from the combining of two genomes from one species it is called autopoly-
ploidy; if two distinct species fuse it is allopolyploidy.

Other mechanisms of creating new genes may be important, but occur less commonly 
and are therefore less relevant. New genes can arise by gene conversion. In this process, 
genes are transferred nonreciprocally from one genomic region to another. (This occurs 
between repetitive regions of the human Y chromosome; Rozen et al., 2003.) Genes can be 
introduced into a genome by lateral (horizontal) gene transfer, as mentioned above (Fitz-
patrick, 2012). We also describe lateral gene transfer for Encephalitozoon (see “Atypical 
Fungus: Microsporidial Parasite Encephalitozoon cuniculi” below). In eukaryotes lateral 
gene transfer may introduce some functionally important genes, but it does not account 
for a large quantity of new genes.

In 1970, Susumu Ohno published the brilliant book Evolution by Gene Duplication. 
He proposed that vertebrate genomes evolved by two rounds of whole-genome duplication. 
According to this hypothesis, these duplication events occurred early in vertebrate evolu-
tion and allowed the development of a variety of cellular functions. Ohno (1970) wrote:

Had evolution been entirely dependent upon natural selection, from a bacterium only 
numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates, 
and finally mammals from unicellular organisms would have been quite impossible, for 
such big leaps in evolution required the creation of new gene loci with previously non-
existent function. Only the cistron that became redundant was able to escape from the 
relentless pressure of natural selection. By escaping, it accumulated formerly forbidden 
mutations to emerge as a new gene locus.

Tetraploidy is the presence of four 
haploid sets of chromosomes in 
the nucleus.

Diploid (2N)

Autotetraploid (4N)

Allotetraploid (4N)

homeologoushomologous

(b) Autopolyploidy: doubling the genome of a single species

(c) Allopolyploidy: hybridization between closely related species

(a) Hypothetic diploid genome with two chromosome pairs

Figure 18.9 Whole-genome duplication. (a) A hypothetical diploid genome has two chromosome 
pairs (large, small). (b) Genome duplication within an organism generates an autotetraploid. (c) Hybrid-
ization between two closely related species generates an allotetraploid, preserving the full genome con-
tent of both parent species. Redrawn from Hufton and Panopoulou (2009) with permission from Elsevier.
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Figure 18.10 Wolfe and Shields (1997) performed BLASTP searches of proteins from S. cerevisiae 
and found 55 blocks of duplicate regions, providing strong evidence that the entire genome underwent 
an ancient duplication. This figure (redrawn from the original) depicts the result of BLAST searches of 
proteins encoded by genes on chromosomes X and XI. Matches with scores >200 are shown, arranged 
in several blocks of genes. Redrawn from Wolfe and Shields (1997). Reproduced with permission from 
Macmillan Publishers.
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Which mechanism of gene duplication might have occurred in S. cerevisiae? Smith 
(1987) examined duplicate histone genes (histones H3-H4 and H2A-H2B) and suggested 
the possibility of an early whole-genome duplication event. Soon after the complete 
sequence of the genome became available, Wolfe and Shields (1997) provided strong 
support for Ohno’s whole-genome duplication paradigm. They assessed the duplicated 
regions of the yeast genome by performing systematic BLASTP searches of all yeast 
proteins against each other and plotting the matches on dot matrices. Duplicate regions 
were observed as diagonal lines, such as the three duplicated regions seen in a comparison 
of proteins derived from chromosomes X and XI (Fig. 18.10). In the whole genome, they 
identified 55 duplicated regions and 376 pairs of homologous genes. In subsequent stud-
ies, they employed the more sensitive Smith–Waterman algorithm and identified a few 
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additional regions of duplication (Seoighe and Wolfe, 1999). Based on these results, they 
proposed a single, ancient duplication of the S. cerevisiae genome, approximately 100 
million years ago (Wolfe and Shields, 1997). Subsequent to this duplication event, many 
duplicated genes were deleted. Other genes were rearranged by reciprocal translocation.

There are two main explanations for the presence of so many duplicated regions. 
There could have been whole-genome duplication (tetraploidy) followed by transloca-
tions as well as gene loss, or alternatively there could have been a series of independent 
duplications. Wolfe and Shields (1997) favored the tetraploidy model for two reasons:

 1. For 50 of the 55 duplicate regions, the orientation of the entire block was preserved 
with respect to the centromere. If each block were generated independently, a random 
orientation would be expected.

 2. Fifty-five successive, independent duplications of blocks would be expected to result 
in about seven triplicated regions, but only zero (or possibly one) such triplicated 
region was observed.

In sum, polyploidy has occurred in S. cerevisiae, as well as other fungi (Dujon, 2010; 
Kelkar and Ochman, 2012; Albertin and Marullo, 2012). Whole-genome duplication also 
occurred in many eukaryotes from plants to fish to protozoans (Chapter 19).

What is the fate of genes after duplication? The presence of extra copies of genes is 
usually deleterious to an organism. In the model of Wolfe and colleagues, the genome 
of an ancestral yeast doubled (from the diploid number of about 5000 to the tetraploid 
number of 10,000 genes) then lost the majority of its duplicated genes, yielding the pres-
ent-day number of about 6200 ORFs. Overall, between 50 and 92% of duplicated genes 
are eventually lost (Wagner, 2001). For eukaryotes, the half-life of duplicated genes is 
only a few million years (Lynch and Conery, 2000). There are four main possibilities:

 1. Both copies can persist, maintaining the function of the original gene. In the scenario 
of a local duplication, there is a gene dosage effect because of the extra copy of the 
gene. In whole-genome duplication, the stoichiometry of the genes (and gene prod-
ucts) may be maintained as in the original state.

 2. One copy could be completely deleted. This is the most common fate of duplicated 
genes, as confirmed by recent whole-genome studies (described in “Gene Duplica-
tion and Genome Duplication of S. cerevisiae” below). A rationale for this fate is that, 
since the duplicated genes share identical functions initially, either one of them may 
be subject to loss-of-function mutations (Wagner, 2001).

 3. One copy can accumulate mutations and evolve into a pseuodogene (a gene that 
does not encode a functional gene product). This represents a loss of gene function, 
although it occurs without the complete deletion of the duplicate copy. Over time, the 
pseudogene may be lost entirely.

 4. One or both copies of the gene could diverge functionally. According to this hypoth-
esis, gene duplications (regardless of mechanism) provide an organism with the raw 
material needed to expand its repertoire of functions. Furthermore, loss of either gene 
having overlapping functions might not be tolerated. The functionally diverged genes 
would therefore both be positively selected.

After a gene duplicates, why does one of the members of the newly formed gene pair 
often become inactivated? At first glance, it might seem highly advantageous to have two 
copies because one may functionally diverge (driving the process of evolution to allow a 
cell to perform new functions) or one may be present in an extra copy in case the other 
undergoes mutation. However, gene duplication instead appears to be generally delete-
rious, leading to the loss of duplicated genes. The logic is that some mutations in a gene 
are forbidden rather than tolerable (these terms were used by Ohno (1970) in describing 
gene duplication). Forbidden mutations severely affect the function of a gene product, for 

Wolfe and Shields (1997) used 
BLASTP rather than BLASTN 
to study duplicated regions of 
chromosomes. This is because 
protein sequence data are more 
informative than DNA for the 
detection of distantly related 
sequences. See Chapter 3.

In humans, an extra copy of 
chromosome 21 (i.e., trisomy 
21) causes Down syndrome. 
Trisomies 13 and 18 are also 
sometimes compatible with life, 
but other autosomal trisomies 
are not. Duplications of even 
limited regions of the genome 
cause intellectual disability and 
other diseases (see Chapter 21 
on human disease). This 
highlights the deleterious nature 
of duplications at the level of 
individual organisms.
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instance by altering the properties of the active site of an enzyme. (A tolerable mutation 
causes a change that remains compatible with the function of the gene product.) Natural 
selection can eliminate forbidden mutations, because the individual is less fit to repro-
duce. After a gene duplicates, a deleterious mutation in one copy of a gene might then be 
tolerated because the second gene can assume its function. A second reason that dupli-
cated genes may be deleterious is that, in their presence, the crossing-over of homologous 
chromosomes during meiosis may be mismatched, causing unequal crossing-over.

We can consider the possible fates of duplicated genes with the specific example of 
genes encoding proteins that are essential for vesicle trafficking. We introduced SSO1 in 
Chapter 14 (Fig. 14.4). In yeast and all other eukaryotes, spherical intracellular vesicles 
transport various cargo to destinations within the cell. These vesicles traffic cargo to the 
appropriate target membrane through the binding of vesicle proteins (e.g., Snc1p in yeast 
or VAMP/synaptobrevin in mammals) to target membrane proteins (e.g., Sso1p in yeast 
or syntaxin in mammals) (Aalto et al., 1993; Protopopov et al., 1993). In S. cerevisiae, 
genome duplications presumably caused the appearance of two paralogous genes in each 
case: SNC1 and SNC2 as well as SSO1 and SSO2. The SNC1 and SNC2 genes are on 
corresponding regions of chromosomes I and XV, while the SSO1 and SSO2 genes are on 
chromosomes XVI and XIII, respectively.

What could the consequences of genome duplication have been? The two pairs of 
syntaxin-like and VAMP/synaptobrevin-like yeast proteins might have maintained the 
same function of the original proteins (before genome duplication). A search for SSO1 
at the SGD website shows that the gene is nonessential (the null mutant is viable), but 
the double knockout is lethal (see Fig. 14.4). It is therefore likely that these paralogs offer 
functional redundancy for the organism; in the event a gene is lost (e.g., through muta-
tion), the organism can survive because of the presence of the other gene. Similarly, the 
SNC1 null mutant is viable, but the double knockout of SNC1 and SNC2 is deficient in 
secretion.

As an alternative explanation of the duplication of these genes, it is possible that 
whole-genome duplication provided the new genetic materials with which the intracellu-
lar secretion machinery could be diversified. Syntaxin and VAMP/synaptobrevin proteins 
function at a variety of intracellular trafficking steps, and these gene families diversified 
throughout eukaryotic evolution (Dacks and Doolittle, 2002). Particular combinations of 
these proteins interact to confer specificity to vesicular trafficking events (Pevsner and 
Scheller, 1994).

There are several models for the consequences of duplication. Andreas Wagner (2000) 
addressed the question of how S. cerevisiae protects itself against mutations by one of two 
mechanisms: (1) having genes with overlapping functions (such as paralogs that maintain 
related functions); or (2) through the interactions of nonhomologous genes in regulatory 
networks. He found that genes whose loss of function caused mild rather than severe 
effects on fitness did not tend to have closely related paralogs. This is consistent with a 
model in which gene duplication does not provide robustness against mutations.

The fate of gene duplicates is likely to differ between those generated by 
whole-genome duplication versus small-scale duplication (Conant and Wolfe, 2008). 
Fares et al. (2013) present a model for the emergence of new functions by whole-ge-
nome duplication versus small-scale duplications (Fig. 18.11). After whole-genome 
duplication, duplicated genes are in dosage balance and tend to maintain their func-
tions. An ultimate outcome may be sub-functionalization in which each of the two gene 
copies performs a subset of the ancestral (pre-duplication) gene function. Both gene 
copies therefore undergo comparable selective pressure. In contrast, small-scale dupli-
cations (involving one or a few genes) can produce genetic robustness in which there 
is selective pressure to maintain both copies, and one copy may diverge to acquire new 
functions (neo-functionalization).
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Figure 18.11 Model of evolution after gene duplication by (a) whole-genome duplication (WGD) 
or (b) small-scale duplication. After WGD, the stoichiometry of gene products is maintained, and dupli-
cated genes maintain their genetic interactions and their functions. Interaction partners (solid lines) 
are maintained, and partners of duplicated genes interact functionally (dashed lines). There are relaxed 
selective constraints on the duplicated genes, so one may be lost. Redrawn from Fares et al. (2013). 
Licensed under the Creative Commons Attribution License 3.0.
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comparatIve analyses of HemIascomycetes
Analysis of S. cerevisiae has elucidated many fundamental principles concerning genome 
structure, function, and evolution. Comparison of phylogenetically related genomes has 
opened an entirely new dimension on genome analysis. Some of the first genomes selected 
were hemiascomycetes phylogenetically close to S. cerevisiae such as Candida glabrata, 
Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica (Dujon et al., 
2004; Souciet, 2011). In all, hundreds of fungal genomes are currently being sequenced, 
facilitating comparative genomics. In parallel to this, population genomics studies allow 
the measurement of genetic diversity within species such as S. cerevisiae and S. para-
doxus (Liti and Schacherer, 2011) or within a genus such as Saccharomyces (Dequin and 
Casaregola, 2011; Hittinger, 2013).
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Comparative analyses of Whole-genome Duplication

The hypothesis that yeast underwent a whole-genome duplication event has been tested 
by analyzing whole-genome sequences. By becoming polyploid, an organism doubles its 
complement of chromosomes (and therefore genes). This might appear to be an appealing 
mechanism to increase the repertoire of genes available for adaptation to new environ-
ments. However, polyploidy leads to genome instability, partly because of difficulties for 
the cell to perform proper chromosome segregation.

To understand the whole-genome duplication of S. cerevisiae, Kellis et al. (2003) 
sequenced the genome of Kluyverocmyces waltii, a related yeast that diverged before 
the whole-genome duplication event (Fig. 18.12). They sequenced the eight chromosomes 
of K. waltii, and annotated 5230 putative protein-coding genes. They identified blocks 
of conserved synteny (loci containing orthologous genes in the same order between the 
two species). Most regions of K. waltii mapped to two separate regions of S. cerevisiae. 
However, these regions of S. cerevisiae show evidence of massive gene loss (with 12% 
of the paralogous gene pairs retained, and 88% of paralogous genes deleted to leave one 
copy remaining).

Kellis et al. considered the rate of evolution of 457 gene pairs in S. cerevisiae that 
arose by whole-genome duplication. Seventy-six of these gene pairs displayed acceler-
ated evolution (based on amino acid substitution rates in the S. cerevisiae lineage relative 
to K. waltii). Remarkably, in 95% of these cases, the accelerated evolution was restricted 
to just one of the two paralogs. This supports Ohno’s suggestion that, after duplication, 
one copy of a gene can preserve the original function while the other may diverge to 
acquire a novel function.

With the continuing production of new genome-sequencing data, Scannell et al. 
(2006) considered six yeast species: three that descended from a common ancestor that 
is thought to have undergone a whole-genome duplication (S. cerevisiae, Saccharomyces 
castellii and Candida glabrata), as well as three additional yeasts that diverged before 
the whole-genome duplication event (Kluyveromyces waltii, Kluyveromyces lactis, and 
Ashbya gossypii). They used the Yeast Gene Order Browser to compare the six species. 
This browser is available online (Byrne and Wolfe, 2005, 2006). An example is shown 
in Figure 18.13 for the query SSO1 as well as six adjacent upstream and downstream 
genes. There are seven horizontal tracks in this example. Three in the center show the 
genes in the reference species that diverged before the whole-genome duplication event 

Figure 18.12 Phylogeny of several yeasts after Kurtzman and Robnett (2003). A red circle indi-
cates the likely place at which a whole-genome duplication (WGD) occurred. Adapted from  http://
wolfe.gen.tcd.ie/ygob/ with permission from K. H. Wolfe.
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(A. gossypii, K. waltii, and K. lactis). For S. cerevisiae and C. glabrata there are pairs of 
tracks, both above and below the reference species. For genes such as SSO1, YPL230W, 
and WPL228W (Fig. 18.13, arrows 2–4) there are two copies in both S. cerevisiae and C. 
glabrata but only one copy in the reference genomes. These two copies occur in adjacent 
positions along separate chromosomes.

A variety of patterns of loss can occur. Scannell et al. (2006) described 14 patterns by 
which gene loss can occur (outlined in Fig. 18.14). Out of 2723 ancestral loci that aligned 
appropriately, in only 210 cases was there no gene loss among the three genomes that 
underwent whole-genome duplication. In the great majority of cases (1957 instances or 
72% of the total), all three species lost one of the two copies of a given duplicated gene, 
and most commonly all three species lost the same copy of the gene. Genes involved in 
highly conserved biological processes such as ribosome function were especially likely 
to experience gene loss.

Wolfe and colleagues have extended YGOB to discover previously unannotated genes 
in various yeast species (ÓhÉigeartaigh et al., 2011). They also developed an automated 
Yeast Genome Annotation Pipeline that relies on YGOB (Proux-Wéra et al., 2012).

The Yeast Gene Order Browser is 
online at the website of Kenneth 
Wolfe,  http://wolfe.gen.tcd.ie/
ygob/ (WebLink 18.12).

Saccharomyces cerevisiae can 
live under anaerobic conditions, 
while K. lactis cannot. It is 
possible that the S. cerevisiae 
genome duplication resulted 
in physiological changes that 
allowed this organism to acquire 
the new growth phenotype 
(Piskur, 2001).
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Figure 18.13 The Yeast Gene Order Browser of Kevin Byrne (in the group of Kenneth Wolfe) pro-
vides evidence supporting whole-genome duplication events. Upon entering the query (SSO1; top arrow) 
and selecting the species to display, the query and varying numbers of adjacent genes are displayed. Each 
box represents a gene, and boxes are color-coded to correspond to particular chromosomes. Solid bars 
connect genes that are immediately adjacent. Here, the first and seventh rows correspond to C. glabrata, 
and the second and sixth rows correspond to S. cerevisiae (chromosome 16, including SSO1 gene, on 
row 2; chromosome 13, including the paralog SSO2, on row six). In this view there are three genes that 
have two copies in C. glabrata and S. cerevisiae that may have resulted from whole-genome duplication. 
For yeast lineages that are hypothesized to have not undergone whole-genome duplication (A. gossypii, 
K. waltii, and K. lactis) there tends to be only one copy of these genes. For all species, occasional gene 
losses are evident (e.g., K. waltii, the gene indicated by arrow 3). Yeast Gene Order Browser includes 
additional features such as links to the raw sequences and to phylogenetic reconstructions of each gene 
family. Adapted from  http://wolfe.gen.tcd.ie/ygob/ with permission from K.H. Wolfe.
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identification of Functional elements

It is extraordinarily difficult to identify genes and gene regulatory regions (such as pro-
moters) from genomic sequence data alone. Matching expressed sequence tags (ESTs; 
Chapter 10) to genomic DNA is one useful approach to defining protein-coding genes. 
Comparative analyses between genomic sequences also provide a powerful approach to 
identifying functionally important elements.

Kellis et al. (2003) obtained the draft sequences of Saccharomyces paradoxus, S. 
mikatae, and S. bayanus which diverged from S. cerevisiae some 5–20 million years ago. 
Almost all of the 6235 open reading frames (ORFs) in the SGD annotation of S. cerevisiae 
had clear orthologous matches in each of the other three species. A noticeable exception 
is at all 32 telomeres (i.e., both ends of the 16 chromosomes), where matches are often 
ambiguous. Genes assigned to subtelomeric regions are often present in different number, 
order, or orientation, and these regions have undergone multiple reciprocal translocations. 
Kellis et al. refer to changes in the telomeric regions as “genomic churning.” For all ORFs 
in the four Saccharomyces genomes, Kellis et al. introduced a reading frame conservation 
test to classify each ORF as authentic (if conserved) or spurious (if not well conserved). 
As a result of their analysis, Kellis et al. proposed revising the entire S. cerevisiae gene 
catalog to 5538 ORFs of ≥100 amino acids. Their analyses further revised the count of 
introns (predicting 58 new introns beyond the 240 previously predicted).

Another aspect of the comparison of four Saccharomyces genome sequences is the 
opportunity to identify regulatory elements. Gal4 is one of the best-characterized tran-
scription factors. It regulates genes involved in galactose metabolism including the GAL1 
and GAL10 genes. These two genes can be viewed at the UCSC Genome Browser (Fig. 
18.15). They are transcribed from a short intergenic region that includes the Gal4 binding 

S. cerevisiae and S. bayanus 
share 62% nucleotide identity 
in conserved regions; for 
comparison, human and mouse 
share 66% nucleotide identity in 
conserved regions.

Dramatic genomic changes that 
occur in subtelomeric regions 
have also been observed in the 
malaria parasite Plasmodium 
falciparum (see Chapter 19), 
and in humans subtelomeric 
deletions are a major cause of 
intellectual disability.
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Figure 18.14 Patterns of gene loss after whole-genome duplication in three species. For three spe-
cies that underwent whole-geneome duplication (C. glabrata, S. cerevisiae, and S. castellii) there are 14 
possible fates including loss of no genes (class 0), loss of one gene from any one of the three lineages 
(class 1A, 1B, 1C), loss of two genes (class 2), loss of three genes from different loci (class 3), or loss of 
three genes in a convergent manner (class 4; loss of duplicated orthologs). Class 4 represents the most 
common fate of duplicated genes. Redrawn from Scannell et al. (2006). Reproduced with permission 
from Macmillan Publishers.
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motif CGGn
(11)

CCG where n
(11)

 refers to any 11 nucleotides. By clicking the conservation 
track, you can see several copies of this motif in a mulitiple sequence alignment of DNA 
from the four Saccharomyces species. Kellis et al. (2003, 2004) studied both previously 
known and predicted motifs, and predicted 52 new motifs. Other groups such as Cliften 
et al. (2003) and Harbison et al. (2004) also identified yeast functional elements through 
comparative genomics.

analysIs of fungal genomes
In addition to S. cerevisiae, the genomes of many other fungi are now being sequenced 
including Ascomycetes (table 18.3), Basidiomycetes (table 18.4), and others (table 18.5). 

1

Figure  18.15 View of the transcription factor Gal4 binding site region between the GAL1 and GAL10 genes of S. cerevisiae. A 
5000-base-pair view of yeast chromosome 2 is shown (from the UCSC Genome Browser coordinates chrII:276,001–281,000). The short inter-
genic region (arrow 1) includes regions defined as having regulatory properties by several databases (see annotation tracks). The conservation 
track shows that some of the intergenic region is highly conserved among four Saccharomyces species, and contains binding sites for Gal4. 

Source:  http://genome.ucsc.edu, courtesy of UCSC.

taBle 18.3 Fungal genome projects: representative examples of the ascomycetes. iD refers to the NCBi genome 
project identifier; by entering this into the search box at the home page of NCBi you can link to information on this 
genome project.

Organism Chromosomes

Genome 

size (Mb) Comment ID GC %

Ajellomyces capsulatus G186AR 7 30.5 Causes histoplasmosis, an infection of the lungs 12635 44.5

Aspergillus fumigatus Af293 8 29.4 Most frequent fungal infection worldwide 131 49.8

Candida albicans SC5314 8 27.6 Diploid fungal pathogen 10701 33.4

Coccidioides immitis RS 4 29.0 Causes the disease coccidioidomycosis (valley fever) 12883 46

Kluyveromyces lactis NRRL Y-1140 6 10.7 Related to S. cerevisieae 13835 38.7

Magnaporthe grisea 70-15 7 41.0 Rice blast fungus 13840 51.6

Pneumocystis carinii 15 7.7 Opportunistic pathogen; causes pneumonia in rats 125 31.1

Saccharomyces cerevisiae S288c 16 12.2 Baker’s yeast 13838 38.2

Schizosaccharomyces pombe 972h- 3 12.6 Fission yeast 13836 36

Yarrowia lipolytica CLIB122 6 20.6 Nonpathogenic yeast, distantly related to other yeasts 13837 49

Source: NCBI Genome, NCBI.

http://genome.ucsc.edu


Genome AnAlysis870

We discuss some of these fascinating projects – Aspergillus, Candida albicans, Crypto-
coccus neoformans, the microsporidial parasite Encephalitozoon cuniculi, Neurospora 
crassa, the Basidiomycete Phanerochaete chrysosporium, and the fission yeast Schizo-
saccharomyces pombe (the second fungal genome to be completely sequenced) – in the 
following sections. All these projects highlight the remarkable diversity of fungal life. In 
Chapter 19 we will describe comparative genomics projects on more familiar organisms 
such as humans and fish (which diverged ∼450 MYA), the fruit fly and mosquito (esti-
mated to have diverged ∼250 MYA), as well as closely related species that diverged more 
recently. The fungi offer an opportunity to analyze highly divergent species (e.g., S. cere-
visieae and S. pombe diverged ∼400 MYA), as well as closely related species.

One of the leading bioinformatics resources for fungal genome research is the Myco-
Cosm portal (Grigoriev et al., 2014). Projects such as this are important to centralize 
information about fungal genomes and also to help promote consistent annotation across 
projects.

Fungi in the human Microbiome

We encountered the diversity of bacteria living in various regions of the human body in 
Chapter 17. Not surprisingly, human skin is an inviting habitat that also harbors diverse 
fungi. Findley et al. (2013) cultured fungi from 14 body regions in 10 healthy individuals, 
sequencing 18S rRNA. Across 11 body and arm regions they identified both Ascomycetes 
and Basidiomycetes (in particular, of the genus Malassezia). The greatest fungal diversity 
occurred in the foot, including the plantar heel (median richness of ∼80 genera), toe web, 
and toenail. Studies such as this reveal the complexity of the skin ecosystem and can help 
us to learn more about the roles of fungi in health and disease.

The MycoCosm fungal genomics 
portal is at  http://jgi.doe.gov/
fungi (WebLink 18.13).

taBle 18.4 Fungal genome projects: representative examples of the Basidiomycetes. 

Organism Chromosomes

Genome 

size (Mb) Comment ID GC %

Coprinopsis cinerea okayama7#130 13 37.5 Multicellular basidiomycete, 
undergoes complete sexual cycle

1447 51.6

Cryptococcus neoformans var. neoformans JEC21 14 19.1 Pathogenic fungus, causes 
cryptococcosis

13856 48.5

Lentinula edodes L-54 8 33 Edible shiitake mushroom 17581 30.7

Phanerochaete chrysosporium RP-78 10 30.0 Wood-decaying white rot fungus 135 57

Puccinia graminis f. sp. tritici CRL 75-36-700-3 18 88.7 Pathogenic fungus causes stem 
rust in cereal crops

18535 43.3

Ustilago maydis 521 23 19.8 Causes corn smut disease 1446 53.7

Source: NCBI Genome, NCBI.

taBle 18.5 Fungal genome projects: representative examples of fungi other than ascomycetes and Basiciomycetes. 
ND: not determined. 

Organism Chromosomes

Genome 

size (Mb) Comment ID GC %

Allomyces macrogynus ND 57.1 Filamentous chytrid fungus 20563 61.6

Antonospora locustae ND 2.9 Intracellular microsporidian parasite 186881 –

Batrachochytrium dendrobatidis JEL423 20 23.9 Aquatic chytrid fungus kills amphibians 13653 39.3

Encephalitozoon cuniculi GB-M1 11 2.5 Intracellular parasite, infects mammals 13833 47.3

Rhizopus oryzae RA 99-880 ND 46.2 Opportunistic pathogen causes mucormycosis 13066 35.6

Source: NCBI Genome, NCBI.

http://jgi.doe.gov/fungi
http://jgi.doe.gov/fungi


euKARyoTIC GenomeS: FunGI 871

aspergillus

The genus Aspergillus consists of filamentous Ascomycetes. Of the 250 known species 
of Aspergillus, over two dozen are human pathogens. Fourteen genomes have now been 
sequenced, and dozens more are in progress. All Aspergillus genomes that have been 
sequenced have eight chromosomes and a genome size of 28–40  Mb, but the species 
harbor as much sequence diversity as species of our phylum, the vertebrates (Gibbons 
and Rokas, 2013). Information about these fungi is centralized at the Aspergillus Genome 
Database (Cerqueira et al., 2014). This resource promotes consistent annotation, and pro-
vides access to data (including RNA-seq) and tools.

We introduce three prominent species. (1) Aspergillus nidulans has had a long-stand-
ing role as a model organism in genetics; its genome was sequenced by Galagan et al. 
(2005). (2) Aspergillus fumigatus is the most common mold that causes infection world-
wide. It is an opportunistic pathogen to which immunocompromised individuals are par-
ticularly sucsceptible. Nierman et al. (2005) sequenced its genome and identified candi-
date pathogenicity genes as well as genes that may facilitate its unusual lifestyle (e.g., 
thriving at temperatures up to 70°C). One of the many unique features of this genome is 
the presence of A. fumigatus-specific proteins that are closely related to a class of arse-
nate reductases previously seen only in bacteria. (3) Aspergillus oryzae is a fungus from 
which sake, miso, and soy sauce are prepared. Like A. nidulans and A. fumigatus, its 
genome is organized into eight chromosomes but the total genome size is 7–9 megabases 
larger (29–34% larger; Machida et al., 2005). This is due to blocks of sequence that are 
dispersed throughout the A. oryzae genome.

Comparative analyses revealed the presence of conserved noncoding DNA elements 
(Galagan et al., 2005), analogous to the studies of Saccharomyces described above. Of 
the three Aspergilli, A. fumigatus and A. oryzae reproduce through asexual mitotic spores 
while A. nidulans has a sexual cycle. Comparative analysis of the three genomes sug-
gested that, surprisingly, A. fumigatus and A. oryzae have the necessary genes for a sexual 
cycle (reviewed in Scazzochio, 2006). Another surprising aspect of the comparative anal-
yses is that peroxisomes in Aspergilli (organelles responsible for fatty acid β-oxidation) 
resemble those of mammalian cells more than yeasts because: (1) β-oxidation occurs in 
both peroxisomes and mitochondria, and both Aspergilli and mammals have two sets of 
the necessary genes; and (2) both Aspergilli and mammalian genomes encode peroxiso-
mal acyl-CoA dehydrogenases. The yeasts have served as important model systems for 
the study of human peroxisomal disorders such as adrenoleukodystrophy.

Next-generation sequencing has transformed comparative genomics and, in addition to 
comparing species, it is becoming routine to sequence the genomes of strains. Umemura 
et al. (2012) sequenced the genome of an industrial isolate of A. oryzae, comparing its 
sequence to that of the wildtype isolate characterized in 2005. They found frequent muta-
tions at loci that lacked conserved synteny among A. oryzae, A. fumigatus, and A. nidulans.

A comparison of A. nidulans and A. fumigatus using TaxPlot at NCBI (Chapter 17), 
with S. cerevisiae as a reference, shows that many proteins are conserved between those 
three species (Fig. 18.16). Of those that differ a notable example is midasin (circled), the 
giant protein from S. cerevisiae chromosome XII.

Candida albicans

Candida albicans is a diploid sexual fungus that frequently causes opportunistic infec-
tions in humans (Kim and Sudbery, 2011). The skin, nails, and mucosal surfaces are 
typical targets, but deep tissues can also be infected. The genome size is approximately 
14.8 Mb (which is typical for many fungi), but the chromosomal arrangement is unusual: 
the genome has eight chromosome pairs, seven of which are constant and one of which is 
variable (ranging from about 3 to 4 Mb). Another unusual feature is that it has no known 

The Aspergillus Genome 
Database is at  http://www 
.aspgd.org/ (WebLink 18.14).

http://www.aspgd.org/
http://www.aspgd.org/


Genome AnAlysis872

haploid state; the diploid genome was therefore sequenced (Jones et al., 2004; reviewed 
by Odds et al., 2004). This was challenging because heterozygosity commonly occurs at 
many alleles, making it difficult to assign a sequence to one heterozygous locus rather 
than two independent loci. On average there is one polymorphism every 237 bases, a 
considerably higher frequency than occurs in human (Chapter 20).

Information on the Candida genome is centralized at the CandidaDB database (Rossig-
nol et al., 2008). The reference genome initially contained 7677 ORFs (of size 100 amino 
acids or greater) although, as is routine for any genome project, the annotation process is 
ongoing. About half the predicted proteins match human, S. cerevisiae, and Schizosaccha-
romyces pombe, and only 22% of the ORFs did not match any of those three genomes.

A specialized feature of C. albicans (shared by Debaryomyces hansenii; Dujon et al., 
2004) is that the codon CUG is translated as serine rather than the usual product, leucine. 
Bezerra et al. (2013) engineered C. albicans strains that misincorporate varying levels of 
Leu at CUG sites. They concluded that this organism uses ambiguity in the genetic code 
to shape gene evolution, increasing phenotypic variation.

Cryptococcus neoformans: model fungal pathogen

C. neoformans is a soil-dwelling fungus that causes cryptococcosis, one of the most 
life-threatening infections in AIDS patients. Its genome of 20 megabases is organized into 
14 chromosomes as well as a mitochondrial genome. Loftus et al. (2005) sequenced two 

The C. albicans genome was 
sequenced by Ron Davis 
and colleagues at Stanford 
University.

CandidaDB is available online at 
 http://www.candidagenome.

org/ (WebLink 18.15).

Figure 18.16 The TaxPlot tool at NCBI shows proteins from A. nidulans and A. fumigatus in rela-
tion to a reference proteome of S. cerevisiae. TaxPlot can help to identify organism-specific innovations 
that may underlie the distinct physiologies of these Aspergilli. A midasin homolog that is more closely 
related to S. cerevisiae in A. nidulans is circled. 

Source: TaxPlot, Entrez, NCBI.

http://www.candidagenome.org/
http://www.candidagenome.org/


euKARyoTIC GenomeS: FunGI 873

separate strains. Transposons constitute about 5% of the genome and are dispersed among 
all 14 chromosomes. In contrast to S. cerevisiae, there is no evidence of a whole-genome 
duplication. Another difference between the two fungi is that C. neoformans gene orga-
nization is more complex. Its 5672 predicted protein-coding genes are characterized by 
introns (an average of 5.3 per gene of 67 base pairs), alternatively spliced transcripts, and 
endogenous antisense transcripts.

atypical Fungus: Microsporidial parasite Encephalitozoon cuniculi

Microsporidia are single-celled eukaryotes that lack mitochondria and peroxisomes. 
These organisms infect animals (including humans) as obligate intracellular parasites. The 
complete genome of the microsporidium E. cuniculi was determined by several research 
groups in France (Katinka et al., 2001). The genome is highly compacted, having about 
2000 protein-coding genes in 2.9 Mb. Analogous to parasitic bacteria (Chapter 17), these 
pathogens have therefore undergone a reduction in genome size. Phylogenetic analyses 
using several E. cuniculi proteins suggest that these parasites are atypical fungi that once 
possessed, but subsequently lost, their mitochondria (Fig. 18.17; Katinka et al., 2001).

Many other microsporidia have undergone genome reduction (Corradi and Slamo-
vits, 2011). This can occur by gene loss, by reducing the size of intergenic regions, and 
by reducing the lengths of proteins and introns (Fig. 18.18). In some cases, microsporidia 
have gained genes by lateral gene transfer. Encephalitozoon hellem and E. romaleae, each 
having genomes between 2 and 3 Mb, acquired genes responsible for folate and purine 
metabolism by lateral transfer from different eukaryotic and bacterial donors (Pombert 
et al., 2012). In E. hellem these transferred genes are functional, while in E. romaleae 
multiple frameshift mutations created pseudogenes involving one particular functional 
pathway (that of de novo synthesis of folate). Pombert et al. speculate on mechanisms 
and reasons for this specific loss, possibly involving the metabolic environment provided 
by each organism’s host.

Neurospora crassa

The orange bread mold Neurospora has served as a beautiful and simple model organ-
ism for genetic and biochemical studies since Beadle and Tatum used it to establish the 
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Figure 18.17 Phylogenetic analysis of vacuolar ATPase subunit A from animals, plants, fungi, pro-
tists, bacteria, and archaea supports a fungal origin for the microsporidial parasite Encephalitozoon 
cuniculi (arrow). This tree was generated using a neighbor-joining method, and values are bootstrap 
percentages (see Chapter  7). Redrawn from Katinka et al. (2001) with permission from Macmillan 
Publishers.
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one-gene–one-enzyme model in the 1940s. Neurospora is the best characterized of the 
filamentous fungi, a group of organisms critically important to agriculture, medicine, and 
the environment (Perkins and Davis, 2000). The developmental complexity of Neuros-
pora contrasts with other unicellular yeasts (Casselton and Zolan, 2002). Neurospora is 
widespread in nature and, like the fly Drosophila, is exceptionally suited as a subject for 
population studies.

As for S. cerevisiae, Neurospora is an ascomycete and therefore shares the advantage 
of this group of organisms in yielding complete tetrads for genetic analyses. However, 
it is more similar to animals than yeasts in many important ways. For example, unlike 
yeast but like mammals, it contains complex I in its respiratory chain, it has a clearly dis-
cernable circadian rhythm, and it methylates DNA to control gene expression. The seven 
decades of intensive studies on the genetics, biochemistry, and cell biology of Neurospora 
establish this organism as an important source of biological knowledge.

Galagan et al. (2003) reported the complete genome sequence of Neurospora. They 
sequenced about 39 Mb of DNA on 7 chromosomes, and identified 10,082 protein-coding 
genes (9200 longer than 100 amino acids). Of these proteins, 41% have no similarity 
to known sequences, and 57% do not have identifiable orthologs in S. cerevisiae or  
S. pombe.

The Neurospora genome has only 10% repetitive DNA, including ∼185 copies of rDNA 
genes (Krumlauf and Marzluf, 1980). Other repeated DNA is dispersed and tends to be short 
and/or diverged, presumably because of the phenomenon of “RIP” (repeat-induced point 
mutation). RIP is a mechanism by which the genome is scanned for duplicated (repeated) 
sequences in haploid nuclei of special premeiotic cells. The RIP machinery efficiently finds 
them, and then litters them with numerous GC-to-AT mutations (Selker, 1990). Apparently 
RIP serves as a genome defense system for Neurospora, inactivating transposons and resist-
ing genome expansion (Kinsey et al., 1994). Galagan et al. (2003) found relatively few 
Neurospora genes that are in multigene families, and a mere eight pairs of duplicated genes 
that encode proteins >100 amino acids. Also, 81% of the repetitive DNA sequences were 
mutated by RIP. RIP has therefore suppressed the creation of new genes through duplication 
in Neurospora (Perkins et al., 2001; Galagan et al., 2003).

Neurospora crassa genome 
database websites are available 
at the Broad Institute (  http://
www.broadinstitute.org/
annotation/genome/neurospora/
MultiHome.html, WebLink 18.16) 
and at MIPS (  http://mips.
helmholtz-muenchen.de/genre/
proj/ncrassa/, WebLink 18.17). 
Ensembl also offers a N. crassa 
resource (  http://fungi.ensembl.
org/Neurospora_crassa/Info/
Index, WebLink 18.18).

George Beadle and Edward 
Tatum shared a Nobel Prize in 
1958 (with Joshua Lederberg) 
“for their discovery that genes 
act by regulating definite 
chemical events” (  http://
www.nobel.se/medicine/
laureates/1958/, WebLink 18.19). 
They irradiated N. crassa with 
X-rays to study gene function.

Ancestral genomic structure

(a) Gene loss

(b) Miniaturization of
intergenic regions

(c) Reduction of
protein length

Figure 18.18 Mechanisms of reduction of genome size in microsporidia. An ancestral genome is 
shown schematically with seven genes (blue, red) and large intergenic regions (black line). (a) Gene 
losses (shaded orange, leading to loss of red genes) reduce the genome size. (b) Reduction of inter-
genic region sizes leads to increased gene density. (c) Shortening of gene regions encoding proteins 
reduces the genome size. These three types of events may occur in any order. Adapted from Corradi and 
Slamovits (2011) with permission from Oxford University Press.

http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html
http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html
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http://mips.helmholtz-muenchen.de/genre/proj/ncrassa/
http://mips.helmholtz-muenchen.de/genre/proj/ncrassa/
http://fungi.ensembl.org/Neurospora_crassa/Info/Index
http://fungi.ensembl.org/Neurospora_crassa/Info/Index
http://fungi.ensembl.org/Neurospora_crassa/Info/Index
http://www.nobel.se/medicine/laureates/1958/
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http://www.nobel.se/medicine/laureates/1958/
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First Basidiomycete: Phanerochaete chrysosporium

Phanerochaete chrysosporium is the first fungus of the phylum Basidiomycota to have 
its genome completely sequenced. This is a white rot fungus that degrades many bioma-
terials, including pollutants and also lignin (a polymer that provides strength to wood, 
among other roles). Fungi appeared about 1–1.5 billion years ago, and the Basidiomycota 
diverged from the better-characterized Ascomycota over 500 million years ago. There 
were therefore relatively little sequence data available from closely related organisms, and 
annotation of this genome was particularly difficult. The genome consists of about 30 Mb 
of DNA arranged in 10 chromosomes. Martinez et al. (2004) predicted 11,777 genes, of 
which three-quarters had significant matches to previously known proteins. White rot 
fungi are able to degrade the major components of plant cell walls, including cellulose 
and lignins, using a series of oxidases and peroxidases. The genome encodes hundreds 
of enzymes that are able to cleave carbohydrates. An updated annotation of the genome 
reveals additional gene models for secreted proteins (vanden Wymelenberg et al., 2006).

Wood is notably resistant to decay. White rot fungi (such as P. chrysosporium) as 
well as some brown rot are the only organisms able to decompose lignin and cellulose in 
wood. To understand the evolutionary origin of this process, Floudas et al. (2012) per-
formed comparative analyses of 31 fungal genomes (including 12 that they sequenced), 
identifying oxidoreductases, carbohydrate-active enzymes, and peroxidases implicated 
in wood decay. Their phylogenetic analyses suggested the emergence of white rot with 
wood-decaying capabilities about 295 MYA. While P. chrysosporium degrades lignin and 
cellulose, its close relative Ceriporiopsis subvermispora degrades lignin but not cellulose. 
Fernandez-Fueyo et al. (2012) sequenced the C. subvermispora genome and compared 
the inventories of genes encoding peroxidases and other enzymes. These studies highlight 
the rapid impact of genomics on the study of physiological processes.

Fission Yeast Schizosaccharomyces pombe

The fission yeast S. pombe has a genome size of 13.8  Mb. The complete sequencing 
of this genome was reported by a large European consortium (Wood et al., 2002). The 
genome is divided into three chromosomes (table 18.6).

Notably, there are 4940 predicted protein-coding genes (including 11 mitochondrial 
genes) and 33 pseudogenes. This is substantially fewer genes than is found in S. cerevi-
siae and is among the smallest number of protein-coding genes observed for any eukary-
ote. Some bacterial genomes encode more proteins, such as Mesorhizobium loti (6752 
predicted genes) and Streptomyces coelicolor (7825 predicted genes).

The gene density in S. pombe is about one gene per 2400 bp, which is slightly less 
dense than is seen for S. cerevisiae. The intergenic regions are longer, and about 4730 
introns were predicted. In S. cerevisiae, only 4% of the genes have introns.

Schizosaccharomyces pombe and S. cerevisiae diverged between 330 and 420 MYA. 
Some gene and protein sequences are equally divergent between these two fungi as they 

The P. chrysosporium genome-
sequencing project was 
undertaken by the US Department 
of Energy (  http://genome.jgi-psf.
org/Phchr1/Phchr1.info.html, 
WebLink 18.20).

For extensive information on 
S. pombe genome sequence 
analysis, see PomBase (  http://
www.pombase.org/, WebLink 
18.21).

Leland Hartwell, Timothy Hunt, 
and Sir Paul Nurse won the Nobel 
Prize in Physiology or Medicine in 
2001 for their work on cell cycle 
control. Nurse’s studies employed 
S. pombe, while Hartwell studied 
S. cerevisiae and Hunt studied 
sea urchins and other organisms. 
See  http://www 
.nobel.se/medicine/
laureates/2001/ (WebLink 18.22).

taBle 18.6 Features of S. pombe genome. 

Chromosome number Length (Mb) Number of genes Mean gene length (bp) Coding (%)

1 5.599 2255 1446 58.6

2 4.398 1790 1411 57.5

3 2.466  884 1407 54.5

Whole-genome 12.462 4929 1426 57.5

Source: Wood et al. (2002). Reproduced with permission from Macmillan Publishing Ltd.

http://genome.jgi-psf.org/Phchr1/Phchr1.info.html
http://genome.jgi-psf.org/Phchr1/Phchr1.info.html
http://www.pombase.org/
http://www.pombase.org/
http://www.nobel.se/medicine/laureates/2001/
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are between fungi and their vertebrate (e.g., human) orthologs. To identify such genes, 
use the TaxPlot tool on the NCBI Genome website. Comparative analyses are likely to 
elucidate the genetic basis for differences in the biology of these fungi, such as the pro-
pensity of S. pombe to divide by binary fission and the relatively fewer number of trans-
posable elements in S. pombe.

Other Fungal genomes

In addition to those described in this chapter, many other fungal genomes have been 
sequenced and characterized. These include Fusarium (Ma et al., 2010); Pichia pastoris 
(used for industrial production of proteins and metabolites; Gonçalves et al., 2013); Pseu-
domonas (including plant, insect, and human pathogens; Silby et al., 2011); Trichoderma 
(Druzhinina et al., 2011); Tuber melanosporum (the Périgord black truffle; Martin et al., 
2010); and Yarrowia lipolytica (Nicaud et al., 2012).

ten leading Fungal plant pathogens

A survey of experts suggested ten fungal pathogens of greatest scientific and economic 
importance (Dean et al., 2012): (1) Magnaporthe oryzae is a filamentous ascomycete that 
afflicts rice and wheat; (2) Botrytis cinerea or gray mould can infect 200 plant species; 
(3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria 
graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; 
and (10) Melampsora lini.

perspectIve
The budding yeast S. cerevisiae is one of the most significant organisms in biology for 
several reasons:

 • It represents the first eukaryotic genome to have been sequenced. It was selected 
because of its compact genome size and structure.

 • As a single-celled eukaryotic organism, its biology is simple relative to humans and 
other metazoans.

 • The biology community has acquired a deep knowledge of yeast genetics and has 
collected a variety of molecular tools that are useful to elucidate the function of yeast 
genes. Functional genomics approaches based on genome-wide analysis of gene 
function have been implemented (Chapter 14). For example, each of its >6000 genes 
has been knocked out and tagged with molecular barcodes, allowing massive, parallel 
studies of gene function.

Many additional fungal genomes are now being sequenced. In each branch of biol-
ogy, we are learning that comparative genomic analyses are essential in helping to iden-
tify protein-coding genes (by homology searching), in studies of functional elements in 
noncoding DNA, in evolutionary studies such as analyses of genome duplications, and in 
helping us to uncover biochemical pathways that allow cells to survive.

We can consider the nature of genomes and the forces that shape them (Conant and 
Wolfe, 2008). (1) What is the mechanism by which portions of a genome are increased 
or streamlined? Fungi afford many examples of whole-genome duplication, as well as 
segmental duplication and in some cases lateral gene transfer, that introduce new genetic 
material to a genome. Some fungi such as Encephalitozoon provide examples of genome 
reduction. (2) How are newly arisen genomic features acted on by natural selection and 
other forces that modify genome structure and function? The fungi provide important 
organisms to address these questions.

Similar survey results were 
presented for viruses in 
Chapter 16 and for bacteria in 
Chapter 17.
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pItfalls
Although S. cerevisiae serves as an important model organism, it is essential to realize the 
scope of our ignorance. How does the genotype of a single-gene knockout lead to a partic-
ular phenotype? We urgently need to answer this question for gene mutations in humans 
that cause disease, but even in a so-called simple model organism such as yeast we do not 
understand the full repertoire of protein–protein interactions that underlie cell function. If 
we think of the genome as a blueprint of a machine, we now have a “parts list” in the form 
of a list of the gene products. We must next figure out how the parts fit together to allow 
the machine to function in a variety of contexts. Gene annotation in yeast databases such 
as SGD, including the results of broad functional genomics screens, provide an excellent 
starting point for functional analyses.

advIce for students
It has been suggested that Saccharomyces cerevisiae is the best-characterized eukaryote, 
if not the best-understood organism across the entire tree of life. You can use bioinfor-
matics resources to probe this deep understanding. Choose a single protein and explore 
its properties in detail, from binding partners to chromosomal context to paralogs to gene 
expression changes. Choose a single biological process and explore how studies of yeast 
have enabled us to understand fundamental principles. Studies of secretion (for which 
Randy Scheckman recently received a Nobel Prize; see Fig. 14.4) provide an example: a 
functional screen led to the discovery of a few dozen secretory (sec) mutants, and these 
gene products were shown to interact in biochemical pathways involving vesicular trans-
port. Such studies are further relevant to the function of all human cells. Given the dis-
tant divergence time between humans and fungi (who last shared a common ancestory 
1.5 BYA), this highlights the remarkable conservation of this particular pathway.

weB resources
The SGD (  http://www.yeastgenome.org/, WebLink 18.9) lists a series of yeast resources. 
Another useful gateway is the SGD Wiki (  http://wiki.yeastgenome.org/, WebLink 18.23). 
The Fungal Genomics Program of the Joint Genome Institute provides a useful starting point 
for diverse fungal species (  http://genome.jgi.doe.gov/programs/fungi/, WebLink 18.24).

Discussion Questions
[18-1] The budding yeast Saccha-
romyces cerevisiae is sometimes 
described as a simple organism because 
it is unicellular, its genome encodes a 

relatively small number of genes (about 6000), and it has 
served as a model organism for genetics studies. Still, 
we understand the function of only about half its genes. 
Many functional genomics tools are now available, such 
as a complete collection of yeast knockout strains (i.e., 
null alleles of each gene). How would you use such func-
tional genomics tools to further our knowledge of gene 
function in yeast?

[18-2] The fungi are a sister group to the metazoans (ani-
mals) (Fig. 19.1). Do you expect the principles of genome 

evolution, gene function, and comparative genomics that 
are elucidated by studies of fungi to be closely applicable 
to metazoans such as humans, worms, and flies? For exam-
ple, we discussed the whole-genome duplication of some 
fungi; how would you test the hypothesis that the human 
genome also underwent a similar duplication? In compar-
ative genomics, do you expect fungi to be far more similar 
to each other in their biological properties than metazoans 
are to each other?

[18-3] In C. albicans, the CUG codon is sometimes read 
as serine (rather than the usual leucine). This may have the 
positive effect of diversifying the proteome. It could have 
a deleterious effect, however. If this phenomenon occurred 
in humans, how often would it be lethal?

http://www.yeastgenome.org/
http://wiki.yeastgenome.org/
http://genome.jgi.doe.gov/programs/fungi/
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prOBleMS/COMputer laB
[18-1] This problem primarily uses the UCSC Genome 
Browser and the Yeast Genome Order Browser (YGOB) 
to study yeast. Visit the UCSC Genome Browser and navi-
gate to the S. cerevisiae genome. Enter chrXII, the chromo-
some we explored in this chapter. Set the track for Phast-
Cons conserved elements (Chapter 6) to full, and limit it 
to scores of at least 900. This shows a cluster of highly 
conserved, neighboring genes. For this exercise explore 
them in more depth. How many conserved genes are there? 
What happens as you raise or lower the PhastCons score 
threshold? Do the highly conserved genes share functional 
properties? Next, explore their conservation in the YGOB. 
Are the genes that have paralogs due to whole-genome 
duplication? Are these essential genes? You can determine 
whether they are essential at the Saccharomyces Genome 
Database (SGD).

[18-2] How many genes are on each Saccharomyces cere-
visiae chromosome? Use EDirect. This problem is adapted 
from  http://www.ncbi.nlm.nih.gov/books/NBK179288/. 
Use the following code (in blue; you can copy and paste 
relevant code from the EDirect website). Compare your 
result to that given here (in black).

for chr in I II III IV V VI VII VIII IX X XI XII 
XIII XIV XV XVI MT
 do
 esearch -db gene -query " Saccharomyces 
cerevisiae [ORGN] AND $chr [CHR]" |
 efilter -query "alive [PROP] AND genetype 
protein coding [PROP]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -NAME Name \
 -block GenomicInfoType -match "ChrLoc:$chr" \
 -tab "\n" -element ChrLoc,"&NAME" |
 grep '.' | sort | uniq | cut -f 1 |
 sort-uniq-count-rank
 done
94 I
408 II
161 III
755 IV
280 V
127 VI
530 VII
282 VIII
211 IX
359 X
313 XI
508 XII
461 XIII
398 XIV
537 XV
464 XVI
19 MT

[18-3] Explore NCBI Genome resources for S. cerevisiae. 
Visit  http://www.ncbi.nlm.nih.gov/genome/15 (WebLink 
18.25). According the Genome Projects report, how many 
strains have been sequenced? What is their range of sizes 
and GC content?

[18-4] Use the Saccharomyces Genome Database:

 • Go to the SGD site (  http://www.yeastgenome.org/).
 • Pick an uncharacterized ORF. To find one, use the 
Gene/Seq Resources (one of the analysis tools), pick 
a chromosome (e.g., XII), then select Chromosomal 
Features Table. The first hypothetical ORF listed is 
YLL067C.

 • Explore what its function might be. For some 
uncharacterized ORFs there will be relatively little 
information available; for others you may find a lot of 
information. From the Chromosomal Features Table 
click “Info” to view a page similar to that shown in 
Chapter 14.

 • What are the physical properties of the protein (e.g., 
molecular weight, isoelectric point)?

 • Does the protein have known domains?
 • Have interactions been characterized between this and 
other proteins?

 • Is the gene either induced or repressed in various 
physiological states, such as stress response or during 
sporulation?

 • In what other organisms is this gene present? Compare 
the usefulness of exploring SGD versus YGOD versus 
performing your own BLAST searches to answer this 
question. Which is best?

[18-5] Visit SGD > Analyze > Gene Lists to access 
YeastMine (or visit  http://yeastmine.yeastgenome.org). 
Explore the many resources offered here, such as lists of 
centromeres (and accompanying descriptions), a broad 
range of queries (e.g., feature types), and analyses of a list 
of queries (e.g., try Sso1p).

[18-6] ABC transporters constitute a large family of trans-
membrane-spanning proteins that hydrolyze ATP and drive 
the transport of ligands such as chloride across a mem-
brane. How many ABC transporters are there in yeast?

[18-7] Create a phylogenetic tree of the fungi using 18S 
ribosomal RNA sequences. Align them, and create a tree 
using MEGA or related software (Chapter  7). Does the 
tree agree with those shown in this chapter? If not, why 
not?

http://www.ncbi.nlm.nih.gov/books/NBK179288/
http://www.ncbi.nlm.nih.gov/genome/15
http://www.yeastgenome.org/
http://yeastmine.yeastgenome.org
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Self-test Quiz
[18-1] The Saccharomyces cerevisiae genome is charac-
terized by the following properties except:

(a) very high gene density (2000 base pairs per gene);

(b) very low number of introns;

(c) high degree of polymorphism; or

(d) 16 chromosomes.

[18-2] The yeast Saccharomyces cerevisiae is an attractive 
model organism for many reasons. Which one of the fol-
lowing is NOT a useful feature of yeast?

(a) The genome size is relatively small.

(b) Gene knockouts by homologous recombination are 
possible.

(c) Large repetitive DNA sequences serve as a good 
model for higher eukaryotes.

(d) There is high open reading frame (ORF) density.

[18-3] The Saccharomyces cerevisiae genome is small (it 
encodes about 6000 genes). It is thought that, about 100 
MYA:

(a) The entire genome duplicated, followed by tetra-
ploidization.

(b) The genome underwent many segmental duplica-
tions, followed by gene loss.

(c) The entire genome duplicated, followed by gene 
loss.

(d) The genome duplicated, followed by gene conver-
sion.

[18-4] After gene duplication, the most common outcome 
is the loss of the duplicated gene. A reasonable explanation 
of why this might occur is that this second copy:

(a) is superfluous;

(b) may acquire forbidden mutations that are deleterious 
to the fitness of the organism;

(c) is under intense negative selection; or

(d) is a substrate for nonallelic homologous recombina-
tion.

[18.5] Comparative analyses of S. cerevisiae and two 
closely related species (S. castelli, C. glabrata) allow a 
description of the patterns of gene retention and gene loss in 
multiple organisms following whole-genome duplication. 
Across thousands of gene loci in three genomes that under-
went genome duplication, which of the following occurred?

(a) For about three-quarters of the loci, all three species 
lost one of the two copies of a duplicated gene.

(b) For about half of the loci, no gene loss occurred.

(c) For about half of the loci, there was partial loss of 
both copies of a duplicated gene.

(d) For about three-quarters of all loci, all three loci lost 
both copies of the duplicated gene.

[18-6] Features of the Candida albicans genome include:

(a) an accessory plasmid;

(b) one of its chromosomes has a highly variable length;

(c) the DNA is characterized by an extraordinarily high 
amount of polymorphism; or

(d) the CTG codon that encodes leucine in most organ-
isms encodes serine in C. albicans.

[18-7] The filamentous fungus Neurospora crassa has an 
extremely low amount of repetitive DNA (spanning only 
10% of its 39 megabase genome). This is because it uses:

(a) chromatin diminution;

(b) repetitive DNA inversion;

(c) repeat-induced point mutations, a phenomenon in 
which repeats are inactivated; or

(d) repeat-induced synchronization to inactivate repeats.

[18-8] One of the most remarkable features of the Schizo-
saccharomyces pombe genome is that:

(a) It is predicted to encode fewer than 5000 proteins, 
making its genome (and proteome) smaller than 
even some bacterial genomes.

(b) The number of predicted introns is about the same as 
the number of predicted ORFs.

(c) It has as many genes that are homologous to bac-
terial genes as it has genes that are homologous to  
S. cerevisiae genes.

(d) Its genome size is approximately the same as that 
of S. cerevisiae, even though these species diverged 
hundreds of millions of years ago.

[18-9] Yeast is the only major research organism approved 
by the US Food and Drug Administration (FDA) for human 
consumption:

(a) true; or

(b) false.
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suggested readIng
A superb overview of fungal taxonomy is provided by Guarro et al. (1999), while import-
ant papers are by Hibbett et al. (2007) and James et al. (2006). Bernard Dujon (2010) 
reviews yeast genomics in relation to eukaryotic genome evolution. For overviews of 
whole-genome duplication and factors affecting genome size in yeast, see Kelkar and 
Ochman (2012). On the topic of gene duplication, see Conant and Wolfe (2008). I also 
strongly recommend Susumu Ohno’s 1970 book Evolution by Gene Duplication. Gibbons 
and Rokas (2013) provide an excellent overview of the Aspergillus genome.
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Representative eukaryotic lineages 
from six putative supergroups. (a–c) 
 ‘Plantae’: (a)  Eremosphaera viridis, a green 
alga; (b)  Cyanidium species, red algae;  
 (c) Cyanophora species, a glaucophyte. (d–i) 
‘Chromalveolata’: (d) Chroomonas species, 
a cryptomonad; (e) Emiliania  huxleyi, a hap-
tophyte; (f ) Akashiwo sanguinea, a dino-
flagellate; (g) Trithigmostoma cucullulus, a 
ciliate; (h) Colpodella perforans, an apicom-
plexan; (i) Thalassionema species, colonial 
diatom (Stramenopile). (j–m)  ‘Rhizaria’:  
(j) Chlorarachnion reptans, an autotrophic 
amoeba (Cercozoa); (k) Acantharea species, 
a radiolarian; (l) Ammonia beccarii, a calcar-
eous foraminifera; (m) Corallomyxa tenera, 
a reticulate amoeba. (n–p) ‘Excavata’: (n) 
Jakoba species, a jakobid with two flagella; 
(o) Chilomastix cuspidata, a flagellate retor-
tamonad; (p) Euglena sanguinea, an auto-

trophic Euglenozoa. (q–s) ‘Amoebozoa’: (q) Trichosphaerium species, an amoeba;  
(r) Stemonitis axifera, an acellular slime mold; (s) Arcella hemisphaerica, a testate 
amoeba. (t–w) Opisthokonta: (t) Larus occidentalis, a bird; (u) Campyloacantha 
species, a choanoflagellate; (v) Amanita flavoconia, a basidiomycete fungus;  
(w) Chytriomyces species, a chytrid. All scale bars = 10 μm, except (b, l) 100 μm and 
(r) 5 mm. 

Source: Tekle et al. (2009). Reproduced with permission from Oxford University Press.
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Since the middle Miocene – an epoch of abundance and diversity for apes throughout 
Eurasia and Africa – the prevailing pattern of ape evolution has been one of fragmenta-
tion and extinction. The present‐day distribution of nonhuman great apes, existing only 
as endangered and subdivided populations in equatorial forest refugia, is a legacy of 
that process. Even humans, now spread around the world and occupying habitats pre-
viously inaccessible to any primate, bear the genetic legacy of past population crises. 
All other branches of the genus Homo have passed into extinction. It may be that in the 
condition of Gorilla, Pan and Pongo we see some echo of our own ancestors before the 
last 100,000 years, and perhaps a condition experienced many times over several million 
years of evolution. It is notable that species within at least three of these genera continued 
to exchange genetic material long after separation, a disposition that may have aided 
their survival in the face of diminishing numbers. As well as teaching us about human 
evolution, the study of the great apes connects us to a time when our existence was more 
tenuous, and in doing so, highlights the importance of protecting and conserving these 
remarkable species.

—Scally et al. (2012, p. 174)

Eukaryotic Genomes: 
From Parasites to 
Primates

C h a p t e r

19

LEARninG ObjECTivES

Upon completing this chapter you should be able to:
 ■ list the major groups of eukaroyotes;
 ■ define the key genomic features of selected eukaryotes including genome size and number 

of genes;
 ■ provide examples of whole-genome duplication in the eukaryotes and discuss its signifi-

cance; and
 ■ provide a general time-line for the last common ancestor between humans and a range of 

animals from insects to primates.

IntroductIon
In this chapter we explore individual eukaryotic genomes, from parasites to primates. We 
refer to a phylogenetic tree of the eukaryotes that was produced by Baldauf et al. (2000; 
Fig. 19.1). This tree was created by parsimony analysis using four concatenated protein 
sequences: elongation factor 1a (EF‐1α); actin; α‐tubulin; and β‐tubulin. We discussed 

http://www.wiley.com/go/pevsnerbioinformatics
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fungal genomes in Chapter 18; they are represented in a group that is adjacent to the 
metazoa (animals). We examine representative organisms in this tree, moving from the 
bottom up. This includes the diplomonad Giardia lamblia and other protozoans, such as 
the malaria parasite, Plasmodium falciparum; the plants, including the first sequenced 
plant genome (that of the thale cress, Arabidopsis thaliana) and rice (Oryza sativa); and 
the metazoans, from worms and insects to fish and mammals. We address the human 
genome in Chapter 20.

Following the outline introduced in Chapter 15, we consider five aspects of various 
genomes.

 1. Cataloguing information includes describing the complete sequence of each chromo
some, annotating the DNA to identify and characterize noncoding DNA, and iden
tifying protein‐coding genes and other noncoding genes. We survey chromosome 
number and structure (such as regions of duplication or deletion). This chapter pro
vides a large amount of information about genome sizes. In many cases the exact 
size of a genome in megabases (Mb) or the exact number of genes are unknown; in 

Figure  19.1 A phylogeny of eukaryotes based on parsimony analysis of concatenated protein 
sequences. The proteins analyzed were EF‐1α (abbreviated E in tree), actin (C), α‐tubulin (A), and 
β‐tubulin (B). This tree may be compared to the eukaryotic portion of the global tree of life based 
upon small‐subunit ribosomal RNA sequences (Fig. 15.1). In this tree, 14 kingdoms are indicated as 
well as seven supergroups. One of the supergroups, Opisthokonta, includes fungi and microsporidia 
(Chapter 18) and metazoa (vertebrate and invertebrate animals). The tree was constructed by maximum 
parsimony (with bootstrap values indicated above the horizontal branches) and by maximum‐likelihood 
analysis of second‐codon‐position nucleotides. For taxa with missing data, the sequences used are indi
cated in brackets, for example, [EAB]. Adapted from Baldauf et al. (2000), with permission from AAAS 
and S. Baldauf.

Opisthokonta

Amoebozoa

Plantae

Heterokonta

Alveolata

Discicristata

Diplomonadida

Kingdom supergroup
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some cases, even the number of chromosomes is unknown. A goal of this chapter is 
to provide a survey of currently available information about eukaryotic genomes that 
orients you to the scales of genome sizes.

 2. Comparative genomics is an essential part of any genome analysis. The availability 
of draft (or finished) genome sequences from closely related species permits a series 
of questions to be addressed about recent evolutionary changes such as lineage‐spe
cific expansions or contractions of gene families. The availability of distantly related 
species (such as fish genome sequences that last shared a common ancestor with 
humans over 400 million years ago or MYA) permits different kinds of questions 
to be addressed, such as the presence of conserved gene structures and regulatory 
elements.

 3. Biological principles can be explored through genome sequences. For example, the 
genome of an underwater sea urchin unexpectedly encodes receptors that in other 
animals facilitate hearing and chemoreception, suggesting unsuspected sensory 
abilities of these animals. In general, genome sequence analysis can be used in 
an attempt to relate the genomic sequence to the phenotype of the organism. This 
phenotype includes an organism’s strategies for adaptation to its environment, 
evolution, metabolism, growth, development, maintenance of homeostasis, and 
reproduction.

 4. Analysis of genomic sequences offers a unique perspective on human disease (and 
diseases afflicting other organisms). In the case of many eukaryotes – from the 
protozoans such as Plasmodium to pathogenic fungi and parasitic worms – we 
want to understand the genetic basis of how the organism causes disease and 
how we can counterattack. At present, there are almost no vaccines available to 
prevent diseases caused by any eukaryotic parasites that infect humans, includ
ing protozoans (such as trypanosomes) and helminths (parasitic nematodes). The 
availability of whole‐genome sequences may provide clues as to which antigens 
are promising targets for vaccine development and pharmacological intervention. 
For example, predicted secreted surface proteins can be expressed in bacteria 
and used to immunize mice in order to develop potential vaccines (Fraser et al., 
2000).

 5. Bioinformatics approaches are constantly evolving, such as techniques for whole‐
genome sequencing and assembly as well as analytic tools. Analysis of genomes 
involves the use of next‐generation sequencing as well as many of the tools we intro
duced in Chapters 2–7, including BLAST and molecular phylogeny. In Part  I we 
discussed many of the complexities of multiple sequence alignment and phylogeny, 
and showed that the same raw data can be used to generate many alternative results. 
As you read about various genomes in this chapter, accession numbers (for genome 
projects and/or genes and proteins) are provided that will allow you to independently 
analyze many sequence analysis problems.

A phylogenetic description of the eukaryotes is essential for our understanding 
of both evolutionary processes that shaped the development of species and the diver
sity of life today. Evolutionary reconstructions that are based on molecular sequence 
data typically use small‐subunit ribosomal RNA because it has many sites that are 
phylogenetically informative across all life forms (Van de Peer et al., 2000). We saw 
an example of such a tree in Figure 15.1. However, there is no uniform consensus on 
the optimal approach to making a tree (Box 19.1; Chapter 7). For other phylogenetic 
trees of the eukaryotes, differing in some details from Figure 19.1, see Keeling (2007) 
in an introduction to the Giardia lamblia genome project and Embley and Martin 
(2006).

The word protozoan derives from 
the Greek proto (“early”) and 
zoion (“animal”). This contrasts 
with the word metazoan (animal) 
from the Greek meta (“after”; at a 
later stage of development) and 
zoion.
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Protozoans at Base of tree LackIng MItochondrIa
The eukaryotes include deep‐branching protozoan species from the parabasala (e.g., 
Trichomonas), diplomonadida (such as Giardia), discicristata (e.g., Euglena, Leishma-
nia, and Trypanosoma), alveolata (e.g., Toxoplasma and Plasmodium), and heterokonta 
(Fig. 19.1). We begin at the bottom of the tree of Figure 19.1 by describing Trichomonas 
and Giardia.

There is strong evidence that mitochondrial genes, present in most eukaryotes, are 
derived from an α‐proteobacterium (see Chapter 15). Previously, it was hypothesized that 
deep‐branching organisms such as Giardia and Trichomonas lack mitochondria. They 
were thought to have evolved from other eukaryotes prior to the symbiotic invasion of an 
α‐proteobacterium. However, analyses of Giardia and Trichomonas suggest the presence 
of mitochondrial genes (Embley and Hirt, 1998; Lloyd and Harris, 2002; Williams et al., 
2002). Some protozoans (including trichomonads and ciliates) lack typical mitochondria 
but have a derived organelle called the hydrogenosome. This double‐stranded structure 
produces adenosine triphosphate (ATP) and molecular hydrogen via fermentation.

Trichomonas

Trichomonas vaginalis, a flagellated protist and member of the parabasilids, is a sexually 
transmitted pathogen (Fig. 19.2). The World Health Organization estimates that there are 
∼170 million cases annually worldwide. Trichomonas is a single‐celled organism that 
resides in the genitourinary tract where it phagocytoses vaginal epithelial cells, eryth
rocytes, and bacteria. Its genome of ∼176 Mb has several remarkable features (Carlton 
et al., 2007; reviewed in Conrad et al., 2013): 62% of the genome consists of repetitive 
DNA, confounding efforts to characterize the genome architecture. Many of these repeats 
are of viral, transposon, or retrotransposon origin. There are 60,000 predicted protein‐
coding genes, one of the highest numbers among all life forms. Several gene families 
have undergone massive expansion such as protein kinases (n = 927), the BspA‐like gene 
family (n = 658), and small GTPases (n = 328). The BspA‐like proteins are surface anti
gens that participate in host cell adherence and aggregation. T. vaginalis has apparently 
acquired 152 genes by lateral gene transfer from bacteria that thrive in the intestinal flora; 
most of these genes encode metabolic enzymes.

Analysis of the genome sequence by Carlton et al. suggests mechanisms by which  
T. vaginalis obtains its energy, functions as a parasite adhering to and invading host cells, 
and degrades proteins (via a complex degradome; Carlton et al., 2007; Hirt et al., 2011). 

The microsporidia such as 
Encephalitozoon used to be 
classified as deep‐branching 
eukaryotes. Subsequent analysis 
of the complete E. cuniculi 
genome revealed that this 
microsporidial parasite is closely 
related to the fungi, as described 
in Chapter 18.

The Trichomonas Genomics 
Resource is online at  http://
trichdb.org/trichdb/  
(WebLink 19.1).

Box 19.1 InconsIstent PhyLogenIes 

It is important to note that many phylogenetic reconstructions are inconsistent with each other. There are three main sources of conflict
ing results (Philippe and Laurent, 1998):

 1.   Gene duplication followed by random gene loss can cause artifacts in tree reconstruction. This occurred at the whole‐genome level 
in yeast (Chapter 18) and other eukaryotes such as plants and fish.

 2.  Lateral gene transfer can confuse phylogenetic interpretation (Chapter 17).
 3.   The technical artifact of long branch chain attraction can confuse phylogenetic analyses. This is a phenomenon where the longest 

branches of a tree are grouped together, regardless of the true tree topology (Fig. 7.27). It is essential to account for differences in 
substitution rates among sites within a molecule. Reyes et al. (2000) consider this problem in their phylogeny of the order Rodentia.

 Researchers often overcome these potential problems by concatenating multiple protein (or nucleic acid) sequences. For example, 
the tree in Figure 19.1 is based on four concatenated proteins. With the advent of whole‐genome sequencing, it has become common to 
identify thousands of 1:1 orthologs among multiple species for phylogenetic analysis.

http://trichdb.org/trichdb/
http://trichdb.org/trichdb/
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Tools to analyze this genome are available at the Trichomonas Genomics Resource, 
TrichDB (Aurrecoechea et al., 2009a).

Giardia lamblia: a human intestinal parasite

Giardia lamblia (also called Giardia intestinalis) is a protozoan, water‐borne parasite that 
lives in the intestines of mammals and birds (Adam, 2001). It is the cause of giardiasis, 
the most frequent source of nonbacterial diarrhea in North America. Like some other 
unicellular protozoans, Giardia lack not only mitochondria but also peroxisomes (respon
sible for fatty acid oxidation) and nucleoli. The genome of Giardia could therefore reflect 
the adaptations that led to the early emergence of eukaryotic cells.

The Giardia haploid genome is ∼11.7  Mb (Morrison et al., 2007; Upcroft et al., 
2010; Fig. 19.3). Each cell has two morphologically identical nuclei, each nucleus having 
five chromosomes ranging from 0.7 to over 3 Mb. A total of 6470 open reading frames 
(ORFs) were identified, spanning 77% of the genome, with 1800 overlapping genes and 
an additional 1500 ORFs spaced within 100 nucleotides of an adjacent ORF.

As we consider the genomes of various eukaryotes a consistent theme is that trans
posable elements are extremely abundant, occupying half the entire human genome 
(Chapter 20) and causing massive genomic rearrangements. In order to understand their 
origins and their function, it is therefore of interest to find eukaryotes that lack these 
elements. Giardia provides such an example. Arkhipova and Meselson (2000) examined 
24 eukaryotic species for the presence of two major classes of transposable elements (ret
rotransposon reverse transcriptases and DNA transposons). They found them present in 
all species except bdelloid rotifers, an asexual animal. Deleterious transposable elements 
thrive in sexual species, but they are unlikely to propagate in asexual species because of 
strong selective pressure against having active elements. Further inspection of the asexual 
Giardia by Arkhipova and Morrison (2001) revealed just three retrotransposon families. 
One of these is inactive and the other two are telomeric. This location could provide a buf
fer between protein‐coding genes and the telomeres, and these elements could contribute 
to the ability of Giardia to vary the length of its chromosomes in response to environ
mental pressures; for example, chromosome 1 can expand from 1.1 to 1.9 Mb (Pardue  
et al., 2001).

Organisms that lack peroxisomes 
could provide us insight into 
fatty acid metabolism or other 
metabolic processes. This in 
turn could prove helpful to our 
understanding of human diseases 
that affect such organelles. The 
most common human genetic 
disorder affecting peroxisomes 
is adrenoleukodystrophy, caused 
by mutations in the ABCD1 gene 
(RefSeq accession NM_000033.3). 
Does Giardia have an ortholog of 
this gene?

Giardia was the first parasitic 
protozoan of humans observed 
with a microscope by Antony 
van Leeuwenhoek (in 1681). 
The diplomonadida are also 
called diplomonads. This group 
includes the family Hexamitidae, 
which further includes the 
genus Giardia. Information on 
Giardia is available at the US 
FDA (  http://www.fda.gov/Food/
FoodborneIllnessContaminants/
CausesOfIllnessBadBugBook/
ucm070716.htm, WebLink 19.2) 
and CDC websites (  http://www.
cdc.gov/healthywater/swimming/
rwi/illnesses/giardia.html, 
WebLink 19.3).

The Giardia genome project 
website is at  http://www.
giardiadb.org/giardiadb/ (WebLink 
19.4); see also Aurrecoechea  
et al. (2009a).

Figure 19.2 The Parabasala (see Fig. 19.1) are protozoans including Trichomonas vaginalis. Photo
graph from the Centers for Disease Control (CDC) Parasite Image Library (  http://www.dpd.cdc.gov/
dpdx/HTML/Image_Library.htm) shows two trophozoites obtained from in vitro culture. Reproduced 
with permission from CDC‐DPDx.

Genus, species: Trichomonas vaginalis

Lineage: Eukaryota; Parabasalidea; Trichomonada; 
Trichomonadida; Trichomonadidae; Trichomonadinae; 
Trichomonas; Trichomonas vaginalis G3

Haploid genome size:  ~176 Mb
GC content: 32.8%
Number of chromosomes: 6
Number of protein-coding genes: ~5,700

Disease association:  Trichomonas causes the sexually transmitted infection trichomoniasis
 (~170 million cases worldwide annually). 
Key genomic features: A total of 65 Trichomonas genes have introns. 
 65% of the genome consists of repetitive DNA.
NCBI Genome Project: 16084
RefSeq accession numbers NZ_AAHC00000000
Key website: TrichDB (http://trichdb.org/trichdb/)

http://trichdb.org/trichdb/
http://www.dpd.cdc.gov/dpdx/HTML/Image_Library.htm
http://www.dpd.cdc.gov/dpdx/HTML/Image_Library.htm
http://www.fda.gov/Food/FoodborneIllnessContaminants/CausesOfIllnessBadBugBook/ucm070716.htm
http://www.fda.gov/Food/FoodborneIllnessContaminants/CausesOfIllnessBadBugBook/ucm070716.htm
http://www.fda.gov/Food/FoodborneIllnessContaminants/CausesOfIllnessBadBugBook/ucm070716.htm
http://www.fda.gov/Food/FoodborneIllnessContaminants/CausesOfIllnessBadBugBook/ucm070716.htm
http://www.cdc.gov/healthywater/swimming/rwi/illnesses/giardia.html
http://www.cdc.gov/healthywater/swimming/rwi/illnesses/giardia.html
http://www.cdc.gov/healthywater/swimming/rwi/illnesses/giardia.html
http://www.giardiadb.org/giardiadb/
http://www.giardiadb.org/giardiadb/
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Another basic question about eukaryotic genomes is the origin of introns. Spli
ceosomal introns occur commonly in the “crown group” of eukaryotes (the kingdoms 
Animalia, Plantae, and Fungi). However, their presence in the earliest branching 
protozoa has been disputed (Johnson, 2002), and introns have not been detected in 
parabasalids such as Trichomonas. Nixon et al. (2002) identified a 35‐bp intron in 
a gene encoding a putative [2Fe‐2S] ferredoxin, and analysis of the draft genome 
sequence by Morrison et al. (2007) identified three more. Simpson et al. (2002) also 
identified several introns in Carpediemonas membranifera, a eukaryote thought to be 
a close relative of Giardia. These findings suggest that if introns were a eukaryotic 
adaptation, they arrived early in evolution and possibly in the last common eukaryotic 
ancestor. 

We introduce nucleomorph genomes below (see section entitled  “Nucleomorphs”);  
they are the functional, remnant nuclei of algal endosymbionts in several  eukaryotic 
lineages. The first four sequenced nucleomorph genomes, all of which have  undergone 
severe reduction in size to under a megabase, have 0, 2, 17, and 24 introns (Moore 
et al., 2012).

genoMes of unIceLLuLar Pathogens: 
tryPanosoMes and Leishmania
trypanosomes

There are about 20 species in the protozoan genus Trypanosoma (reviewed in Donelson, 
1996). Two of these are pathogenic in humans (Cox, 2002). Trypanosoma brucei sub
species cause several forms of sleeping sickness, a fatal disease that infects hundreds 
of thousands of people in Africa (Fig. 19.4). Trypanosoma cruzi causes Chagas’ disease, 
prevalent in South and Central America. The adverse impact of these trypanosomes is 
even greater because they also afflict livestock. Tsetse flies or other insects transmit the 
trypanosomes to humans.

Tsetse flies are insects that feed 
on vertebrate blood. To obtain 
additional nutrients beyond what 
is available in blood, tsetse flies 
harbor two obligate intracellular 
bacteria: Wigglesworthia 
glossinidia and Sodalis 
glossinidius. The W. glossinidia 
genome (RefSeq accession 
NC_004344.2) has a reduced 
genome size of only 700,000 base 
pairs (Akman et al., 2002). For 
information on sleeping sickness, 
including the T. brucei lifecycle, 
see the Centers for Disease 
Control and Prevention (CDC) 
website at  http://www.cdc.
gov/parasites/sleepingsickness/ 
(WebLink 19.5). A Trypanosoma 
cruzi Genome Initiative 
Information Server from the 
Oswaldu Cruz Institute, Brazil 
is available at  http://www.
dbbm.fiocruz.br/TcruziDB 
(WebLink 19.6). The Wellcome 
Trust Sanger Institute T. brucei 
website is  http://www.sanger.
ac.uk/resources/downloads/
protozoa/trypanosoma‐brucei.
html (WebLink 19.7).

Figure 19.3 The Diplomonadida (see Fig. 19.1) are protozoans including Giardia. Image shows 
three trophozoites stained with Giemsa (from the CDC Parasite Image Library,  http://www.dpd.cdc.
gov/dpdx/HTML/Image_Library.htm). Each protist has two prominent nuclei. Reproduced with permis
sion from CDC‐DPDx.

Genus, species: Giardia lamblia

Lineage:  Eukaryota; Diplomonadida; Hexamitidae; 
Giardiinae; Giardia; Giardia lamblia ATCC 50803

Haploid genome size:  12 Mb
GC content: 49%
Number of chromosomes: 5
Number of protein-coding genes: 6,470
Number of genes per kilobase: 0.58

Disease association: Giardia causes ~100 million infections annually, and is the most prevalent
 parasitic protist in the United States. 
Key genomic features: Giardia lacks mitochondria, hydrogenosomes, and peroxisomes. The 
 organism has two similar,  active, diploid nuclei. The genome encodes simpli�ed machinery
 for DNA replication, transcription and RNA processing. There are no Krebs cycle proteins
 and few genes encoding proteins involved in amino acid metabolism.
NCBI Genome Project: 1439
Project accession number: AACB02000000
Key website: GiardiaDB (http://www.giardiadb.org)

http://www.giardiadb.org
http://www.dpd.cdc.gov/dpdx/HTML/Image_Library.htm
http://www.cdc.gov/parasites/sleepingsickness/
http://www.dbbm.fiocruz.br/TcruziDB
http://www.sanger.ac.uk/resources/downloads/protozoa/trypanosoma%E2%80%90brucei.html
http://www.dpd.cdc.gov/dpdx/HTML/Image_Library.htm
http://www.cdc.gov/parasites/sleepingsickness/
http://www.dbbm.fiocruz.br/TcruziDB
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Berriman et al. (2005) reported the genome sequence of T. brucei. The genome is 
26 Mb, although its size varies by up to 25% in different isolates (reviewed in El‐Sayed et 
al., 2000). There are at least 11 pairs of large, diploid, nuclear chromosomes (ranging in 
size from about 1 Mb to >6 Mb). Additionally, there are variable numbers of intermediate 
chromosomes (200–900 kb), and there are about 100 linear minichromosomal DNA mol
ecules (50–150 kb). Some of these minichromosomes contain a 177 base pair repeat that 
comprises more 90% of the total sequence (El‐Sayed et al., 2000). The genome includes 
9068 predicted genes, of which about 900 are pseudogenes and ∼1700 are specific to  
T. brucei.

Another remarkable feature of trypanosomes is the presence of a massive network 
of circular rings of mitochondrial DNA, termed kinetoplast DNA. Thousands of rings of 
kinetoplast DNA interlock in a shape resembling medieval armor (Shapiro and Englund, 
1995). Kinetoplast DNA occurs as maxicircles (present in several dozen copies) and mini
circles (present in thousands of copies). These include a universal minicircle sequence of 
12 nucleotides that serves as a replication origin (Morris et al., 2001).

For a major portion of their life‐cycles, trypanosomes thrive in the bloodstreams of 
their hosts. They evade assault from the immune system by densely coating their exteriors 
with variant surface glygoprotein (VSG) homodimers. There are over 1000 VSG genes 
and pseudogenes encoded in the T. brucei genome, of which only one is expressed at a 
time (Berriman et al., 2005; reviewed by Taylor and Rudenko, 2006). Remarkably, fewer 
than 7% of these encode functional proteins, while 66% encode full‐length pseudogenes 
and the remainder are gene fragments or otherwise atypical. Most of the VSG genes 
are located in subtelomeric arrays of 3–250 copies. Taylor and Rudenko suggest that 
the pseudogenes could be advantageous in the generation of antigenic diversity during 
chronic infections of the bloodstream. The limited number of intact VSG genes could 

The accession number of a typical 
VSG protein from T. brucei is 
XP_822273.1. Try a DELTA‐BLAST 
search using it as a query.

The Trypanosoma brucei 
GeneDB is available at  http://
www.genedb.org/Homepage/
Tbruceibrucei927 (WebLink 19.8). 
It is part of the GeneDB pathogen 
database that includes resources 
for trypanosomes, Leishmania, 
Apicomplexans, as well as 
helminths and parasite vectors 
(Logan‐Klumpler et al., 2012).

Genus, species: Trypanosoma brucei
  Trypanosoma cruzi
  Leishmania major (Friedlin strain)

Lineage:  Eukaryota; Euglenozoa; Kinetoplastida (order); 
Trypanosomatidae (family); Trypanosoma

      T. brucei  T. cruzi   L. major
Haploid genome size:    35 Mb   60 Mb   32.8 Mb
GC content      46.4%   51%   59.7%
Number of chromosomes:   11*   ~28 (variable)  36
Number of genes (incl. pseudogenes) 9,068   ~12,000  8,311
     * includes ~100 mini- and intermediate size chromosomes

Disease association:  T. brucei causes trypanosomiasis (sleeping sickness). The incidence is 300,000
 to 500,000 cases per year.  T. cruzi causes Chagas disease in humans; 16-18 million people
 are infected with 21,000 deaths per year.  Leishmaniasis is an infectious disease with 2
 million new cases annually and 350 million people at risk; 20 Leishmania species infect
 humans. No vaccines and few drugs are available.
Key genomic features: These three species share a conserved core proteome of ~6,200 proteins.
NCBI Genome project identi�ers: 11756 (T. brucei),  11755 (T. cruzi), 10724 (L. major).
Key websites:  http://www.genedb.org/Homepage/Tbruceibrucei927
  http://www.sanger.ac.uk/resources/downloads/protozoa/trypanosoma-brucei.html 

Figure 19.4 The Euglenozoa (see Fig. 19.1) include the kinetoplastid parasitic protozoa Trypano-
soma brucei, T. cruzi, and Leishmania major. The image (from the CDC Parasite Image Library) shows 
a T. brucei from a blood smear in the trypomastigotes stage. There is a centrally located nucleus, a small 
kinetoplast at the posterior end (upper right), and an undulating membrane with a flagellum exiting the 
body at the anterior end. Length in the range 14–33 μm. Reproduced with permission from CDC‐DPDx.

http://www.genedb.org/Homepage/Tbruceibrucei927
http://www.sanger.ac.uk/resources/downloads/protozoa/trypanosoma-brucei.html
http://www.genedb.org/Homepage/Tbruceibrucei927
http://www.genedb.org/Homepage/Tbruceibrucei927
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be used, but also segmental gene conversion of pseudogenes could create novel, intact, 
mosaic, VSG genes.

T. cruzi infects 16–18 million people and is the cause of 21,000 deaths per year from 
Chagas disease. El‐Sayed et al. (2005b) reported the diploid genome sequence of two 
different haplotypes that averaged 5.4% sequence divergence. The diploid genome size is 
∼106–111 Mb and is predicted to contain 22,570 genes, while the haploid genome con
tains ∼12,000 genes. There is a notable large family of 1377 copies of mucin‐associated 
surface protein (masp) genes, which may be involved in immune system evasion.

Leishmania

Leishmania major is another deadly protozoan parasite in the Euglenozoa (Fig. 19.1). 
Twenty different species of Leishmania cause the disease leishmaniasis, for which 
there is no effective vaccine and limited pharmacological intervention available. A 
total of 150 million people are afflicted, with a complex host‐pathogen interface (Kaye 
and Scott, 2011). The various Leishmania species have 34–36 chromosomes (Myler et 
al., 2000). While the Old World groups L. major and L. donovani have 36 chromosome 
pairs (in the range 0.28–2.8 Mb), New World groups L. mexicana and L. braziliensis 
have undergone chromosomal fusions (Chapter  8) and have 34 or 35 chromosomal 
pairs.

The Leishmania major genome is about 34 Mb with 36 chromosomes (0.3–2.5 Mb). 
The nucleotide sequence was determined for chromosome 1 (the smallest chromosome) 
and was found to have a remarkable genomic organization (Myler et al., 1999). The first 
29 genes (from the left telomere) are all transcribed from the same DNA strand, while the 
remaining 50 genes are all transcribed from the opposite strand. This polarity is unprec
edented in eukaryotes and resembles bacterial‐like operons. It has a 257‐kb region that 
is filled with 79 protein‐coding genes (∼1 gene per 3200 base pairs). Ivens et al. (2005) 
reported the L. major genome sequence (Fig. 19.4). There are 8272 predicted protein‐
coding genes including ∼3000 that cluster into 662 different families of paralogs. These 
families arose principally by tandem gene duplication. The L. major genome encodes 
relatively few proteins involved in transcriptional control, and gene duplication may be a 
mechanism for increasing expression levels.

In addition to L. major (32.8 Mb), Peacock et al. (2007) sequenced the genomes of 
Leishmania infantum (32.0 Mb) and L. braziliensis (32.0 Mb). The three genomes share 
a comparable GC percentage and number of predicted genes. L. major and L. braziliensis 
diverged between 20 and 100 million years ago; this broad range reflects uncertainty as to 
whether the Leishmania genus speciated due to migration events or to the breakup of the 
supercontinent Gondwanda (Fig. 15.3). L. braziliensis has 35 chromosomes rather than 36 
because of the fusion of chromosomes 20 and 34. There is conserved synteny for more 
than 99% of the genes across the three genomes, and the average nucleotide and amino 
acid identities are high (e.g., 92% amino acid identity between L. major and L. infantum). 
While many pathogenic protozoans have large gene families involved in immune evasion 
localized to subtelomeric regions, such families are not evident in the Leishmania species. 
Peacock et al. identified only 5 genes that are specific to L. major, 26 to L. infantum‐spe
cific genes, and ∼47 to L. braziliensis.

With the further sequencing of Leishmania mexicana and Leishmania donovani 
genomes, comparative genomics continues to advance rapidly. Each of the five sequenced 
Leishmania genomes has a similar size (34–36 chromosomes, 30–33 Mb, >8000 protein 
coding genes). The availability of these sequences allows correction of gene models and 
discovery of previously unannotated genes (see Nirujogi et al., 2014). Comparisons of 
the three trypanosomatid genomes of L. major, T. brucei, and T. cruzi have revealed a 
shared core of 6200 genes (El‐Sayed et al., 2005a). Some protein domains are specific 

See Problem (19.3) for an 
exercise on a trypanosome 
universal minicircle binding 
protein. For an example of a 
maxicircle sequence and the 
genes it encodes, see GenBank 
accession M94286.1.

The World Health Organization 
offers information on 
leishmaniasis at  http://www.
who.int/mediacentre/factsheets/
fs375/en/ (WebLink 19.9). The 
Leishmania major Friedlin 
Genome Project at the Wellcome 
Trust Sanger Institute is available 
at  http://www.sanger.ac.uk/
resources/downloads/protozoa/
leishmania‐major.html  
(WebLink 19.10).

http://www.who.int/mediacentre/factsheets/fs375/en/
http://www.sanger.ac.uk/resources/downloads/protozoa/leishmania%E2%80%90major.html
http://www.who.int/mediacentre/factsheets/fs375/en/
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to just one group, such as the variant surface glycoprotein (VSG) expression site‐associ
ated domains (Pfam families PF03238 and PF00913) in T. brucei. Some domains appear 
to have expanded or contracted selectively and insertions, deletions, and substitutions 
occurred. However, there is a notable high overall gene conservation between the three 
species.

the chroMaLveoLates
The Chromalveolates are a supergroup of unicellular eukaryotes, distinct from the 
Excavates (such as Giardia). Many of them have cryptic mitochondria (e.g., hydrogeno
somes rather than traditional mitochondria). They include six groups or phyla (Keeling, 
2007): (1) the Apicomplexa consist of protozoan pathogens that invade host cells using 
a specialized apical complex (they are typically transmitted by an invertebrate vector 
such as mosquitoes or flies, and this phylum includes parasites such as P. falciparum 
and Toxoplasma gondii); (2) dinoflagellates include a cause of paralytic shellfish poi
soning, Alexandrium; (3) ciliates include Paramecium and Tetrahymena thermophila; 
(4) heterokonts; (5) haptophytes; and (6) cryptomonads. In the tree of Figure 19.1, these 
groups are organized as the Apicomplexa, Ciliophora, and Heterokonta. In the follow
ing sections of this chapter we will turn to the Virdiplantae (plants), the Mycetozoa, and 
the Metazoa (animals).

Malaria parasite Plasmodium falciparum

Malaria kills over a million people each year (mostly children in Africa) and almost 500 
million people are newly infected each year. Worldwide malaria deaths were 995,000 in 
1980; 1,817,000 in 2004; and 1,238,000 in 2010 (Murray et al., 2012). It is caused by the 
apicomplexan parasite Plasmodium falciparum. While there are 120 species of Plasmo-
dium, only four typically infect humans: P. falciparum (most responsible for mortality); 
P. vivax (most responsible for morbidity); P. ovale; and P. malariae. The main vector for 
malaria in Africa is the mosquito, Anopheles gambiae.

Plasmodium falciparum has a complex lifestyle, contributing to the challenge of 
developing a successful vaccine (Cowman and Crabb, 2002; Long and Hoffman, 2002; 
Winzeler, 2008). Plasmodium resides in the salivary glands and gut of the mosquito A. 
gambiae. When a mosquito bites a human, it introduces the parasite in the sporozoite form 
that infects the liver. Plasmodium then matures to the merozoite form, which attaches to 
and invades human erythrocytes through host cell receptors. Within erythrocytes, tro
phozoites form. Some merozoites transform into gametocytes, which are captured when 
mosquitoes feed on infected individuals. A goal of sequencing the P. falciparum genome 
is to find gene products that function at selective stages of the parasite life cycle, offering 
targets for drug therapy or vaccine development.

Historically, in much of the twentieth century, malaria was treated with the inex
pensive drugs chloroquine and pyrimethamine‐sulphadoxine. Plasmodium has become 
broadly resistant and currently the artemisinins are the only effective class of antimalarial 
drug. In one drug screen Gamo et al. (2010) tested 2 million compounds for inhibition 
of P. falciparum, identifying several thousands of new candidates. The mechanism of 
action of these drugs can be understood in the context of the genome, providing a moti
vation to sequence complete genomes. Furthermore, it is possible to combine chemical 
screens with genome‐wide association studies (GWAS; Chapter 21). For example, Yuan 
et al. (2011) performed high‐throughput chemical screening to identify candidates, and 
performed GWAS to identify specific gene mutations associated with responsiveness of 
Plasmodium to drugs. This strategy also allowed Cheeseman et al. (2012) to identify loci 
conferring resistance to artemisinin.

The name Apicomplexa derives 
from a characteristic apical 
complex of microtubules. Read 
more about apicomplexans at 

 http://www.ucmp.berkeley.
edu/protista/apicomplexa.html 
(WebLink 19.11) or  http://www.
tulane.edu/~wiser/protozoology/
notes/api.html (WebLink 19.12). 
For online facts on malaria, see 

 http://malaria.wellcome.ac.uk/ 
(WebLink 19.13) and  http://
www.who.int/mediacentre/
factsheets/fs094/en/  
(WebLink 19.14).

Charles Louis Alphonse Laveran 
won a Nobel Prize in 1907 for 
his work on malaria‐causing 
parasites (  http://nobelprize.
org/nobel_prizes/medicine/
laureates/1907/, WebLink 19.15). 
Earlier, Ronald Ross was awarded 
a Nobel Prize for his studies of 
malaria (  http://nobelprize.
org/nobel_prizes/medicine/
laureates/1902/, WebLink 19.16).

http://www.ucmp.berkeley.edu/protista/apicomplexa.html
http://www.tulane.edu/~wiser/protozoology/notes/api.html
http://malaria.wellcome.ac.uk/
http://www.who.int/mediacentre/factsheets/fs094/en/
http://www.who.int/mediacentre/factsheets/fs094/en/
http://nobelprize.org/nobel_prizes/medicine/laureates/1907/
http://nobelprize.org/nobel_prizes/medicine/laureates/1907/
http://nobelprize.org/nobel_prizes/medicine/laureates/1907/
http://nobelprize.org/nobel_prizes/medicine/laureates/1902/
http://nobelprize.org/nobel_prizes/medicine/laureates/1902/
http://nobelprize.org/nobel_prizes/medicine/laureates/1902/
http://www.tulane.edu/~wiser/protozoology/notes/api.html
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The complete genome sequence of P. falciparum was reported by an international 
consortium (Gardner et al., 2002; Fig. 19.5). The sequencing was extraordinarily challeng
ing because the AT (adenine and thymine) content of the genome is 80.6% overall, which 
is among the highest for any eukaryotic genome. In intergenic regions and introns, the AT 
content reached 90% in some cases. A whole‐chromosome (rather than a whole‐genome) 
shotgun sequencing strategy was employed. With this approach, chromosomes were sep
arated on pulsed‐field gels, DNA was extracted, and shotgun libraries containing 1–3 kb 
of DNA were constructed and sequenced. The genome is 22.8 Mb, with 14 chromosomes 
in the range 0.6–3.3 Mb.

Gardner et al. (2002) identified 5268 protein‐coding genes in P. falciparum. This 
is the same number as that predicted for Schizosaccharomyces pombe (Chapter  18), 
although the genome size is twice as large. There is one gene approximately every 4300 
base pairs overall. Gene Ontology Consortium terms (Chapter 12) were assigned to about 
40% of the gene products (∼2100). However, about 60% of the predicted proteins had no 
detectable homology to proteins in other eukaryotes. These proteins are potential targets 
for drug therapies. For example, some are essential for the function of the apicoplast. This 
is a plastid, unique to Apicomplexa and homologous to the chloroplast, that functions in 
fatty acid and isoprenoid biosynthesis.

PlasmoDB (Aurrecoechea et al., 2009b) is the centralized resource for P. falciparum 
genomic data. There are many complementary resources such as ProtozoaDB (Dávila 
et al., 2008).

The P. falciparum genome was 
sequenced by a consortium 
including the Wellcome Trust 
Sanger Institute, The Institute 
for Genomic Research, the 
US Naval Medical Research 
Center (Maryland), and Stanford 
University. The genome of 
the slime mold Dictyostelium 
discoideum also has a high 
AT content (see “Social Slime 
Mold Dictyostelium discoideum” 
below).

A plastid is any photosynthetic 
organelle. The most well‐known 
plastid is the chloroplast, found 
in green algae and land plants 
(Gilson and McFadden, 2001). 
See the section on “Plant 
Genomes” below.

PlasmoDB is at  http://www.
plasmodb.org/ (WebLink 
19.17). GeneDB includes a P. 
falciparum resource at  http://
www.genedb.org/Homepage/
Pfalciparum (WebLink 19.18). 
ProtozoaDB is at  http://
protozoadb.biowebdb.org/ 
(WebLink 19.19).

Figure 19.5 The Apicomplexa (see Fig. 19.1) include the malaria parasite Plasmodium falciparum. 
This image shows multiply infected red blood cells in thin blood smears (from the CDC Parasite Image 
Library). Reproduced with permission from CDC‐DPDx.

Genus, species: Plasmodium falciparum
  
Selected lineages: Eukaryota; Alveolata; Apicomplexa; Aconoidasida; 
Haemosporida; Plasmodium; Plasmodium (Laverania); 
Plasmodium falciparum

Eukaryota; Alveolata; Apicomplexa; Aconoidasida; Piroplasmida; 
Theileriidae; Theileria; Theileria annulata

Eukaryota; Alveolata; Apicomplexa; Coccidia; Eucoccidiorida; 
Eimeriorina; Sarcocystidae; Toxoplasma; Toxoplasma gondii RH

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID

P. falciparum 3D7  22.8 Mb 19.4%  14  5,268  13173
P. yoelli yoelli   23.1 Mb 22.6%  14  5,878  1436
Babesia bovis   8.2 Mb  41.8%  4  3,671  18731
Cryptosporidium hominis 9.2 Mb  31.7%  8  3,956  13200
Cryptosporidium parvum 9.1 Mb  30.3%  8  3,886  144
Theileria annulata  8.4 Mb  32.5%  4  3,792  153
Theileria parva   8.3 Mb  34.1%  4  4,035  16138
Toxoplasma gondii  65 Mb  52.3%  9  8,032  16727

Selected divergence dates:  the Apicomplexa lineage originated less than 1,000 million years ago.
Disease association:  Each of these apicomplexans is a parasite that causes disease in mammals. 
 B. babesi causes babesiosis, a tick-borne disease that threatens half the cattle
 in the world.  P. falciparum causes malaria. T. gondii causes toxoplasmosis.
Key genomic features: Theileria parasites are the only eukaryotes that transform lymphocytes 
 (and thus induce lymphoma). 
Key websites:  ApiDB for apicomplexans (http://www.apidb.org/apidb/);
  PlasmodDB for Plasmodium (http://plasmodb.org).

http://www.apidb.org/apidb/
http://plasmodb.org
http://www.plasmodb.org/
http://www.genedb.org/Homepage/Pfalciparum
http://www.genedb.org/Homepage/Pfalciparum
http://protozoadb.biowebdb.org/
http://protozoadb.biowebdb.org/
http://www.plasmodb.org/
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In addition to the initial P. falciparum genome project, the genomes of 9 Plasmodium 
species and over 30 strains have been sequenced as of 2014. A consortium sequenced the 
genome of the rodent malaria parasite, Plasmodium yoelii yoelii (Carlton et al., 2002) and 
Hall et al. (2005) sequenced the genomes of the rodent malaria parasites Plasmodium ber-
ghei and P. chabaudi. Further projects addressed the genomes of P. vivax (Carlton et al., 
2008a), the simian and human parasite P. knowlesi (Pain et al., 2008), and the chimpanzee 
parasite P. reichenowi (Jeffares et al., 2007).

What is the significance of sequencing additional Plasmodium genomes? In the case 
of P. yoelli yoelli, Plasmodium berghei, and P. chabaudi this is an extremely important 
accomplishment because the complete life cycle of P. falciparum cannot be maintained 
in vitro while the rodent parasites can. The P. yoelli yoelli genome is 23.1 Mb and has 14 
chromosomes, as does P. falciparum; the AT content is comparably high (77.4%). The 
genomes are also predicted to encode a comparable number of genes. When the full set 
of predicted P. falciparum proteins (5268) were searched against the predicted P. yoelii 
yoelii proteins (5878 proteins) by BLASTP searching (with an E value cutoff of 10–15), 
3310 orthologs were identified. These include vaccine antigen candidates known to elicit 
immune responses in exposed humans (Carlton et al., 2002).

Having the genome sequences of P. falciparum and several rodent parasites available, 
how can bioinformatics and genomics approaches be used to understand the basic biology of 
these organisms? Data are now available on thousands of previously unknown genes, offering 
many new potential strategies to combat malaria (Hoffman et al., 2002; Florent et al., 2010).

 • Sites of positive selection can be inferred through comparative genomics (Carlton 
et al., 2008b). These are likely to be involved in host‐parasite interactions. Further 
comparative studies have established a far higher genetic diversity in P. vivax than in 
P. falciparum, possibly impacting intervention strategies (Neafsey et al., 2012).

 • The apicoplast is a potential drug target. Zuegge et al. (2001) analyzed the amino 
terminal sequences of 84 proteins targeted to apicoplasts and 102 nonapicoplast 
(e.g., cytoplasmic, secretory, or mitochondrial) sequences. They used principal com
ponents analysis, neural networks, and self‐organizing maps (Chapter 11) to build a 
predictive model for apicoplast targeting signals.

 • Comparative genomics approaches yield important insight into the genome structure, 
gene content, and other genomic features of closely related species (Carlton et al., 
2008b). Carlton et al. (2001) compared ESTs and genome survey sequences (see 
Chapter 2) from P. falciparum, P. vivax, and P. berghei. As part of this analysis, they 
identified the most highly expressed genes such as the rif gene family of P. falci-
parum that is implicated in antigenic variation.

 • Hall et al. (2005) measured synonymous versus nonsynonymous substitution rates in 
genes from three rodent Plasmodium species in comparison to P. falciparum. They 
measured gene expression, categorizing transcripts according to the four categories 
of: housekeeping; host‐related; invasion, replication, and development‐related; or 
stage‐specific.

 • A map of conserved syntenic regions between P. yoelii yoelii and P. falciparum, 
covering over 16 Mb overall, provides insight into the evolution of these parasites. 
Carlton et al. (2002) used the MUMmer program (Chapters 16 and 17) to align pro
tein‐coding regions. The conserved synteny map reveals regions of conserved gene 
order, allows analysis of chromosomal break points, and confirms the absence of 
some genes (such as var and rif in P. yoelii yoelii).

 • Genes that function in antigenic variation and immune system evasion can be inves
tigated. In P. vivax, there are as many as 1000 copies of vir, a gene family localized 
to subtelomeric regions. Plasmodium yoelii yoelii has 838 copies of a related gene, 
yir (Carlton et al., 2002).

The Prediction of Apicoplast 
Targeted Sequences (PATS) 
database is available at  http://
gecco.org.chemie.uni‐frankfurt.
de/pats/pats‐index.php (WebLink 
19.20).

We encountered vir in Chapter 5 
(Problem (5.2)) where we used 
BLASTP and DELTA‐BLAST to 
evaluate the family.

http://gecco.org.chemie.uni-frankfurt.de/pats/pats-index.php
http://gecco.org.chemie.uni-frankfurt.de/pats/pats-index.php
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 • Several groups applied proteomics approaches to analyze the proteins of P. falci-
parum at four stages of the life cycle (sporozoites, merozoites, trophozoites, and 
gametocytes). Florens et al. (2002) identified 2415 expressed proteins, about half of 
which are annotated as hypothetical. An unexpected finding was that the var and rif 
genes – thought to be involved in immune system invasion – were abundantly present 
in the sporozoite stage. Together, these studies define stage‐specific expression of 
proteins, suggesting possible protein functions. Proteomics approaches also validate 
the gene‐finding approaches from genomic DNA. Lasonder et al. (2002) identified 
some protein sequences by mass spectrometry that were not initially predicted using 
gene‐finding algorithms to analyze genomic DNA.

 • It is possible to identify Plasmodium metabolic pathways as therapeutic targets 
(Gardner et al., 2002; Hoffman et al., 2002). All organisms studied to date synthesize 
isoprenoids using isopentyl diphosphate as a building block. An atypical pathway 
employed by some plants and bacteria involves 1‐deoxy‐D‐xylulose 5‐phosphate 
(DOXP). This DOXP pathway is absent in mammals. Jomaa et al. (1999) used 
TBLASTN (with a bacterial DOXP reductoisomerase protein as a query against a 
Plasmodium genomic DNA database) and found an orthologous Plasmodium gene. 
They showed that this protein is likely localized to the apicoplast and that P. falci-
parum survival is sensitive to low levels of two inhibitors of the enzyme. They further 
showed that these drugs have antimalarial activity in mice infected with Plasmodium 
vinckei. This type of bioinformatics‐based approach holds great promise in the search 
for additional antimalarial drugs.

More apicomplexans

There are 5000 species in the phylum Apicomplexa, causing a wide range of diseases by 
mechanisms that are now being elucidated through genome sequence analysis (reviewed 
in Roos, 2005). Other apicomplexan genomes that have been sequenced include the fol
lowing (summarized in Fig. 19.5):

 • Babesia bovis, the cause of tick fever in cattle, threatens livestock globally. Brayton 
et al. (2007) reported its 8.2 Mb genome sequence. It has extremely limited metabolic 
potential, lacking genes encoding proteins that are required for gluconeogenesis, the 
urea cycle, fatty acid oxidation, and heme, nucleotide, and amino acid biosynthesis. 
It therefore relies on its host for many nutrients, and the B. bovis genome encodes 
many transporters. Analogous to Plasmodium falciparum, its genome encodes about 
150 copies of a polymorphic variant erythrocyte surface antigen protein (ves1 gene) 
family.

 • Theileria annulata and T. parva are tick‐borne parasites that cause tropical theilor
isosis and East Coast fever, respectively, in cattle. Pain et al. (2005) and Gardner et 
al. (2005) reported their 8.4 Mb genome sequences. T. parva reversibly, malignantly 
transforms its host cell, the bovine lymphocyte, causing lymphoma; T. annulata 
transforms macrophages. The T. parva genome encodes about 20% fewer genes than 
P. falciparum, but it has a higher density of genes.

 • Cryptosporidium hominis casues diarrhea and acute gastroenteritis. Unlike other Api
complexans that are transmitted via an invertebrate host, C. hominis is transmitted 
by ingestion of oocytes in water. Xu et al. (2004) sequenced the 8.8 Mb C. hominis 
genome, while Abrahamsen et al. (2004) sequenced the 9.1 Mb genome of the related 
parasite C. parvum that infects humans and other mammals. Like B. bovis and many 
other parasites, these genomes have very limited metabolic capabilities and rely on 
host cells for nutrients.

 • Toxoplasma gondii causes toxoplasmosis. The Centers for Disease Control estimates 
that 60 million people in the United States are infected, although most are asymptomatic. 

Isoprenes are five‐carbon 
chemical molecules that 
combine to form many thousands 
of natural compounds, including 
steroids, retinol, and odorants. 
(RBP and OBP are lipocalins that 
transport isoprenoids.)
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After infection, oocysts and tissue cysts transform into tachyzoites and localize in 
neural and muscle tissue. Complete genome data have been deposited in NCBI 
Genome for three T. gondii strains, each with a genome size of 63–65 Mb, ∼8000 
genes, and 52% GC content. Yang et al. (2013) identified candidate variants that may 
underlie phenotypic differences among these strains.

 • Hammondia hammondi is an avirulent, close relative to T. gondii, sharing greater than 
95% conserved synteny. Walzer et al. (2013) sequenced this genome and used com
parative analyses to suggest which virulence factors are most relevant to T. gondii.

astonishing Ciliophora: Paramecium and Tetrahymena

Ciliates are unicellular eukaryotes that are part of the monophyletic alveolate clade that 
includes the Apicomplexans (see Fig. 19.1). Ciliates share two properties: they use vibrat
ing cilia for locomotion and food capture; and they have two nuclei with separate ger
mline and somatic functions (nuclear dimorphism). One nucleus is a diploid germinal 
micronucleus that undergoes meiosis and is therefore responsible for transmitting genetic 
information to the progeny (but is otherwise silent). The other is a polyploid somatic 
macronucleus that is responsible for gene expression. This macronucleus is lost with each 
generation and is replenished following meiosis and development of the micronuclear 
lineage. The reason these protozoa break apart and reassemble their somatic genomes 
at every sexual generation is to eliminate parasitic transposons or other mobile elements 
(Coyne et al., 2012).

Paramecium tetraurelia is a ciliate that lives in freshwater environments. It has long 
served as a model organism for many aspects of eukaryotic biology. Paramecium has an 
unknown number of micronuclear chromosomes (>50 ; Fig. 19.6). As the  macronuclear 

The T. gondii database ToxoDB is 
available at  http://toxodb.org/
toxo/ (WebLink 19.21) (Gajria  
et al., 2008).

Figure 19.6 The Ciliophora (see Fig. 19.1) include Paramecium and Tetrahymena. In some classi
fications, the Apicomplexa and Ciliophora are grouped together to form the Alveolata.

Source: http://www.k12summerinstitute.org/workshops/asset.html. Courtesy of A. Bell.

Genus, species: Paramecium tetraurelia
  Tetrahymena thermophila
  Sterkiella histriomuscorum (also
  called Oxytricha trifallax)
  
Lineage: Eukaryota; Alveolata; Ciliophora; Intramacronucleata; 
Oligohymenophorea; Peniculida; Parameciidae; Paramecium; 
Paramecium tetraurelia

Lineage: Eukaryota; Alveolata; Ciliophora; Intramacronucleata; 
Oligohymenophorea; Hymenostomatida; Tetrahymenina; 
Tetrahymenidae; Tetrahymena; Tetrahymena thermophila

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID

Paramecium tetraurelia 
     (macronuclear genome)  ~72 Mb 28%  ~200  39,642  18363
Tetrahymena thermophila
     (macronuclear genome) ~104 Mb 22%  ~225  27,424  12564
Sterkiella histriomuscorum 
     (macronuclear genome) ~50 Mb not avail. ~24,500 ~26,800 12857

Selected divergence dates:  the ciliates diverged from other eukaryotes ~1,000 million years ago. 
Key genomic features: Paramecium has a macronuclear nucleus (with somatic functions) and a 
 diploid micronuclear nucleus (with germline functions). The gene content is extraordinarily
 high, and the genome underwent at least three whole genome duplications.
Key websites:  http//www.ciliate.org; http://paramecium.cgm.cnrs-gif.fr/

Sterkiella histriomuscorum  (Oxytricha trifallax)

http://toxodb.org/toxo/
http://www.ciliate.org
http://paramecium.cgm.cnrs-gif.fr/
http://www.k12summerinstitute.org/workshops/asset.html
http://toxodb.org/toxo/
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chromosome develops, it is amplified to ∼800 copies and is extensively rearranged 
through a process of DNA elimination. Tens of thousands of unique copy elements are 
removed and, in a separate process, transposable elements and other repeats are deleted. 
This leads to a fragmented set of about 200 acentric chromosomes, ranging in size from 
∼50 kilobases to 981 kilobases. Aury et al. (2006) sequenced the Paramecium macro
nuclear genome which, although fragmented, is genetically homogenous because of the 
sexual process of autogamy by which it arose. The total coverage was 72 Mb, and most 
of the 188 largest scaffolds likely represent macronuclear chromosomes because they 
contain telomeric repeats.

While the presence of two nuclei and the process of DNA rearrangement and elim
ination are extraordinary, another startling finding is that Paramecium encodes about 
40,000 protein‐coding genes (a far greater number than is found in animals or fungi). The 
genome sequencing process resulted in the creation of several hundred scaffolds. As we 
view the scaffold 1, corresponding to the longest chromosome observed by pulsed‐field 
gel electrophoresis, we can see the compact nature of the coding portion of the genome 
(Fig. 19.7). Across the genome, 78% of the nucleotides contain genes and the intergenic 
regions average 352 bases.

Yet another surprising finding is the series of three whole‐genome duplications that 
Aury et al. (2006) inferred (Fig. 19.8). All proteins were searched against each other using 
the Smith–Waterman algorithm (Chapter 3). Two‐thirds of the predicted proteins occur in 
paralog pairs, maintaining conserved synteny across large portions of the chromosomes. 
The remaining third of the proteins presumably lost their duplicates after the  whole‐
genome duplication event(s). The situation contrasts with the fungi (Chapter 18) and plant 
and fish genomes (see “Arabidopsis thaliana Genome” and “450 MYA: Vertebrate Genomes 

Chromatin diminution also 
occurs in nematodes (Chapter 8).

The Paramecium genome 
project website, including 
the ParameciumDB genome 
browser, can be viewed at  
http://paramecium.cgm.cnrs‐gif.
fr/ (WebLink 19.22).

Figure 19.7 The Paramecium genome is proposed to have undergone at least three whole‐genome duplications. The longest chromo
some (scaffold 1 of the genome assembly) is viewed in the genome browser of ParameciumDB. A region of 400,000 base pairs is displayed, 
and the annotation tracks show the conservation to many paralogs reflecting recent, intermediate, and old whole‐genome duplications. 

Source:  http://paramecium.cgm.cnrs‐gif.fr.

http://paramecium.cgm.cnrs%E2%80%90gif.fr/
http://paramecium.cgm.cnrs%E2%80%90gif.fr
http://paramecium.cgm.cnrs%E2%80%90gif.fr/
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Figure 19.8 Whole‐genome duplication in the ciliate Paramecium tetraurelia is inferred by analysis of protein paralogs. The outer circle 
displays all chromosome‐sized scaffolds from the genome sequencing project. Lines link pairs of genes with a “best reciprocal hit” match. 
The three interior circles show the reconstructed ancestral sequences obtained by combining the paired sequences from each previous step. 
The inner circles are progressively smaller and reflect fewer conserved genes with a smaller average similarity.

Source: Aury et al. (2006). Reproduced with permission from Macmillan Publishers.

of Fish” below) in which whole‐genome duplication events are followed by rapid gene 
loss and large‐scale chromosomal rearrangements. By inferring ancestral blocks and 
then iteratively repeating the within‐proteome alignments to search for conserved blocks  
sharing progressively less conservation, Aury et al. inferred the occurrence of three 
whole‐genome duplications (Fig. 19.8). For a discussion of the software used to make the 
figure, see Box 19.2.
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Tetrahymena thermophila is another ciliate that has long served as a model organism 
for biological research (Collins and Gorovsky, 2005). Discoveries made using Tetrahy-
mena include catalytic RNA, telomeric repeats, telomerase, and the function of histone 
acetylation. Eisen et al. (2006) reported the sequence of its macronuclear genome which 
is 104 Mb and composed of about 225 chromosomes with a ploidy of ∼45. In marked 
contrast to Paramecium, they did not find evidence for either segmental or whole‐genome 
duplications. The relatively high gene count is explained by extensive tandem duplication 
of genes. The availability of the macronuclear genome will facilitate future sequencing of 
the micronuclear genome, which contains substantially more repetitive DNA. Such stud
ies may elucidate the fascinating relationship between macro‐ and micronuclear chromo
somes in the ciliates. This in turn may reveal fundamental mechanisms by which genome‐
wide rearrangement occurs. Additional Tetrahymena macronuclear genomes have now 
been sequenced (T. malaccensis, T. elliotti, and T. borealis).

A third ciliate genome is that of Sterkiella histriomuscorum, formerly called Oxy-
tricha trifallax and indicated in the Oxytrichida group in Figure 19.1. Sterkiella histri-
omuscorum is of the class Spirotrichea. This macronuclear genome fragments into an 
astonishing number of about 24,500 minichromosomes (called nanochromosomes). Doak 
et al. (2003) described its genome project, including evidence of a ploidy of ∼1000 per 
macronuclear genome. Swart et al. (2013) sequenced >16,000 nanochromosomes. They 
have a mean length of just 3.2 kilobases, each typically encoding a single gene. What 
biological problem does this organism solve with this system? Could our ∼20,300 human 
protein‐coding genes be packaged into a similar number of chromosomes?

Nucleomorphs

The chloroplast is a plastid (photosynthetic organelle) in plants that contains the green 
pigment chlorophyll. Chloroplasts convert light to energy. A major hypothesis about their 
origin is that a eukaryotic cell acquired a cyanobacterium soon after the divergence of 
plants from animals and fungi (see “Plant Genomes” below). A radically different mech
anism is also common, however. A eukaryote can ingest an alga (i.e., another eukaryote) 
that already has a chloroplast (Gilson and McFadden, 2002; Archibald and Lane, 2009; 
Moore and Archibald, 2009). This process, called endosymbiosis, may have occurred 
independently in at least seven separate eukaryotic groups: apicomplexa (discussed 
above), chlorarachniophytes, cryptomonads, dinoflagellates, euglenophytes, heterokonts, 
and haptophytes (reviewed in Gilson and McFadden, 2002).

Most chloroplast‐containing plants and some algae have three genomes in each cell: 
a nuclear genome, a mitochondrial genome, and a chloroplast genome. In cryptomonads 
(such as Guillardia theta) and chlorarachniophytes (such as Bigelowiella natans), there is 

A primary Tetrahymena genome 
database is at  http://www.
ciliate.org/ (WebLink 19.23), 
while a Tetrahymena genome 
sequencing website is at  
http://lifesci.ucsb.edu/~genome/
Tetrahymena/ (WebLink 19.24). 
The Tetrahymena functional 
genomics database is online at 

 http://tfgd.ihb.ac.cn (WebLink 
19.25; Xiong et al., 2013).

Box 19.2 graPhIcaLLy rePresentIng WhoLe-genoMe duPLIcatIons
We introduced the ideogram as a representation of a karyotype in Chapter 8. Traditionally, linear eukaryotic chromosomes are depicted 
as straight bars. However, when depicting the relationships between genes (or proteins or other elements) on multiple chromosomes, the 
patterns of relationships can be so complex that the visual presentation is confusing. Circular plots offer a concise method of viewing 
relationships between chromosomal elements. Figure 19.8 shows an example of Paramecium chromosomes made by Aury et al. (2006) 
using Circos software developed by Martin Krzywinski (available as free software at  http://circos.ca/?home). This website also offers 
a tutorial and a gallery of visually stunning samples.
 Chromowheel is a related tool, developed by Ekdahl and Sonnhammer (2004) and available at Karolinska Institutet as a web service 
(  http://chromowheel.sbc.su.se/). The user can submit a generic data definition format file which is then converted into an image in 
the Scalable Vector Graphics (SVG) format. Other software (such as the Circular Genome Viewer CGView,  http://wishart.biology.
ualberta.ca/cgview/; Stothard and Wishart, 2005) allow representation of circular genomes such as those of bacteria or mitochondria.

http://circos.ca/?home
http://chromowheel.sbc.su.se/
http://wishart.biology.ualberta.ca/cgview/
http://www.ciliate.org/
http://lifesci.ucsb.edu/~genome/Tetrahymena/
http://tfgd.ihb.ac.cn
http://www.ciliate.org/
http://lifesci.ucsb.edu/~genome/Tetrahymena/
http://wishart.biology.ualberta.ca/cgview/
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an additional, fourth distinct genome: the vestigial nuclear genome of the engulfed alga. 
This second nucleus is called a nucleomorph. The process of sequential endosymbioses 
is outlined in Figure 19.9.

Just as the genome of intracellular bacteria is highly reduced, the nucleomorph 
genome is extremely small. Douglas et al. (2001) sequenced the nucleomorph genome of 
G. theta consisting of only 551,264 base pairs. The gene density is extraordinarily high, 
with one gene per 977 base pairs. The noncoding regions are extremely short, and there 
is only one pseudogene. Some otherwise essential genes, such as those encoding DNA 
polymerases, are absent. The gene product must be imported to the plastid across four 
separate membranes.

Another small nucleomorph genome is of the chlorarachniophyte Bigelowiella 
natans. Its size is 373,000 base pairs, containing 331 genes on three chromosomes (Gilson 
et al., 2006). Its nature is clearly eukaryotic including the presence of 852 introns, 
although these “pygmy introns” are the smallest known, having lengths of 18–21 
nucleotides. Although G. theta and B. natans are phylogenetically distinct, Patron  
et al. (2006) compared their highly reduced nucleomorph genomes relative to their 
corresponding nuclear and plastid genomes. They concluded that B. natans nucleo
morph genes are evolving at a rapid rate, while G. theta has stabilized. Additional 
nucleomorph genomes were sequenced and have very similar properties (Tanifuji et 
al., 2011; Moore et al., 2012). These are Chroomonas mesostigmatica, Cryptomonas 
paramecium, and Hemiselmis andersenii.

The lineage of G. theta is 
Eukaryota; Cryptophyta; 
Cryptomonadaceae; Guillardia. the 
lineage of B. natans is Eukaryota; 
Cercozoa; Chlorarachniophyceae; 
Bigelowiella.

photosynthetic 
cyanobacterium

~3,000
genes

eukaryote 2

plastid

eukaryote 2

eukaryote 1eukaryote 1

nucleus 1 nucleo-
morph

<1,000 plastid
protein genes

17 plastid
protein genes

~57 plastid
protein genes

nucleus 1 >1,000 plastid
protein genes

eukaryote 1

(a) (b) (c)

nucleus 1 p,000>111111,,
n goteinnnprrrrrrrooooooooo

plastid

nucleus 2 nucleus 2

Figure 19.9 Sequential endosymbioses result in a eukaryote with four genomes. (a) In a primary 
endosymbiotic event, a eukaryotic host (eukaryote 1) acquires a photosynthetic bacterium such as a 
cyanobacterium. (b) Over time, the nuclear genome of eukaryote 1 acquires over 1000 plastid protein‐
coding genes. The plastid is the engulfed bacterial genome, that is, the chloroplast. Secondary endosym
biosis occurs when another nonphotosynthetic organism (eukaryote 2) engulfs and retains eukaryote 
1 and so acquires photosynthetic capability. (c) Over time plastid protein genes are transferred to the 
nuclear genome of organism 2, resulting in the emergence of a severely reduced nucleomorph genome. 
The numbers of genes in the figure are for the chlorarachniophyte Bigelowiella natans, whose nucleo
morph genome is among the smallest known of all eukaryotes. Adapted from Gilson et al. (2006) with 
permission from the National Academy of Sciences.
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General principles are emerging (Moore and Archibald, 2009).

 • The range of known nucleomorph genome sizes is ∼380 kb to ∼845 kb, encoding 
∼500 protein‐coding genes (and having 0–24 spliceosomal introns). They are there
fore models for extreme genome reduction (Fig. 19.9). In an unexpected example of 
convergent evolution, both cryptophyte and chloroarachniophyte algae nucleomorph 
genomes have three chromosomes and subtelomeric rRNA operons.

 • Nucleomorph genomes are reduced in size because they have transferred genes to the 
nuclear genomes of their hosts.

 • These small genomes tend to have very low GC content (∼25%).
 • These genomes maintain very high levels of transcription. Tanifuji et al. (2014) per
formed RNA‐seq and mapped expression data for >99% of each of four nucleomorph 
genomes. About 10–12% of each genome is noncoding, indicating that even noncod
ing regions are transcribed (cf. the ENCODE project, described in Chapters 8 and 10, 
indicating that >80% of the human genome is at least occasionally transcribed). This 
suggests that all nucleomorph genes are transcribed, and mRNA synthesis levels are 
higher in the nucleomorph than nuclear genomes.

The circlular plastid DNA of G. theta is also very compacted. Douglas and Penny 
(1999) sequenced this genome of 121,524 base pairs and found that 90% of the DNA 
is coding, with no pseudogenes or introns. (In contrast, only 68% of the rice plastid 
genome is coding.) You can explore the G. theta plastid genome at NCBI (accession 
NC_000926.1) and compare it with the plastid genome of the red alga Pophyra purea, a 
rhodophyte (accession NC_000925.1). These two genomes show a high degree of con
served synteny. You can also compare the G. theta plastid genome to that of the diatom 
Odontella sinensis (accession NC_001713.1). This is a related alga that also acquired its 
plastid by secondary endosymbiosis but lacks a nucleomorph.

What of the nuclear genomes? Both the cryptophyte G. theta and the chlorarachni
phyte B. natans genomes encode >21,000 proteins (Curtis et al., 2012). Mitochondrial 
genes continue to transfer to the nucleus, but genes from the plastid and the nucleomorph 
do not. Protein‐based phylogenetic analyses suggest that ∼6–7% of the nuclear genes 
have an algal endosymbiont origin in each of the nuclear genomes.

Kingdom Stramenopila

The kingdom Stramenopila includes a wide range of fascinating organisms such as the 
oömycetes (e.g., the Phytophthora plant pathogens) and photosynthetic algae (e.g., dia
toms, brown algae such as kelp, and the golden‐brown algae). The Stramenopila group is 
represented in Figure 19.1 as part of the Heterokonta, and we summarize several genomes 
in Figures 19.10 and 19.11.

Diatoms are single‐celled algae that occupy vast expanses of the oceans and are 
responsible for ∼20% of global carbon fixation (Bowler et al., 2010). They have an intri
cately patterned silicified (glass) cell wall called the frustule that displays beautiful, spe
cies‐specific patterns as seen for example in Figure 19.10. Armbrust et al. (2004) deter
mined the sequences of the three genomes of the diatom Thalassiosira pseudonana: a 
diploid nuclear genome of 34.5 Mb organized in 24 pairs, a plastid genome acquired by 
secondary endosymbiosis perhaps 1300 million years ago, and a mitochondrial genome. 
The plastid was acquired when a nonphotosynthetic, eukaryotic diatom ancestor engulfed 
a photosynthetic eukaryote (probably a red algal endosymbiont), a remarkable process 
described above (Fig. 19.9).

The second diatom genome to be sequenced was Phaeodactylum tricornutum (Bowler 
et al., 2008; Fig. 19.10). While these organisms last shared a common ancestor 90 MYA 
(about the time mouse and human last shared a common ancestor), they share only ∼60% 

A principal website for 
Thalassiosira pseudonana 
is at  http://genome.jgi‐psf.
org/Thaps3/Thaps3.home.html 
(WebLink 19.26, from the Joint 
Genome Institute).

http://genome.jgi%E2%80%90psf.org/Thaps3/Thaps3.home.html
http://genome.jgi%E2%80%90psf.org/Thaps3/Thaps3.home.html
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of their genes. Humans and fish shared a common ancestor ∼450 MYA and protein ortho
logs share 61.4% identity on average; yet for P. tricornutum and T. pseudonana, ortho
logs share only 54.9% identity on average (Bowler et al., 2010). Diatom genomes have 
therefore undergone rapid rates of diversification, including lineage‐specific gene family 
expansions and also the acquisition of hundreds of bacterial genes by lateral transfer.

Oömycetes (also called water molds) are members of the kingdom Stramenopila 
but only distantly related to the diatoms. They include the soybean pathogen Phytoph-
thora sojae and the sudden oak death pathogen Phytophthora ramorum. There are 59 
known species of the genus Phytophthora, and together these cost tens of billions of 
dollars per year because of their destruction of plant species including crops. Tyler et al. 
(2006) reported draft genome sequences for both these plant pathogens (summarized in 
Fig. 19.11). The two genomes encode comparable numbers of genes including about 9700 
pairs of orthologs (with extensive colinearity of orthologs spanning up to several mega
bases per block). While neither organism is photosynthetic, both contain many hundreds 
of genes that are derived from a red alga or cyanobacterium, suggesting that there was a 
photosynthetic ancestor.

Additional oömycete genomes have been sequenced (Jiang et al., 2013). It is becom
ing clear that different pathogenic oömycetes have unique host interactions that lead to 
distinct patterns of gene loss and gene expansion. As an example, Jiang et al. found that 
the fish pathogen Saprolegnia parasitica genome encodes 270 proteases and 543 kinases, 
many of which are induced upon infection.

Such studies are likely to lead to a deeper understanding of the evolution of these 
organisms and possible strategies to reduce their ability to kill vast numbers of fish, 
insects, amphibians, and crustaceans worldwide.

The Department of Energy Joint 
Genome Institute (DOE JGI) 
website for P. ramorum is  http://
genome.jgi‐psf.org/Phyra1_1/
Phyra1_1.home.html  
(WebLink 19.27).

Figure 19.10 The Heterokonta (see Fig. 19.1) include the diatoms. Photographs are from the NCBI 
Genomes website (Thalassiosira pseudonana by DOE‐Genomes to Life, US Department of Energy 
Genomic Science program) and Kiene (2008), reproduced with permission from Macmillan Publishers.

Lineage: Eukaryota; Stramenopiles; Bacillariophyta; Coscinodiscophyceae; Thalassiosirophycidae; 
Thalassiosirales; Thalassiosiraceae; Thalassiosira; Thalassiosira pseudonana CCMP1335 (diatom)

Lineage: Eukaryota; Stramenopiles; Bacillariophyta; Bacillariophyceae; Bacillariophycidae; 
Naviculales; Phaeodactylaceae; Phaeodactylum; Phaeodactylum tricornutum 

Selected divergence dates: Diatoms T. pseudonana and P. tricornutum shared an ancestor 90 MYA
Key genomic features:
     –T. pseuodonana and P. tricornutum show substantial genomic rearrangements and divergence.
     –5% of P. tricornutum genes have a bacterial origin.
Key website: http://genome.jgi-psf.org/Thaps3/Thaps3.home.html

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID

Thalassiosira pseudonana 34.5 Mb 47%  24  11,242  191
     plastid genome  128,813 bp 31%  1  144
     mitochondrial genome 43,827 bp 30.5%  1  40
Phaeodactylum tricornutum 27.4 Mb 48.8%  33  10,402  418

Thalassiosira pseudonanaPhaeodactylum tricornutum

http://genome.jgi-psf.org/Thaps3/Thaps3.home.html
http://genome.jgi%E2%80%90psf.org/Phyra1_1/Phyra1_1.home.html
http://genome.jgi%E2%80%90psf.org/Phyra1_1/Phyra1_1.home.html
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Brown algae (Phaeophyceae) represent another group among the Stramenopiles. 
They are seaweeds, and are one of five eukaryotic lineages that independently evolved 
multicellularity (along with metazoans (animals), fungi, and two plant groups: red algae 
and green algae/plants). Cock et al. (2010) sequenced the 214 Mb genome of the seaweed 
Ectocarpus siliculosus. Of note, they found genes likely to participate in the organism’s 
complex photosynthetic system, allowing it to adapt to variable light conditions in harsh 
tidal environments.

PLant genoMes
Overview

Hundreds of thousands of plant species occupy the planet. Molecular phylogeny 
shows us that plants form a distinct clade within the eukaryotes (see Viridiplantae, 
Fig. 19.1). These include algae and the familiar green plants. All plants (other than 
algae) are multicellular because they develop from embryos, which are multicellular 
structures enclosed in maternal tissue (Margulis and Schwartz, 1998). Most plants 
have the capacity to perform photosynthesis, although some (such as the beech drop, 
Epifagus) do not.

The analysis of plant genomes allows us to address the molecular genetic basis of 
characteristics that distinguish plants from animals such as the presence of specialized 

The Epifagus virginiana 
chloroplast genome has been 
sequenced (NC_001568.1; Wolfe 
et al., 1992). Epifagus is parasitic 
on the roots of beech trees. 
The original major function 
of its chloroplast genome – 
photosynthesis – has become 
obsolete. It lacks six ribosomal 
protein and 13 tRNA genes that 
are present in the chloroplast 
genomes of photosynthetic 
plants (Wolfe et al., 1992).

Figure 19.11 The Heterokonta (see Fig. 19.1) include oomycetes such as Phytophthora.  Photographs 
are from the NCBI Genomes website (Phytophthora sojae by Edward Braun, Iowa State  University;  
Phytophthora ramorum by Edwin R. Florance, Lewis & Clark College).

Lineage: Eukaryota; Stramenopiles; Oomycetes; Peronosporales; Phytophthora; Phytophthora sojae

  Eukaryota; Stramenopiles; Oomycetes; Peronosporales; Phytophthora; Phytophthora ramorum

Key genomic features:
     –P. ramorum is heterothallic (outbreeding); ~13,600 SNPs were identi�ed
     –P. sojae is homothallic (inbreeding); only 499 SNPs were identi�ed
     –These are the only eukaryotic genomes for which no gene encoding phospholipase C has been 
         identi�ed, nor have Phytophthora expressed sequence tags corresponding to PLC been found.
Disease relevance:  P. sojae (potato pink rot agent) is a soybean pathogen
             P. ramorum causes sudden oak death
          S. parasitica is a pathogen of �sh (e.g. salmon, trout, cat�sh)
   P. ramorum causes potato blight
Key website: http://oomycetes.genomeprojectsolutions-databases.com/

    Haploid GC content Gene density Number of Repeat
    genome size   (kb/gene) genes  percent

Phytophthora sojae  95 Mb  54%  4.6  16,998  39%
Phytophthora ramorum 65 Mb  54%  3.7  14,451  28%
Phytophthora infestans 240 Mb 51%  10.7  17,797  74%
Saprolegnia parasitica  63 Mb  58%  2.6  17,065  40%  

Phytophthora sojae Phytophthora ramorum

http://oomycetes.genomeprojectsolutions-databases.com/
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cell walls, vacuoles, plastids, and cytoskeleton. Plants are sessile and depend on photo
synthesis. The sequencing of plant genomes is likely to lead to explanations for many of 
these basic features.

When did the lineages leading to today’s plants diverge from animals, fungi, and 
other organisms? The earliest evidence of life is from about 3.8 billion years ago (BYA), 
while eukaryotic fossils have been dated to 2.7 BYA. These events are depicted in the 
schematic tree of Figure 19.12, based on separate studies by Meyerowitz (2002) and Wang 
et al. (1999). There are no very early plant fossils extant from earlier than 750 MYA, so 
it is difficult to assess the dates that species diverged from each other. Various researchers 
have used molecular clocks based on protein, DNA (nuclear or mitochondrial), or RNA 
data. A study by Wang et al. (1999) used a combined analysis of 75 nuclear genes to 
estimate the divergence times of plants, fungi, and several animal phyla. Their estimates 
of divergence time were calibrated based on evidence from the fossil record that birds 
and mammals diverged around 310 MYA. They found that animals and plants diverged 
around 1547  MYA, at almost exactly the same time that animals and fungi diverged 
(1538 MYA; Fig. 19.12).

The early appearance of plants, animals, and fungi may have occurred with the diver
gence of a unicellular progenitor. A comparison of plants and animals therefore allows us 
to see how plants and animals independently evolved into multicellular forms (Meyerow
itz, 2002; Niklas and Newman, 2013). The mitochondrial genes of plants and animals are 
homologous, indicating that their common ancestor was invaded by an α‐proteobacterium 

Plants and animals differ greatly 
in their content of selected 
genes. For example, plants lack 
intermediate filaments and the 
genes that encode intermediate 
filament proteins such as 
cytokeratin and vimentin.

The use of 18S RNA has 
suggested an animal–fungi clade 
(Fig. 19.1), consistent with 
Figure 19.12.

Figure 19.12 The evolution of plants, animals, and fungi. The estimated time of divergence of 
plants, fungi, and animals is 1.5 BYA according to a phylogenetic study (adapted from Wang et al., 
1999). Prior to this divergence event, a single‐celled eukaryotic organism acquired an α‐proteobacterium 
(the modern mitochondrion, present today in animals, fungi, and plants). After the divergence of plants 
from animals and fungi about 1.5 BYA, the plant lineage acquired a plastid (the chloroplast). According 
to this model, metazoans diverged about 400 million years earlier than predicted by the fossil record. 
Nematodes (e.g., C. elegans) diverged earlier than chordates (e.g., vertebrates) and arthropods (e.g., 
insects). Adapted from Wang et al. (1999) with permission from Royal Society. Additional data from 
Meyerowitz (2002).
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(Fig. 19.12). After their divergence, in another endosymbiotic event a cyanobacterium occu
pied plant cells to ultimately form the chloroplast. This occurred independently several 
times, but it has proven difficult to date these events. The first appearance of most animal 
phyla in the fossil record occurs in many samples dated at around 530 MYA, the “Cambrian 
explosion.”

We begin our bioinformatics and genomics approaches to plants by exploring 
their position among the eukaryotes (Fig. 19.1) and from a phylogenetic tree based on 
sequences of a key plant enzyme, rubisco (Fig. 19.13). The two main groups of Vir
idiplantae are Chlorophyta (green algae such as the generum Chlamydomonas) and 
Streptophyta (Ruhfel et al., 2014). Streptophyta is further subdivided into groups such 
as mosses, liverworts, and the angiosperms (flowering plants), including the familiar 
monocots and eudicots. We begin with the green algae, then proceed to the flowering 
plants.

green algae (Chlorophyta)

Chlamydomonas reinhardtii is a unicellular alga that lives in soil and water. Among 
the unicellular green algae, Chlamydomonas has served as a model organism for study
ing photosynthesis and chloroplast biogenesis (unlike flowering plants, it grows in the 
dark). The genome is 121 Mb with a very high GC content (64%) and contains about 
15,000 protein‐coding genes (Merchant et al., 2007; Fig. 19.14). We can perform com
parative genomic analyses of the Chlamydomonas genome to infer the properties of 
the ancestor of the green plants (Viridiplantae) and the opisthokonts (animals, fungi 
(Chapter 18), and Choanozoa). Many genes are shared by Chlamydomonas and animals 
but have been lost in angiosperms, such as those encoding the flagellum (or cilium) 
and the basal body (or centriole). For example, the Chlamydomonas genome encodes 
486 membrane transporters including many shared in common with animals (e.g., volt
age‐gated ion channels involved in flagellar function). We explore further examples in 
computer laboratory exercise (19.6) at the end of this chapter. There are several possible 
explanations for the proteins that occur in Chlamydomonas and plants but not ani
mals: (1) they may have been present in the common plant–animal ancestor and lost or 
diverged in the animal lineage; (2) they may have been horizontally transferred between 

The earliest known plant fossils 
date from the Silurian period 
(430–408 MYA; Margulis and 
Schwartz, 1998).

Rubisco is ribulose‐1, 5‐
diphosphate carboxylase. 
It is an enzyme localized to 
chloroplasts that catalyzes the 
first step of carbon fixation in 
photosynthesizing plants. The 
enzyme irreversibly converts 
ribulose diphosphate and 
carbon dioxide (CO2) to two 3‐
phosphoglycerate molecules. 
The gene name for rubisco is 
rbcL; for a typical example, 
see the rice protein (RefSeq 
accession NP_039391.1).

Figure 19.13 Phylogenetic tree of the plants. A neighbor‐joining tree of the plants using rubisco 
protein.
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plants and Chlamydomonas; or (3) they may have arisen in the plant lineage before the 
divergence of Chlamydomonas. Such proteins include many involved in chloroplast 
function (Merchant et al., 2007).

The multicellular green alga Volvox carteri has a genome of comparable size and 
complexity (Prochnik et al., 2010). Comparison of these genomes may give clues to the 
origins of multicellularity. Volvox has two cell types, as shown in Figure 19.14: ∼2000 
small, biflagellate somatic cells and ∼16 gonidia that are large reproductive cells.

Another unicellular green alga, Ostreococcus tauri, is thought to be the smallest free‐
living eukaryote (Fig. 19.14). O. tauri presents a simple, naked, nonflagellated cell with a 
nucleous, mitochondrion, and chloroplast. It is distributed throughout the oceans and was 
first identified in 1994 as a common component of marine phytoplankton. Derelle et al. 
(2006) sequenced its 12.6 Mb genome which is distributed on 20 chromosomes. There 
are 8166 protein‐coding genes with a density of 1.3 kilobases per gene, greater than any 
other eukaryote sequenced to date. The genome therefore has an extraordinary degree of 
compaction with very short intergenic regions, many gene fusion events, and a reduction 
in the size of gene families. Another remarkable, unexplained feature of the genome is 
that two of the chromosomes (a large portion of 2 and all of 19) differ from all others in 
GC content (52–54% rather than 59% on the other chromosomes), and these two loci also 
contain most of the transposable elements in the genome (321 of 417). Chromosome 2 also 

Figure  19.14 One major division of the plants (Viridiplantae) is the green algae including 
 Chlamydomonas (see Fig. 19.1). Photographs are from the NCBI Genomes website (of  Ostreococcus 
tauri courtesy of O.O. Banyuls‐CNRS Courties (  http://www.cs.us.es/~fran/students/julian/organ
isms/organisms.html); of Chlamydomonas reinhardtii by Dr Durnford,  University of New Brunswick). 
Volvox carteri photograph by Prochnik et al. (2010). s: somatic cells (of which there are ∼2000);  
g: gonidia (there are ∼16 of these large germline cells).

Ostreococcus tauri OTH95 Chlamydomonas reinhardtii

Genome features: Chlamydomonas and Volvox have 0.125 genes per kilobase, comparable 
 to Arabidopsis. In contrast, O. tauri has 0.648 genes per kilobase.
 O. tauri is the smallest free-living eukaryote. 
Key websites: http://www.chlamy.org/; http://genome.jgi-psf.org/Chlre3/Chlre3.home.html
 

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Chlamydomonas reinhardtii 118 Mb 64%  17  15,143  12260   
Ostreococcus tauri OTH95 12.6 Mb 58%  20  8,166  12912
Volvox carteri   138 Mb 56%  14  14,437  413  

Lineage: Eukaryota; Viridiplantae; Chlorophyta; Chlorophyceae; Chlamydomonadales; 
Chlamydomonadaceae;  Chlamydomonas; Chlamydomonas reinhardtii (green alga)

Lineage: Eukaryota; Viridiplantae; Chlorophyta; Prasinophyceae; Mamiellales; Mamiellaceae; 
Ostreococcus; Ostreococcus tauri (green alga)

Lineage: Eukaryota; Viridiplantae; Chlorophyta; Chlorophyceae; Chlamydomonadales; Volvocaceae; 
Volvox carteri (green alga)

Volvox carteri

http://www.chlamy.org/
http://genome.jgi-psf.org/Chlre3/Chlre3.home.html
http://www.cs.us.es/~fran/students/julian/organ�isms/organisms.html
http://www.cs.us.es/~fran/students/julian/organ�isms/organisms.html
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employs a different frequency of codon utilization and has much smaller introns (40–65 
base pairs in contrast to an average of 187 base pairs elsewhere). The origin of these 
various differences is unknown, but these data suggest horizontal transfer from another 
organism.

Arabidopsis thaliana genome

Angiosperms are flowering plants in which the seeds are enclosed in an ovary that ripens 
into a fruit. Monocots are characterized by an embryo with a single cotyledon (seed leaf); 
examples are rice, wheat, and oats. Eudicots (also called dicotyledons) have an embryo 
with two seed leafs; examples are tomato and potato. Eudicots include the majority of 
flowers and trees (but not conifers).

Arabidopsis thaliana is a thale cress and eudicot that is prominent as having the first 
plant genome to be sequenced (Fig. 19.15). Arabidopsis has been adopted by the plant 
research community as a model organism to study because it is small (about 12 inches tall), 

The Angiosperm Phylogeny 
website is at   http://www.
mobot.org/MOBOT/Research/
APweb/welcome.html (WebLink 
19.28). It includes dozens of 
phylogenetic trees with access 
to text, photographs of plants, 
and extensive references. 
In contrast to angiosperms, 
gymnosperms develop their 
seeds in cones. The eudicots 
(such as Arabidopsis) diverged 
from the monocots (such as 
Oryza sativa) about 200 MYA. 
Among the eudicots, the rosids 
and the asterids diverged about 
100–150 MYA (Allen, 2002). The 
rosids include Arabidopsis, 
Glycine max (soybean), and 
Medicago trunculata. The 
asterids include Lycopersicon 
esculentum (tomato).

Figure 19.15 Overview of selected plant genomes. Photographs are from the NCBI Genome web
site (P. trichocarpa by J.S. Peterson, USDA‐NRCS PLANTS Database; V. vinifera by Kurt Stueber, 
Max Planck Institute for Plant Breeding Research, Cologne; A. thaliana by Luca Comai, University of 
Washington, Seattle, WA).

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Arabidopsis thaliana  125 Mb 34.9%  5  ~25,498 13190
Glycine max   974 Mb 35%  20  10,337  5
Lycopersicon esculentum 782 Mb 34.9%  12  27,398  7
Medicago truncatula  314 Mb 35.9%  8  ~19,000 10791
Oryza sativa    389 Mb 43.3%  12  37,544  13139, 13174    
Physcomitrella patens  480 Mb 34%  27  35,938  13064
Populus trichocarpa  485 Mb 37.4%  19  45,555  10772
Vitis vinifera    487 Mb 35%  19  30,434  18357, 18785
Zea mays   2,067 Mb 46.8%  10  38,999  12

Medicago truncatula (barrel medic) 
Oryza sativa (rice)
Physcomitrella patens (moss)

Selected lineages: Eukaryota; Viridiplantae; Streptophyta; Embryophyta; 
Tracheophyta; Spermatophyta;  Magnoliophyta; eudicotyledons; core 
eudicotyledons; rosids; eurosids II; Brassicales; Brassicaceae;  Arabidopsis; 
Arabidopsis thaliana

Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; 
eudicotyledons; core eudicotyledons; Vitales; Vitaceae; Vitis; Vitis vinifera

Arabidopsis thaliana 
(mouse-ear cress)Vitis vinifera (wine grape) 

Populus trichocarpa
(black cottonwood)

Key dates: Emergence of �owering plants 200 million years ago (MYA). Arabidopsis and the moss 
 P. patens diverged ~450 MYA; Arabidopsis and Populus diverged ~120 MYA. 
Disease relevance: Worldwide, up to 30% of crop yield is lost to pathogens. Plant genome sequencing
 projects can reveal disease resistance mechanisms.
Genome features: While the Arabidopsis genome is ~93% euchromatin, Populus is~70% euchromatin.
 Populus has far more genes than Vitis vinifera although the two genomes have a similar size. 
Key website: http://www.medicago.org (Medicago).

http://www.mobot.org/MOBOT/Research/APweb/welcome.html
http://www.medicago.org
http://www.mobot.org/MOBOT/Research/APweb/welcome.html
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has a short generation time (about 5 weeks), has many offspring, and is convenient for 
genetic manipulations. It is a member of the Brassicaceae (mustard) family of vegeta
bles, which includes horseradish, broccoli, cauliflower, and turnips. It is one of about 
250,000 species of flowering plants, a group that emerged 200 MYA (Walbot, 2000). 
Comparative genomics analyses allow the comparison of the Arabidopsis genome to 
the genomes of other flowering plants in order to learn more about plant genomics (Hall 
et al., 2002).

The Arabidopsis genome is about 125 Mb; its genome size is therefore very small 
compared to agriculturally important plants such as wheat and barley (see “Giant and 
Tiny Plant Genomes” below), making it an attractive choice as the first plant genome 
to be sequenced. The Arabidopsis Genome Initiative (2000) reported the sequence of 
most (115 Mb) of the genome. There are five chromosomes, initially predicted to contain 
25,498 protein‐coding genes. The Arabidopsis genome has an average density of one 
gene per 4.5 kb.

The estimated number of predicted genes in Arabidopsis has increased slightly to 
∼27,400, following reannotation of the genome (Crowe et al., 2003; TAIR database; see 
Chapter 14). Arabidopsis has considerably more genes than Drosophila (about 14,000 
protein‐coding genes) and C. elegans (about 20,500 coding genes). The larger number 
of plant genes can be accounted for by a far greater extent of tandem gene duplications 
and segmental duplications. There is a core of about 11,600 distinct proteins, while the 
remaining genes are paralogs (Arabidopsis Genome Initiative, 2000).

Many plants have undergone whole‐genome duplication, a phenomenon we saw with 
Paramecium and which also occurs with other eukaryotes and many fungi (Chapter 18). 
For an overview of ploidy in plants, see Box 19.3.

There are two main approaches to identifying whole‐genome duplications (Paterson 
et al., 2010; Fig. 19.16). The first is a bottom‐up approach in which DNA or protein 
sequences are searched within the genome to find evidence of duplications. We described 
this approach for S. cerevisiae in Chapter 18, and it was also adopted for studies of Par-
amecium and Arabidopsis. Within the genome there are 24 large, duplicated segments of 
100 kb or more, spanning 58% of the genome (Arabidopsis Genome Initiative, 2000). 
A second approach is called top‐down in which the genome of interest is compared to a 
reference (Fig. 19.16b). A comparison of tomato genomic DNA with Arabidopsis revealed 
conserved gene content and gene order with four different Arabidopsis chromosomes (Ku 
et al., 2000). The presence of duplicated and triplicated genomic regions suggests that 
two (or more) large‐scale genome duplication events occurred. One event was ancient, 
while another occurred about 112  MYA. Following whole‐genome duplication, gene 
loss occurred frequently. This reduces the amount of gene colinearity observed today 
and hinders our ability to decipher the nature and timing of past polyploidization events 
(Simillion et al., 2002). The pattern of gene loss following genome duplication is typical 

Online databases are available 
for model plant genome projects, 
such as MtDB for Medicago 
trunculata (Lamblin et al., 2003; 

 http://www.medicago.org/, 
WebLink 19.29) and MaizeGDB for 
maize (  http://www.maizegdb.
org/, WebLink 19.30). More 
comprehensive plant genomics 
databases include Unité de 
Recherche Génomique Info (URGI) 
(  http://urgi.versailles.inra.
fr/, WebLink 19.31) and Sputnik 
(Rudd et al., 2003) in Turku (Åbo; 

 http://sputnik.btk.fi/, WebLink 
19.32). GrainGenes, a database 
for wheat, barley, rye, and oat, 
is available at  http://wheat.
pw.usda.gov/GG2/index.shtml 
(WebLink 19.33; Matthews et al., 
2003).

Box 19.3 PLoIdy In PLants

Many plants are polyploid, that is, the nuclear genome is more than diploid. This includes autopolyploids such as Saccharum spp. 
(sugarcane) and Medicago sativa (alfalfa). Such species are often intolerant of inbreeding (see Paterson, 2006). Allopolyploids include 
wheat and cotton. In many naturally occurring allotetraploids (such as the tetraploid Arabidopsis suecica), the flowers are distinctly dif
ferent from those of the diploid parents (Cardaminopsis and Arabidopsis). Polyploid plants are usually bigger and more vigorous than 
diploid plants. Examples of polyploid species include banana and apple (triploid), potato, cotton, tobacco, and peanut (all tetraploid), 
wheat and oat (hexaploid), and sugar cane and strawberry (octoploid).
 Plant genome sequencing projects have allowed paralogs to be identified. Whole‐genome duplication events have been inferred, 
including two or three events in both Arabidopsis and the poplar Populus, and one or two in the rice genome.
 For a database of plant DNA C values, including data on polyploidy, see  http://data.kew.org/cvalues/ (Bennett and Leitch, 2011).

http://www.medicago.org/
http://www.maizegdb.org/
http://www.maizegdb.org/
http://urgi.versailles.inra.fr/
http://urgi.versailles.inra.fr/
http://sputnik.btk.fi/
http://wheat.pw.usda.gov/GG2/index.shtml
http://data.kew.org/cvalues/
http://wheat.pw.usda.gov/GG2/index.shtml
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of fungi (Chapter 18) and fish (see “450 MYA: Vertebrate Genomes of Fish” below) but 
not Paramecium.

The advent of next‐generation sequence technology inspired the 1001 Genomes 
 Project which aims to sequence that many accessions. Hundreds of Arabidopsis 
genomes have already been sequenced, typically complemented by RNA‐seq  studies 

Figure  19.16 Two strategies to detect ancient whole‐genome duplications. In a bottom‐up 
approach, (a) duplicated regions are identified to infer the most recent genome duplication event, then 
(b, c) successively more ancient duplications are identified. (d) A hierarchical interpretation of genome 
duplication events is then reconstructed. In a top‐down approach, (e) conserved syntentic regions are 
identified between two genomes. (f) Those segments, derived from a common ancestral sequence, are 
then clustered. (g) Progressive alignment of the shared segments can be used to create multiple sequence 
alignments using software such as MCscan. Redrawn from Paterson et al. (2010). Reproduced with 
permission from Annual Reviews.
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(Cao et al., 2011; Gan et al., 2011). Crosses between a reference genome (Col‐0) and 
18  sequenced accessions were used to generate 700 strains called the Multiparent 
Advanced Generation Inter‐Cross (MAGIC) collection. Analogous to the Collaborative 
Cross for mice, these many strains will have both detailed phenotypic characterization 
and whole‐genome sequences, facilitating studies of the genetic basis of plant properties 
from seed type, disease susceptibility and environmental adaptation to growth properties. 
Corresponding data for 1001 proteomes is being collected (Joshi et al., 2012).

The most comprehensive Arabidopsis genomics resource is TAIR, with a wide range 
of services (Lamesch et al., 2012). This site includes a genome browser that provides 
access to genomic DNA sequence from the broadest chromosome‐level view to descrip
tions of single‐nucleotide polymorphisms (Fig. 14.5). The format of this site, GBrowse, is 
shared by a variety of genome projects (Box 19.4; table 19.1). Other databases include 
SeedGenes, which describes essential genes of Arabidopsis that give a seed phenotype 
when disrupted by mutation (Tzafrir et al., 2003).

the Second plant genome: rice

By some estimates, rice (O. sativa) is the staple food for half the human population. The 
rice genome was the second plant genome to be sequenced (Fig. 19.15). At approximately 
389 Mb, this genome size is about one‐eighth that of the human genome. It is however 
one of the smallest genomes among the grasses, and rice is studied as a model monocot 
species.

The genus Oryza includes 23 species, and efforts are underway to sequence all 
these genomes (Jacquemin et al., 2013). The cultivated species are O. glaberrima 

The 1001 Genomes website is  
http://1001genomes.org/ (WebLink 
19.34). The 1001 Proteomes portal 
is at  http://1001proteomes.
masc‐proteomics.org/ (WebLink 
19.35). It is a nonsynonymous SNP 
browser.

The Arabidopsis Information 
Resource (TAIR) is online at 

 http://www.arabidopsis.
org/ (WebLink 19.36). The MIPS 
plantsDB set of databases is at  
http://mips.helmholtz‐muenchen.
de/plant/genomes.jsp (WebLink 
19.37). SeedGenes, describing 
essential genes in Arabidopsis 
development, is at  http://www.
seedgenes.org (WebLink 19.38).

Grasses include rice, wheat, 
maize, sorghum, barley, 
sugarcane, millet, oat, and rye. 
There are over 10,000 species 
of grasses (Bennetzen and 
Freeling, 1997). Cereals are seeds 
of flowering plants of the grass 
family (Gramineae, also called 
Poaceae) that are cultivated for 
the food value of their grains. 
Grasses are monocotyledonous 
plants that range from small, 
twisted, erect, or creeping 
annuals to perennials.

table 19.1 Variety of databases employing template from generic Model 
Organism project (gMOD,  http://www.gmod.org/) under the terms of the gNu Free 
Documentation license 1.2.

Database Comment URL

EcoCyc Encyclopedia of Escherichia coli 
Genes and Metabolism

http://EcoCyc.org/

FlyBase Drosophila site http://www.flybase.org/

Mouse Genome Informatics Main mouse resource http://www.informatics.jax.org/

Rat Genome Database (RGD) Rat resource http://rgd.mcw.edu/

SGD See Chapter 18 http://www.yeastgenome.org/

TAIR The Arabidopsis Information 
Resource

http://www.arabidopsis.org/

Wormbase C. Elegans Site http://www.wormbase.org/

Box 19.4 dataBases for eukaryotIc genoMes

The main Arabidopsis database, TAIR, uses a database template shared by other major sequencing projects (table 19.1). We already 
explored EcoCyc in Chapter 14 and the yeast database SGD in Chapters 14 and 18. These databases offer both detailed and extremely 
broad views of the genomic landscape. The Genomics Unified Schema (GUS) is another commonly used platform. Many databases 
use a distributed annotation system (DAS) that allows a computer server to integrate genomic data from a variety of external computer 
systems. DAS, written by Lincoln Stein and Robin Dowell, is described at  http://www.biodas.org/. It is employed at WormBase, 
FlyBase, Ensembl, and JCVI sites, among others.

http://www.biodas.org/
http://1001genomes.org/
http://1001proteomes.masc%E2%80%90proteomics.org/
http://www.arabidopsis.org/
http://mips.helmholtz%E2%80%90muenchen.de/plant/genomes.jsp
http://www.seedgenes.org
http://www.gmod.org/
http://EcoCyc.org/
http://www.flybase.org/
http://www.informatics.jax.org/
http://rgd.mcw.edu/
http://www.yeastgenome.org/
http://www.arabidopsis.org/
http://www.wormbase.org/
http://1001proteomes.masc%E2%80%90proteomics.org/
http://www.arabidopsis.org/
http://www.seedgenes.org
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(in Africa) and O. sativa with three cultivars (japonica, indica, and javanica). Four 
groups generated draft versions of the rice genome. A consortium led by the Beijing 
Genomics Institute reported a draft sequence of the rice genome (O. sativa L. ssp. 
Indica; Yu et al., 2002). Another consortium reported a draft genome sequence of O. 
sativa L. ssp. japonica (Goff et al., 2002), and Monsanto generated another genome 
sequence.

A finished quality sequence was reported separately by Yu et al. (2005) and by the 
International Rice Genome Sequencing Project (2005) for a single inbred cultivar, O. 
sativa L. ssp. japonica cv. Nipponbare. Yu et al. (2005) reported that, relative to their 
2002 initial publication, they achieved a lower error rate and a 1000‐fold improve
ment in long‐range contiguity. The N50 sequence (the length above which half the 
total length of the sequence dataset is found) improved to 8.3 Mb, about a 1000‐fold 
improvement, as the coverage increased from 4.2× to 6.3×. Annotation is a continu
ing process. The current Rice Annotation Project Database relies on next‐generation 
sequence data, RNA‐seq, and comparisons to sequence data from 150 monocot species 
(Sakai et al., 2013).

The rice genome (subspecies indica) displays an unusual feature of a gradient in GC 
content. The mean GC content is 43.3%, higher than in Arabidopsis (34.9%) or human 
(41.1%) (Yu et al., 2002). A plot of the number of 500 base pair sequences (y axis) versus 
the percent GC content (x axis) revealed a tail of many GC‐rich sequences. These GC‐rich 
regions occurred selectively in rice exons (rather than introns), and at least one exon of 
extremely high GC content was found in almost every rice gene (Yu et al., 2002). The 
GC content of the 5′ end of each gene was typically 25% more GC rich than the 3′ end. 
These unique features of the rice genome present another major challenge for the use of 
ab initio gene‐finding software.

From where did cultivated rice originate? Huang et al. (2012) sequenced 446 geo
graphically diverse accessions of Oryza rufipogon (a wild rice species) and 1083 culti
vated indica and japonica varieties, identifying a region of southern China where rice was 
first domesticated several thousand years ago. Huang et al. performed 1× to 2× coverage 
of these genomes (many of which were sequenced in separate studies), and identified sin
gle‐nucleotide polymorphisms (SNPs) which were used for phylogenetic and population 
genetics studies.

third plant: poplar

The black cottonwood tree Populus trichocarpa was the third plant genome to be 
sequenced (Fig. 19.15). Populus was selected for sequencing because its haploid nuclear 
genome is relatively small (480 Mb), it grows quickly relative to other trees (∼5 years), 
and is economically important as a source of wood and paper products.

Analysis of the genome indicates that Populus underwent a relatively recent whole‐
genome duplication about 65 million years ago, as well as experiencing tandem duplica
tions and chromosomal rearrangements (Tuskan et al., 2006). In contrast to Arabidopsis, 
Populus is predominantly dioecious (having male and female reproductive structures on 
separate plants), such that it must outcross and achieves high levels of heterozygosity. 
Tuskan et al. (2006) identified 1.2 million SNPs and, with insertion/deletion events, esti
mated 2.6 polymorphisms per kilobase. These were intended to enable further genetics 
and population biology studies. Highlighting the revolution brought by next‐generation 
sequencing, Tuskan and colleagues then proceeded to sequence 16 P. trichocarpa 
genomes and genotype 120 trees from 10 subpopulations (Slavov et al., 2012). They 
reported extensive linkage disequilibrium (to a greater extent than expected from previous 
smaller‐scale studies), suggesting that genome‐wide association studies may be feasible 
in undomesticated trees.

The Rice Annotation Project 
Database (RAP‐DB) is at  http://
rapdb.dna.affrc.go.jp/ (WebLink 
19.39).

http://rapdb.dna.affrc.go.jp/
http://rapdb.dna.affrc.go.jp/
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Fourth plant: grapevine

The gravevines are highly heterozygous, with as much as 13% sequence  divergence 
between alleles. The French–Italian Public Consortium for Grapevine Genome 
 Characterization (Jaillon et al., 2007) bred a grapevine variety derived from Pinot Noir to 
a high level of homozygosity and then determined its genome sequence (Fig. 19.15). Using 
an inbred variety was necessary to facilitate the assembly process. There are ∼30,000 
protein‐ coding genes predicted, which is fewer than in Populus even though the two 
organisms have similar‐sized genomes. Genes are evenly distributed across the genome in 
Arabidopsis and rice, while in V. vinifera as in Populus there are gene‐rich and gene‐poor 
regions with transposable elements (such as SINEs) occupying complementary positions.

One notable feature of the V. vinifera genome is that encodes more than twice as 
many proteins related to terpene synthesis as other sequenced plant genomes. There are 
tens of thousands of terpenes in nature, typically containing two to four isoprene units, 
and many of these are highly odorous.

Analysis of the haploid grapevine genome showed that most gene regions have two 
different paralogous regions, therefore forming homologous triplets and suggesting that 
the present genome derives from three ancestral genomes (Jaillon et al., 2007). There 
may have been three successive whole‐genome duplications or a single hexaploidization 
event. To address this question they compared the Vitis gene order to poplar (its closest 
relative), Arabidopsis (a more distantly related dicotyledon), and rice (as a monocotyle
don, its most distant relative). Grapevine aligned with two poplar segments, consistent 
with a recent whole‐genome duplication in poplar (described above). Also, the grapevine 
homologous triplets aligned with different pairs of poplar segments, suggesting that a 
hexaploidy of ancient origin was already present in the common ancestor of grapevine 
and poplar.

giant and tiny plant genomes

Plant genomes can be enormous in terms of size. An extreme example is Paris japonica, 
a small white flower with a 150 gigabase genome (50 times larger than humans; Pellicer 
et al., 2010). Angiosperms in particular can also exhibit very high ploidy. While many 
are diploid or triploid, far higher levels can occur (Bennett and Leitch, 2011; Box 19.3).

In terms of genome size, the largest sequenced genome is that of the loblolly pine, 
Picea glauca (Neale et al., 2014; Wegrzyn et al., 2014). This conifer’s genome is 
23,564 Mb (∼23.6 Gb), requiring novel approaches to genome assembly (Birol et al., 
2013). The hexaploid genome of bread wheat (Triticum aestivum) is also large at 17 Gb. 
It was sequenced and assembled by Brenchley et al. (2012).

At another extreme, a carnivorous family of angiosperms features small genomes as 
low as 63 Mb (Greilhuber et al., 2006). Ibarra‐Laclette et al. (2013) reported the 82 Mb 
genome of one such plant, Utricularia gibba. It has typical gene content (n = 28,500), but 
reduced intergenic regions.

hundreds More land plant genomes

As hundreds of plant genomes are sequenced, each offers a fascinating avenue to under
standing crop production, genome evolution, disease susceptibility, and many other 
aspects of plant biology. You can browse these at NCBI Genome. Examples of recently 
sequenced genomes include: legumes Glycine max (soybean; Schmutz et al., 2010) and 
medicago (Young et al., 2011; for a review of legume genomes see Young and Bharti, 
2012); the woodland strawberry (Shulaev et al., 2011); the autotetraploid tuber crop 
potato Solanum tuberosum L. (Potato Genome Sequencing Consortium et al., 2011); 
maize (Schnable et al., 2009); and the tomato (Tomato Genome Consortium, 2012).
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Moss

The bryophytes, encompassing mosses, hornworts, and liverworts diverged from the 
embryophytes (land plants) about 450 MYA (near the time of divergence of the fish and 
human lineages). Rensing et al. (2008) sequenced the genome of the bryophyte moss 
Physcomitrella patens. Through comparisons to the genomes of water‐dwelling plants, 
they propose that the movement of plants from aquatic to land environments involved the 
following components: (1) loss of genes that are associated with aquatic environments, 
such as those involved in flagellar function; (2) loss of dynein‐mediated transport (as 
stated above, Chlamydomonas and animals share dyneins); (3) gain of genes involved 
in signaling capabilities such as auxin, many of which are absent in Chlamydomonas 
and O. tauri genomes; (4) capability of adapting to conditions of drought, radiation, and 
temperature extremes; (5) gain of transport capabilities; and (6) gain in gene family com
plexity, reflected in the large numbers of genes in the moss and other plant genomes.

sLIMe and fruItIng BodIes at the feet of 
Metazoans
As we examine the upper part of the tree of the eukaryotes in Figure 19.1, we see three 
great clades: the Mycetozoa, the Metazoa (animals), and the Fungi (Chapter 18). The 
metazoans are familiar to us as animals, including worms, insects, fish, and mammals. 
The Mycetozoa form a sister clade. The slime mold Dictyostelium discoideum is a social 
amoeba that is of great interest as a member of an outgroup of the metazoa.

Social Slime Mold Dictyostelium discoideum

Biologists have studied Dictyostelium because of its remarkable life cycle. In normal 
conditions it is a single‐celled organism that occupies a niche in soil. Upon conditions 
of starvation, it emits pulses of cyclic AMP (cAMP), promoting the aggregation of large 
numbers of amoebae. This results in the formation of an organism having the properties 
of other multicellular eukaryotes: it differentiates into several cell types, responds to heat 
and light, and undergoes a developmental profile.

The Dictyostelium genome is 34 Mb, localized on six chromosomes (Fig. 19.17), and 
was sequenced by Eichinger et al. (2005). In addition to six chromosomes (and the stan
dard mitochondrial genome of 55 kb), there is one 88 kb palindromic extrachromosomal 
element that occurs in ∼100 copies per nucleus and contains ribosomal RNA genes.

The Moss Genome website 
is  http://www.cosmoss.
org (WebLink 19.40). A Joint 
Genomes Initiative website on 
P. patens is at  http://genome.
jgi‐psf.org/Phypa1_1/Phypa1_1.
home.html (WebLink 19.41).

A principal website for 
information on Dictyostelium 
is  http://www.dictybase.
org/ (WebLink 19.42). See 
also  http://amoebadb.org/
amoeba/ (WebLink 19.43; 
Aurrecoechea et al., 2011). The 
social, multicellular lifestyle of 
this eukaryote is reminiscent 
of the similar behavior of the 
proteobacterium Myxococcus 
xanthus (Chapter 17).

Chromosome 2 is characterized 
by an inverted 1.51 Mb 
duplication that is present in only 
some wildtype isolates.

Figure  19.17 The slime mold D. discoideium is closely related to the metazoans, as shown in 
Figure 19.1. This summary includes a photograph from the NHGRI (  http://www.genome.gov/17516871). 

Source: National Human Genome Research Institute and Dr Jonatha Gott.

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Dictyostelium discoideum 34 Mb  22.4%  6  ~12,500 201

Disease relevance: Dictyostelium has many hundreds of orthologs of human disease genes, and
 can reveal principles of the evolution of these genes.
Genome features: The GC content is extraordinarily low and impacts many features of the genome. 
Key website: http://www.dictybase.org

Lineage: Eukaryota; Mycetozoa; Dictyosteliida; 
Dictyostelium; Dictyostelium discoideum AX4
(social amoeba; slime mold)

http://www.cosmoss.org
http://genome.jgi%E2%80%90psf.org/Phypa1_1/Phypa1_1.home.html
http://www.dictybase.org/
http://amoebadb.org/amoeba/
http://www.dictybase.org
http://www.genome.gov/17516871
http://www.cosmoss.org
http://genome.jgi%E2%80%90psf.org/Phypa1_1/Phypa1_1.home.html
http://www.dictybase.org/
http://amoebadb.org/amoeba/
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Because the genome consists of about 78% AT content – similar to P. falciparum – as 
well as many repetitive DNA sequences, large‐insert bacterial clones are unstable, and 
a whole‐chromosome shotgun strategy was adopted. The genome is compact: the gene 
density is high (there are ∼12,500 genes, with one gene per 2.6 kb, spanning 62% of the 
genome), there are relatively few introns (1.2 per gene), and both introns and intergenic 
regions are short. The introns have an AT content of 87%, while in exons the AT content 
is 72%. This discrepant compositional bias may represent a mechanism by which introns 
are spliced out (Glockner et al., 2002). Reflecting the AT richness of the genome, the 
codons NNT or NNA are used preferentially relative to the synonymous codons NNG 
or NNC. Amino acids encoded by codons having A or T in the first two positions and 
any nucleotide in the third position (asn, lys, ile, tyr, and phe) are far more common in 
 Dictyostelium proteins than human proteins.

An unusual feature of the genome is that 11% comprises simple sequence repeats 
(Chapter 8), more than for any other sequenced genome. There is a bias toward repeat 
units of 3–6 base pairs. Noncoding simple sequence repeats and homopolymer tracts have 
99.2% AT content.

Metazoans
introduction to Metazoans

The metazoans include the animals that are familiar to us, in particular the bilaterians, that 
is, bilaterally symmetric animals (Fig. 19.18). The bilaterian animals are further divided 
into two major groups. (1) The protostomes include the Ecdysozoa (arthropods and nem
atodes), as well as the Lophotrochozoa (annelids and mollusks). We survey the first pro
tostome genomes that have been sequenced such as the insects D. melanogaster and A. 
gambiae, and the nematode C. elegans. (2) The deuterostomes form a superclade consist
ing of the phylum of echinoderms (such as the sea urchin Strongylocentrotus purpuratus), 
the phylum of the hemichordates (such as acorn worms), and the chordates (vertebrates 
as well as the invertebrate cephalochordates and urochordates). These three deuterostome 
phyla descended from a common ancestor about 550 MYA, the time of the Cambrian 
explosion. We discuss a basal member of the deuterostomes (the sea urchin S. purpuratus) 
and a basal member of the chordates (the urochordate sea squirt Ciona intestinalis), and 
we examine the vertebrate genomes such as the fish, mouse, and chimpanzee.

The phylogeny of Figure 19.18  
is consistent with those of 
Figures 19.1 and 19.12, 
although the trees differ in the 
placement of nematodes as 
an outgroup. For discussions 
of bilaterian phylogeny see 
Lartillot and Philippe (2008). For 
alternative classification systems, 
see Cavalier‐Smith (1998) and 
Margulis and Schwartz (1998). 
Karl Leuckart (1822–1898) first 
divided the metazoa into six 
phyla. For a table describing 
the metazoan (animal) kingdom 
superphyla and phyla, see Web 
Document 19.1 at  http://www.
bioinfbook.org/chapter19. For 
a table describing the phylum 
bilateria, including the Coelomata 
(animals with a body cavity), 
Acoelomata (animals lacking a 
body cavity such as flatworms) 
and Pseudocoelomata (such as 
the roundworm C. elegans), see 
Web Document 19.2.Figure 19.18 Phylogenetic relationships of the bilaterians which have a bilateral body  organization. 

The Protostomia include the arthropods or insects such as the fruit fly Drosophila melanogaster and 
the nematode worms such as Caenorhabditis elegans, as well as the mollusks and annelids. The 
 Deuterostomia include the sister phyla Hemichordata and Echinodermata (including the sea urchin 
Strongylocentrotus purpuratus) as well as the Chordata. The chordates are further divided into three 
groups including the vertebrates. This figure was redrawn from the Sea Urchin Genome Sequencing 
Consortium et al. (2006). Used with permission.

fruit �y nematode mollusck annelid

Ecdysozoa Lophotrochozoa

Protostomia

Bilateria

Deuterostomia

Chordata

sea urchin ascidian mouse human

VertebrataCephalochordataUrochordataHemichordata Echinodermata

http://www.bioinfbook.org/chapter19
http://www.bioinfbook.org/chapter19
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As we seek to understand the human genome and what makes us unique as a species 
from a genomic perspective, one approach has been to determine whether our complexity 
and advanced features can be accounted for by a relatively large collection of genes. It is 
now clear that this is not the case; our gene numbers are comparable to those of other spe
cies across the eukaryotic domain. Another notion has been that humans, and vertebrates in 
general, have a large collection of unique genes that are not present in invertebrates. This 
notion is correct to a limited extent, but it too is being challenged. As metazoan genomes 
become sequenced, we find many vertebrate genetic features shared with simpler animals 
(from insects to the invertebrate sea urchin to the sea squirt, a simple chordate).

The title of the next section begins “900 million years ago,” referring to the approxi
mate date of a last common ancestor with the human lineage; in the remaining sections of 
this chapter we continue to track the relatedness of each group to humans. The numbers of 
years since humans last shared a common ancestor with each species are from the primary 
literature or the Time Tree project (Hedges et al., 2006).

900 MYa: the Simple animal Caenorhabditis elegans

Caenorhabditis elegans is a free‐living soil nematode. It has served as a model organ
ism because it is small (about 1 mm in length), easy to propagate (its life cycle is three 
days), has an invariant cell lineage that is fully described, and is suitable for many genetic 
manipulations. Furthermore, it has a variety of complex physiological traits characteristic 
of higher metazoans such as vertebrates, including an advanced central nervous system. 
Many nematodes are parasitic, and an understanding of C. elegans biology may lead to 
treatments for a variety of human diseases.

Another advantage of studying C. elegans is that its genome size of ∼100  Mb is 
relatively small (Fig. 19.19). This genome was the first of an animal and the first of a 
multicellular organism to be sequenced (C. elegans Sequencing Consortium, 1998). The 

Time Tree can be viewed at 
 http://www.timetree.org 

(WebLink 19.44).

The soma of an adult 
hermaphrodite worm consists 
of 959 cells, including 302 cells 
in the central nervous system. 
About 300 species of parasitic 
worms infect humans (Cox, 
2002). While 20,000 nematode 
species have been described, it 
is thought that there may be one 
million species (Blaxter, 1998, 
2003).

Figure 19.19 Overview of roundworm genomes. Image of the anterior end of a Brugia malayi 

microfilaria in a thick blood smear using Giemsa stain is from the CDC (  http://phil.cdc.gov/phil/home.
asp; content provider Mae Melvin).

Divergence dates: Nematodes diverged from arthropods (insects) 800-1000 million years ago (MYA).
 C. elegans diverged from C. briggsae ~80-110 MYA.
Disease relevance: Brugia malayi is the agent of lymphatic �lariasis which infects 120 million people.
Key website: http://www.wormbase.org
 

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Brugia malayi   90-95 Mb 30.5%  6  11,508  10729   
Caenorhabditis briggsae  ~104 Mb 37.4%  6  19,500  10731  
Caenorhabditis elegans  100 Mb 35.4%  6  18,808  13758   

Genus, species Brugia malayi
   Caenorhabditis briggsae
   Caenorhabditis elegans

Selected lineages: Eukaryota; Metazoa; Nematoda; 
Chromadorea; Spirurida; Filarioidea; Onchocercidae; 
Brugia; Brugia malayi

Lineage: Eukaryota; Metazoa; Nematoda; 
Chromadorea; Rhabditida; Rhabditoidea; 
Rhabditidae; Peloderinae; Caenorhabditis; 
Caenorhabditis briggsae

Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidea; Rhabditidae; 
Peloderinae; Caenorhabditis; Caenorhabditis elegans

Brugia malayi

http://www.timetree.org
http://www.wormbase.org
http://phil.cdc.gov/phil/home.asp
http://phil.cdc.gov/phil/home.asp
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genome sequencing was based on physical maps of the five autosomes and single X chro
mosome. The GC content is an unremarkable 36%. It was predicted that there are 19,099 
protein‐coding genes, with 27% of the genome consisting of exons (the current Ensembl 
tally is 20,400).

The C. elegans proteome contains a large number of predicted seven‐transmembrane‐
domain (7TM) receptors of both the chemoreceptor family and rhodopsin family. This 
illustrates the principle that new protein functions can emerge following gene duplication 
(Sonnhammer and Durbin, 1997). It is also notable that many nematode proteins are 
absent from nonmetazoan species (plants and fungi).

The principal web resource for C. elegans is WormBase, a comprehensive database 
(Harris et al., 2014). WormBase features a variety of data, including: genomic sequence 
data; the developmental lineage; the connectivity of the nervous system; mutant pheno
types, genetic markers, and genetic map data; gene expression data; and bibliographic 
resources.

After C. elegans, the genome of the related soil nematode Caenorhabditis briggsae 
was sequenced (Stein et al., 2003; reviewed in Gupta and Sternberg, 2003). Remarkably, 
these organisms speciated about 100 MYA, but they are indistinguishable by eye. Each 
genome is about 100 Mb and encodes a comparable number of genes. The availability 
of C. briggsae sequence facilitated an improved annotation of the C. elegans genome 
and the discovery of about 1300 novel C. elegans genes. The genomes share extensive 
colinearity.

Brugia malayi was the first parasitic nematode to have its genome sequenced (Ghedin 
et al., 2007). This parasite causes lymphatic filariasis, a chronic disease that is  debilitating 
although associated with low mortality. The B. malayi genome contains fewer genes than 
C. elegans (∼11,500 versus ∼18,500), primarily because of lineage‐specific expansions 
in C. elegans. There is a need for drugs to treat filariasis, and Ghedin et al. identified 
a number of gene products that are potential targets for therapeutic intervention. For 
 example, B. malayi lacks most enzymes required for de novo purine biosynthesis, heme 
biosynthesis, and de novo riboflavin synthesis, probably obtaining these compounds from 
its host or its endosymbiont Wolbachia. Drugs that interfere with these synthetic  pathways 
are potential targets.

The genomes of several dozen nematodes are currently being sequenced, and the 
UCSC Genome Browser currently includes assemblies for six nematodes (C. elegans, 
C. briggsae, C. brenneri, C. japonica, C. remanei, Pristionchus pacificus). Annotation 
tracks are available for conservation among these worms and to human proteins. The 
Million Mutation Project lists >2000 mutagenized strains with >180,000 nonsynonymous 
changes in ∼20,000 genes.

900 MYa: Drosophila melanogaster (First insect genome)

The arthropods may be the most successful set of eukaryotes on the planet in terms of the 
number of species. They include the Chelicerates – such as the scorpions, spiders, and 
mites – and the Mandibulata, animals with modified appendages (mandibles) such as the 
insects (table 19.2; Fig. 19.20). While insects first appear in the fossil record from about 
350 MYA, their lineage is thought to have emerged as long as 900 MYA.

The fruit fly D. melanogaster has been an important model organism in biology for 
a century (Rubin and Lewis, 2000). The fly is ideal for studies of genetics because of its 
short life cycle (two weeks), varied phenotypes (from changes in eye color to changes in 
behavior, development, or morphology), and large polytene chromosomes that are easily 
observed under a microscope.

The Drosophila genome was sequenced based in large part upon the whole‐genome 
shotgun sequencing strategy (Adams et al., 2000). Prior to this effort, the whole‐genome 

The 2002 Nobel Prize in 
Physiology or Medicine was 
awarded to three researchers 
who pioneered the use of C. 
elegans as a model organism: 
Sydney Brenner, H. Robert Horvitz, 
and John E. Sulston. See  http://
www.nobelprize.org/nobel_prizes/
medicine/laureates/2002/ 
(WebLink 19.45).

WormBase is available at  http://
www.wormbase.org (WebLink 
19.46).

Vist the Million Mutation Project 
at  http://genome.sfu.ca/mmp/ 
(WebLink 19.47).

Thomas Hunt Morgan was 
awarded a Nobel Prize in 
1933 “for his discoveries 
concerning the role played by 
the chromosome in heredity.” 
See  http://www.nobelprize.
org/nobel_prizes/medicine/
laureates/1933/ (WebLink 19.48). 
In 1995, Edward B. Lewis, 
Christiane Nüsslein‐Volhard, 
and Eric F. Wieschaus shared a 
Nobel Prize “for their discoveries 
concerning the genetic control of 
early embryonic development.” 
These studies concerned 
Drosophila development (  http://
www.nobelprize.org/nobel_prizes/
medicine/laureates/1995/, 
WebLink 19.49).
About 1 million arthropod species 
have been described, but there 
are an estimated 3–30 million 
species (Blaxter, 2003).

http://www.nobelprize.org/nobel_prizes/medicine/laureates/2002/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/2002/
http://www.wormbase.org
http://www.wormbase.org
http://genome.sfu.ca/mmp/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1933/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1995/
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1933/
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shotgun strategy had only been applied to far smaller genomes; this success therefore 
represented a significant breakthrough. The 180 Mb genome is organized into an X chro
mosome (numbered 1), two principal autosomes (numbered 2 and 3), a very small third 
autosome (numbered 4; about 1  Mb in length), and a Y chromosome. Approximately 
one‐third of the genome contains heterochromatin (mostly simple sequence repeats as 
well as transposable elements and tandem arrays of rRNA genes). This heterochroma
tin is distributed around the centromeres and across the length of the Y chromosome. 
The transition zones at the boundary of heterochromatin and euchromatin contain many 
protein‐coding genes that were previously unknown.

Two dozen Drosophila‐related genomes were sequenced (Fig. 19.20). Following the 
sequencing of D. melanogaster and D. pseudoobscura (Richards et al., 2005), a consor
tium of 250 researchers sequenced ten more genomes (Drosophila 12 Genomes Consor
tium, 2007). Seven genomes were sequenced to deep coverage (8.4–11.0×) and others to 
intermediate or low coverage to provide population variation data. These include several 
species that are closely related (e.g., D. yakuba and D. erecta, or D. pseudoobscura and 
D. persimilis) as well as some distantly related (e.g., D. grimshawi is a species restricted 
to Hawaii). Total genome size varies less than three‐fold among the 12 species, and the 
gene content ranges from ∼14,000 to ∼17,000. Based on comparative annotation of pro
tein coding genes, Stark et al. (2007) identified almost 1200 new protein‐coding exons 
and resulted in a modification of 10% of the annotated protein‐coding genes in D. mela-
nogaster.

The availability of so many related genome sequences permits a deeper under
standing of many areas of evolution including genomic rearrangements, the acquisition 
of transposable elements, and protein evolution. Most genes evolve under evolutionary 
constraint at most of their sites, so that the ratio ω of nonsynonymous to synonymous 
mutaions (dN/dS) tends to be low. Of all D. melanogaster proteins, the majority (77%) are 
conserved across all 12 species. The number of noncoding RNA genes is also conserved, 
ranging from ∼600 to ∼900.

The sequencing and analysis of multiple Drosophila genomes (as for multiple 
fungal genomes; Chapter  18) represent important, pioneering effort in eukaryotic 
comparative genomics. Such approaches will result in improved catalogs of coding 
and noncoding genes, regulatory features, and functional regions of genomic DNA. 
A clearer understanding of evolutionary events, including when species diverged 
and how and when genomes have been sculpted by forces from chromosomal alter
ations to lateral transfer of transposable elements, can also be achieved through these 
techniques.

The Drosophila genome 
was sequenced through a 
collaborative effort that included 
Celera Genomics, the Berkeley 
Drosophila Genome Project 
(BDGP;  http://www.fruitfly.
org, WebLink 19.50), and the 
European Drosophila Genome 
Project (EDGP) (Adams et al., 
2000).

table 19.2 arthropods (Phylum arthropoda) as classified at NCbi (  http://www.ncbi.
nlm.nih.gov/taxonomy/). arthropods are invertebrate protostomes (see Fig. 19.18). 
pancrustacea is further divided into the superclasses Crustacea (crustaceans) and 
hexapoda (insects). insecta includes D. melanogaster and A. gambiae.

Subphylum Class

Chelicerata Arachnida (mites, ticks, spiders)

Merostomata (horseshoe crabs)

Pycnogonida (sea spiders)

Mandibulata Myriapoda (centipedes)

Pancrustacea (crustaceans, insects)

Source: NCBI Taxonomy Browser, NCBI.

http://www.ncbi.nlm.nih.gov/Taxonomy/
http://www.ncbi.nlm.nih.gov/Taxonomy/
http://www.fruitfly.org
http://www.fruitfly.org
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900 MYa: Anopheles gambiae (Second insect genome)

The mosquito A. gambiae is most well known as the malaria vector that carries the pro
tozoan parasite P. falciparum (as well as P. vivax, P. malariae, and P. ovale). Mosquitoes 
are responsible for a variety of human diseases, although most of these (except the West 
Nile vector) are generally restricted to the tropics (table 19.3).

Holt et al. (2002) reported the genomic sequence of a strain of A. gambiae using the 
whole‐genome sequencing strategy. The genome is 278 Mb arranged in an X chromo
some (numbered 1) and two autosomes (numbered 2 and 3). A particular challenge in 

A haplotype is a combination of 
alleles of closely linked loci that 
are found in a single chromosome 
and tend to be inherited together.

Figure 19.20 Overview of insect genomes. Photo of a mosquito (Aedes) and scanning electron 
micrograph of Anopheles gambiae from the CDC image library (  http://phil.cdc.gov/phil/details.asp) 
by CDC/Paul I. Howell, MPH and Frank Hadley Collins. Tribolium photo from the NHGRI (  http://
www.genome.gov/17516871).

Selected divergence dates: The insect lineage diverged from the human lineage ~900 million years ago
 (MYA). Hymenoptera (such as the honeybee A. mellifera) diverged from Lepideopterans (such as 
 the silkworm B.mori) and dipterans (such as fruit y and mosquito) 300 MYA; silkworm and fruit y 
 lineages split 280-350 MYA. 
Disease association: mosquitos are vectors for many diseases including dengue and yellow fever
Organism-speci�c web resources:  http://www. ybase.org; http://www.anobase.org.

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Anopheles gambiae   278 Mb 44%  3  13,683  1438   
Apis mellifera DH4  262 Mb 33%  16  15,314  10625   
Bombyx mori (silkworm) 481 Mb 39%  28  18,510  12259, 13125
Danaus plexippus (butter y) 273 Mb 32%  29-30  16,866  11702
Daphnia pulex (water  ea) 197 Mb 41%  12  30,613  288
Drosophila ananassae  217 Mb 42%  4  22,551  12651
Drosophila erecta  135 Mb 42%  4  16,880  12661, 12662   
Drosophila grimshawi  231 Mb 38%  4  16,901  12678 , 12679   
Drosophila melanogaster  200 Mb 42%  4  13,733  13812   
Drosophila mojavensis 130 Mb 40%  4  17,738  12682, 12685   
Drosophila persimilis  193 Mb 45%  4  23,029  12705, 12708    
Drosophila pseudoobscura  193 Mb 45%  5  17,328  10626   
Drosophila sechellia  171 Mb 42%  4  21,332  12711, 12712    
Drosophila simulans   162 Mb 41%  4  17,049  12464   
Drosophila virilis   364 Mb 40%  4  17,679  12688   
Drosophila willistoni   222 Mb 37%  4  20,211  12664   
Drosophila yakuba   190 Mb 42%  4  18,816  12366
Plutella xylostella (moth) 393 Mb 38%   31  18,071  11570   
Tribolium castaneum   210 Mb 38%  10  10,132  12540   

Selected lineages:  Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; 
Diptera; Nematocera; Culicoidea; Culicidae; Anophelinae; Anopheles; Anopheles gambiae str. PEST
(African malaria mosquito)

Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; 
Brachycera; Muscomorpha; Ephydroidea; Drosophilidae; Drosophila; Drosophila melanogaster (fruit  y)

Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Coleoptera; 
Polyphaga; Cucujiformia; Tenebrionidae; Tribolium; Tribolium castaneum (red  our beetle)

Aedes aegypti Anopheles gambiaeTribolium castaneum

http://www.�ybase.org
http://www.anobase.org
http://phil.cdc.gov/phil/details.asp
http://www.genome.gov/17516871
http://www.genome.gov/17516871
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sequencing this genome is the high degree of genetic variation, as manifested in “sin
gle‐nucleotide discrepancies.” There is therefore a mosaic genome structure caused by 
two haplotypes of approximately equal abundance. In contrast, the D. melanogaster and  
M. musculus genomes are relatively homozygous.

Draft genome sequences were subsequently generated for the yellow fever mosquito 
Aedes aegypti and the southern house mosquito Culex quinquefasciatus (a vector for West 
Nile Virus; Arensburger et al., 2010; reviewed in Severson and Behura, 2012). Additional 
Anopheles species have also been sequenced (e.g., Marinotti et al., 2013).

The A. gambiae genome is more than twice the size of that of Drosophila. This differ
ence is largely accounted for by intergenic DNA, and Drosophila appears to have under
gone a genome size reduction relative to Anopheles species (Holt et al., 2002). Anopheles 
gambiae and D. melanogaster diverged about 250 MYA (Zdobnov et al., 2002). Almost 
half the genes in these genomes are orthologs, with an average amino acid sequence iden
tity of 56%. By comparison, the lineage leading to modern humans and pufferfish (see 
below) diverged 450 MYA, but proteins from those two species share even slightly higher 
sequence identity (61%). Insect proteins therefore diverge at a faster rate than vertebrate 
proteins. An outstanding problem is to understand the ability of Anopheles to feed on 
human blood selectively and to identify therapeutic targets. For this effort, it is important 
to identify arthropod‐specific and Anopheles‐specific genes (Zdobnov et al., 2002).

Another interesting aspect of A. gambiae sensu stricto is that it is currently undergo
ing speciation, with two molecular forms (M and S) differentiating. These are indistin
guishable based on morphology, and they co‐inhabit regions of West and Central Africa. 
Lawniczak et al. (2010) sequenced both genomes and observed fixed differences span
ning the entire genomes (including, but not limited to, pericentromeric regions called 
“speciation islands”).

900 MYa: Silkworm and butterflies

The cocoon of the domesticated silkworm Bombyx mori is the source of silk fibers. Xia et 
al. (2004) determined the sequence of its genome. At 429 Mb, it is 3.6 times larger than 
that of fruit fly and 1.5 times larger than mosquito; much of this size can be attributed 
to the presence of more genes (18,510 relative to ∼13,700 in D. melanogaster) and also 
larger genes. Transposable elements have also shaped the genome, comprising 21% of the 
genome. Of that fraction, half arrived just 5 million years ago as a single gypsy‐Ty3‐like 
retrotransposon insertion. Analysis of the B. mori genome has helped to elucidate the 
function of the silk gland (a modified salivary gland) and, although silkworms do not fly 
or have colorful wing patterns, there are homologs of genes implicated in wing develop
ment and pattern formation.

AnoBase is a major resource 
for anopheline species (Topalis 
et al., 2005;  http://anobase.
vectorbase.org, WebLink 
19.51). VectorBase includes 
resources for A. aegypti and 
C. quinquefasciatus (  https://
www.vectorbase.org/, WebLink 
19.52). The Ensembl genome 
browser for the mosquito is 
available at  http://www.
ensembl.org/Anopheles_
gambiae/ (WebLink 19.53).

We described the Drosophila 
Down syndrome cell adhesion 
molecule (DSCAM) in Chapter 10, 
a gene that potentially encodes 
up to 38,000 distinct proteins 
through alternative splicing 
(NP_523649.5). The A. gambiae 
ortholog appears to share the 
same potential for massive 
alternative splicing (Zdobnov et 
al., 2002). See GenBank protein 
accession XP_309810.4.

table 19.3 human diseases borne by mosquitoes. West Nile virus disease data are 
for the year 2012 in the united States (Centers for Disease Control and prevention,  

 http://www.cdc.gov). adapted from budiansky (2002) and holt et al. (2002).

Disease Mosquito species Number of cases

Malaria Anopheles gambiae 500 million

Dengue Aedes aegypti 50 million per year

Lymphatic filariasis Culex quinquefasciatus, Anopheles gambiae 120 million

Yellow fever Aedes aegypti 200,000 per year

West Nile virus disease Culex tarsalis, Culex pipiens, other 5600 per year

http://www.cdc.gov
http://anobase.vectorbase.org
https://www.vectorbase.org/
https://www.vectorbase.org/
http://www.ensembl.org/Anopheles_gambiae/
http://anobase.vectorbase.org
http://www.ensembl.org/Anopheles_gambiae/
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A diamondback moth called Plutella xylostella is a destructive pest that causes 
US$ 4–5 billion in damages to food crops each year. You et al. (2013) characterized its 
genome and compared it to 11 other insect genomes. Bombyx mori is relatively closely 
related (having shared a common ancestor 125 MYA). They suggest that the insect her
bivores coevolved with their mono‐ and dicotyledonous plant hosts, beginning some 
300 MYA.

Several butterfly genomes have been sequenced, including the 273 Mb genome of 
the migratory monarch butterfly Danaus plexippus (Zhan et al., 2011). Each autumn, 
millions of these butterflies migrate thousands of miles south to central Mexico until the 
next spring when they reproduce, fly north, and deposit fertile eggs on milkweed plants. 
Genome analysis hints at adaptations to this extraordinary lifestyle, such as microRNAs 
expressed selectively during summer and circadian clock components that are essential 
for migration.

Butterflies transfer closely related traits between species. The Heliconius Genome 
Consortium (2012) explored this phenomenon in a series of butterfly species whose genus 
is rapidly radiating. They sequenced the Heliconius melpomene genome and noted perva
sive exchange of protective color pattern genes among species.

900 MYa: honeybee

The western honeybee Apis mellifera is of special interest because of its highly social 
behavior. Bee hives are organized around a queen and her workers who transition 
from roles in the hive (such as nurses and hive maintainers) to the outside (such as 
foragers and defenders). The queens typically live ten times longer than the workers 
and lay up to 2000 eggs per day. The workers have brains with only a million neu
rons, but display highly intricate behaviors. Somehow all these differentiated pheno
types are directed by a single underlying genome. The Honeybee Genome Sequenc
ing Consortium (2006) sequenced the A. mellifera genome. There are 15 acrocentric 
chromosomes and a large metacentric chromosome 1; as for human chromosome 2 
(Chapter 20; Fan et al., 2002), this is thought to represent a fusion of two acrocen
trics. Relative to other insect genomes it has a lower GC content, and there were 
fewer predicted protein‐coding genes.

Elsik et al. (2014) offered a strongly revised assembly and annotation of the genome, 
reporting ∼15,300 genes rather than the initial estimate of ∼10,100. This offers a case 
study regarding the challenges of assembly and annotation (see Chapter 15) and the need 
for continuing efforts in these areas for many genomes.

900 MYa: a Swarm of insect genomes

NCBI Genome currently lists nearly 100 completed insect genomes, and many more proj
ects are underway. The i5K Initiative was launched to sequence and analyze 5000 arthro
pods (i5K Consortium, 2013). The many notable projects include the following:

 • Insect specimens from museum collections, as well as plant and fungal material, can 
be sequenced. Staats et al. (2013) discuss some of the opportunities and challenges 
of this approach.

 • The genomes of a leaf‐cutting ant and a red harvester ant species have been sequenced 
(Nygaard et al., 2011; Smith et al., 2011). Bonasio et al. (2010) compared the 
genomes of two socially divergent ant species, Harpegnathos saltator (showing lim
ited dimorphism between queen and workers) and Camponotus floridanus (showing 
extreme dimorphism between queen and workers).

 • Werren et al. (2010) characterized the genomes of parasitoid wasps (Nasonia vit-
ripennis, N. giraulti, and N. longicornis).
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 • J.B.S. Haldane is said to have commented that the Creator “has an inordinate fond
ness of beetles” because there are so many species. Characterized genomes include 
that of the mountain pine beetle Dendroctonus ponderosae (Keeling et al., 2013) and 
the red flour beetle Tribolium castaneum (Tribolium Genome Sequencing Consor
tium et al., 2008).

 • Daphnia pulex is a common water flea, a crustacean found in shallow ponds (it is 
therefore a non‐insect arthropod). Colbourne et al. (2011) sequenced its 197  Mb 
genome that harbors over 30,000 genes, with some estimates as high as 34,000. This 
large gene number could perhaps reflect its ability to reproduce sexually or instead to 
clone itself asexually.

840 MYa: a Sea urchin on the path to Chordates

As we survey the metazoan animals and move from the Protostomia (including the insects, 
nematodes, mollusks, and annelids) to the Deuterostomia (Fig. 19.18), we first come to the 
sister phyla of the hemichordates and echinoderms. The purple sea urchin Strongylocen-
trotus purpuratus is an echinoderm that has served as a model organism for studies of cell 
biology (including embryology and gene regulation) and evolution. The sea urchin serves 
as an outgroup for the chordates. This creature is a marine invertebrate, has a radial adult 
body plan (as shown in the photograph in Fig. 19.21), and has no apparent brain although 
there are neurons and brain functions. An individual can have a lifespan of over a century. 
It may be surprising to consider that it is more closely related to humans than nematodes 
or fruit flies with their well‐defined brains and complex behaviors.

The assembled S. purpuratus genome is 814 megabases (Sea Urchin Genome 
Sequencing Consortium, 2006). Although linkage and cytogenetic maps are unavailable, 

For a brief and useful overview of 
how to interpret the relatedness 
of different species by inspection 
of a phylogenetic tree, see Baum 
et al. (2005).

Figure 19.21 Overview of simple (nonvertebrate) deuterostome genomes. Photograph of purple 
sea urchin from NCBI Genomes website (by Andy Cameron).

Key dates: Ciona divergence from human lineage: 800 million years ago
Genome features: The average gene density is one gene per 7.5 kb in Ciona, 1 gene per 9 kb in fruitfly,
 and 1 gene per 100 kb in human. Some C. intestinalis and sea urchin genome features are 
 intermediate between protostomes and vertebrates (e.g. 5 exons/gene in Drosophila, 6.8/gene
 in Ciona, and 8.8/gene in human). 
Websites: Sea Urchin Genome Project (http://sugp.caltech.edu/resources/annotation.php)
 

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Ciona intestinalis  ~160 Mb 35%  14  15,852  49 
Oikopleura dioica  72 Mb  40%  4  ~17,212 368 
S. purpuratus    814 Mb 37%  ~40  23,300  10736   

Genus, species:
Ciona intestinalis (sea squirt) 
Ciona savignyi (Pacific 
     transparent sea squirt)   
Oikopleura dioica (tunicate)
Strongylocentrotus purpuratus 
   (purple sea urchin)

Selected lineages: Eukaryota; Metazoa; Chordata; Urochordata; Ascidiacea; Enterogona; 
Phlebobranchia; Cionidae; Ciona; Ciona intestinalis

Eukaryota; Metazoa; Echinodermata; Eleutherozoa; Echinozoa; Echinoidea; 
Euechinoidea; Echinacea; Echinoida; Strongylocentrotidae; Strongylocentrotus; 
Strongylocentrotus purpuratus

Strongylocentrotus purpuratusCiona intestinalis 

http://sugp.caltech.edu/resources/annotation.php
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the number of chromosomes has been estimated to be ∼40. There were several outstand
ing technical issues in sequencing the genome (reviewed in Sodergren et al., 2006). 
One is that the sea urchin exhibits tremendous heterozygosity, with 4–5% nucleotide 
differences between single copy DNA of different individuals (this includes SNPs and 
insertions/deletions, and contrasts with ∼0.5% heterozygosity in humans). The single 
male sea urchin that was sequenced displayed tremendous heterozygosity between its 
two haplotypes, making it challenging to distinguish sequencing errors from haplotype 
variants or from segmentally duplicated regions. One way this problem was overcome 
was to sequence bacterial artificial chromosome (BAC) clones of ∼150,000 base pairs, 
in which each BAC corresponds to a single haplotype. A minimal tiling path of BAC 
clones spanned the genome and was sequenced at low (2×) coverage. This complemented 
a deep whole‐genome shotgun assembly. This combined approach was introduced in 
the sequencing of the rat genome, and has become an increasingly common strategy for 
genome sequencing.

The Sea Urchin Genome Sequencing Consortium (2006) predicted about 23,300 
genes for S. purpuratus. Some InterPro and Pfam domains (Chapter 12) are especially 
overrepresented in sea urchin relative to mouse, Drosophila, C. elegans, and sea squirt. 
Most dramatic are three families of receptor proteins that function in the innate immune 
response (toll‐like receptors; NACHT and leucine‐rich repeat‐containing proteins; and 
scavenger receptor cysteine‐rich domain proteins). Each of these genes is present in over 
200 copies, while other animals from humans to fruit fly and nematode typically have 
about 0–20 copies. Another surprising finding is the presence of over 600 genes encod
ing G protein‐coupled chemoreceptors as well as genes implicated in photoreception, 
expressed on the tube feet.

800 MYa: Ciona intestinalis and the path to Vertebrates

The vertebrates include fish, amphibians, reptiles, birds, and mammals. All these crea
tures have in common a segmented spinal column. Where did the vertebrates originate? 
Vertebrates are members of the chordates, animals having a notochord (Fig. 19.18). The 
sea squirt C. intestinalis is a urochordate (also called tunicate), one of the subphyla of 
chordates but not a vertebrate. Ciona is a hermaphroditic invertebrate that offers us a 
window on the transition to vertebrates (Holland, 2002).

Dehal et al. (2002) produced a draft sequence of the C. intestinalis genome by the 
whole‐genome shotgun strategy. At 160 Mb, it is about 12 times larger than typical fungal 
genomes and 20 times smaller than the human genome. There are 15,852 predicted genes 
organized on 14 chromosomes. Most of these predicted genes are supported by evidence 
from expressed sequence tags.

The availability of the Ciona genome sequence allows a comparison with protos
tomes and other deuterostomes and supports its position as related to an ancestral chor
date (Dehal et al., 2002). Almost 60% of Ciona genes have protostome orthologs; these 
presumably represent ancient bilaterian genes. Several hundred genes have invertebrate 
but not vertebrate homologs, such as the oxygen carrier hemocyanin. These comparative 
studies are augmented by the genome sequencing of the related urochordates Ciona savi-
gnyi and Oikopleura dioica. O. dioca has one of the smallest chordate genomes (about 
72 Mb; Seo et al., 2001; Denoeud et al., 2010), and it is an attractive experimental organ
ism because its lifespan is two to four days, it can be maintained in culture, and its females 
are fecund. C. savignyi, a sea squirt, exhibits considerable heterozygosity, with variable 
degrees of heterozygosity across the genome. Eric Lander and colleagues (Vinson et al., 
2005) introduced an algorithmic approach to assembling genome sequences from diploid 
genomes. This method assembles the two haplotypes separately, and therefore requires 
twice the sequencing depth of other whole‐genome sequencing projects. The result is 

The Sea Urchin Genome Database 
is available at  http://spbase.
org (WebLink 19.54); see also 
Cameron et al. (2009).

The phylum Cnidaria is an 
outgroup to the bilateria, having 
diverged about 600–750 MYA. Its 
members include sea anemones, 
hydras, corals, and jellyfishes. 
CnidBase organizes genomic 
and other information on diverse 
cnidarians (  http://cnidbase.
bu.edu, WebLink 19.55). See also 
Ryan and Finnerty (2003).

The Department of Energy Joint 
Genome Institute operates the 
C. intestinalis genome home 
page (  http://genome.jgi‐psf.
org/Cioin2/Cioin2.home.html, 
WebLink 19.56). The GenBank 
accession number for the genome 
is AABS00000000.1, and you 
can find a Ciona BLAST server 
through the NCBI Genomes page 
of eukaryotic projects. The Ghost 
database, a Ciona EST project that 
includes a BLAST server and gene 
expression data, is available at 

 http://ghost.zool.kyoto‐u.ac.jp/
cgi‐bin/gb2/gbrowse/kh/ (WebLink 
19.57).

The Broad Institute offers a 
Ciona savignyi database at  
http://www.broadinstitute.org/
annotation/ciona/ (WebLink 19.58).

http://spbase.org
http://cnidbase.bu.edu
http://cnidbase.bu.edu
http://genome.jgi%E2%80%90psf.org/Cioin2/Cioin2.home.html
http://genome.jgi%E2%80%90psf.org/Cioin2/Cioin2.home.html
http://ghost.zool.kyoto%E2%80%90u.ac.jp/cgi%E2%80%90bin/gb2/gbrowse/kh/
http://www.broadinstitute.org/annotation/ciona/
http://spbase.org
http://ghost.zool.kyoto%E2%80%90u.ac.jp/cgi%E2%80%90bin/gb2/gbrowse/kh/
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substantial improvement in sequence quality and contiguity. Such approaches will be 
increasingly useful as more outbred genomes are sequenced.

There are 2570 Ciona intestinalis genes (one‐sixth) that have orthologs in vertebrates 
but none in protostomes; these genes arose in the deuterostome lineage before the last 
common ancestor diverged into vertebrates, cephalochordates, and urochordates (e.g., 
Ciona). There are 3399 Ciona genes (one‐fifth) that have no identifiable homolog in ver
tebrates or invertebrates and may therefore be tunicate‐specific genes that evolved after 
the divergence of the urochordate lineage.

Ciona has genes involved in processes such as apoptosis (programmed cell death), 
thyroid function, neural function, and muscle action. This provides an opportunity for 
comparative analyses of fundamentally important genes within the chordate lineage. 
For example, nerves communicate with muscles by releasing the neurotransmitter ace
tylcholine from synaptic vesicles in presynaptic nerve terminals. This transmitter dif
fuses across the synapse (a gap between cells) to bind and activate postsynaptic receptors. 
Ciona has genes encoding proteins that function in neurotransmission, including a trans
ferase enzyme that synthesizes acetycholine, an acetycholine transporter that pumps the 
neurotransmitter into vesicles, synaptic vesicle proteins, and neurotransmitter receptors. 
Similar genes are also present in sea urchin, such as the agrin protein that clusters acetyl
choline receptors postsynaptically.

450 MYa: Vertebrate genomes of Fish

The teleosts (or ray‐finned fishes, Actinopterygii) are the largest group of vertebrates with 
∼24,000 known species (more than half the total number of vertebrate species). The ray‐
finned fishes diverged from the lobe‐finned fishes (Sarcopyerygii) about 450 million years 
ago. These relationships are depicted in the phylogenetic tree of Figure 19.22a. The teleosts 
are further shown in Figure 19.22b, including the first four sequenced fish genomes: those 
of the pufferfishes Takifugu rubripes and Tetraodon nigroviridis, the medaka Oryzias 
latipes, and the zebrafish Danio rerio. Dozens of fish genomes have now been sequenced, 
and selected lineages and genome features are presented in Figure 19.23.

The second vertebrate genome sequencing project (after human) was that of the 
Japanese pufferfish T. rubripes, in part because it has a remarkably compact genome. This 
teleost fish has a genome size of 365 Mb, about one‐ninth the size of the human genome 
(Aparicio et al., 2002). However, Takifugu and humans have comparable numbers of pre
dicted protein‐coding genes.

There are several reasons that the Takifugu genome is relatively compact (Aparicio 
et al., 2002):

 • Only 2.7% of the Takifugu genome consists of interspersed repeats, based on analy
ses with RepeatMasker. This contrasts with 45% interspersed repeats in the human 
genome (Chapter 20). Still, every known class of eukaryotic transposable elements 
is represented in Takifugu. The most common Takifugu repeat is the LINE‐like ele
ment Maui (6400 copies), while in humans there are one million copies of the most 
common repeat, Alu.

 • Introns are relatively short. Seventy‐five percent of Takifugu introns are <425 base 
pairs in length, while in humans 75% of introns are <2609 base pairs. In Takifugu, 
about 500 introns have a length greater than 10 kb, while in humans more than 12,000 
introns are greater than 10 kb.

 • Gene loci occupy about 108 Mb of the total euchromatic DNA (320 Mb). This rep
resents about one‐third of the genome, a far higher fraction than in mouse or human.

After the Takifugu genome was completed, Jaillon et al. (2004) reported the 
sequence of another pufferfish, Tetraodon nigroviridis. This permitted comparative 

A Ciona protein (NP_001027621.1) 
has 46% identity to human 
choline acetyltransferase 
(NP_065574.3) and 52% identity 
to a sea urchin ortholog 
(XP_780154.3). A Ciona gene 
(accession AB071998.1) encodes 
a protein with 56% identity to a 
human vesicular acetylcholine 
transporter (NP_003046.2). 
Many such genes also function 
in neurotransmission in 
invertebrates.

Fugu rubripes is also called 
Takifugu rubripes. The 
International Fugu Genome 
Consortium was responsible 
for the sequencing of its 
genome. A Takifugu Browser is 
at  http://www.ensembl.org/
Takifugu_rubripes/Info/Index 
(WebLink 19.59). Produced by the 
Wellcome Trust Sanger Institute 
and the European Bioinformatics 
Institute, it is a major portal to 
this genome and others.

http://www.ensembl.org/Takifugu_rubripes/Info/Index
http://www.ensembl.org/Takifugu_rubripes/Info/Index
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Figure 19.22 (a) Phylogenetic tree of the vertebrates. The vertical axis corresponds to the abun
dance of extant species in each group, with representative names given. The Sarcopterygii (lobe finned‐
fishes) include coelacanths, lungfish, and tetrapods (amphibians, birds, reptiles, mammals); more 
detailed  phylogenies of the tetrapods are presented in Figures 19.24 and 19.26 below. The x axis shows 
the divergence times based on fossil records, which differ somewhat from estimates made by molec
ular sequence analyses. Redrawn from Venkatesh et al. (2007). Licensed under Creative Commons 
 Attribution License 2.5. (b) Phylogenetic tree of the teleosts showing the relationships of the first four 
sequenced fish genomes. Adapted from Kasahara et al. (2007) with permission from Macmillan Pub
lishers.
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analyses between Takifugu and human (at the time resulting in the prediction of ∼900 
novel human genes). A main focus of the genome analysis was on the evidence that 
telosts are descendants of an ancient whole‐genome duplication. This was followed by 
massive gene loss, as described for separate whole‐genome duplication events in fungi 
(Chapter 18). Jaillon et al. further inferred that the ancestral vertebrate genome had 12 
chromosomes.

An emerging field studies the composition of ancestral karyotypes. Yuji Kohara and 
colleagues (Kasahara et al., 2007) generated a draft sequence of the medaka (reviewed 
in Takeda and Shimada, 2010). Upon comparing the four available fish genomes with 
the human genome, they proposed a model of genome evolution in which a fish/human 
ancestor had 13 chromosomes. There are other models of the ancestral karyotype. How
ever, there is a consensus that several whole‐genome duplications occurred in the tele
ost lineage (e.g., Van de Peer, 2004; Christoffels et al., 2004; Postlethwait, 2007). Once 
duplicate genes are identified within and between genomes (such as fish and human), 
the date of the duplication events can be estimated by using phylogenetic trees (e.g., 
neighbor‐joining trees, assuming a constant molecular clock). About one‐third of the 
duplicated genes in Takifugu seem to derive from a whole‐genome duplication event 
that occurred ∼320 MYA, as suggested by Ohno (1970). Approximately 1000 pairs of 
duplicated genes (paralogs) were identified in both Tetraodon and Takifugu and, based 
on Ks frequencies, 75% represent ancient duplications that occurred prior to the diver
gence of the Takifugu and Tetraodon lineages. Two other whole‐genome duplication 
events occurred earlier (at the time of divergence of jawless and jawed vertebrates, 
∼500  MYA) and more recently in the salmonid lineage at ∼50 MYA (reviewed in  
Postlethwait, 2007). 

Figure 19.23 Overview of fish genomes. The D. rerio image is from the NHGRI and Shawn Bur
gess (  http://www.genome.gov/17516871).

Key dates: divergence from human lineage: ~450 million years ago. T. nigroviridis and T. rubripes
 diverged 18-30 MYA. Zebrafish and fugu shared a common ancestor ~325 MYA.
Disease relevance:  Many human disease genes have fish orthologs.
Websites: http://zfin.org/ (zebrafish).

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Callorhinchus milii  974 Mb 42%  --  33,094  689
Danio rerio (zebra�sh)  1412 Mb 37%  25  42,422  50
Gasterosteus aculeatus 447 Mb 45%  24  20,787  146
Latimeria chalumnae  2860 Mb 43%  24  22,979  3262
Oryzias latipes   870 Mb 42%  24  20,141  542    
Takifugu rubripes  391Mb  46%  22  20,796  63
Tetraodon nigroviridis  342 Mb 47%  21  27,918  191

Genus, species (common name):
Callorhinchus milii (elephant shark)
Danio rerio (zebrafish)
Gasterosteus aculeatus (three spined stickleback)
Latimeria chalumnae (African coelacanth)
Oryzias latipes (Japanese medaka)
Takifugu rubripes (pufferfish)
Tetraodon nigroviridis (freshwater pufferfish)

Selected lineages: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Actinopterygii; 
Neopterygii; Teleostei; Ostariophysi; Cypriniformes; Cyprinidae; Danio; Danio rerio

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Actinopterygii; Neopterygii; Teleostei; 
Euteleostei; Neoteleostei; Acanthomorpha; Acanthopterygii; Percomorpha; Tetraodontiformes; 
Tetradontoidea; Tetraodontidae; Takifugu; Takifugu rubripes (pufferfish)

Danio rerio

http://zfin.org/
http://www.genome.gov/17516871
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Other sequenced fish genomes include the following.

 • Zebrafish remains a key organism for the study of vertebrate gene function. Howe 
et al. (2013) presented an updated reference genome sequence.

 • The coelancanth was a lobe‐finned fish that was known from the fossil record and 
thought to have become extinct 70 MYA; it was therefore a great surprise when a 
living specimen was found in 1938. Amemiya et al. (2013) reported the genome of 
the African coelacanth Latimeria chalumnae. This fish, along with lungfish, is the 
closest living fish relative to the tetrapods and therefore offers insight into the early 
evolution of land animals.

 • The Pacific bluefin tuna fish (Thunnus orientalis) is a predator that relies on color 
vision to sense its prey. Nakamura et al. (2013) sequenced the genome and identified 
selective variants among its visual pigment (opsin) genes.

 • The sex chromosomes in humans and other mammals are XX for females and XY for 
males. In fish and in birds, males are ZZ and females are ZW (i.e., females are hetero
gametic). It has been extraordinarily challenging to sequence the Y chromosome 
(see Chapter 20). Chen et al. (2014) selected a flatfish (the half‐smooth tongue sole 
Cynoglossus semilaevis) for genome sequencing because of its evolutionarily young  
W chromosome, typical of all fish, that is less degenerate than that found in birds. 
They identified supression of recombination, a driving force for sex chromosome evo
lution.The flatfish W chromosome has lost about two‐thirds of its original protein‐cod
ing gene content, similar to the process of gene loss in the mammalian Y chromosome.

 • The elephant shark Callorhinchus milii genome was sequenced lightly (Venkatesh 
et al., 2007), representing a cartilaginous fish that is an outgroup to the teleosts 
(Fig. 19.22a).

350 MYa: Frogs

The amphibians diverged from other vertebrates ∼350 MYA (Fig. 19.24). Xenopus laevis 
has long been a model organism, particularly for embryological research. Its genome 
is tetraploid however, and so the diploid Western clawed frog Xenopus tropicalis was 
selected for sequencing. Its genome is estimated to be 3.1  Gb on 18 chromosomes. 
Hellsten et al. (2010) produced a draft sequence, annotating ∼20,000 genes.

320 MYa: reptiles (birds, Snakes, turtles, Crocodiles)

The amniotes are vertebrates that live on land including mammals, birds, and lizards. 
Some (such as cetaceans) have returned to the sea. This great group split into the two 
groups of modern mammals and reptiles about 320 MYA. The first sequencing of reptile 
genomes has provided fascinating insights into the birds, crocodiles and alligators, turtles, 
lizards, and snakes. A phylogenetic tree shows the relationships of reptiles to mammals 
(Fig. 19.24).

The first of these to be characterized was a bird. When the chicken genome was 
sequenced by the International Chicken Genome Sequencing Consortium (2004) it pro
vided a unique perspective on the human genome because it is far closer to humans than 
fish, but farther than the rodents (diverged ∼90 MYA). It therefore provided an excellent 
distance for identifying highly conserved functional elements (Chapter 8). The genome is 
1200 megabases and is organized in 38 autosomes and a pair of sex chromosomes (ZW 
is the heterogametic female and ZZ is male; chromosome W is extremely small). The 
karyotype is therefore 2n = 78. The autosomes include many minichromosomes, typically 
having a high GC content, a high gene content, and very high recombination rates (a 
median value of 6.4 cM per megabase; by comparison the human genome has a range of 
1–2 cM/Mb and the mouse genome 0.5–1.0 cM/Mb).

Visit Zfin, the principal zebrafish 
web resource, at  http://zfin.org/ 
(WebLink 19.60).

http://zfin.org/
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The chicken genome is smaller than the human genome by a factor of three because it 
has relatively few repetitive elements. Interspersed repeats occur as transposable elements 
in decay. There is no evidence for active short interspersed line elements (SINEs) in the 
past 50 million years, in contrast to their active roles in the human genome. Expansions 
and reductions of protein‐coding gene families occur; for example, an avian‐specific fam
ily of keratins is used to create claws, scales, and feathers. One surprising expansion is a 
family of 218 genes that are predicted to encode olfactory receptors and are orthologous 
to two human genes (OR5U1 and OR5BF1).

Additional bird genomes that have been characterized include the duck (Anas platy-
rhynchos; Huang et al., 2013); domestic turkey (Meleagris gallopavo; Dalloul et al., 
2010); and zebra finch (Taeniopygia guttata; Warren et al., 2010) (Fig. 19.25). The Assem
blathon 2 (an assessment of assembly strategies; Chapter 9) featured the bird Melopsit-
tacus undulatus, the fish Maylandia zebra, and the snake Boa constrictor constrictor 
(Bradnam et al., 2013).

The turtle lineage diverged from the avian/crocodilian group ∼250 MYA at the start 
of the Triassic period (Fig. 19.24). The western painted turtle genome displays a slow 
rate of evolution (Chrysemys picta; Shaffer et al., 2013). It lost the ability to form teeth 
∼150–200 MYA (birds lost this ability ∼80–100 MYA) and genes associated with tooth 
formation became pseudogenes. Genome analysis may help explain turtles’ striking 
longevity as well as low temperature and low oxygen tolerance. Wang et al. (2013) 
sequenced two different turtle genomes, confirming that turtles are more closely related 
to birds and crocodilians than to lizards and snakes.

The crocodilians, sister group to birds, include 23 species in the three major groups 
Alligatoridae, Crocodylidae, and Gavialidae. Wan et al. (2013) sequenced the genome of 
the Chinese alligator (Alligator sinensis), annotating 22,200 genes. These alligators can 

The red jungle fowl, for which 
the genome was sequenced, 
is the precursor to the 
domesticated chicken.

Figure 19.24 Phylogeny of the reptiles and other vertebrates. The phylogeny was constructed using 
first and second codon positions of 1113 single‐copy protein‐coding genes. Tree topology is supported 
by 100% bootstrap values (at most clades; not shown). Purple ellipses at the nodes correspond to 95% 
credibility intervals of the estimated posterior distributions of the divergence times. Red circles (with 
yellow outlines) indicate fossil calibration times. Redrawn and adapted from Wang et al. (2013), with 
permission from Macmillan Publishers.
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dive underwater for ∼12 minutes at a time (sometimes reportedly for 1–2 hours), or for 
shorter more active dives during mating or killing prey. Wan et al. (2013) identified four 
crocodilian‐specific hemoglobin genes (an alpha subunit HBA1 and three beta subunits 
HBB2, HBB4, and HBB5). Several of these are mutated to a form that facilitates oxygen 
binding, likely helping these creatures hold their breath.

180 MYa: the platypus and Opposum genomes

There are three main groups of mammals: (1) eutherians (placental mammals such as 
humans); (2) metatherians (marsupials) such as the opossum, koala, and kangaroo; and 
(3) prototherians such as the platypus (Fig. 19.26; also shown in Fig. 19.24). Let’s look at 
the draft genomes of the very unusual platypus and opossum (summarized in Fig. 19.27).

The platypus (Ornithorhynchus anatinus) has features that seem to place it in 
between mammals and reptiles: males have reptile‐like venom and females lactate like 
mammals but lay eggs like reptiles. Males have five X and five Y chromosomes (sperm 
having 5X 5Y), and multiple sex chromosomes share limited homology with the bird Z 
chromosome; sex determination mechanisms as well as sex chromosome dosage com
pensation mechanisms are unknown. Warren et al. (2008) produced a draft sequence of 
the platypus genome. There were typical numbers of protein‐coding genes and noncoding 
genes, as well as an expansion of small nucleolar RNAs (snoRNAs). Microsatellite con
tent is comparable to that of reptiles while interspersed repeats are typical of mammalian 

Figure  19.25 Overview of reptilian genomes. Photograph from the NHGRI and Bill Payne (  
http://www.genome.gov/17516871).

Key dates: chicken divergence from human lineage: ~320 MYA. Duck and chicken lineages diverged 
 ~90 MYA. Turtles last shared a common ancestor with bird/crocodile lineage ~250 MYA.
 Disease relevance: chicken is an important non-mammalian vertebrate model organism for studies
 of embryonic development, virus infection (the �rst tumor virus, Rous sarcoma virus, and the
 �rst oncogene, src were identi�ed in the chicken). 
Genome features: the chicken genome is ~three-fold smaller than other mammalian genomes, and 
 has a relatively small proportion of interspersed repeat content. About 70 Mb of the sequence
 is alignable with human.  While mammals display XY-type sex determination, birds display 
 ZW-type; non-avian reptiles exhibit XY, ZW, or temperture-dependent sex determination.
Key website: http://aviangenomes.org/

     Haploid GC     Number of Number of NCBI
     genome size content   chromos. genes  Genome ID
Alligator sinensis (Chinese alligator) 2271 Mb 44.6%  
Anas platyrhynchos (mallard)  1105 Mb 41.2%        10  16,376  2793
Anolis carolinensis (green anole) 1799 Mb 40.8%        13  16,822  708
Gallus gallus (chicken)  1047 Mb 41.9%        39  21,211  111
Meleagris gallopavo (turkey)  1063 Mb 41.6%        32  13,282  112
Pelodiscus sinensis (turtle)  2202 Mb 44.5%         –  21,252  14578
Taeniopygia guttata (zebra �nch) 1232 Mb 41.3%        32  15,287  367

Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Archosauria; Dinosauria; Saurischia; Theropoda; 
Coelurosauria; Aves; Neognathae; Galliformes; Phasianidae; 
Phasianinae; Gallus; Gallus gallus (red jungle fowl)

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; 
Sauropsida; Sauria; Testudines + Archosauria group; Testudines; 
Cryptodira; Trionychoidea; Trionychidae; Pelodiscus sinensis (Chinese soft-shelled turtle)

Eukaryota; ... Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Sauropsida; 
Sauria; Testudines + Archosauria group; Archosauria; Crocodylia; Alligatoridae; Alligatorinae; Alligator 

http://aviangenomes.org/
http://www.genome.gov/17516871
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Figure 19.26 Phylogenetic tree depicting mammalian genomes. The genomes of many of these 
organisms have been sequenced. Note that the branch lengths of the rat and mouse lineages are long 
relative to other members of the clade containing humans (the Euarchontoglires), reflecting a faster evo
lutionary rate. Data from  http://www.nisc.nih.gov/data/ and Margulies et al. (2005).
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Figure  19.27 Overview of the genome of the short‐tailed opossum Monodelphis domestica, a 

marsupial. Photograph from the NHGRI (  http://www.genome.gov/17516871).

Selected divergence dates: The platypus lineage diverged from the human lineage ~180 MYA, while the
 marsupials diverged ~160 MYA.  
Genome features: Opposum autosomes are extremely large (the smallest, at 257 Mb, is larger than human
 chromosome 1). 
Disease association: M. domestica is a model for radiation-induced malignant melanoma. Newborn 
 opposums are unique in their ability to recover from complete transections of the spinal cord.
Organism-speci�c web resources:  http://www.broad.mit.edu/mammals/opossum

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Monodelphis domestica 3600 Mb 37.7%  9  18-20,000 220
Ornithorhynchus anatinus 1996 Mb 45.7%  52  19,365  110  

Lineage: Eukaryota; Opisthokonta; Metazoa; 
Eumetazoa; Bilateria; Deuterostomia; Chordata;
 Craniata; Vertebrata; Gnathostomata; 
Teleostomi; Euteleostomi; Sarcopterygii; 
Dipnotetrapodomorpha; Tetrapoda; Amniota; 
Mammalia; Prototheria; Monotremata; 
Ornithorhynchidae; Ornithorhynchus anatinus
(platypus)

Eukaryota; Metazoa; Chordata;  Craniata; Vertebrata; Euteleostomi; Mammalia; Metatheria; 
Didelphimorphia; Didelphidae; Monodelphis; Monodelphis domestica (gray short-tailed opossum)

O. anatinus M. domestica

http://www.nisc.nih.gov/data/
http://www.broad.mit.edu/mammals/opossum
http://www.genome.gov/17516871
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genomes. The overall GC conent (45.7%) is far higher than that observed in most mam
malian genomes (∼41%).

The genome sequence of the gray, short‐tailed opossum Monodelphis domestica is 
the first from the metatherians (Mikkelsen et al., 2007; Fig. 19.27). Its genome size is com
parable to that of humans, organized into eight autosomes (257 megabases to 748 mega
bases). These autosomes are extremely large (the shortest one is longer than the longest 
in humans, chromosome 1). In contrast, the opossum X chromosome is extremely short 
(∼76 megabases), smaller than that of any known eutherian.

The GC content of the M. domestica genome is 37.7%, lower than that of other amni
ote genomes (40.9–41.8%). Mikkelsen et al. note that the average recombination rate for 
the autosomes (∼0.2–0.3 centimorgans per megabase) is lower than in other amniotes, 
consistent with a model in which the genome has undergone limited recombination.

In eutherian mammals, females achieve dosage compensation of the X chromosome 
by the random inactivation of either the maternal or paternal X in female embryos. This 
is accomplished by an X inactivation center (XIC) that includes the XIST gene. Its RNA 
product coats and silences one X chromosome copy. In contrast, metatherian mammals 
such as the opossum inactive the paternal X. Mikkelsen et al. found no evidence for XIST 
in the opossum genome. While the human X chromosome has undergone remarkably 
little change since the eutherian radiation ∼100 million years ago (Fig. 20.4), the opossum 
X chromosome has undergone large‐scale rearrangments (affecting the XIC and X‐linked 
pseudoautosomal region).

The predicted gene content of M. domestica (22,443) is comparable to that of humans, 
with relatively small numbers of organism‐specific genes. Conserved noncoding elements 
(Chapter  8), rather than genes, comprise the majority of the well‐conserved sequence 
elements.

100 MYa: Mammalian radiation from Dog to Cow

A spectacular radiation of mammalian species occurred approximately 100–95  MYA. 
The tree of Figure 19.26 shows the primates and rodents as part of a group called euar
chontoglires. The other eutherian organisms include dogs and cats, bats, armadillos, and 
elephants. We highlight several draft genome sequences. In each case the number of 
genes and repetitive elements are catalogued; accelerated evolution of particular genes 
is determined; expansion and contraction of gene families is noted; comparative analysis 
(including phylogeny) is performed. Almost all the draft genome sequence reports note 
that most genes have human counterparts; often the core eukaryotic genes approach of 
CEGMA (Chapter 15) is employed to confirm adequate annotation. We summarize some 
of the findings in Figure 19.28.

 • Bats are notable as the only mammals capable of sustained flight and as reservoirs for 
highly pathogenic viruses. Zhang et al. (2013) sequenced the genomes of the fruit bat 
Pteropus alecto and the insectivorous bat Myotis davidii.

 • Following a 1.5× coverage of the dog genome by Craig Venter and colleagues 
(Kirkness et al., 2003), Lindblad‐Toh et al. (2005) reported a high‐quality draft 
genome sequence. There are ∼400 modern dog breeds and many have a high preva
lence of particular diseases due to breeding. A boxer was selected because that breed 
has relatively high homozygosity.

 • There are >830 million goats in the world and >1000 goat breeds. Analysis of a black 
goat genome by Dong et al. (2013), complemented by RNA‐seq from hair follicles, 
revealed a large family of keratin genes that may contribute to the production of 
cashmere.

 • Pigs were domesticated beginning ∼10,000 years ago. Analysis of a draft genome 
sequence (including further sequencing of ten other unrelated wild boars) pro
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vided evidence for a split into Asian and European lineages in the mid‐Pleistocene 
(1.6–0.8 MYA).

 • We discussed challenges associated with the assembly and annotation of genomes 
in Chapter 15, and highlighted the taurine cattle (cow) genome as an example. The 
Bovine Genome Sequencing and Analysis Consortium et al. (2009) reported a draft 
genome sequence including evidence for five metabolic genes that are deleted or 
diverged relative to their human orthologs. Changes to PLA2G4C, FAAH2, IDI2, 
GSTT2, and TYMP could reflect adaptations of fatty acid metabolism.

For a discussion of the methodology involved in sequencing the genomes of many 
mammals to produce the tree presented in Figure 19.26, see Web Document 19.3.

90 MYa: the Mouse and rat

The sequencing and analysis of the mouse genome represents a landmark in the history 
of biology. Following the human, the mouse was the second mammal to have its genome 
sequenced. Two groups independently sequenced the mouse genome: the Mouse Genome 
Sequencing Consortium (Mouse Genome Sequencing Consortium et al., 2002) and Cel
era Genomics. Subsequently the Mouse Genome Sequencing Consortium produced a 
high‐quality finished assembly (Church et al., 2009). This defined 20,210 protein‐coding 
genes; closed 175,000 gaps; added 139 Mb of novel sequence; and corrected numerous 
assembly errors.

The mouse is an excellent model for understanding human biology (Fig. 19.29):

 • Forty percent of all mammalian species are rodents (Churakov et al., 2010), highlighting 
their importance.

Figure 19.28 Overview of the dog genome. The photograph is of a boxer (Tasha) whose genome 
was sequenced. Photograph from the NHGRI website and Paul Samollow (  http://www.genome.
gov/17516871).

Selected divergence dates: The Canidae (dogs) include 34 closely related species that diverged in the
 past ~10 million years. Dogs shared a common ancestor with cats ~60 MYA, and with horses
 ~90 MYA. 
Genome features: About 5.3% of the human and dog lineages contain functional elements that have
 been under purifying constraint. These have almost all been retained in the mouse as well.
Key website: http://www.ensembl.org

Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Deuterostomia; 
Chordata; Craniata; Vertebrata; Gnathostomata; Teleostomi; Euteleostomi; 
Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; 
Theria; Eutheria; Boreoeutheria; Laurasiatheria; Carnivora; Caniformia; 
Canidae; Canis; Canis lupus familiaris (dog)

Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria; Deuterostomia; 
Chordata; Craniata; Vertebrata; Gnathostomata; Teleostomi; Euteleostomi; 
Sarcopterygii; Dipnotetrapodomorpha; Tetrapoda; Amniota; Mammalia; 
Theria; Eutheria; Boreoeutheria; Laurasiatheria; Cetartiodactyla; Ruminantia; 
Pecora; Bovidae; Caprinae; Capra hircus (goat)

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Bos taurus (cattle)  2670 Mb 41.9%  31  32,607  82
Canis lupus familiaris (dog) 2500 Mb 41%  39  28,995  85
Capra hircus (goat)  2636 Mb 42.2%  31  25,789  10731
Myotis davidii (bat)    2060 Mb 42.7%  --  15,630  14635
Pteropus alecto (bat)  1986 Mb 39.9%  --  19,677  12056
Sus scrofa (pig)  2809 Mb 42.5%  20  35,252  84

http://www.ensembl.org
http://www.genome.gov/17516871
http://www.genome.gov/17516871
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 • Remarkably, although these two organisms diverged about 90 MYA, most annotated 
genes in the mouse genome have an ortholog in the human genome. Church et al. 
detected 15,187 human and mouse genes with simple 1:1 orthologous relationships. 
These have mean nucleotide and amino acid identities of 85.3% and 88.2%, 
respectively.

 • In addition to sharing thousands of orthologous protein‐coding genes, the mouse and 
human genomes have large tracts of homologous nonprotein‐coding DNA. These 
conserved sequences provide insight into regulatory regions of the genome or non
coding genes (Hardison et al., 1997; Dermitzakis et al., 2002).

 • The mouse and human share many physiological features. Mice therefore make an 
important model for hundreds of human diseases, from infectious diseases to com
plex disorders.

 • There are over 450 inbred strains of mice, and >1000 mouse strains having spon
taneous mutations. Mutations can be introduced into the mouse through random 
mutagenesis approaches such as chemical mutagenesis or radiation treatment (Chap
ter 14). Mutations and other genetic modifications can also be introduced through 
directed approaches such as transgenic, knockout, and knock‐in technologies.

Mouse Genome Sequencing Consortium et al. (2002) described 11 main conclusions 
of the mouse genome‐sequencing project:

 1. The total length of the euchromatic mouse genome is 2.5  Gb in size, about 14% 
smaller than the human genome (2.9 Gb). In contrast to other, more compact genomes 
we have discussed, the mouse genome (like the human genome) averages about one 
gene every 100,000 base pairs of genomic DNA. The GC content is comparable, with 
mean values of 42% (mouse) versus 41% (human). There are 15,500 CpG islands, 
about half the number observed in humans (see Chapter 20).

 2. Over 90% of the mouse and human genomes can be aligned into conserved synteny 
regions. After the divergence of mouse and human about 90  MYA, chromosomal 

The mouse genome is accessible 
through the three main genome 
browser sites:  http://www.
ensembl.org/Mus_musculus/ 
(WebLink 19.61),  http://genome.
ucsc.edu/ (WebLink 19.62), and 

 http://www.ncbi.nlm.nih.gov 
(WebLink 19.63). The GenBank 
accession number of the 2002 
project is CAAA01000000.1.

The December 2011 GRCm38 
mouse build includes ∼16,000 CpG 
islands and a 41.7% GC content. 
For human there are 30,477 CpG 
islands in the human GRCh38 build 
of December 2013.

Figure 19.29 Overview of rodent genomes. The photograph of a rat is from the NHGRI website  

(  http://www.genome.gov/17516871).

Selected divergence dates: Mouse and rat last shared a common ancestor 12-24 MYA. The rodent lineage
 diverged from the human lineage ~90 MYA.
Disease relevance. There are over 450 inbred mouse strains, and many of these serve as disease models.
 Knockouts and other manipulations of mouse genes allow studies of human diseases. Rats
 (like mice) are host to many pathogens, and are carriers for over 70 human diseases.
Web resources: Mouse Genome Informatics (http://www.informatics.jax.org/);
 Rat Genome Database (http://rgd.mcw.edu/wg/)

    Haploid GC content Number of Number of NCBI
    genome size   chromos. genes  Genome ID
Mus musculus   2600 Mb 42%  20  23,049  13183   
Rattus norvegicus  2750 Mb ~42%  21  20,973  10629   

Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; 
Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; Mus; 
Mus musculus

Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; 
Glires; Rodentia; Sciurognathi; Muroidea; Muridae; Murinae; 
Rattus; Rattus norvegicus (see photo)

http://www.informatics.jax.org/
http://rgd.mcw.edu/wg/
http://www.genome.gov/17516871
http://www.ensembl.org/Mus_musculus/
http://genome.ucsc.edu/
http://www.ncbi.nlm.nih.gov
http://www.ensembl.org/Mus_musculus/
http://genome.ucsc.edu/
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DNA was shuffled in each species. However, large regions of DNA obviously cor
respond. As an example of how to visualize this, Ensembl offers a human/mouse 
conserved synteny viewer (e.g, Fig. 20.14).

 3. About 40% of the human genome can be aligned to the mouse genome at the nucleo
tide level. This represents most of the orthologous sequence shared by these genomes. 
For 12,845 orthologous gene pairs, 70.1% of the corresponding amino acid residues 
were identical.

 4. The neutral substitution rate in each genome can be estimated by comparing thou
sands of repetitive DNA elements to the inferred ancestral consensus sequence. The 
average substitution rate is 0.17 per site in humans and 0.34 per site in mouse. The 
mouse genome also shows a twofold higher rate of acquisition of small (<50 base 
pair) insertions and deletions.

 5. The proportion of small (50–100 base pair) segments in the mammalian genome that 
is under purifying selection is about 5%. This is estimated by comparing the neutral 
rate to the extent of sequence conservation in the genome. Since this 5% value is 
greater than the proportion of protein‐coding genes in the genome, genomic regions 
that do not code for genes must be selected for, such as regulatory elements. Regula
tory regions such as those that control liver‐specific and muscle‐specific expression 
were conserved between mouse and human to a greater extent than regions of neutral 
DNA, although less than regions that are protein coding.

 6. The mammalian genome is evolving in a nonuniform manner, with variation in the 
rates of sequence divergence across the genome. The neutral substitution rate varied 
across all chromosomes (and was lowest on the X chromosome), with a higher sub
stitution rate associated with extremes of GC content.

 7. The mouse and human genomes each contain about 30,000 protein‐coding genes. 
(Note that these 2002 estimates have been revised with ongoing annotation and com
parative genomics efforts, as summarized in Fig. 19.29.) About 80% of mouse genes 
have a single identifiable human ortholog. Less than 1% of human genes have no 
identifiable ortholog in the mouse, and vice versa. The sequencing effort revealed 
the existence of 9000 previously unknown mouse genes, as well as 1200 new human 
genes.

 8. Dozens of local gene family expansions have occurred in the mouse genome, such 
as the olfactory receptor gene family. About 20% of this family are pseudogenes in 
mouse, suggesting a dynamic interplay between gene expansion and gene deletion. 
The lipocalins also underwent a mouse lineage‐specific expansion. For example, the 
mouse X chromosome contains a cluster of genes related to odorant‐binding protein 
that is absent in humans. Such expansions may account in part for the physiological 
differences between primates and rodents in terms of reproductive processes.

 9. Particular proteins evolve at a rapid rate in mammals. For example, genes involved in the 
immune response appear to be under positive selection, which drives their evolution.

 10. Similar types of repetitive DNA sequences are found in both human and mouse. (We 
discuss human repetitive sequences in Chapter 20.)

 11. The public consortium described 80,000 single‐nucleotide polymorphisms (SNPs). 
We introduced SNPs in Chapter 8 and discuss them further in Chapter 20. GRCm38 
currently lists >8 million common SNPs.

A fundamental problem is to understand the genetic variation that underlies the 
phenotype differences of different mouse strains. Frazer et al. (2007) resequenced the 
genomes of 15 mouse subspecies or strains. These included four wild‐derived strains 
(M. m. musculus, M. m. castaneus, M. m. domesticus, and M. m. molossinus). They also 
sequenced 11 wild‐derived strains which were genetically more pure because they have 
been bred to homozygosity. Frazer et al. resequenced almost 1.5 billion bases (58%) of 

The mouse sequencing 
consortium (Mouse Genome 
Sequencing Consortium et al., 
2002. p. 526) defined a syntenic 
segment as “a maximal region 
in which a series of landmarks 
occur in the same order on 
a single chromosome in both 
species.” They identified 
558,000 orthologous and highly 
conserved landmarks in the 
mouse assembly, comprising 
7.5% of the mouse assembly.
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these genomes and, by comparing them to the reference strain C57BL/6J, they identified 
8.3 million SNPs. (The false positive rate of discovery was 2%, the accuracy of genotype 
calls was >99%, and the false negative rate was assessed as roughly half.) They gener
ated a haplotype map across the mouse genome, defining ancestry breakpoints at which 
pairwise comparisons indicated a transition to (or from) high SNP densities. The genome‐
wide SNP map included over 40,000 segments with an average length of 58 kb and a 
range of 1 kb to 3 Mb. The significance of this project is that it describes the genetic basis 
of variation in these 15 strains, all of which have unique properties such as behaviors or 
disease susceptibilities. The C57BL/6J and C57BL/6N mouse strains exhibit significant 
phenotypic differences. Simon et al. (2013) reported 34 SNPs and two indels that could 
distinguish them.

The most comprehensive mouse resource is the Mouse Genome Informatics (MGI) 
database and its associated sites (see Chapter 14; Blake et al., 2013).

Rats and mice last shared a common ancestor about 12–24 MYA. The Rat Genome 
Sequencing Project Consortium (2004) described a high‐quality draft genome sequence 
of the Norway rat, allowing comparisons of the rat, mouse, and human genomes. All 
have comparable sizes (2.6–2.9 billion bases) and encode similar numbers of genes (see 
Fig. 19.29). Some properties differ: segmental duplications span over 5% of the human 
genome (Chapters  8 and 20) but just 3% of the rat genome and 1–2% of the mouse 
genome. About 40% of the euchromatic rat genome (or ∼1 billion bases) aligns to orthol
ogous regions of both mouse and human, containing most exons and known regulatory 
elements. A portion of this alignable sequence, spanning about 5% of each genome, is 
under selective constraint (negative selection) while the remainder evolves at the neutral 
rate. Another 30% of the rat genome aligns only with the mouse but not human, and 
largely comprises rodent‐specific repeats.

The rodent lineage is evolving at a faster rate than the human lineage, as indicated 
by the longer rodent branch lengths in Figure 19.26. This includes a three‐fold higher rate 
of nucleotide substitution in neutrally evolving DNA, based on analyses of repetitive ele
ments shared since the last common ancestor of humans and rodents.

The rodents may be divided into three main groups: a mouse‐related clade; the 
 Ctenohystrica including the guinea pig (Cavia porcellus); and a squirrel‐related clade 
(Churakov et al., 2010). You can access tracks at the UCSC Genome and Table Browser 
site for seven rodents (rat, kangaroo rat, naked mole rat, guinea pig, squirrel, rabbit, and 
pika) in comparison to the mouse genome.

5–50 MYa: primate genomes

How did humans evolve from other primates? What features of the human genome 
account for our distinct traits, such as language and higher cognitive skills? A comparison 
of several primate genomes may elucidate the molecular basis of our unique traits; alter
natively, depending on perspective, such a comparison may highlight how closely similar 
we are to the great apes at a genetic level.

For an overview of primates, we can begin with phylogenetic analyses. The tree of 
Figure 19.26 provides a glimpse of primates as a sister group to rodent‐related species. We 
can focus on the primates by making a phylogenetic tree with lysozyme protein sequences 
(Fig. 19.30). The chimpanzee (Pan troglodytes) and the bonobo (pygmy chimpanzee, 
Pan paniscus) are the two species most closely related to humans. These three species 
diverged from a common ancestor 5.4 ± 1.1 MYA, based on analyses of 36 nuclear genes 
(Stauffer et al., 2001). Our next closest species is the gorilla, which diverged an esti
mated 6.4 ± 1.5 MYA (or 8.8 MYA, according to timetree.org). Next in the branching 
order are the orang‐utan Pongo pygmaeus (11.3 ± 1.3  MYA) and the gibbon (14.9 ± 
2.0 MYA) (Stauffer et al., 2001). The hominoids diverged from the Old World monkeys 

MGI is available at  http://www.
informatics.jax.org (WebLink 
19.64) and is operated by The 
Jackson Laboratory. MGI has 
multiple components, including 
the Mouse Genome Database 
(MGD), the Gene Expression 
Database (GDX), the Mouse 
Genome Sequencing (MGS) 
project, and the Mouse Tumor 
Biology (MTB) database.

http://www.informatics.jax.org
http://www.informatics.jax.org
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(e.g., the macaque and baboon), having common ancestry as the Catarrhini. This diver
gence occurred 30–23 MYA, close to the age of the earliest extant hominoid fossils. New 
World monkeys (such as the tamarin) are even more distantly related.

Note that the method of making a phylogenetic tree using a single protein sequence 
may be considered simplistic compared to using a supermatrix of many multi‐locus 
sequences or a coalescent approach that accounts for all alleles of a gene in a population 
to a single ancestral allele (Ting and Sterner, 2013). Nonetheless, the tree in Figure 19.30 
is consistent with other reported phylogenies of the primates such as the excellent study 
by Perelman et al. (2011). An overview of the features of primate genomes shows 
that they have similar sizes, GC content, and some variability in chromosome number 
(Fig. 19.31).

Following humans, the next two genomes to be sequenced were the chimpanzee and 
the rhesus macaque (Fig. 19.30). The Chimpanzee Sequencing and Analysis Consortium 
(2005) described the genome sequence of Clint, a captive‐born male. By comparing a 
human reference to an individual chimpanzee, the analysis focused on those relatively 
few differences that could be found. (In contrast, comparisons of the human genome to 
the fish or chicken focused on the relatively few similarities that could be detected, such 
as ultraconserved regions or coding sequences.) The assembly represents a consensus 
of two haplotypes from the diploid individual (with one allele from heterozygous sites 
arbitrarily selected for the assembled sequence); the situation is similar to that of the first 
sequence of a diploid human individual genome (Chapter 20).

Nucleotide divergence was found to occur at a mean rate of 1.23%, with 35 million 
SNPs catalogued (including ∼1.7 million high‐quality SNPs determined by sequencing 

Figure 19.30 Phylogeny of the primates. A neighbor‐joining tree representing primate phylogeny 
based on lysozyme protein sequences. These sequences were aligned using ClustalW and displayed as 
a neighbor‐joining tree. The accession numbers are as follows: gibbon (P79180), orangutan (P79180), 
bonobo (AAB41214), chimpanzee (AAB41209), human (P00695), gorilla (P79179), Kenya baboon 
(P00696), African green monkey (P00696), rhesus macaque (P30201), proboscis monkey (P79811), 
marmoset (P79158), tamarin (P79268), and South American squirrel monkey (P79294). The sequences 
are available in Web Document 19.5 at  http://www.bioinfbook.org/chapter19.
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portions of seven additional chimpanzees). Most of these changes reflect random genetic 
drift rather than being shaped by positive or negative selection pressures. The 1.23% 
nucleotide divergence rate includes both fixed divergence between humans and chim
panzees (∼1.06%) and polymorphic sites within each species. Variation in the nucleotide 
substitution rates was especially prominent in subtelomeric regions. Of all the observed 
substitutions, those at CpG dinucleotide sites were most common. Considering the 
chromosomes separately, the human/chimpanzee divergence is greatest for the Y chro
mosome (1.9%, perhaps reflecting the greater mutation rate in male) and least for the 
well‐conserved X chromosome (0.94% divergence).

While the number of substitutions is large (35 million), insertion/deletion (indel) 
events are notable for being fewer (∼5 million events) but spanning more of the genomes 
(there are 40–45 megabases of species‐specific euchromatic DNA, totaling ∼90 megabases 
and corresponding to a ∼3% difference between the human and chimpanzee genomes).

Humans have a haploid set of 23 chromosomes and, in contrast, chimpanzees have 
one more, reflecting the fusion of two chromosomes corresponding to chimpanzee 2a and 
2b. Additionally there have been nine pericentric inversions (Chapter 8). Many other fea
tures have been characterized; among the repetitive elements, SINEs have been three‐fold 
more active in humans, while several new retroviral elements (PtERV1, PtERV2) have 
invaded the chimpanzee genome selectively. Most of the protein‐coding genes are highly 
conserved, with ∼29% being identical. However, 585 out of 13,454 chimpanzee–human 

Figure 19.31 Overview of primate genomes. The photograph of an orang‐utan is from the NHGRI 
website and Yerkes National Primate Research Center (  http://www.genome.gov/17516871).

Selected divergence dates: The rhesus macaque and human lineages diverged ~25 MYA; chimpanzee and
 human lineages diverged ~6 MYA, also at the time of divergence from the bonobo.
Genome features: In aligned regions, DNA shares ~98% identity from chimp to human, and 93.5% identity 
 from macaque to human. High confidence macaque-human orthologs share an average of 97.5% 
 identity.
Disease relevance. Macaques are a widely used model for human disease because of their recent 
 divergence (25 MYA rather than 90 MYA for rodents), similar anatomy, physiology, susceptibility to 
 infectious agents related to human pathogens.
Web resources: see the Ensembl database at http://www.ensembl.org.

     Haploid GC content Number of Number of NCBI
     genome size   chromos. genes  Genome ID
Callithrix jacchus (marmoset)  2915 Mb 41.3%  24  30,292  442
Chlorocebus sabaeus (green monkey) 2790 Mb 40.9%  31  35,027  13136
Gorilla gorilla (western Gorilla)   3036 Mb 41.2%  24  31,334  2156  
Homo sapiens    3209 Mb 41.3%  24  41,507  51 (GRCh38)
Macaca fascicularis   2947 Mb 41.3%  21  35,895  776
Macaca mulatta (Rhesus monkey) 3097 Mb 41.5%  21  30,556  215
Nomascus leucogenys (gibbon) 2962 Mb 41.4%  26  28,405  480 
Pan paniscus (bonobo)  2869 Mb 41.2%  24  29,392  10729
Pan troglodytes (chimpanzee) 3323 Mb 41.9%  25  31,114  202
Papio anubis (olive baboon)  2948 Mb 41.1%  21  30,956  394
Pongo abelii  (Sumatran orang-utan) 3441 Mb 41.6%  24  30,998  325
Tarsius syrichta (Philippine  tarsier) 3454 Mb 41%  41  --  766

Pongo pygmaeus (orang-utan)
Lineage: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 
Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; 
Haplorrhini; Catarrhini; Hominidae; Gorilla; Gorilla gorilla

Callithrix jacchus (white-tufted-ear marmoset)
Macaca fascicularis (crab-eating macaque)
Nomascus leucogenys (northern white-cheeked gibbon)
Pan paniscus (bonobo; pygmy chimpanzee)

http://www.ensembl.org
http://www.genome.gov/17516871
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ortholog pairs have a KN/KS ratio greater than 1, suggestive of positive selection. These 
include glycophorin C, which mediates a P. falciparum invasion pathway in human eryth
rocytes, and granulysin which is involved in defense against pathogens such as Mycobac-
terium tuberculosis (Chapter 17).

A comparison of sequences in humans and chimpanzees does not reveal which genes 
or other elements evolved rapidly. A phylogenetic reconstruction is necessary in order to 
infer lineage‐specific changes that occurred, leading to the present‐day sequences that we 
can observe. This is one reason that the sequencing of the second nonhuman primate, the 
rhesus macaque Macaca mulatta, was so significant. The rhesus macaque is an Old World 
monkey (superfamily Cercopithecoidea, family Cercopithecidae) that diverged from the 
human/chimpanzee lineage ∼23–30 million years ago. Its DNA has an average nucleotide 
identity of ∼93% compared to human, in contrast to the ∼99% identity between human 
and chimpanzee. The Rhesus Macaque Genome Sequencing and Analysis Consortium 
et al. (2007) sequenced the genome using whole‐genome shotgun sequences. They pre
dicted ∼20,000 genes, of which high‐confidence orthologs share 97.5% identity to human 
sequences at the DNA and protein levels. Using the macaque as an outgroup, it was pos
sible to analyze many features of the human and chimpanzee genomes. For example, of 
the 9 pericentric inversions that occurred, 7 could be assigned to the chimpanzee lineage 
and 2 to the humans (on chromosomes 1 and 18).

The sequencing consortium detailed many features of the rhesus macaque genome, 
including the facts that 66.7 megabases (2.3%) consist of segmental duplications and 
there are many lineage‐specific expansions and contractions of gene families. Eventually, 
as for other genome sequencing projects outlined in this chapter, this may permit the anal
ysis of the cellular processes that ultimately underlie the unique biology of this primate.

Additional draft genome sequencing projects were of the orang‐utan (Locke et al., 
2011), the gorilla (Scally et al., 2012), two more macaques (Yan et al., 2011), and the 
bonobo (also called pygmy chimpanzee; Prüfer et al., 2012). The ancestor to bonobos 
and chimpanzees diverged from the human lineage ∼6 MYA (and bonobos and chim
panzees diverged ∼2 MYA). Prüfer et al. showed that >3% of the human genome is 
more closely related to either of those apes than they are to each other. Prado‐Martinez 
et al. (2013) sequenced 79 great ape genomes (from human, Gorilla, Pan, and Pongo), 
reporting ∼89 million SNPs and characterizing inbreeding as well as loss‐of‐function 
variants in these populations. All these studies underscore our relatedness to primates 
and stress the need to understand genetic diversity to support the preservation of endan
gered species.

PersPectIve
One of the broadest goals of biology is to understand the nature of each species of life: 
what are the mechanisms of development, metabolism, homeostasis, reproduction, and 
behavior? Sequencing of a genome does not answer these questions directly. Instead, we 
must first try to annotate the genome sequence in order to estimate its contents, and then 
we try to interpret the function of these parts in a variety of physiological processes.

The genomes of representative species from all major eukaryotic divisions are now 
available. This will have dramatic implications for all aspects of eukaryotic biology. For 
pathogenic organisms, it is hoped that the genome sequence will lead to an understanding 
of their cellular mechanisms of toxicity, their mechanisms of host immune system eva
sion, and their pharmacological response to drug treatments. For studies of evolution, we 
will further understand the forces that shape genome evolution: mutation and selection. 
The reconstruction of ancestral karyotypes is a newly emerging discipline.

As complete genomes are sequenced, we are becoming aware of the nature of 
 noncoding and coding DNA. Major portions of the eukaryotic genomic landscape are 

Accessions for glycophorin C 
are NM_002101.4, NP_002092.1 
(human) and XM_001135559.3, 
XP_001135559.1 (chimpanzee).
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occupied by repetitive DNA, including transposable elements. The number of  protein‐coding 
genes varies from about 2000 in some fungi to tens of thousands in plants and mammals. 
Many of these protein‐coding genes are paralogous within each species, such that the 
“core proteome” size is likely to be on the order of 10,000 genes for many eukaryotes. 
New proteins are invented in evolution through expansions of gene families or through 
the use of novel combinations of DNA‐encoded protein domains.

Complete genome sequences and assemblies provide insight into the biology of each 
organism and also phylogenetic relationships between species, population studies, and 
the history of life on Earth.

PItfaLLs
An urgent need in genomics research is the continued development of algorithms to 
find protein‐coding genes, noncoding RNAs, repetitive sequences, duplicated blocks of 
sequence within genomes, and conserved syntenic regions shared between genomes. We 
may then characterize gene function in different developmental stages, body regions, and 
physiological states. Through these approaches we may generate and test hypotheses 
about the function, evolution, and biological adaptations of eukaryotes. We may therefore 
extract meaning from the genomic data.

We are now in the earliest years of the field of genomics. Many new lessons are 
emerging:

 • Draft versions of genome sequences are extremely useful resources, but gene annota
tion always improves dramatically as a sequence becomes finished.

 • It is extraordinarily difficult to predict the presence of protein‐coding genes in 
genomic DNA ab initio. It is important to use complementary experimental data on 
gene expression, such as expressed sequence tag information. Comparative genomics 
to align orthologous sequences has become the norm.

 • We still know relatively little about the nature of noncoding RNA molecules, but 
comparative genomic studies have demonstrated their conservation across hundreds 
of millions of years of evolution (e.g., between opossum and human).

 • Large portions of eukaryotic genomes consist of repetitive DNA elements.
 • Comparative genomics is extraordinarily useful in defining the features of each 
eukaryotic genome.

Most publications describing genomes (both eukaryotic and bacterial and archaeal) 
define orthologs as descended by speciation from a single gene in a common ancestor. 
Typically, the predicted proteins from an organism are searched by BLAST against the 
complete proteome of other species using an E value cutoff such as 10−4. However, two 
orthologous proteins could have species‐specific functions.

advIce for students
This chapter presents an overview of the dazzlingly varied world of eukaryotic genomes. 
In providing a broad survey we focused on which genomes have been sequenced and 
their basic properties such as the number of chromosomes, number of genes, features 
that make each genome unique, and principles that relate the genome architecture to the 
phenotype of the species. One useful approach to this chapter is to select a genome that 
interests you, then apply the five perspectives we offered at the start of the chapter. The 
NCBI Genome page for each organism provides links to the Sequence Read Archive; use 
the SRA Toolkit, BEDtools, GenomeWorkbench, MUMmer, RepeatMasker, and other 
methods we have discussed to further explore the genome.
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WeB resources
We have presented key resources for many eukaryotic organisms and their genome‐
sequencing websites. An excellent starting point is the Ensembl website  http://www.
ensembl.org/ (WebLink 19.65), which currently includes gateways for the mouse, rat, 
zebrafish, fugu, mosquito, and other genomes. The Department of Energy Joint Genome 
Institute (DOE JGI) includes web resources for many of the organisms discussed in this 
chapter; see  http://genome.jgi‐psf.org/euk_home.html (WebLink 19.66).

Discussion Questions
[19-1] If there were no repetitive DNA of 
any kind, how would the genomes of various 
eukaryotes (human, mouse, a plant, a para
site) compare in terms of size, gene content, 

gene order, nucleotide composition, or other features?

[19-2] Web Document 19.4 at  http://www.bioinfbook.org/
chapter19 consists of a text document with 256,157 bases 
of DNA from a eukaryotic genome in the FASTA format. 
How could you identify the species? Assume you cannot use 
BLAST to directly identify the species. The accession number 
is given so that you can later look up the species, but assume 
you cannot use that information at first. What features distin
guish the genomic DNA sequence of a protozoan parasite from 
an insect, or a plant from a human, or one fish from another?

prObleMS/COMputer lab
[19-1] Giardia has only a few introns. Study the Giardia ferre
doxin gene at GenBank (DNA accession XM_001705479.1). 
To find the intron, try using BLAST to compare the protein 
(or the DNA encoding the protein) to the genomic DNA. Note 
that the project accession number for this organism (given in 
Fig. 19.3; AACB02000000) points to a set of whole‐genome 
shotgun sequence reads (accessions AACB02000001–
AACB02000306). To perform the BLAST search, go to 
BLASTN, use the query XM_001705479.1, set the database to 
WGS, and include the Entrez Query AACB02000001:AAC
B02000306[PACC]. Set the database to reference genomic 
sequences (restricted to Giardia lamblia, taxid:5741).

[19-2] Circos software is used to plot genomes in a circular 
fashion (Krzywinski et al., 2009). Visit the Circos website (

 http://circos.ca/?home) (WebLink 19.67). Download and 
install the software (on a PC, Mac, or Linux), and follow the 
tutorial accompanying the software to create a genome plot.

[19-3] A universal minicircle binding protein (GenBank 
accession Q23698) has been purified from a try
panosome that infects insects, Crithidia fasciculata.  
A DELTABLAST search reveals that there are homolo
gous proteins in plants, fungi, and metazoans (such as the 
worm Caenorhabditis elegans). How is this protein named 

in various organisms? What is its presumed function? What 
is its domain called in the Conserved Domain Database?

[19-4] Leishmania major has repetitive DNA elements 
(e.g., accession AF421497). How can you determine how 
common this element is and where it is localized (e.g., to a 
particular chromosome or to a chromosomal region)?

[19-5] The soybean pathogen Phytophthora sojae and the 
sudden oak death pathogen Phytophthora ramorum are 
oömycetes, cellular pathogens having different host ranges. 
Tyler et al. (2006) searched for genes encoding secreted pro
teins. Of the more than 1000 predicted secreted proteins in 
each organism, many show evidence of rapid diversification 
in terms of sequence conservation and the evolution of mul
tigene families. These include secreted proteases that could 
relate to nectrotrophic growth, that is, feeding on dead plants 
after infection of living plant tissue. Of particular note is the 
Avh (avirulence homolog) family of genes that has 350 mem
bers in each genome whose products suppress plant defense 
respones. Investigate this gene family. How related are its 
members within and between each species? For an example 
of an Avh protein from P. sojae, see AAR05402.1. Try this 
in a DELTA‐BLAST query. While one iteration of DELTA‐
BLAST is usually recommended (see Chapter 5), in this case 
try 5–10 iterations, manually adding all appropriately named 
sequences that are both above and below threshold.

[19-6] The green algae (such as Chlamydomonas and Ost-
reococcus) are Viridiplantae that share some genes in com
mon with the animals but not the angiosperms. Use TaxPlot 
at NCBI (from the home page, select Tools on the left side
bar). Set the query genome to Ostreococcus lucimarinus, 
then set the comparison genomes to Homo sapiens and Ara-
bidopsis thaliana (as examples of an animal and a plant). 
Several proteins are dramatically absent from either human 
or Arabidopsis. What are they? What is their function?

[19-7] The C. elegans and C. briggsae genomes share 
extensive collinearity; study this using  http://www.worm
base.org. Try to find a 100,000 base pair region including a 
globin gene on C. briggsae chromosome I within position 
200,000–300,000.

http://www.ensembl.org/
http://genome.jgi%E2%80%90psf.org/euk_home.html
http://www.bioinfbook.org/chapter19
http://circos.ca/?home
http://www.worm�base.org
http://www.worm�base.org
http://www.ensembl.org/
http://www.bioinfbook.org/chapter19
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[19-8] This exercise uses phylogenetic shadowing 
(Fig. 15.8) to evaluate genomic DNA regions under selec
tion. Boffelli (2008) wrote a tutorial on comparing primate 
genomic DNA sequences using the VISTA server (  http://
genome.lbl.gov/vista/index.shtml, WebLink 19.68). At 

the time of that tutorial (2008) there were fewer genomic 
sequences available. Follow the outline of the tutorial to 
align alpha globin sequences and use RankVISTA to deter
mine the probability that 10 kilobase segments are evolving 
neutrally or are under selection.

Self-test Quiz
[19-1] The Giardia lamblia genome is 
unusual because:

(a) it contains hardly any transposable ele
ments or introns;

(b) it is circular;

(c) it contains extremely little nonrepetitive DNA; or

(d) its AT content is nearly 80%.

[19-2] The genome of the trypanosome T. brucei:

(a) has an intricate network of circular rings of genomic 
DNA;

(b) almost completely lacks introns;

(c) almost completely lacks pseudogenes; or

(d) varies in size by up to 25% in different isolates.

[19-3] The genome of the malaria parasite Plasmodium fal-
ciparum is notable for having an AT content of 80.6%. Which 
amino acids are overrepresented in its encoded proteins?

(a) F, L, I, Y, N, K;

(b) F, L, I, Y, V, M;

(c) A, P, C, G, T, R; or

(d) N, S, Y, I, M, H.

[19-4] The Paramecium tetraurelia genome has the fol
lowing properties except for:

(a) it has about 800 macronuclear chromosomes;

(b) it has two nuclei, each with distinct functions;

(c) its genome encodes about twice as many proteins as 
the human genome; or

(d) it has undergone whole‐genome duplication with 
massive gene loss.

[19-5] Plant genomes from species such as Arabidopsis 
(125 Mb) and the black cottonwood tree Populus tricho-
carpa (480 Mb) were selected because they are relatively 
small. Nonetheless, each of these genomes is character
ized by large amounts of repetitive DNA, and each whole‐
genome duplicated one or more times:

(a) true; or

(b) false.

[19-6] Which of these pairs of organisms diverged the 
 longest time ago?

(a) Caenorhabditis elegans and Caenorhabditis 
 briggsae;

(b) Drosophila melanogaster (fruit fly) and Anopheles 
gambiae (mosquito);

(c) Homo sapiens and Canis familiaris (dog); or

(d) Arabidopsis thaliana and Oryza sativa (rice).

[19-7] What do the Takifugu rubripes (pufferfish) and 
Gallus gallus (chicken) genomes have in common that dis
tinguishes them from the human genome?

(a) They have genome sizes 3–10‐fold smaller than that 
of human, but a comparable number of genes.

(b) They have a smaller total genome size but dozens 
more chromosomes.

(c) They have smaller genome sizes and approximately 
half as many protein‐coding genes.

(d) They have a series of minichromosomes of variable 
size.

[19-8] How are the mouse and human genomes different?

(a) The mouse genome has a lower GC content.

(b) The mouse genome has more protein‐coding genes.

(c) The mouse genome has undergone specific expan
sions of genes encoding particular protein families 
such as olfactory receptors.

(d) The mouse genome has fewer telomeric repeats per 
chromosome, on average.

[19-9] Many features distinguish the chimpanzee and 
human genomes, including all of the following except for:

(a) chimpanzees have more chromosomes;

(b) about 35 million nucleotide substitutions have been 
described;

(c) there have been hundreds of pericentric inversions; 
or

(d) over 500 chimpanzee–human ortholog pairs may be 
under positive selection.

http://genome.lbl.gov/vista/index.shtml
http://genome.lbl.gov/vista/index.shtml
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suggested readIng
I recommend recent books by Eugene Koonin (The Logic of Chance: The Nature and 
Origin of Biological Evolution, 2012) and Michael Lynch (The Origins of Genome Archi-
tecture, 2007).

We presented a phylogentic tree from Baldauf et al. (2000). For an evolutionary anal
ysis of eukaryotic evolution, including a discussion of models of eukaryotic origins and 
the role of mitochondria, see Embley and Martin (2006). For a brief review of the sig
nificance of Apicomplexan genome projects, see Winzeler (2008). Paterson (2006) pro
vides an excellent overview of plant genomics. Church et al. (2009) present the finished 
genome assembly of the mouse, showing the importance of continued genome assembly 
and annotation efforts.
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Our current efforts to understand the 
human genome include a focus on the 
genetic similarities and differences among 
various geographic (ethnic) groups. The 
International HapMap Project initially 
generated detailed genotype informa-
tion on 270 individuals from four groups 
with diverse geographic ancestry: Yoruba 
from Ibadan, Nigeria; Utah residents of 
Northern and Western European ances-
try; Han Chinese in Beijing; and Japanese 
in Tokyo. In past centuries there have 
been many attempts to understand the 
bases of phenotypic differences among 

humans. Baron Georges Cuvier (1769–1832) attempted a systematic classifica-
tion of animals, describing four great divisions of the animal kingdom: vertebrate 
animals; molluscous animals; articulate animals; and radiate animals (also called 
Zoophytes). His work included a classification of humans based on anatomical 
differences. These images are from The Animal Kingdom, Arranged According to Its 
Organization by Cuvier (1849, plates I–IV) and depict varieties of human races. 

Source: Cuvier (1849).
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This project would greatly increase our understanding of human biology and allow rapid 
progress to occur in the diagnosis and ultimate control of many human diseases. As visu-
alized, it would also lead to the development of a wide range of new DNA technolo-
gies and produce the maps and sequences of the genomes of a number of experimentally 
accessible organisms, providing central information that will be important for increasing 
our understanding of all biology. 

— National Research Council (1988, p. 11).

Human Genome C h a p t e r

20

LEarNING OBJECTIVEs

after studying this chapter you should be able to:
 ■ describe the main features of the human genome;
 ■ provide an overview of all the human chromosomes, giving a general description of their size, 

number of genes, and key features; and
 ■ explain the purpose and main conclusions of several key human genome efforts including the 

HapMap Project and 1000 Genomes Projects.

IntroductIon
The human genome is the complete set of DNA in Homo sapiens. This DNA encodes the 
proteins and other products that define our cells and ultimately define who we are as bio-
logical entities. Through the genomic DNA, protein-coding genes are expressed that form 
the architecture of the trillions of cells that comprise each of our bodies. It is variations in 
the genome that in large part account for the differences between people, from physical 
features to personality to disease states.

The initial sequencing of the human genome in 2003 was a triumph of science. It 
followed 50 years exactly after the publication of the double-stranded helical structure of 
DNA by Crick and Watson (1953). The genome sequence was achieved through an inter-
national collaboration involving hundreds of scientists. (In the case of the publicly funded 
version, this was the International Human Genome Sequencing Consortium (IHGSC), 
described in “Human Genome Project” below.) This project could not have been possible 
without fundamental advances in the emerging fields of bioinformatics and genomics.

In this chapter we first summarize some of the major findings of the human genome 
project. Second, we review resources for the study of the human genome at three sites: 
the National Center for Biotechnology Information (NCBI); the Ensembl project; and the 
genome center at the University of California, Santa Cruz.

http://www.wiley.com/go/pevsnerbioinformatics
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In 2001 the sequencing and analysis of a draft version of the human genome was 
reported by the IHGSC (2001) and Celera Genomics (Venter et al., 2001). In the next 
part of this chapter, we follow the outline of the public consortium’s 62-page article to 
describe the human genome from a bioinformatics perspective. We also describe subse-
quent findings on finishing the euchromatic sequence (IHGSC, 2004) and characteriz-
ing each of the 22 autosomes and two sex chromosomes (as well as the mitochondrial 
genome). Finally, we describe variation in the human genome, including the HapMap 
Project, the 1000 Genomes Project, and the analysis of individual genomes.

MaIn conclusIons of HuMan GenoMe Project
As an introduction to the Human Genome Project, we begin with a summary of its main find-
ings. These are from the IHGSC (2001) paper, supplemented with more recent observations:

 1. There were reported to be about 30,000–40,000 predicted protein-coding genes in 
the human genome. However, the initial sequencing and annotation were incomplete, 
and in subsequent years a variety of new tools were developed (Chapters 8 and 9) 
as well as comparative approaches as more vertebrate genomes were sequenced. 
A revised estimate suggests that there are ∼20,300 protein-coding genes (IHGSC, 
2004; Ensembl.org). This estimate is surprising because we have about the same 
number of genes as much simpler organisms such as Arabidopsis thaliana (∼27,000 
 protein-coding genes according to TAIR) and pufferfish (∼18,500 protein-coding 
genes according to Ensembl), and marginally more genes than are found in many 
nematode and insect genomes.

 2. The human proteome is far more complex than the set of proteins encoded by inverte-
brate genomes. Vertebrates have a more complex mixture of protein domain architec-
tures. Additionally, the human genome displays greater complexity in its processing 
of mRNA transcripts by alternative splicing.

 3. Hundreds of human genes were acquired from bacteria by lateral gene  transfer, 
according to the initial report (IHGSC, 2001; Ponting, 2001). Subsequently 
 Salzberg et al. (2001) suggested a revised estimate of 40 genes that underwent hori-
zontal transfer. These genes are homologous to bacterial sequences, but appear to 
lack orthologous genes in other vertebrate and invertebrate species. In recent years 
the emphasis has changed from laterally acquired genes (discussed in Chapter 17) 
to the vast number of bacterial, archaeal, and viral genes from organisms living 
inside the human body, called the human microbiome. We described this project in 
Chapter 17.

 4. More than 98% of the human genome does not consist of exons that code for genes. 
Much of this genomic landscape is occupied by repetitive DNA elements such as 
long interspersed elements (LINEs; 20%), short interspersed elements (SINEs; 13%), 
long-terminal-repeat (LTR) retrotransposons (8%), and DNA transposons (3%). Half 
the human genome is therefore derived from transposable elements. However, there 
has been a decline in the activity of these elements in the hominid lineage. In recent 
years the ENcyclopdia of DNA Element (ENCODE) project has created a deep, rich 
catalog of functional elements in the human genome (Chapter 8; ENCODE Project 
Consortium et al., 2012). This project has defined coding and noncoding gene struc-
tures, catalogued pervasive transcriptional activity, and identified a wide range of 
biochemical signatures such as chromatin modifications.

 5. Segmental duplication is a frequent occurrence in the human genome, particularly 
in pericentromeric and subtelomeric regions. This phenomenon is more common 
than in yeast, fruit fly, or worm genomes. There are three principal ways in which 
gene duplications arise in the human genome (Green and Chakravarti, 2001). First, 

These findings are summarized 
from several sources, including 
IHGSC (2001), Venter et al.  
(2001), and the Wellcome Trust  
Sanger Institute (  http://www 
.sanger.ac.uk/about/history/hgp/, 
WebLink 20.1).

An Ensembl estimate of the 
number of genes (as well as 
many other human genome 
statsistics) is at  http://www 
.ensembl.org/Homo_sapiens/
Info/Annotation (WebLink 20.2). 
Release 79 lists 20,300 human 
protein-coding genes.

We introduced various types of 
repetitive elements in Chapter 8, 
and further define them in 
“Repeat Content of Human 
Genome” below.

http://www.sanger.ac.uk/about/history/hgp/
http://www.sanger.ac.uk/about/history/hgp/
http://www.ensembl.org/Homo_sapiens/Info/Annotation
http://www.ensembl.org/Homo_sapiens/Info/Annotation
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 tandem duplications (created from sequence repeats in a localized region) occur 
rarely.  Second, processed mRNAs are duplicated by retrotransposition. This produces 
intronless paralogs that are present at one or many sites. Third, and most commonly, 
segmental duplications occur in which large sections of a chromosome transfer to a 
new site. We introduced these concepts in Chapter 8.

 6. There are several hundred thousand Alu repeats in the human genome. These have 
been thought to represent elements that replicate promiscuously. However, their dist-
ibution is nonrandom: they are retained in GC-rich regions and may therefore confer 
some benefit on the human genome.

 7. The mutation rate is about twice as high in male meiosis than in female meiosis. This 
suggests that most mutation occurs in males. Recent whole-genome sequencing of 
members of families has established the mutation rate at ∼1.2 × 10−8 per base pair per 
generation (reviewed in Scally and Durbin, 2012).

 8. More than 1.4 million single-nucleotide polymorphisms (SNPs) were identified. 
SNPs are single-nucleotide variations that occur once every 100–300 base pairs. 
The International HapMap Consortium et al. (2007) reported a haplotype map of 
3.1 million SNPs, and today the genotype and copy number of one million SNPs are 
routinely measured on a single sample using a microarray. This is already having a 
profound impact on studies of variation in the human genome.

Gateways to access tHe HuMan GenoMe
There are many ways to access information about the human genome, including three 
principal browsers at NCBI, Ensembl, and UCSC.

NCBI

The NCBI offers several main ways to access data on the human genome. From the 
Genome page select “human genome resources,” which provides links to each chromo-
some and a variety of web resources. Alternatively, select the Map Viewer (Fig. 20.1). 
This page allows searches by clicking on a chromosome or by entering a text query. The 
human Map Viewer integrates human sequence and data from cytogenetic maps, genetic 
linkage maps, radiation hybrid maps, and YAC chromosomes.

By visiting the NCBI Gene page for a gene such as hemoglobin beta (HBB), you 
can use another sequence viewer (Fig. 20.2). We previously showed this viewer within the 
Genome Workbench (Fig. 9.18). This viewer allows the addition of tracks such as RNA-
seq data supporting gene models. Many other NCBI features are available through the 
NCBI Gene page, including links to UniGene entries and human-mouse-rat homology 
maps.

ensembl

Ensembl is a comprehensive resource for information about the human genome as well as 
other genomes (Flicek et al., 2014). This resource effectively interconnects a wide range 
of genomics tools with a focus on annotation of known and newly predicted genes. In 
addition to making annotation information on genes easily accessible, Ensembl provides 
access to the underlying data that support models of gene prediction. This is described 
in the following. The current statistics for the contents of the Ensembl human build are 
shown in table 20.1.

From the main page of Ensembl, you can type a text query (such as HBB for human 
beta globin), perform a BLAST search, or browse by chromosome (see Fig. 8.2). There 
are several main entry points to access the Ensembl database. Note that the top bar of the 

The NCBI database of SNPs 
currently lists ~113 million RefSNP 
clusters having rs identifiers, of 
which over 88 million have been 
validated (dbSNP build 142, March 
2015;  http://www.ncbi.nlm.nih.
gov/SNP/, WebLink 20.3).

A Human Genome Resources 
page is available at  http://
www.ncbi.nlm.nih.gov/genome/
guide/human/ (WebLink 20.4). 
The Map Viewer (for human and 
other organisms) is accessed via 

 http://www.ncbi.nlm.nih.gov/
projects/mapview/ (WebLink 20.5).

Ensembl, a joint project between 
the European Molecular 
Biology Laboratory-European 
Bioinformatics Institute (EMBL-
EBI) and the Sanger Institute 
is available at  http://www.
ensembl.org (WebLink 20.6). The 
human database is at  http://
www.ensembl.org/Homo_sapiens/ 
(WebLink 20.7). We described 
Ensembl projects for mouse, rat, 
zebrafish, fugu, mosquito, and 
other organisms in Chapter 19.

We saw an example of the 
Ensembl BLAST server in 
Figures 5.1 and 5.2.

http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/genome/guide/human/
http://www.ncbi.nlm.nih.gov/genome/guide/human/
http://www.ncbi.nlm.nih.gov/projects/mapview/
http://www.ensembl.org
http://www.ensembl.org/Homo_sapiens/
http://www.ensembl.org/Homo_sapiens/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/projects/mapview/
http://www.ensembl.org
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FIgure 20.1 The Human Map Viewer is accessible from NCBI. This resource displays cytogenetic, genetic, physical, and radiation 
hybrid maps of human genome sequence. A search box (not shown) allows you to enter a query such as “hbb” for a graphical view of beta 
globin on chromosome 11. 

Source: Human Map Viewer, NCBI.

FIgure 20.2 The sequence viewer from NCBI Gene shows the region of chromosome 11 containing 
the beta globin gene. A variety of tracks can be added; shown here are six-frame translations, scaffolds, 
and RNA-seq data. 

Source: NCBI Gene, NCBI.



HUMaN GENOME 961

result page includes three tabs for the human genome, for the location, and for the gene; 
each offers different viewing and analysis options.

 1. We introduced a chromosome view (Fig. 8.2a), providing summary information across 
an entire chromosome.

 2. We also introduced a region overview (accessed via a Location tab; Fig. 8.2b). This 
uses a Javascript-based, scrollable, zoomable browser called Genoverse.

 3. Viewing the “region in detail” provides a detailed view of a chromosomal region (e.g., 
a gene, as shown for HBB in Fig. 20.3a). The left sidebar includes an option to “config-
ure this page,” allowing you to select among hundreds of tracks to display (Fig. 20.3b).

 4. The Genetic Variation link (on the left sidebar) includes a table listing types of vari-
ation across each gene, including information on SNPs and SIFT and PolyPhen-2 
scores (described in Chapter 9).

 5. A synteny view accessed from the location tab shows the corresponding region 
of chromosomes from other organisms where a gene such as HBB is localized 
(Fig. 20.4). This figure shows the correspondence of four mouse chromosomal 
regions to human chromosome 11. For contrast, the figure also shows the most- 
conserved chromosome (the X chromosome) and the least-conserved chromosome 
(the Y chromosome).

 6. Cyto view displays genes, BAC end clones, repetitive elements, and the tiling path 
across genomic DNA regions.

university of California at Santa Cruz human genome Browser

The “Golden Path” is the human genome sequence annotated at UCSC. Along with 
the Ensembl and NCBI sites, the human genome browser at UCSC is one of the three 
main web-based sources of information for both the human genome and other vertebrate 
genomes. It has become a basic resource in the fields of bioinformatics and genomics, and 
we have relied on it throughout this book.

NhgrI

The National Human Genome Research Institute (NHGRI) has a leading role in genome 
sequencing, coordinating pilot-scale and large-scale sequencing efforts, technology 
development, and policy development.

The UCSC Genome Bioinformatics 
site is accessible at  http://
genome.ucsc.edu/ (WebLink 
20.8). It was developed by David 
Haussler’s group (Karolchik et al., 
2014).

An NHGRI introduction to 
the human genome project 
is available at  http://www.
genome.gov/10001772 (WebLink 
20.9). A document describing 
a 2003 NHGRI vision for the 
future of genomics research 
can be viewed at  http://
www.genome.gov/11007524 
(WebLink 20.10, Collins et al., 
2003). A 2011 vision by Eric 
Green et al. is available at http://
www.genome.gov/pages/about/
planning/2011nhgristrategicplan.
pdf (WebLink 20.11). We 
discussed that article at the start 
of Chapter 15.

taBle 20.1 human genome statistics from ensembl. Note that base 
pairs refers to sum of lengths of DNa table. golden path length refers 
to sum of nonredundant top-level sequence regions. 

Coding genes 20,364

Small noncoding genes 9,673

Long noncoding genes 14,817

Pseudogenes 14,415

Gene transcripts 196,345

Genscan gene predictions 50,117

Short variants (SNPs, indels, somatic mutations) 65,897,584

Structural variants 4,168,103

Base pairs 3,381,944,086

Golden Path length 3,096,649,726

Source: Ensembl Release 75; Flicek et al. (2014). Reproduced with permission 
from Ensembl.

http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://www.genome.gov/10001772
http://www.genome.gov/11007524
http://www.genome.gov/11007524
http://www.genome.gov/pages/about/planning/2011nhgristrategicplan.pdf
http://www.genome.gov/pages/about/planning/2011nhgristrategicplan.pdf
http://www.genome.gov/10001772
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(a) Ensembl location view of HBB

(b) Ensembl configure options

FIgure 20.3 The Ensembl human genome browser offers a wealth of resources. A direct way to 
begin searching the site is to enter a search term such as HBB (top) for beta globin. (a) A “Gene” tab pro-
vides a link to the “region in detail.” (b) The left sidebar includes a link to configure the page. Hundreds 
of tracks can be selected and displayed on the browser. 

Source: Ensembl Release 75; Flicek et al. (2014). Reproduced with permission from Ensembl.
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(a) Conserved synteny between human chromosome 11 and mouse chromosomes

(b) Human chromosome X compared to mouse (c) Human chromosome Y compared to mouse
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FIgure  20.4 Ensembl location tab links to conserved synteny maps including those for human/
mouse. (a) Human chromosome 11 (including the HBB gene, red box) is shown in the center as an ideo-
gram. It corresponds to mouse chromosomes 7, 2, 19, and 9. Although the lineages leading to modern 
humans and mice diverged about 90 million years ago, it is still straightforward to identify regions of 
conserved synteny. (b) The human X chromosome (ideogram at right) is extremely closely conserved 
with the mouse X chromosome. (c) The Y chromosomes of human (ideogram at center) and mouse are 
extraordinarily poorly conserved. 

Source: Ensembl Release 75; Flicek et al. (2014). Reproduced with permission from Ensembl.
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Wellcome trust Sanger Institute

The Wellcome Trust Sanger Institute is a leading institute that is essential to the fields of 
bioinformatics and genomics.

HuMan GenoMe Project
The two articles on the human genome project that appeared in February 2001 provided 
an initial glimpse of the genome (IHGSC, 2001; Venter et al., 2001). In the next portion 
of this chapter, we will follow the outline of the public consortium paper (IHGSC, 2001). 
We do not summarize all the major findings, but focus on selected topics. The sequence 
reported in 2001 represented 90% completion of the human genome.

Finishing the human genome is a process that involves producing finished maps 
(with continuous, accurate alignments of large-insert clones spanning euchromatic 
loci) and producing finished clones (completely, accurately sequenced). Additional 
publications have described the sequence of all 25 human chromosomes in more 
detail (22 autosomes, the two sex chromosomes, and the mitochondrial genome); we 
 summarize the findings in the following. The IHGSC (2004) reported finishing the 
euchromatic sequence of the human genome. Even at that stage 341 gaps remained, 
spanning about 1% of the euchromatic genome. Furthermore, heterochromatic regions 
which are far harder to sequence contain many genes and other elements of interest. 
Although the human genome was sequenced, finishing and annotating this sequence are 
ongoing processes.

Background of human genome project

The Human Genome Project was first proposed by the US National Research Council 
(1988). This report proposed the creation of genetic, physical, and sequence maps of the 
human genome. At the same time, parallel efforts were supported for model organisms 
(bacteria, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, 
and Mus musculus).

The major goals of the Human Genome Project are listed in table 20.2. One compo-
nent of the human genome project is the Ethical, Legal and Social Issues (ELSI) initiative. 
A portion of the annual budget (3–5%) has been devoted to ELSI, making it the world’s 
largest bioethics project.

Examples of issues addressed by ELSI include:

 • Who owns genetic information?
 • Who should have access to genetic information?
 • How does genomic information affect members of minority communities?
 • What societal issues are raised by new reproductive technologies?
 • How should genetic tests be regulated for reliability and validity?
 • To what extent do genes determine behavior?
 • Are there health risks associated with genetically modified foods?

All these issues are becoming increasingly important, particularly as we begin to 
obtain the nearly complete genomic DNA sequence of hundreds of thousands of individ-
uals (described in “Variation: Sequencing Individual Genomes” below). In Chapter 21 we 
ask other questions raised by whole-genome and whole-exome sequencing. How should 
“incidental” findings be handled, such as finding a mutation that predisposes a patient to 
cancer when the sequencing was performed to identify genetic variants that underlie a 
completely different condition?

The website for human genetics 
at the Wellcome Trust Sange 
Institute (WTSI) is  http://www.
sanger.ac.uk/research/areas/
humangenetics/ (WebLink 20.12). 
The Human Genome Project 
gateway is at  http://www.
sanger.ac.uk/about/history/hgp/ 
(WebLink 20.13).

The National Human Genome 
Research Institute describes 
the finishing process at  http://
www.genome.gov/10000923 
(WebLink 20.14).

The euchromatin is the primary 
gene-containing part of the 
genome, although there are also 
genes in heterochromatin.

The National Academy Press  
(  http://www.nap.edu, WebLink 
20.15) offers this 1988 book free 
online at  http://www.nap.edu/
catalog.php?record_id=1097 
(WebLink 20.16).

You can read about ELSI 
at  http://www.genome.
gov/10001618 (WebLink 20.17) 
or  http://web.ornl.gov/sci/
techresources/Human_Genome/
elsi/index.shtml (WebLink 20.18).

http://www.sanger.ac.uk/research/areas/humangenetics/
http://www.sanger.ac.uk/about/history/hgp/
http://www.genome.gov/10000923
http://www.genome.gov/10000923
http://www.nap.edu
http://www.nap.edu/catalog.php?record_id=1097
http://www.genome.gov/10001618
http://web.ornl.gov/sci/techresources/Human_Genome/elsi/index.shtml
http://www.sanger.ac.uk/research/areas/humangenetics/
http://www.sanger.ac.uk/about/history/hgp/
http://www.nap.edu/catalog.php?record_id=1097
http://www.genome.gov/10001618
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taBle 20.2 eight goals of human genome project (1998–2003). adapted from  
 http://www.ornl.gov/sci/techresources/human_genome/hg5yp/goal.shtml.

1. Human DNA sequence  • Finish the complete human genome sequence by the end of 2003.
 • Achieve coverage of at least 90% of the genome in a working draft 

based on mapped clones by the end of 2001.
 • Make the sequence totally and freely accessible.

2. Sequencing technology  • Continue to increase the throughput and reduce the cost of current 
sequencing technology.

 • Support research on novel technologies that can lead to significant 
improvements in sequencing technology.

 • Develop effective methods for the development and introduction 
of new sequencing technologies. 

3.  Human genome 
sequence variation

 • Develop technologies for rapid, large-scale identification and/
or scoring of single-nucleotide polymorphisms and other DNA 
sequence variants.

 • Identify common variants in the coding regions of the majority of 
identified genes during this five-year period.

 • Create a SNP map of at least 100,000 markers.
 • Create public resources of DNA samples and cell lines. 

4.  Functional genomics 
technology

 • Generate sets of full-length cDNA clones and sequences that 
represent human genes and model organisms.

 • Support research on methods for studying functions of nonprotein-
coding sequences.

 • Develop technology for comprehensive analysis of gene expression.
 • Improve methods for genome-wide mutagenesis.
 • Develop technology for large-scale protein analyses. 

5. Comparative genomics  • Complete the sequence of the roundworm C. elegans genome 
and the fruit fly Drosophila genome

 • Develop an integrated physical and genetic map for the mouse, 
generate additional mouse cDNA resources, and complete the 
sequence of the mouse genome by 2008. 

6.  Ethical, legal, and social 
issues

 • Examine issues surrounding completion of the human DNA 
sequence and the study of genetic variation.

 • Examine issues raised by the integration of genetic technologies 
and information on health care and public health activities.

 • Examine issues raised by the integration of knowledge about 
genomics and gene–environment interactions in nonclinical 
settings.

 • Explore how new genetic knowledge may interact with a variety of 
philosophical, theological, and ethical perspectives.

 • Explore how racial, ethnic, and socioeconomic factors affect the 
use, understanding, and interpretation of genetic information, the 
use of genetic services, and the development of policy. 

7.  Bioinformatics and 
computational biology

 • Improve content and utility of databases.
 • Develop better tools for data generation, capture, and annotation.
 • Develop and improve tools and databases for comprehensive 

functional studies.
 • Develop and improve tools for representing and analyzing 

sequence similarity and variation.
 • Create mechanisms to support effective approaches for producing 

robust, exportable software that can be widely shared. 

8. Training and manpower  • Nurture the training of scientists skilled in genomics research.
 • Encourage the establishment of academic career paths for 

genomic scientists.
 • Increase the number of scholars who are knowledgeable in both 

genomic and genetic sciences and in ethics, law, or the social 
sciences. 

http://www.ornl.gov/sci/techresources/Human_Genome/hg5yp/goal.shtml
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Strategic Issues: hierarchical Shotgun Sequencing to generate 
Draft Sequence

The public consortium approach to sequencing the human genome was to employ the hier-
archical shotgun sequencing strategy. The rationale for taking this approach was as follows:

 • Shotgun sequencing can be applied to DNA molecules of many sizes, including plasmids 
(typically several kilobases), cosmid clones (40 kb), yeast, and BACs (up to 1–2 Mb).

 • The human genome has large amounts of repetitive DNA (about 50% of the genome; 
see “Repeat Content of Human Genome” below). Whole-genome shotgun sequenc-
ing, the main approach taken by Celera Genomics, was not adopted by the public 
consortium because of the difficulties associated with assembling repetitive DNA 
fragments. In the public consortium approach, large-insert clones (typically 100–
200 kb) from defined chromosomes were sequenced.

 • The reduction of the sequencing project to specific chromosomes allowed the inter-
national team to reduce and distribute the sequencing project to a set of sequencing 
centers. These centers are listed in Web Document 20.1.

Early in the evolution of the Human Genome Project, it was thought that break-
throughs in DNA sequencing technology would be necessary to allow the completion of 
such a large-scale project. This did not occur. Instead, the basic principles of dideoxynu-
cleotide sequencing by the method of Sanger (see Chapter 9) were improved upon. Some 
innovations to Sanger sequencing (see Green, 2001) included capillary electrophoresis- 
based sequencing machines for the automated detection of DNA molecules, improved 
thermostable polymerases, and fluorescent dye-labeled dideoxynucleotide terminators.

human genome assemblies

The human genome is organized into chromosomes that range in size from about 50 to 
250 megabases. Most sequencing technologies produce reads that are well under 1000 base 
pairs in length and, in some cases, closer to 100 base pairs. Assembly is the process of 
building fragments of a genome to represent the genomic sequence. Sequencing reads 
are overlapped, a multiple sequence alignment is generated, and the consensus sequence 
is called a contig. (These contain no gaps, although they may contain N (unknown) base 
calls due to sequence ambiguity.) With each successive genome build, the fraction of all 
contigs that are small (e.g., less than 5 Mb) continues to decline (table 20.3). Scaffolds are 
defined as contigs that have been ordered and oriented; they contain gaps whose number 
and length are estimated. We discussed assembly strategies in Chapter 9.

The public consortium draft genome sequence was generated by selecting, sequenc-
ing, and assembling BAC clones. Most libraries contained BAC clones or P1-derived 
artificial clones (PACs). These libraries were prepared from DNA obtained from anony-
mous donors. Selected clones were subjected to shotgun sequencing. In conjunction with 
sequencing of BAC and other large-insert clones, the sequence data were assembled into 
an integrated draft sequence. An example of the procedure is shown in Figure 15.11.

The 2001 draft version of the 
human genome was based on 
the sequence and assembly of 
over 29,000 BAC clones with a 
total length of 4.26 billion base 
pairs (Gb). There were 23 Gb of 
raw shotgun sequence data.

For information on contigs in 
GenBank see  http://www.
ncbi.nlm.nih.gov/genbank/wgs/ 
(WebLink 20.19).

The NCBI assembly process is 
described at  http://www.ncbi.
nlm.nih.gov/assembly/ (WebLink 
20.20; see Assembly Basics and 
Assembly Data Model), and the 
annotation process is described 
at  http://www.ncbi.nlm.nih.
gov/genome/annotation_euk/
process/ (WebLink 20.21).

taBle 20.3  Contigs categorized by size. See Build 37 statistics (linked from  
 http://www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html)

Range (kb) Number Length (base pairs) Percent of total

< 300 37 5,818,180 0.2

300–1000 39 23,660,700 0.82

1000–5000 32 79,778,700 2.78

> 5000 82 2,757,100,000 96.18

http://www.ncbi.nlm.nih.gov/genbank/wgs/
http://www.ncbi.nlm.nih.gov/assembly/
http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/
http://www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html
http://www.ncbi.nlm.nih.gov/genbank/wgs/
http://www.ncbi.nlm.nih.gov/assembly/
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The whole-genome shotgun assembly approach that was championed by Celera 
was proven successful by the sequencing of the Drosophila melanogaster genome in 
2000 as well as by the initial sequence of the human genome (Venter et al., 2001). 
Since then it has been widely adopted for thousands of bacterial, archaeal, and eukary-
otic genome sequencing projects. A caveat noted by Evan Eichler and colleagues is 
that whole-genome shotgun sequencing and assembly performs poorly at correctly 
assembling repetitive DNA elements such as the segmental duplications that occupy 
over 5% of the human genome (She et al., 2004). They compared a whole-genome 
shotgun sequence assembly to the assembly based on ordered clones and found that 
38.2 megabases of pericentromeric DNA (about 80% of the size of a small autosome) 
was either not assembled, not assigned, or misassigned. Additionally, She et al. sug-
gested that 40% of the duplicated sequence might be misassembled. Correctly resolv-
ing these structures will require a targeted approach to supplement whole-genome 
shotgun sequencing and assembly.

The Genome Reference Consortium (GRC) is responsible for coordinating new assem-
blies for human, mouse, and zebrafish genomes. Every few years a new genome assembly is 
released. The current assembly is Genome Reference Consortium Human Build 38 (abbre-
viated GRCh38). GRCh38 addresses some of the following issues (Fig. 20.5), many of which 

GRCh38 was released in 
December 2013. Visit the GRC site 
at  http://www.ncbi.nlm.nih.gov/
projects/genome/assembly/grc/# 
(WebLink 20.22). GRC involves a 
collaboration between EMBL-
EBI, the Wellcome Trust Sanger 
Institute, the Genome Institute at 
Washington University, and NCBI.

Gap

Unknown
Clone problem

Path problem

GRC housekeeping
Missing sequence
Variation

FIgure  20.5 Issues addressed by the Genome Reference Consortium (GRC) in the releases 
 leading up to GRCh38 (December 2013). Top: categories of issues. Clone problem: a single clone has 
a single-nucleotide difference or misassembly. Path problem: the tiling path is incorrect and must be 
updated. GRC housekeeping: the tiling path must be regularized. Missing sequence: sequences need to 
be placed on the assembly. Variation: an alternate allele may need to be represented. Gap: a gap must 
be filled. Bottom: examples for a path problem. The NCBI representation was a mixed haplotype; the 
tiling path is shown. For GRCh37 the tiling paths include an alternate locus. Blue clones are anchors 
(included in all three paths). Red clones in GRCh37 correspond to an insertion path; dark-gray cones 
are in a deletion path (at bottom). A light-gray clone, not used in NCBI36, forms part of the GRCh37 
alternate locus. 

Source: Church et al. (2011).

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/#
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historically stemmed from the decentralized nature of the Human Genome Project and from 
inadequate models for the complexity of the human genome.

 • The haploid assembly represents a mixture of haplotypes. Humans are diploid, and 
these sequences need to be represented. In a diploid assembly a chromosome assem-
bly is available for both sets of chromosomes from an individual.

 • Assemblies have errors. These are corrected in each new assembly release, and GRC 
also releases occasional “patches” updating information in scaffolds. Examples of 
errors that have been corrected in GRCh38 include missing sequences (e.g., the 
TAS2R45 gene was absent from the reference assembly), and mismatches between 
transcript sequence and genomic sequences.

 • Some loci exhibit allelic complexity. A single path cannot represent alternative hap-
lotypes, and GRC creates alternate locus definitions. For example, explore the Major 
Histocompatibility Complex (MHC) on chromosome 6.

 • Some regions, such as centromeres, have complex structures that are now assigned 
improved representation.

table 20.4 lists some global statistics of GRCh38. The total sequence length is about 
3.2 billion base pairs, and there are still 160 Mb in gaps (typically involving highly repet-
itive regions that are challenging to sequence across).

A key aspect of the sequence is the extent to which the sequenced fragments are con-
tiguous. The average length of a clone or a contig is not a consistently useful measure of 
the extent to which a genome has been sequenced and assembled. Instead the N50 length 
describes the largest length L such that 50% of all nucleotides are contained in contigs 
or scaffolds of at least size L. For the draft version of the human genome sequence, half 
of all nucleotides were present in a fingerprint clone contig of at least 8.4 Mb. The N50 
length rose to 38.5 Mb with the GRCh36 genome assembly, while currently the contig 
and scaffold N50 values are >56 Mb and ∼68 Mb, respectively (table 20.4).

Broad genomic landscape

We discuss the 25 human chromosomes in more detail below (see “25 Human Chromo-
somes”), based on projects focused on finishing the sequence of each one. The autosomes 
are numbered approximately in order of size. The largest, chromosome 1, is 249 Mb in 
length; the smallest, chromosome 21, is 48 Mb.

Having a nearly complete view of the nucleotide sequence of the human genome, we 
can explore its broad features. These include:

 • the distribution of GC content;
 • CpG islands and recombination rates;

You can view GRC map contigs, 
a GRC incident database, 
patches, and haplotypes at the 
UCSC Genome Browser using 
the tracks in the “Mapping and 
Sequencing” section at  http://
genome.ucsc.edu (WebLink 
20.23). For example, view a 
region of 6.5 Mb on chromosome 
6 (chr6:27,500,001–34,000,000 of 
GRCh37). This provides access to 
the DNA sequence of alternate 
loci in the MHC region.

taBle 20.4 global statistics of human build grCh38. the 25 chromosomes include 
1-22, X, Y, and the mitochondrial genome. 

Number of regions with alternate loci or patches 207

Total sequence length 3,209,286,105

Total assembly gap length 159,970,007

Gaps between scaffolds 349

Number of scaffolds 735

Scaffold N50 67,794,873

Number of contigs 1,385

Contig N50 56,413,054

Total number of chromosomes 25

Source:  http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/

http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
http://genome.ucsc.edu
http://genome.ucsc.edu
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 • the repeat content; and
 • the gene content.

We examine each of these four features of the genome in the following sections. Using 
the resources of UCSC, Ensembl, and NCBI, we can explore the genomic landscape from 
the level of single nucleotides to entire chromosomes.

Long-Range Variation in GC Content
The average GC content of the human genome is 41%. However, there are regions that 
are relatively GC rich and GC poor. A histogram of the overall GC content (in 20 kb win-
dows) shows a broad profile with skewing to the right (Fig. 20.6). Fifty-eight percent of the 
GC content bins are below the average while 42% are above the average, including a long 
tail of highly GC-rich regions.

Giorgio Bernardi and colleagues have proposed that mammalian genomes are orga-
nized into a mosaic of large DNA segments (e.g., >300 kb) called isochores. These iso-
chores are fairly homogeneous compositionally and can be divided into GC-poor families 
(L1 and L2) or GC-rich families (H1, H2, and H3). The IHGSC (2001) report did not 
identify clearly defined isochores, and Haring and Kypr (2001) did not detect isochores 
in human chromosomes 21 and 22. Subsequent analyses by Bernardi and colleagues 
(Bernardi, 2001; Costantini and Bernardi, 2008; Arhondakis et al., 2011) do support the 
mosaic organization of the human genome by GC content. The discrepancies depend in 
part on the size of the window of genomic DNA that is analyzed.

CpG Islands
The dinucleotide CpG is greatly underrepresented in genomic DNA, occurring at about 
one-fifth its expected frequency (we introduced this topic in Chapter 8). Many CpG dinu-
cleotides are methylated on the cytosine and are subsequently deaminated to thymine 
bases. However, the genome contains many “CpG islands” which are typically associ-
ated with the promoter and exonic regions of housekeeping genes (Gardiner-Garden and 
Frommer, 1987). CpG islands have roles in processes such as gene silencing, genomic 
imprinting, and X-chromosome inactivation (Tycko and Morison, 2002; Jones, 2012; 
Smith and Meissner, 2013).

You can view GC content 
across any chromosome in 
the NCBI, Ensembl, or UCSC 
genome browsers. For example, 
in the Ensembl browser click 
“configure” to add a GC content 
layer. In the UCSC Table Browser 
you can output the GC content 
in a BED file, summarized by 
chromosome.

The L (light) and H (heavy) 
designations for isochores refer 
to the sedimentation behavior 
of genomic DNA in cesium 
chloride gradients. Genomic DNA 
fragments migrate to different 
positions based on their percent 
GC content.

Gene silencing refers to 
transcriptional repression. We 
briefly described MeCP2, a 
protein that binds to methylated 
CpG islands, in Chapter 12 
(Fig. 12.9, 12.10). MeCP2 
further recruits proteins such as 
a histone deactylase that alters 
chromatin structure and represses 
transcription. Mutations in MECP2, 
the X-linked gene encoding 
MeCP2, cause Rett sydrome (Amir 
et al., 1999). This disease causes 
distinctive neurological symptoms 
in girls, including loss of purposeful 
hand movements, seizures, and 
autistic-like behavior (Chapter 21). 
X-chromosome inactivation is a 
dosage compensation mechanism 
in which cells in a female body 
selectively silence the expression 
of genes from either the 
maternally or paternally derived X 
chromosome (Avner and Heard, 
2001).
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FIgure 20.6 Histogram of percent GC content versus the number of 20 kb windows in the draft human 
genome sequence. Note that the distribution is skewed to the right, with a mean GC content of 41%. 

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.
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You can display predicted CpG islands in genomic DNA at the NCBI, Ensembl, and 
UCSC genome browser websites. According to the IHGSC (2001), there are 50,267 pre-
dicted CpG islands in the human genome. After blocking repetitive DNA sequences with 
RepeatMasker, there were 28,890 CpG islands, matching the number currently listed in 
the UCSC Table Browser for GRCh37. (This lower number reflects the high GC content 
of Alu repeats.) There are 5–15 CpG islands per megabase of DNA on most chromo-
somes, although chromosome 19 (the most gene-dense chromosome) contains 43 CpG 
islands per megabase (Fig. 20.7).

Comparison of Genetic and Physical Distance
It is possible to compare the genetic maps and physical maps of the chromosomes to esti-
mate the rate of recombination per nucleotide (Yu et al., 2001). Genetic maps, also known 
as linkage maps, are chromosome maps based on meiotic recombination. During meiosis 
the two copies of each chromosome present in each cell are reduced to one. The homolo-
gous parental chromosomes recombine (exchange DNA) during this process. Genetic maps 
describe the distances between DNA sequences (genes) based on their frequency of recom-
bination. Genetic maps therefore describe DNA sequences in units of centimorgans (cM), 
which describe relative distance. One centimorgan corresponds to 1% recombination.

In contrast to genetic maps, physical maps describe the physical position of nucle-
otide sequences along each chromosome. With the completion of the human genome 
sequence, it became possible to compare genetic and physical maps.

Figure 20.8 shows a plot of genetic distance (y axis; in centimorgans) versus phys-
ical distance for human chromosome 12 (x axis; in megabases) (IHGSC, 2001). There 
are two main conclusions. First, the recombination rate tends to be suppressed near the 
centromeres (note the flat slope in Fig. 20.8, arrow 1), while the recombination rate is far 
higher near the telomeres. This effect is especially pronounced in males. Second, long 
chromosome arms tend to have an average recombination rate of 1 cM/Mb, while the 
shortest arms have a much higher average recombination rate (>2 cM/Mb). The range 
of the recombination rate throughout the genome varies from 0 to 9 cM/Mb (Yu et al., 
2001). These researchers identified 19 recombination “deserts” (up to 5 Mb in length 
with sex-average recombination rates <0.3  cM/Mb) and 12 recombination “jungles” 
(up to 6 Mb in length with sex-average recombination rates >3.0 cM/Mb). In computer 
 laboratory exercise (20.4) at the end of this chapter, we identify regions of high (or low) 
recombination on the UCSC Genome Browser.

The UCSC Table Browser 
lists 28,691 CpG islands in 
the human genome. To see 
this, visit the Table Browser 
at  http://genome.ucsc.edu 
(WebLink 20.24). Set the clade 
to vertebrate, the genome to 
human, the assembly to GRCh37 
(or another assembly), the group 
to Regulation, the track to CpG 
islands, and click summary 
statistics. CpG islands are 
defined as having GC content 
≥50%, length >200 base pairs, 
and ratio >0.6 of observed 
number of CG dinucleotides to 
the expected number in that 
segment. Genomic imprinting 
is the differential expression 
of genes from maternal and 
paternal alleles. Tycko and 
Morison (2002) offer a database 
of imprinted genes (  http://
igc.otago.ac.nz/home.html, 
WebLink 20.25).

The NCBI, Ensembl, and UCSC 
genome browsers allow you to 
view both physical maps and 
genetic maps.
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FIgure 20.7 The number of CpG islands per megabase is plotted versus the number of genes per 
megabase as a function of chromosome. Note that chromosome 19, the most gene-rich chromosome, has 
the greatest number of CpG islands per megabase.  

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.

http://genome.ucsc.edu
http://igc.otago.ac.nz/home.html
http://igc.otago.ac.nz/home.html
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repeat Content of human genome

Repetitive DNA occupies over 50% of the human genome. The origin of these repeats and 
their function present fascinating questions. What are the different kinds of repeats which 
occur? From where did they originate and when? Is there a logic to their promiscuous 
growth in our genomes or do they multiply without purpose? One of the outcomes of the 
Human Genome Project is that we are beginning to understand the extent and nature of 
the repeat content of our genome.

There are five main classes of repetitive DNA in humans (Jurka, 1998; IHGSC, 
2001), as discussed in Chapter 8:

 1. interspersed repeats (transposon-derived repeats);
 2. processed pseudogenes: inactive, partially retroposed copies of protein-coding 

genes;
 3. simple sequence repeats: microsatellites and minisatellites, including short sequences 

such as (A)n, (CA)n, or (CGG)n;
 4. segmental duplications, consisting of blocks of 10–300 kb that are copied from one 

genomic region to another; and
 5. blocks of tandemly repeated sequences such as are found at centromeres, telomeres, 

and ribosomal gene clusters.

We briefly explore each of these types of repeats in the following sections.

1

0
60

50

40

30

20

10

0

10

20

30

40

50

60

70
12q

12q Sex-averaged

D
is

ta
nc

e 
fr

om
 c

en
tr

om
er

e 
(c

M
)

Male
Female

80

90

100

110

120

130

140

10 20 30 40 50 60 70

Position (Mb)Centromere

80 90 100 110 120 130 140

2

FIgure 20.8 Comparison of physical distance (in megabases, x axis) with genetic distance (in centi-
morgans, y axis) for human chromosome 12. Note that the recombination rate tends to be lower near the 
centromere (arrow 1) and higher near the telomeres (distal portion of each chromosome). The recombi-
nation is especially high in the male meiotic map (arrow 2).  

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.
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Transposon-Derived Repeats
Incredibly, 45% of the human genome or more consists of repeats derived from trans-
posons. These are often called interspersed repeats. Many transposon-derived repeats 
replicated in the human genome in the distant past (hundreds of millions of years ago); 
because of sequence divergence, it is possible that the 45% value is an underestimate. 
Transposon-derived repeats can be classified as one of four categories (Jurka, 1998; 
Ostertag and Kazazian, 2001):

 • LINEs occupy 21% of the human genome;
 • SINEs occupy 13% of the human genome;
 • LTR transposons account for 8% of the human genome; and
 • DNA transposons comprise about 3% of the human genome.

The structure of these repeats is shown in Figure 20.9, as well as their abundance in 
the human genome. LINEs, SINEs, and LTR transposons are all retrotransposons that 
encode a reverse transcriptase activity. They integrate into the genome through an RNA 
intermediate. In contrast, DNA transposons have inverted terminal repeats and encode a 
bacterial transposon-like transposase activity.

Retrotransposons can further be classified into those that are autonomous (encoding 
activities necessary for their mobility) and those that are nonautonomous (depending on 
exogenous activities such as DNA repair enzymes). The most common nonautonomous 
retrotransposons are Alu elements.

Interspersed repeats occupy a far greater proportion of the human genome than in 
other eukaryotic genomes (table 20.5). The total number of interspersed repeats is esti-
mated to be 3 million. These repeats offer an important opportunity to study molecular 
evolution. Each repeat element, even if functionally inactive, represents a “fossil record” 
that can be used to study genome changes within and between species. Transposons 
accumulate mutations randomly and independently. It is possible to perform a multi-
ple sequence alignment of transposons and to calculate the percent sequence divergence. 
Transposon evolution is assumed to behave like a molecular clock, which can be cali-
brated based on the known age of divergence of species such as humans and Old World 
monkeys (23 million years ago or MYA). Based on such phylogenetic analyses, several 
conclusions can be made (IHGSC, 2001; Fig. 20.10):

 • Most interspersed repeats in the human genome are ancient, predating the mamma-
lian eutherian radiation 100 MYA. These elements are removed from the genome 
only slowly.

The number of interspersed 
repeats was estimated using 
RepeatMasker to search 
RepBase (see Chapter 8).

Alu elements are so named 
because the restriction enzyme 
Alu I digests them in the middle 
of the sequence. In mice, these 
are called B1 elements.

Classes of interspersed repeat in the human genome

SINEs

Retrovirus-like
elements

DNA
transposon
fossils

LINEs Autonomous

Autonomous

Autonomous

Non-autonomous

Non-autonomous

Length Copy
number

Fraction of
genome

21%

13%

8%

3%

850,000

1,500,000

450,000

300,000

6-8 kb

6-11 kb

1.5-3 kb

2-3 kb

80-3,000 bp

transposase

(gag)

gag   pol (env)

ORF1     ORF2 (pol) AAA

AAA
A B

Non-autonomous

100-300 bp

FIgure 20.9 There are four types of transposable elements in the human genome: LINEs, SINEs, 
LTR transposons, and DNA transposons. 

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.
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 • SINEs and LINEs have long lineages, some dating back to 150 MYA.
 • There is no evidence for DNA transposon activity in the human genome in the past 
50 million years; they are therefore extinct fossils.

Simple Sequence Repeats
Simple sequence repeats are repetitive DNA elements that consist of a perfect (or slightly 
imperfect) tandem repeats of k-mers. When the repeat unit is short (k is about 1–12 bases), 
the simple sequence repeat is called a microsatellite. When the repeat unit is longer (from 
about 12–500 bases), it is called a minisatellite (Toth et al., 2000).

Micro- and minisatellites comprise about 3% of the human genome (IHGSC, 2001). 
The most common repeat lengths are shown in table 20.6. The most common repeat units 
are the dinucleotides AC, AT, and AG. We saw examples of these with the RepeatMasker 
program (Fig. 8.8).

Segmental Duplications
About 5.7% of the human genome consists of segmental duplications. These occur 
when the genome contains duplicated blocks of 1–200  kb of sequence (the typical 
size is 10–50  kb; Bailey et al., 2001). Many of these duplication events are recent, 
because both introns and coding regions are highly conserved. (For ancient duplication 

taBle 20.5 Interspersed repeats in four eukaryotic genomes. “Bases” refers to percentage of 
bases in the genome, “families” to approximate number of families in the genome. adapted 
from IhgSC (2001) with permission from Macmillan publishers.

Human Drosophila C. elegans A. thaliana

Bases (%) Families Bases (%) Families Bases (%) Families Bases (%) Families

LINE/SINE 33.4 6 0.7 20 0.4 10 0.5 10

LTR 8.1 100 1.5 50 0  4 4.8 70

DNA 2.8 60 0.7 20 5.3 80 5.1 80

Total 44.4 170 3.1 90 6.5 90 10.5 160
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FIgure 20.10 Comparison of the age of interspersed repeats in four eukaryotic genomes. Humans 
have a small proportion of recent interspersed repeats.  

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.
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events, less conservation is expected between duplicated intronic regions.) Segmental 
duplications may be interchromosomal or intrachromosomal. The centromeres contain 
large amounts of interchromosomal duplicated segments, with almost 90% of a 1.5 Mb 
region containing these repeats (Fig. 20.11). Smaller regions of these repeats also occur 
near the telomeres.

gene Content of human genome

It is of great interest to characterize the gene content of the human genome because 
of the critical role of genes in human biology. However, the genes are the hardest 

taBle 20.6  Simple sequence repeats (microsatellites) in human genome. SSr: 
simple sequence repeat. 

Length of repeat

Average bases per 

megabase

Average number of SSR 

elements per megabase

 1 1660 33.7

 2 5046 43.1

 3 1013 11.8

 4 3383 32.5

 5 2686 17.6

 6 1376 15.2

 7 906 8.4

 8 1139 11.1

 9 900 8.6

10 1576 8.6

11 770 8.7

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.

CEN

TEL

FIgure 20.11 The centromeres consist of large amounts of interchromosomal duplicated segments. 
The size and location of intrachromosomal (black) and interchromosomal (red) segmental duplications 
are indicated. Each horizontal line represents 1 Mb of chromosome 22q; the tick marks indicate 100 kb 
intervals. The centromere is at top left, and the telomere is at the lower right. Adapted from IHGSC 
(2001). Reproduced with permission from Macmillan Publishers.
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features of genomic DNA to identify (see Chapter 8). This is a challenging task for 
many reasons:

 • The average exon is only 50 codons (150 nucleotides). Such small elements are hard 
to unambiguously identify as exons.

 • Exons are interrupted by introns, some many kilobases in length. In the extreme case, 
the human dystrophin gene extends over 2.4 Mb, the size of an entire genome of a 
typical bacterial genome. The use of complementary DNAs and RNA-seq therefore 
continues to provide an essential approach to gene identification.

 • There are many pseudogenes that may be difficult to distinguish from functional 
protein-coding genes.

 • The nature of noncoding genes is poorly understood (see Chapter 10 and the follow-
ing section).

Noncoding RNAs
There are many classes of human genes that do not encode proteins. Noncoding RNAs can 
be difficult to identify in genomic DNA because they lack open reading frames, they may be 
small, and they are not polyadenylated (they are therefore not enriched by oligo(dT) capture 
methods used to purify mRNA). They are difficult to detect by gene-finding algorithms, 
and they are not present in cDNA libraries. These noncoding RNAs include the following:

 • transfer RNAs, required as adapters to translate mRNA into the amino acid sequence 
of proteins;

 • ribosomal RNAs, required for mRNA translation;
 • small nucleolar RNAs (snoRNAs), required for RNA processing in the nucleolus; and
 • small nuclear RNAs (snRNAs), required for spliceosome function.

Hundreds of noncoding RNAs were identified in the draft version of the human 
genome (table 20.7). The tRNA genes were most predominant, with 497 such genes 
and an additional 324 tRNA-derived pseudogenes. The tRNA genes associated with the 
human genetic code can now be described. This version of the genetic code includes the 
frequency of codon utilization for each amino acid and the number of tRNA genes that 
are associated with each codon. The total number of tRNA genes is comparable to that 
observed in other eukaryotes (table 10.2).

Protein-Coding Genes
Protein-coding genes are characterized by exons, introns, and regulatory elements. These 
basic features are summarized in table 20.8. The average coding sequence for human genes is 
1340 bp (IHGSC, 2001), comparable to the size of an average coding sequence in nematode 
(1311 bp) and Drosophila (1497 bp). Most internal exons are about 50–200 bp in length in all 
three species (Fig. 20.12a), although worm and fly have a greater proportion of longer exons 
(note the flatter tail in Fig. 20.12a). However, the size of human introns is far more variable 
(Fig. 20.12b, c). This results in a more variable overall gene size in humans than in worm and fly.

Protein-coding genes are associated with a high GC content (Fig. 20.13). While the 
overall GC content of the human genome is about 41%, the GC content of known genes 
(having RefSeq identifiers) is higher (Fig. 20.13a). Gene density increases 10-fold as GC 
content rises from 30 to 50% (Fig. 20.13b).

Currently Ensembl lists 20,300 protein-coding genes (table 20.1). The 10 most com-
mon InterPro hits include immunoglobulin domains and protein kinases (table 20.9).

Comparative Proteome Analysis
The importance of comparative analyses has emerged as one of the fundamental tenets 
of genomics. The IHGSC (2001) analyzed functional groups of these proteins based on 
InterPro and Gene Ontology (GO) Consortium classifications. Humans have relatively 

We described cDNA projects in 
Chapter 10.

The longest coding sequence is 
titin (104,301 bp; NM_001256850.1). 
The gene for titin, on chromosome 
2q24.3, has 178 exons and 
encodes a muscle protein 
of 34,350 amino acids (about 
3.8 million Da). By contrast, 
a typical protein encoded by 
an mRNA of 1340 bp is about 
50,000 Da.

Chromosome 19, the most GC-rich 
chromosome, also houses the 
greatest density of genes (26.8 per 
megabase). The average density 
of gene predictions across the 
genome is 11.1 per megabase. 
The Y chromosome is least dense, 
having 6.4 predicted genes per 
megabase.
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taBle 20.7 Noncoding genes in human genome. adapted from IhgSC (2001). 
reproduced with permission from Macmillan publishers.

RNA gene

Number of  

noncoding  

genes

Number of  

related  

genes Function

tRNA 497 324 Protein synthesis

SSU (18S) RNA 0 40 Protein synthesis

5.8S rRNA 1 11 Protein synthesis

LSU (28S) rRNA 0 181 Protein synthesis

5S RNA 4 520 Protein synthesis

U1 16 134 Spliceosome component

U2 6 94 Spliceosome component

U4 4 87 Spliceosome component

U4atac 1 20 Minor (U11/U12) spliceosome component

U5 1 31 Spliceosome component

U6 44 1135 Spliceosome component

U6atac 4 32 Minor (U11/U12) spliceosome component

U7 1 3 Histone mRNA 3′ processing

U11 0 6 Minor (U11/U12) spliceosome component

U12 1 0 Minor (U11/U12) spliceosome component

SRP (7SL) RNA 3 773 Component of signal recognition particle

RNAse P 1 2 tRNA 5′ end processing

RNAse MRP 1 6 rRNA processing

Telomerase RNA 1 4 Template for addition of telomeres

hY1 1 353 Component of Ro RNP, function unknown

hY3 25 414 Component of Ro RNP, function unknown

hY4 3 115 Component of Ro RNP, function unknown

hY5 (4.5S RNA) 1 9 Component of Ro RNP, function unknown

Vault RNAs 3 1 Component of 13 Mda vault RNP

7SK 1 330 Unknown

H19 1 2 Unknown

Xist 1 0 Initiation of X chromosome inactivation

Known C/D snoRNAs 69 558 Pre-rRNA processing or site-specific ribose 
methylation of rRNA

Known H/ACA snoRNAs 15 87 Pre-rRNA processing or site-specific 
pseudouridylation of rRNA

taBle 20.8 Characteristics of human genes. aa: amino acids; bp: base pairs; kb: kilo 
base pairs. adapted from IhgSC (2001). reproduced with permission from Macmillan 
publishers.

Feature Size (median) Size (mean)

Internal exon 122 bp 145 bp

Exon number 7 8.8

Introns 1023 bp 3365 bp

3′ untranslated region 400 bp 770 bp

5′ untranslated region 240 bp 300 bp

Coding sequence 1100 bp 1340 bp

Coding sequence 367 aa 447 aa

Genomic extent 14 kb 27 kb
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FIgure 20.12 Size distribution of (a) exons, (b) introns, and (c) short introns (enlarged from (b)) in 
human, worm, and fly.  

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.

more genes that encode proteins predicted to function in cytoskeleton, transcription/ 
translation, and defense and immunity.

The human proteome was further studied by BLASTP searching every predicted pro-
tein against the nonredundant database. Overall, 74% of the proteins were significantly 
related to other known proteins. As more sequences are accumulated in databases over 
time, the matches between human proteins and other eukaryotes (and bacteria and archaea) 
continue to increase.

We discussed the GO Consortium 
and InterPro in Chapter 12.
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plotted as a function of the GC content. As GC content rises, the relative gene density increases dramat-
ically. (c) Mean exon length is unaffected by GC content, but introns are far shorter as GC content rises. 

Source: IHGSC (2001). Reproduced with permission from Macmillan Publishers.

taBle 20.9 ten most common Interpro hits for Homo sapiens. 

InterPro InterPro name Number of genes

IPR007110 Immunoglobulin-like domain 7199

IPR027417 P-loop containing nucleoside triphosphate hydrolase 3901

IPR011009 Protein kinase-like domain 2543

IPR015880 Zinc finger, C2H2-like 2500

IPR007087 Zinc finger, C2H2 2414

IPR000719 Protein kinase domain 2283

IPR003599 Immunoglobulin subtype 1645

IPR017452 GPCR, rhodopsin-like, 7TM 1631

IPR000276 G protein-coupled receptor, rhodopsin-like 1567

IPR001909 Krueppel-associated box 1519

Source: Ensembl Release 75; Flicek et al. (2014). Reproduced with permission from Ensembl.

Complexity of Human Proteome
The number of protein-coding genes in humans is comparable to the number of genes 
in other metazoans and plants and only three-fold greater than the number in unicellular 
fungi. Nonetheless, the human proteome may be far more complex for several reasons 
(IHGSC, 2001):
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 1. There are relatively more domains and protein families in humans than in other 
organisms.

 2. The human genome encodes relatively more paralogs, potentially yielding more 
functional diversity.

 3. There are relatively more multidomain proteins having multiple functions.
 4. Domain architectures tend to be more complex in the human proteome.
 5. Alternative RNA splicing may be more extensive in humans.

There may be a synergistic effect among these factors, leading to a substantially greater 
complexity of the human proteome that could account for the phenotypic complexity of 
vertebrates, including humans.

In its reannotation of the human genome, the IHGSC (2004) identified the largest clus-
ters of human paralogous genes that involve recent gene duplications (table 20.10); these 
genes are neighboring (indicating local gene duplication). The selected sites displayed 
near neutrality (estimated substitution rate per synonymous site Ks < 0.30, such that each 
homolog differs from a common ancestral gene by an average Ks < 0.15). These represent 
genes that were recently born in the human lineage (after the divergence from rodents), and 
many have functions in olfaction, immune function, and the reproductive system.

25 HuMan cHroMosoMes
Each human chromosome was finished (or nearly finished) by a dedicated research team. 
For each chromosome, there is a publication in the journal Nature (or Science). There are 
seven traditional cytogenetic groups A–F which categorize the chromosomes (other than the 
mitochondrial genome) according to morphological properties (table 20.11). We briefly sum-
marize key aspects of each chromosome, following this organization (tables 20.12–20.18).

A list of accession numbers for 
the human chromosomes is given 
at  ftp://ftp.ncbi.nlm.nih.gov/
genomes/H_sapiens/Assembled_
chromosomes/chr_NC_gi 
(WebLink 20.26).

taBle 20.10 human paralogous genes with largest cluster sizes involved in recent gene duplications (Ks ≤ 0.3). 
Modified from IhgSC (2004) with permission from Macmillan publishers.

Cluster size

Minimum size in 

ancestral genome

Genes involved in recent 

duplications Chromosome Gene family

64 50 23 11 Olfactory receptor

59 54 10 11 Olfactory receptor

34 25 13 1 Olfactory receptor

30 8 26 2 Immunoglobulin K chain V

23 5 19 19 KRAB zinc-finger protein

23 19 6 11 Olfactory receptor

21 9 15 14 Immunoglobulin heavy chain

20 11 12 22 Immunoglobulin λ chain V-region

18 9 13 19 Leukocyte and NK cell immunoglobulin-like 
receptors

18 14 6 19 Gonadotropin-inducible transcription 
repressor-2-like

16 4 13 9 Interferon α

16 10 7 19 FDZF2-like KRAB zinc-finger protein

14 8 7 12 Taste receptor, type 2

13 3 11 1 PRAME/MAPE family (cancer/germ line 
antigen)

13 9 8 17 Olfactory receptor

11 2 11 16 Immunoglobulin heavy chain

10 1 10 19 Pregnancy-specific β-1-glycoprotein

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/Assembled_chromosomes/chr_NC_gi
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taBle 20.11 human chromosome groups.

Group Chromosomes Description

A 1–3 Largest chromosomes; 1, 3 are metacentric; 2 is submetacentric

B 4,5 Large chromosomes; submetacentric

C 6–12, X Medium-size chromosomes; submetacentric

D 13–15 Medium-size chromosomes; acrocentric with satellites

E 16–18 Small; 16 is metacentric; 17, 18 are submetacentric

F 19, 20 Small, metacentric chromosomes

G 21, 22, Y Smallest chromosomes; acrocentric; satellites on 21 and 22

taBle 20.12 group a chromosomes. length is from NCBI build 37; gap sizes are 
from grCh37; and chromosome length is from NCBI. adapted from hillier et al. (2005), 
gregory et al. (2006), Muzny et al. (2006), NCBI build 37 (February 2014), grCh37, 
http://www.ncbi.nlm.nih.gov/assembly/gCF_000001405.26/#/st.

Chromosome Length (Mb) # Genes # Pseudogenes Gap size (Mb) Accession

1 249 3141 991 24.0 NC_000001.10

2 243 1346 1239 5.0 NC_000002.11

3 198 1463 122 3.2 NC_000003.11

taBle 20.13 group B chromosomes. adapted from Schmutz et al. (2004); hillier et al. 
(2005). length is from NCBI build 37; gap sizes are from grCh37.

Chromosome Length (Mb) # Genes # Pseudogenes Gap size (Mb) Accession

4 191 796 778 3.5 NC_000004.11

5 181 923 577 3.2 NC_000005.9

taBle 20.14 group C chromosomes. adapted from hillier et al. (2003), Mungall et al. 
(2003), Deloukas et al. (2004), humphray et al. (2004), ross et al. (2005), Nusbaum et al. 
(2006), taylor et al. (2006). length is from NCBI build 37; gap sizes are from grCh37.

Chromosome Length (Mb) # Genes # Pseudogenes Gap size (Mb) Accession

6 171 1557 633 3.7 NC_000006.11

7 159 1150 941 3.8 NC_000007.13

8 146 793 301 3.5 NC_000008.10

9 141 1149 426 21.1 NC_000009.11

10 136 816 430 4.2 NC_000010.10

11 135 1524 765 3.9 NC_000011.9

12 134 1342 93 3.4 NC_000012.11

X 155 1098 700 4.1 NC_000023.10

taBle 20.15 group D chromosomes. adapted from heilig et al. (2003), Dunham et al. 
(2004), Zody et al. (2006b). length is from NCBI build 37; gap sizes are from grCh37.

Chromosome Length (Mb) # Genes # Pseudogenes Gap size (Mb) Accession

13 115 633 296 19.6 NC_000013.10

14 107 1050 393 19.1 NC_000014.8

15 103 695 250 20.8 NC_000015.9

http://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/#/st
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The exact number of genes is not yet known (almost all have been annotated). The 
EGASP competition, described in Chapter  8, highlights the computational challenges 
in correctly identifying genes with good sensitivity and specificity. The values of gap 
lengths in tables 20.12–20.18 typically decrease over time. In almost every case they rep-
resent regions that are refractory to cloning and sequencing because of the highly repet-
itive nature of the underlying DNA sequence, even when up to 100-fold coverage of the 
chromosome is obtained. Overall, the finished euchromatic portion of the human genome 
included 250 gaps spanning 25 Mb, while the heterochromatic portion had far fewer gaps 
(just 33) spanning a vast size (200 Mb; IHGSC, 2004). In 2015 the total gap size (for 
GRCh38.p2) was 160 Mb.

group a (Chromosomes 1–3)

Chromosome 1, the largest chromosome, has 3141 genes and 991 pseudogenes (Greg-
ory et al., 2006; table 20.12). Its gene density (14.2 genes per megabase) is nearly twice 
the genome-wide average (7.8 genes per megabase). Typical for essentially all the chro-
mosome finishing projects, sequence integrity and completeness were assessed three 
ways: (1) by determining whether all RefSeq genes assigned to the chromosome were 
accounted for; (2) by comparing the order of hundreds of chromosome markers to the 
DeCode genetic map to search for discrepancies; and (3) by aligning over 32,000 pairs 
of fosmid end sequences to unique positions in the sequence. This resulted in the iden-
tification of several misassemblies caused by low-copy repeats. In some cases, naturally 
occurring polymorphisms confound the analysis; for example, 50% of individuals lack 
the GSTM1 gene.

Chromosome 2, the second largest chromosome, is remarkable because it corresponds 
to two intermediate-sized ancestral, acrocentric chromosomes that fused end-to-end. In 

taBle 20.16 group e chromosomes. adapted from Martin et al. (2004), Nusbaum et al. 
(2005), Zody et al. (2006a). length is from NCBI build 37; gap sizes are from grCh37.

Chromosome Length (Mb) # Genes # Pseudogenes Gap size (Mb) Accession

16 90 796 778 11.5 NC_000016.9

17 81 1266 274 3.4 NC_000017.10

18 78 337 171 3.4 NC_000018.9

taBle 20.17 group F chromosomes. adapted from Deloukas et al. (2001), grimwood 
et al. (2004). length is from NCBI build build 37; gap sizes are from grCh37.

Chromosome Length (Mb) # Genes # Pseudogenes Gap size (Mb) Accession

19 59 1461 321 3.3 NC_000019.9

20 63 727 168 3.5 NC_000020.10

taBle 20.18 group g chromosomes. adapted from Dunham et al. (1999), hattori 
et al. (2000), Skaletsky et al. (2003). length is from NCBI build 37; gap sizes are from 
grCh37.

Chromosome Length (Mb) # Genes # Pseudogenes Gap size (Mb) Accession

21 48 796 778 13.0 NC_000021.8

22 51 545 134 16.4 NC_000022.10

Y 59 78 n/a 33.7 NC_000024.9
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other primates these chromosomes remain separate, as in the case of chimpanzee chromo-
somes 2A and 2B (Fig. 20.14). In its finished sequence, the fusion site is in 2q13-2q14.1 
(Hillier et al., 2005). One of the two centromeres (at 2q21) became inactivated, and con-
tains α-satellite remnants.

Although chromosome 3 is large, it contains the lowest rate of segmental duplica-
tions in the genome (1.7% compared to a genome-wide average of 5.3% of nucleotides 
segmentally duplicated; Muzny et al., 2006). Chromosomes 3 and 21 derive from a larger 
ancestral chromosome that split. It also includes a large pericentric inversion (also present 
in chimpanzee and gorilla, but not orang-utan or Old World monkeys).

group B (Chromosomes 4, 5)

Chromosome 4 has an unusually low GC content of 38.2%, compared to the genome-
wide average of 41% (Hillier et al., 2005; table 20.13). Over 19% of the chromosome has 
a GC content of <35%. However, portions of the chromosome have a GC content >70%. 

Pan troglodytes
Chr 2A

Pan troglodytes
Chr 2B

Pan troglodytes
Chr X

human Chr 2
Chr 2B

Pan troglodytes

20M
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100M
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100M
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150M
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FIgure  20.14 Conserved synteny between human chromosome 2 and two smaller chimpanzee 
chromosomes provides evidence that two ancestral human acrocentric chromosomes fused. This image 

is from the Ensembl synteny viewer (  http://www.ensembl.org/Homo_sapiens/Location/Genome, 
WebLink 20.53). 

Source: Ensembl Release 75; Flicek et al. (2014). Reproduced with permission from Ensembl.

http://www.ensembl.org/Homo_sapiens/Location/Genome
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You can view these using the UCSC Genome Browser’s GC content annotation track, or 
the Table Browser.

Chromosome 5 has both a very low gene density and a very high rate of intrachromo-
somal duplications (Schmutz et al., 2004). It includes 923 gene loci, and 577 pseudogenes. 
There are many gene-poor loci that are highly conserved and are therefore thought to be 
functionally constrained.

group C (Chromosomes 6–12, X)

The largest transfer RNA gene cluster is localized to chromosome 6p, with 157 tRNA 
genes out of 616 across the entire genome (Mungall et al., 2003). Chromosome 6 
(table 20.14) also contains HLA-B, the most polymorphic gene in the human genome. 
We explore this polymorphism further in computer laboratory exercise (20.6) at the 
end of this chapter.

Chromosome 7 was sequenced by the public consortium (Hillier et al., 2003) 
and by Scherer et al. (2003) using a mixture of Celera whole-genome scaffolds and 
International Human Genome Sequencing Consortium data. The centromere is poly-
morphic with a range of 1.5–3.8 Mb at one locus (marker D7Z1) and 100–500 kb at 
another site (D7Z2). There is an unusually large amount of segmentally duplicated 
sequence (8.2%). As an example of the consequence of this, Williams–Beuren syn-
drome results from the hemizygous deletion of 1.5 million base pairs on chromosome 
7q11.23, a region containing about 17 genes. There are flanking repeats that mediate 
unequal meiotic recombination (Fig.  8.19) or, in some cases, hemizygous inversions 
(Osborne et al., 2001).

Other group C chromosomes are 8 (Nusbaum et al., 2006), 9 (Humphray et al., 
2004), 10 (Deloukas et al., 2004), 11 (Taylor et al., 2006), 12 (Scherer et al., 2006), and 
X (Ross et al., 2005). Chromosome 9 contains the largest autosomal block of heteroch-
romatin. Chromosome 11 is notable for having the beta globin gene cluster as well as the 
insulin gene.

The X chromosome joins group C chromosome because of its comparable size. It is 
unique in many ways. Mammals are classified into three groups, in all of which males 
have X and Y chromosomes: the eutherians (placental mammals); the metatheria (mar-
supials); and the prototheria (egg-laying mammals). Females undergo X chromosome 
inactivation (XCI) in which one copy is silenced early in development. In contrast to 
the autosomes, the male X chromosome does not recombine during meiosis, except for 
short pseudoautosomal regions at the tips (PAR1 on Xp and PAR2 on Xq) that recombine 
with corresponding portions of the Y chromosome. Since males have only a single copy 
of the X chromosome (it is therefore hemizygous), recessive phenotypes are exposed 
and many X-linked diseases have been described from hemophilia to X-linked intellec-
tual disability syndromes. The X and Y chromosomes derive from an ancient autosomal 
chromosome pair that began transforming into sex chromosomes over 300 million years 
ago, and sequencing of the X (and Y) chromosomes has revealed traces of evolutionary 
conservation between the two (Ross et al., 2005 and see “Group G (Chromosomes 21, 
22, Y)” below).

group D (Chromosomes 13–15)

The five human acrocentric chromosomes are 13, 14, and 15 (table 20.15) as well as 21 
and 22. For each, the p arm is almost entirely heterochromatic. These regions have a 
highly repetitive structure, and all five include arrays of ribosomal DNA genes as shown 
in Figure 10.7. Sequencing and accurately assembling these regions is so challenging that 
they were not targeted by the Human Genome Project and are still not part of the standard 
human genome assemblies.
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group e (Chromosomes 16–18)

Of this group of chromosomes, 16 and 17 are notable for above-average levels of segmen-
tal duplication (table 20.16). Chromosome 18 has the lowest gene density of any autosome 
(4.4 genes per megabase) and encodes only 337 genes (about one-quarter of the number 
of the similar-sized chromosome 17). One region of chromosome 18 has only 3 genes 
across 4.5 Mb. The sparse number of genes may partly explain why some individuals 
with trisomy 18 (Edwards syndrome) survive to birth, while all other autosomal trisomies 
(except trisomy 13 and trisomy 21) are embryonic lethal.

group F (Chromosomes 19, 20)

Chromosome 19 has the highest gene density with 26 protein-coding genes per megabase 
(table 20.17). It also has an unusually high density of repeats (55% of the chromosome, 
in contrast to a genome-wide average of about 45%). Almost 26% of the chromosome is 
composed of Alu repeats, consistent with the high gene density.

group g (Chromosomes 21, 22, Y)

Group G chromosomes are the smallest (table 20.18). While the short arms of the five acro-
centric chromosomes are nearly entirely heterochromatic, an exception is 21p11.2 which 
includes a very small euchromatic region. A view of 14 megabases extending across the p 
arm of chromosome 21 and its centromere highlights how little annotated information is 
currently available (Fig. 20.15). Only two protein-coding genes are annotated there: TPTE 
(transmembrane phosphatase with tensin homology) and BAGE (B melanoma antigen) 
as well as TEKT4P2 (a pseudogene). The other acrocentric arms have no protein-coding 
genes annotated.

The Y chromosome was the most technically difficult to sequence because of its 
extraordinarily repetitive nature (Skaletsky et al., 2003). It has short pseudoautosomal 
regions at the ends that recombine with the X chromosome. A large central region, span-
ning 95% of its length, is termed the male-specific region (MSY). There are 23 Mb of 
euchromatin including 8 Mb on Yp and 14.5 Mb on Yq. There are three notable heteroch-
romatic regions: (1) a centromeric region of about 1 Mb; (2) a block of ∼40 Mb on the 
long arm; and (3) an island of 400 kb comprising over 3000 tandem repeats of 125 base 
pairs. Of 156 transcription units, about half encode proteins. Skaletsky et al. defined three 
classes of euchromatic sequences:

 1. X-transposed sequences total 3.4 Mb and share 99% identity to Xq21 DNA sequences. 
Just 3–4 million years ago, after the human–chimpanzee divergence, there was a mas-
sive transposition of X chromosome sequences to the Y chromosome, followed by an 
inversion that dispersed these sequences on the Y.

 2. X-degenerate sequences share 60–90% identity to 27 different X chromosome genes, 
and represent relics of the ancient autosomes from which X and Y evolved.

 3. Ampliconic sequences span over 10 Mb and consist of blocks of sequences sharing 
as much as 99.9% nucleotide identity over spans of tens or hundreds of kilobases. 
The amplicons are the most gene-dense regions of the Y chromosome, and have a 
low content of interspersed repeats. The ampliconic regions contain eight giant pal-
indromes, collectively spanning 5.7 Mb, each with two long arms interruputed by a 
unique, central spacer.

The extraordinary conservation of the palindromic arms is due to gene conversion, 
the nonreciprocal transfer of sequences from one DNA duplex to another (Rozen et al., 
2003; Skaletsky et al., 2003).
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Mitochondrial genome

In addition to 22 autosomes and two sex chromosomes, humans have a mitochondrial 
genome. Mitochondrial genomes have a number of fascinating properties that also make 
them useful for phylogentic studies (reviewed in Pakendorf and Stoneking, 2005). They 
are present in high copy number, typically with hundreds or even thousands of genomes 
per cell. They are maternally inherited; all (or almost all) sperm-derived mitochondria 
are targeted for destruction in the fertilized oocyte. One consequence is that molecu-
lar phylogenetic studies of mitochondria follow the history of the maternal lineage, and 
have therefore been traced to a “mitochondrial Eve” or proposed earliest human female 
ancestor. Another consequence of maternal inheritance is that mitochrondrial DNA does 
not undergo recombination. The mutation rate is higher than in nuclear DNA, providing 
a useful signal for molecular phylogenetic studies. Excluding the D-loop (which has not 
evolved at a constant rate across human lineages), Ingman et al. (2000) estimated the 
mitochondrial mutation rate to be 1.70 × 10−8 substitutions per site per year (although this 
rate is higher in hypervariable regions).

While the mitochondrial genome does not undergo recombination, it is polymorphic. 
There are 18 known mitochondrial haplogroups or lineages. For the HapMap project 
(described in “Human Genome Variation” below), subjects of various geographic origins 
were assigned to 15 of these known groups (table 20.19).

The reference genome, called the Revised Cambridge Reference Sequence, is 16,569 
base pairs in a circular genome obtained from a Yoruba individual (from Ibadan, Nigeria). 

TEKT4P2
TPTE

BAGE

FIgure 20.15 View of the p arm of the acrocentric chromosome 21. A region of 14 million base pairs is shown, extending across the cen-
tromere. It is notable that essentially no features are annotated, other than those in a small euchromatic region containing two protein-coding 
genes (TPTE and BAGE) as well as a pseudogene (TEKT4P2) and two microRNAs. The p arm is filled with ribosomal DNA genes but these 
are difficult to sequence, and highly similar across the acrocentric chromosomes and between adjacent clusters (discussed in Chapter 10). 
Note the lack of data across most of 21p for various tracks such as contigs, sequence tag site (STS) markers, UCSC and RefSeq genes, 
expressed sequence tags (ESTs), duplications, and microsatellites. In contrast, gap locations are assigned across most of the chromosome arm. 

Source:  http://genome.ucsc.edu, courtesy of UCSC.

http://genome.ucsc.edu
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The GC content is 44.5%, higher than for the other human chromosomes. The genome 
includes 37 annotated genes, spanning 68% of the genome. These include 13 protein-cod-
ing genes (encoding proteins involved in oxidative phosphorylation) and 24 structural 
RNAs (two ribosomal RNAs and 22 transfer RNAs; see Chapter 10). A region of about 
1100 base pairs called the control region has regulatory functions.

Behar et al. (2012) analyzed >18,000 human mitochondrial sequences and performed 
phylogenetic analyses. They proposed using a new Reconstructed Sapiens Reference 
Sequence that includes references to Homo neanderthalensis and catalogs changes rela-
tive to an ancestral reference sequence.

HuMan GenoMe VarIatIon
We conclude this chapter by considering several aspects of variation in the human genome: 
single-nucleotide polymorphisms (SNPs) and the International HapMap project; the 1000 
Genomes Project; and the sequencing of individual human genomes. A goal of the Human 
Genome Project was to define a consensus human genome sequence with a focus on the 
>>99% nucleotide identity we all share. A goal of HapMap and the 1000 Genomes Proj-
ects has been complementary, seeking to define the <<1% of difference that characterizes 
each of our individual genomes, including both common and rare variants.

SNps, haplotypes, and hapMap

SNPs represent a fundamental form of variation in the human population. The Interna-
tional HapMap Project began in 2002 and reported the genotypes of 1.3 million SNPs 
in four geographically diverse populations (International HapMap Consortium, 2003, 
2005): (1) 30 trios (consisting of mother, father, and an adult child) from the Yoruba 
tribe in Ibadan, Nigeria, abbreviated YRI; (2) 30 trios of northern and western European  

The RefSeq human 
mitochondrial accession 
number is NC_012920.1. The 
MitoMap website includes a 
reanalysis of the Cambridge 
reference sequence based 
on resequencing efforts. See 

 http://www.mitomap.org/
MITOMAP/CambridgeReanalysis 
(WebLink 20.27).

taBle 20.19 mtDNa haplogroups. YrI: Yoruba in Ibadan, Nigeria; Ceu: utah residents 
with ancestry from northern and western europe; ChB: han Chinese in Beijing, China; 
Jpt: Japanese in tokyo, Japan. 

DNA sample (number of chromosomes)

MtDNA haplogroup YRI (60) CEU (60) CHB (45) JPT (44)

L1 0.22 – – –

L2 0.35 – – –

L3 0.43 – – –

A – – 0.13 0.04

B – – 0.33 0.30

C – – 0.09 0.07

D – – 0.22 0.34

M/E – – 0.22 0.25

H – 0.45 – –

V – 0.07 – –

J – 0.08 – –

T – 0.12 – –

K – 0.03 – –

U – 0.23 – –

W – 0.02 – –

Source: International HapMap Consortium (2005). Reproduced with permission from Macmillan 
 Publishers.

http://www.mitomap.org/MITOMAP/CambridgeReanalysis
http://www.mitomap.org/MITOMAP/CambridgeReanalysis
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ancestry living in Utah and obtained from the Centre d’Etude du Polymorphisme 
Humain (CEPH) collection (abbreviated CEU); (3) 45 unrelated Han Chinese individu-
als in  Beijing, China (CHB); and (4) 45 unrelated Japanese individuals in Tokyo, Japan 
 (abbreviated JPT). In some studies, data from the Chinese and Japanese populations are 
pooled to yield three groups of 90 (YRI, CEU, CHB+JPT). A second generation  haplotype 
map increased the number of chacterized SNPs to 3.1 million (International HapMap 
Consortium et al., 2007). The third generation of HapMap extended genotyping to more 
individuals (1184 reference individuals) from 11 global populations, and also sequenced 
a series of ten 100 kilobase regions from almost 700 of these individuals (International 
HapMap 3 Consortium et al., 2010).

The sequencing of whole genomes confirms that each person has about 3.5 million 
or more SNPs. Each SNP corresponds to a specific nucleotide position having two alleles 
(in the case of biallelic SNPs; some SNPs are triallelic or even tetraallelic). Figure 20.16a 
shows a DNA region having three biallelic SNPs (arrows) that occur in various combi-
nations along individual chromosomes (rows). For each SNP we can define at least 
three properties.

 • We can define the sequence (e.g., the first SNP is either a C allele or a T allele).
 • We can calculate the major allele frequency as well as the minor allele frequency 
(abbreviated MAF) in a given population. Common SNPs have a MAF >5%.

 • The copy number of SNPs can be determined, allowing an assessment of deletions 
(copy number <2) or amplifications (copy number >2).

(a) SNPs (four versions of the same chromosome in four individuals)

(b) Haplotypes

(c) Tag SNPs

Chromosome 1
Chromosome 2
Chromosome 3
Chromosome 4

Haplotype 1
Haplotype 2

Haplotype 3

Haplotype 4

A A C A C G C C A.... T T C G G G G T C.... A G T C G A C C G....
A A C A C G C C A.... T T C G A G G T C.... A G T C A A C C G....
A A C A T G C C A.... T T C G G G G T C.... A G T C A A C C G....
A A C A C G C C A.... T T C G G G G T C.... A G T C G A C C G....

SNP SNP SNP

C T C A A A G T A C G G T T C A G G C A

T T G A T T G C G C A A C A G T A A T A

C C C G A T C T G T G A T A C T G G T G

T C G A T T C C G C G G T T C A G A C A

A
/
G

T
/
C

C
/
G

FIgure 20.16 Single-nucleotide polymorphisms (SNPs), haplotypes, and tag SNPs. (a) A SNP is a 
difference between chromosomes occurring a particular site in genomic DNA. Four versions of the same 
chromosomal region are shown (from different individuals), and three SNPs are indicated (arrows). Each 
SNP has two alleles (assuming it is biallelic); for the first SNP the alleles are C and T. (b) A haplotype is 
composed of a particular combination of neighboring SNPs. The observed genotypes are shown for 20 
SNPs, all of which are variable bases occurring in a region of 6000 bases of DNA. Each row corresponds 
to a different haplotype. (c) Three tag SNPs are indicated. By genotyping just these three SNPs (rather 
than genotyping all 20 SNPs or sequencing all 6000 bases of DNA), it is possible to uniquely identify the 
four haplotypes in the region. Using tag SNPs is possible because SNP alleles are coinherited, leading 
to associations called linkage disequilibrium (LD). Redrawn from International HapMap Consortium, 
2003. Reproduced with permission from Macmillan Publishers.
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Another key aspect of SNPs is that we can define their relationships to neighboring 
SNPs. Figure 20.16b shows a set of 20 variable positions (SNPs) that occur in the middle 
of a stretch of 6000 base pairs of DNA (most of which are invariant between individuals, 
reflecting the extremely high nucleotide identity shared by all humans). A haplotype is a 
specific combination of alleles that occur in neighboring SNPs. The HapMap project was 
designed to create a map of haplotypes occurring in human populations. SNPs are tightly 
linked to each other and form blocks in which the behavior of one SNP can serve as a proxy 
for the genotypes of neighboring SNPs. Such related blocks have linkage disequilibrium 
(LD), which is the association of co-inherited alleles in the population. Commonly used 
measures of LD include D′, r2, and LOD. D′ has a value of 1 in the absence of historical 
recombination, and is <1 when recombination or recurrent mutation occur. r2 is the squared 
correlation coefficient between two SNPs, having a value of 1 when they share an evolution-
ary haplotype and are not disrupted by recombination. LOD is a logarithm of an odds score.

A subset of SNPs, called “tag SNPs,” may uniquely identify a larger haplotype block 
(Fig. 20.16c). Such tag SNPs can discriminate between possible haplotypes. This can be 
useful in practice because it is cost-effective to genotype just a subset of SNPs in a region.

Viewing and analyzing SNps and haplotypes

HapMap data can be viewed, downloaded, and analyzed at the Ensembl, NCBI, and 
UCSC websites, as well as at the HapMap website. Many software tools are useful to 
analyze SNPs. We describe six approaches in the following sections.

HaploView
HaploView software provides linkage disequilibrium statistics and displays haplotype data 
from primary genotype data (Barrett et al., 2005). It can also be used to import HapMap 
data as shown in Figure 20.17 for two HapMap populations at the globin locus on chromo-
some 11. In a triangle plot (Fig. 20.17b), LD measures for every pair of SNPs are plotted 
along lines at 45° to the horizontal track. Here, red colors correspond to higher LD.

HapMap Browser
The HapMap Project includes a website from which all SNP data can be downloaded 
or viewed in a browser (Thorisson et al., 2005). The recombination rate (in cM/Mb) 
can be plotted, and recombination hotspots can be identified. This browser also links to 
 HaploView for optimal viewing and analysis.

Integrative Genomics Browser (IGV)
HapMap data can be downloaded from NCBI and visualized with Integrative Genomics 
Viewer (IGV) software. Let’s look at SNPs in the region of the HBB gene that are clinically 
relevant. First, download a VCF file and the corresponding indexed file from NCBI. Then 
run Integrative Genomics Viewer (IGV) software, load human hg19, and choose File > 
Load from file to upload the VCF. There are hundreds of SNPs in the vicinity of the HBB 
exons (Fig. 20.18a). Next, we’ll view a selection of SNPs from HapMap individuals. Since 
these participants are apparently normal, there is no overlap with clinically relevant SNPs, 
and instead the variants appear in intergenic regions (Fig. 20.18b). Some of these variants 
appear in just a subset of the geographic (ethnic) populations represented in HapMap.

NCBI dbSNP
A search of the NCBI dbSNP resource with the query HBB leads to data in several formats.

 • There is a list of individual SNPs (with identifiers such as rs334; Fig. 20.19a).
 • GeneView displays SNPs overlapping a gene of interest, organized into functional 
groups (e.g., missense, synonymous, frameshift) and annotated by the amino acid and 
nucleotide coordinates of the genes (Fig. 20.19b).

HaploView software can be 
downloaded from the lab of 
Mark Daly at the Broad Institute 
(  http://www.broadinstitute.
org/scientific-community/
science/programs/medical-and-
population-genetics/haploview/
haploview, WebLink 20.28). It is a 
Java-based program that can be 
conveniently run on a Mac or PC.

The HapMap website is  http://
www.hapmap.org (WebLink 
20.29). The site features a 
browser and several options 
for data downloads. HapMap 
samples are also available as 
DNA aliquots or cell lines from the 
Coriell Cell Repositories (  http://
ccr.coriell.org/, WebLink 20.30). 
Accession numbers beginning 
with NA refer to genomic DNA 
samples, while GM accession 
numbers refer to cell lines.

Integrative Genomics Viewer 
(version 2.3) is available from  

 http://www.broadinstitute.org/
software/igv/ (WebLink 20.31, 
described in Chapter 9). After 
registration, it is accessible as a 
Java application. HapMap VCF 
files are available from NCBI; 
visit  ftp://ftp.ncbi.nih.gov/
snp/organisms/human_9606/
VCF/ (WebLink 20.32) for a 
directory. We specifically used 
both ftp://ftp.ncbi.nih.gov/
snp/organisms/human_9606/
VCF/clinvar_20140211.vcf.gz  
(WebLink 20.33) and its index 
file ftp://ftp.ncbi.nih.gov/snp/
organisms/human_9606/VCF/
clinvar_20140211.vcf.gz.tbi  
(WebLink 20.34). Another folder 
at the above NCBI FTP site 
includes VCF files organized by 
chromosome; we downloaded 
chromosome 11 VCF files and 
index files from the three HapMap 
populations CHB, MKK, and CEU.

http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.hapmap.org
http://www.hapmap.org
http://ccr.coriell.org/
http://ccr.coriell.org/
http://www.broadinstitute.org/software/igv/
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/clinvar_20140211.vcf.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/clinvar_20140211.vcf.gz.tbi
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/
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(a) HaploView data input

(b) Linkage disequilibrium (LD) plot

(c) LD blocks in the globin locus

FIgure 20.17 SNPs and linkage disequilibrium blocks are analyzed and visualized using Haplo-
View software. (a) For this example data are imported from HapMap at the beta globin locus (chromo-
some 11, 5200–5800 kb) for the CEU+TSI populations. (b) A LD plot includes squares representing 
relatedness between SNPs, based on D′ (values in boxes) or r2 values (not shown). LD statistics are 
available by right-clicking a box (one such box is open displaying data on two SNPs). This view is a 
portion of the selected 60 kilobase reigon. (c) Haplotype block definitions can be displayed. Population 
frequencies are shown to the right of each block. Lines show the most common crossings between 
blocks (thicker lines are more common crossings). The values below the lines (0.17, 0.97, 0.91) are the 
multilocus D′ values which measure LD between two blocks. (Values closer to 0 have more historical 
recombination between blocks.) 

Source: HaploView. Barrett et al. (2005).
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(a) Visualizing clinically relevant single nucleotide polymorphisms (SNPs) at the HBB locus

(b) Visualizing HapMap SNPs at the HBB locus from individuals of varying geographic origin

clinically
relevant
SNPs from
ClinVar
database

CHB (Chinese in Beijing)

MKK (Maasai in Kinyawe, Kenya)

CEU (Utah residents of Northern & Western European ancestry)

variant in three populations

variant in two populations

list of HapMap individuals

2

1

clinvar_20140211.vcf.gz

exon 1exon 3 exon 2HBB

HBB exon 1

FIgure 20.18 Visualizing SNP data from Variant Call Format (VCF) files using Integrative Genomic Viewer (IGV). (a) A VCF file 
containing clinically relevant SNPs was downloaded from NCBI and uploaded to IGV. A search term such as HBB (or genomic coordi-
nates of interest) can be entered (arrow 1) to view the beta globin locus. Around 2800 base pairs are shown here. SNPs from the ClinVar 
database are displayed (arrow 2). Most of these overlap the three exons of HBB and they represent deleterious variants. (b) Three VCF 
files including HapMap SNPs from chromosome 11 were downloaded from NCBI and uploaded to IGV. The populations were CHB 
(from China), MKK (from Africa), and CEU (of European ancestry). Data for many individuals can be displayed (data for six individuals 
per group are shown, with identifiers beginning with NA). A variant present in all three populations is indicated (arrow), as well as a SNP 
appearing in CHB and MKK but not CEU populations. Note that for these HapMap SNPs (derived from apparently normal individuals) 
there are no variants in HBB exons, and the intronic variants are presumably neutral rather than deleterious.
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(a) dbSNP listing of an individual SNP (query: HBB)

(b) NCBI GeneView report for HBB 

(c)  dbSNP genotype report for HBB (linkage disequilibrium data from HapMap)

FIgure 20.19 SNP resources at NCBI include (a) lists of individual SNPs at dbSNP, one of which 
is shown here; (b) a dbSNP Gene view, listing SNPs and their functional consequences; and (c) a gen-
otype report listing individuals and SNPs across HapMap populations and their linkage disequilibrium 
patterns. 

Source: SNP resources, NCBI.

 • A Variation Viewer reports SNPs and their clinical interpretation (e.g., pathogenic, 
probable-pathogenic, untested, unknown, other).

 • A genotype report provides linkage disequilibrium analysis across HapMap popula-
tions (Fig. 20.19c).

SNP data are available at dbSNP 
at NCBI (  http://www.ncbi.nlm.
nih.gov/snp/, WebLink 20.35). The 
Variation Viewer entry for HBB is 
at  http://www.ncbi.nlm.nih.gov/
sites/varvu?gene=3043 (WebLink 
20.36). Information on SNP 
attributes is available from NCBI 
at  http://www.ncbi.nlm.nih.gov/
projects/SNP/docs/rs_attributes 
.html (WebLink 20.37).

http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/sites/varvu?gene=3043
http://www.ncbi.nlm.nih.gov/projects/SNP/docs/rs_attributes.html
http://www.ncbi.nlm.nih.gov/sites/varvu?gene=3043
http://www.ncbi.nlm.nih.gov/projects/SNP/docs/rs_attributes.html
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We can measure the allele frequencies of the SNPs as follows:

Note that in addition to the NCBI website, the Genome Workbench offers extensive 
resources to analyze SNP data.

PLINK
PLINK software, a command-line program, is a versatile, open-source set of tools for 
whole-genome association analysis (Purcell et al., 2007). Input can include pedigree (.PED) 
and map files, such as files in those formats that can be downloaded from the HapMap web-
site. The PED file includes identifiers for the family, individual, paternal and maternal iden-
tifiers, sex, and phenotype code. The MAP file consists of a set of rows with four columns 
describing the chromosome, rs# (SNP identifier), genetic distance (morgans), and base pair 
position. The types of analyses performed by PLINK include summary statistics, quality 
control steps, case/control and family-based association tests, permutation tests, linkage 
disequilibrium calculations, imputation of genotypes, and analysis of copy number variants.

When you download PLINK, test MAP and PED files are provided. We can look at 
their contents with less:

The PLINK website is  http://
pngu.mgh.harvard.edu/~purcell/
plink/ (WebLink 20.38).

$ less test.map # this test set has just two SNPs
1 snp1 0 1
1 snp2 0 2
$ less test.ped # this PED file lists six individuals
# Three are affected, and three are unaffected.
1 1 0 0 1 1 A A G T
2 1 0 0 1 1 A C T G
3 1 0 0 1 1 C C G G
4 1 0 0 1 2 A C T T
5 1 0 0 1 2 C C G T
6 1 0 0 1 2 C C T T

$ ./plink ––file test –freq
CHR   SNP  A1  A2  MAF   NCHROBS
1   snp1  A   C   0.3333   12
1   snp2  G   T   0.4167   12

Next we can run an association test:

$ ./plink ––file test –assoc

Six individuals are read from the PED file (three unaffected, three affected). The results 
are dumped to a file.

$ less plink.assoc
CHR   SNP  BP   A1  F_A   F_U  A2  CHISQ  P OR
1   snp1  1   A   0.1667   0.5   C   1.5  0.2207   0.2
1   snp2  2   G   0.1667   0.6667   T   3.086  0.07898   0.1

Here CHR is the chromosome, SNP is the SNP identifier, A1 is the minor allele name, 
F_A is the frequency of this allele, F_U is the frequency in controls, A2 is the major allele 
name, CHISQ is the basic allelic chi-square, P is a probability value, and OR is an estimated 
odds ratio for A1 (with A2 as the reference). In this way PLINK can perform a GWAS 
involving a million SNPs and thousands of individuals. The output can be integrated with 
HaploView, R packages, and a Java-based software package called gPLINK.

SNPduo
While there are dozens (or perhaps hundreds) of excellent software tools, I will mention 
several developed by my lab to analyze SNP data. SNPduo performs pairwise comparisons 

SNPduo, kcoeff, SNPtrio, 
pediSNP and other software are 
available at  http://pevsnerlab.
kennedykrieger.org (WebLink 
20.39). Eli Roberson maintains 
the latest version of SNPduo at 
a GitHub repository,  https://
github.com/RobersonLab 
(WebLink 20.40). trioPOD is 
available at  https://github.com/
jdbaugher/tripod (WebLink 20.41).

http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://pevsnerlab.kennedykrieger.org
https://github.com/RobersonLab
https://github.com/RobersonLab
https://github.com/jdbaugher/tripod
http://pevsnerlab.kennedykrieger.org
https://github.com/jdbaugher/tripod
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between SNP datasets (Roberson and Pevsner, 2009; Fig. 20.20). SNPduo can be run on 
the command line (using PED and MAP files as input), or it can be run as a web-based 
application. kcoeff uses a windowed genome-wide approach to estimate identity-by-state 
and identity-by-descent (Stevens et al., 2011). We have used it to analyze relatedness 
between all HapMap individuals, identifying many pedigrees that had been misspecified. 
triPOD identifies mosaic abnormalities in mother/father/child trio datasets with extremely 
high sensitivity and specificity (Baugher et al., 2013).
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FIgure 20.20 SNPduo software visualizes genotype and identity-by-state data across chromosomes. Here chromosome 6 genotypes 
from two siblings are analyzed. For Sib1 and Sib2 there are homozygous (AA or BB) and heterozygous (AB) genotype calls, as well as 
some no calls (NC). The top panel indicates the identity-by-state which is either IBS2 (AA matches AA or BB/BB in the two siblings), IBS1 
(AA/AB, BB/AB, AB/AA, or AB/BB), or IBS0 (AA matching BB or BB/AA). In positions of IBS2 (labeled A on top row) the two siblings 
inherited the same two alleles from their parents. In positions of IBS1 (labeled B) there is one shared allele, and at IBS0 positions (labeled C) 
there are no shared alleles. These inheritance patterns reflect meiotic recombination events. An ideogram of chromosome 6 is displayed. The 
output includes a BED file that can be uploaded to the UCSC (or Ensembl) genome browser as shown in the bottom panel. From Roberson 
and Pevsner (2009). Licensed under Creative Commons Attribution License 2.5.



Genome AnAlysis994

Major Conclusions of hapMap project

The three phases of the HapMap project contributed basic knowledge of human genetic 
variation. The observations and conclusions included the following (McVean et al., 
2005; International HapMap Consortium, 2005, 2007; International HapMap 3 Consor-
tium, 2010):

 1. Most variation is manifest in individuals of African descent. Asian and European 
populations emerged relatively recently in human history, and their genetic diversity 
largely represents a subset of African diversity.

 2. Linkage disequilibrium displays a block-like structure. There are regions of high D′ 
that are interrupted by regions of recombination. Any given SNP is therefore usu-
ally tightly associated with its neighboring SNPs. A typical block has a length of 
30–50 kb (about 0.1 centiMorgans). Lower frequency variants tend to be younger 
than common variants, and they tend to have longer haplotype blocks.

 3. LD blocks may span multiple recombination hotspots. HapMap phase 2 character-
ized regions of recent sharing in detail. Some recent sharing is due to autozygosity 
(recent inbreeding within a population).

 4. Some regions are characterized by lack of recombination across extended haplotype 
structures. This is evident in centromeric regions where linkage disequilibrium is 
elevated (see Fig. 20.8).

 5. SNPs are useful for genome-wide association studies (GWAS; see Chapter 21). A 
large set of SNPs (>1 million) can be genotyped at relatively low cost per individual. 
Comparison of two groups (affected and control populations) can reveal genomic 
regions harboring variation that segregates with a disease phenotype. This has led to 
the discovery of many disease risk factors and/or causative genes.

 6. Natural selection can remove deleterious mutations and preserve (fix) advantageous 
variants. HapMap data reveal genes that have undergone recent adaptive evolution. 
Sabeti et al. (2007), including members of the HapMap Consortium, used three crite-
ria to identify SNPs under strong positive selection: they were newly arisen (derived) 
alleles, based on comparisons to primate outgroups; they were highly differentiated 
between human populations, since recent positive selection is likely to reflect a local 
environmental adaptation; and they focused on nonsynonymous coding SNPs and 
SNPs in evolutionarily conserved sequences since those are most likely to have bio-
logical effects. Sabeti et al. described 300 candidate regions. In some cases they iden-
tified pairs of genes that have related functions and have undergone positive selec-
tion in the same populations (e.g., LARGE and DMD in the YRI population; both 
encode proteins implicated in Lassa fever virus binding and infection). Other exam-
ples include HBB, LCT encoding lactase (and promoting the ability to consume milk 
from other mammals after weaning), the human leukocyte antigen (HLA) region on 
chromosome 6, and an inversion on chromosome 17 (spanning 900 kb in individuals 
of European ancestry).

 7. The prevalence of structural variation can be measured through SNP analysis. 
We showed an example of a hemizygous deletion in Figure 8.23, and we can see 
both available SNPs and a summary of structural variants (deletions, amplifica-
tions, inversions, and complex variants) at the UCSC browser (Fig. 8.10, 21.15) or 
the Ensembl or NCBI browsers. Phase 3 HapMap reported ∼1600 genomic seg-
ments that varied in copy number with a minor allele frequency of at least 1%. The 
median size was 7.2 kb per copy number polymorphism and a cumulative 3.5 Mb of 
sequence per individual (about 0.1% of each genome). A total of 92% are deletions, 
8% are duplications, and a third overlap RefSeq genes (International HapMap 3 
Consortium, 2010).

You can learn more about the 
International HapMap Project 
at its NHGRI website,  http://
www.genome.gov/page.
cfm?pageID=10001688 (WebLink 
20.42).

According to the Database of 
Genomic Variants (  http://dgv 
.tcag.ca/dgv/app/home, WebLink 
20.43, MacDonald et al., 2014), 
copy number variants span  
2.2 × 109 nucleotides or >71% of 
the human genome (March 2014).

http://www.genome.gov/page.cfm?pageID=10001688
http://www.genome.gov/page.cfm?pageID=10001688
http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
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the 1000 genomes project

The goal of the 1000 Genomes Project is to create a comprehensive resource on human 
genetic variation. It is significant as the first publicly available whole-genome sequence 
dataset on the population scale. One specific aim was to identify most (>95%) of the 
genetic variants that have at least a 1% frequency in the populations being studied. In the 
pilot phase three approaches were taken (1000 Genomes Project Consortium et al., 2010): 
(1) the genomes of two father/mother/daughter trios were sequenced to high coverage 
(average mapped coverage of 42× per individual); (2) whole-genome sequencing of 179 
individuals (from four populations) was performed with average mapped coverage of 
3.6× per individual; and (3) exon-targeted sequencing of 697 individuals was performed. 
Data for the project (including 4.9 terabases of sequence reported by the 1000 Genomes 
Project Consortium et al., 2010) are available at the project website.

Each individual has two haplotypes at each autosomal locus (as discussed above). 
The three approaches taken by the 1000 Genomes Project offer different information 
about haplotypes. Trio sequencing allows haplotypes to be phased, so that the sequences 
of two haploid genomes in the child are inferred (Fig. 20.21a). Low-coverage whole-ge-
nome sequencing is far less expensive than whole-genome sequencing, and is especially 
able to identify common haplotypes (Fig. 20.21b). Whole-exome sequencing provides data 
on a limited portion of the genome (typically about 60 Mb rather than nearly 3000 Mb) 
without sufficient breadth of coverage to phase haplotypes (Fig. 20.21c).

The main conclusions of the 1000 Genome Project include the following (1000 
Genomes Project Consortium et al., 2010, 2012).

 1. High rates of variation tended to occur at the HLA and subtelomeric regions. Lowest 
rates occurred in a 5 Mb, gene-dense region around 3p21.

 2. 1000 Genomes Project data have been useful to impute SNPs for genome-wide asso-
ciation studies.

 3. The number of variants has been described for different functional classes of variants. 
In particular, variants at conserved sites were emphasized, having genomic evolution-
ary rate profiling (GERP) scores >2. The rationale is that these variants, summarized 
in table 20.20, are more likely to have functional relevance. Each individual harbors 
∼2500 nonsynonymous variants at conserved sites (most of which are common vari-
ants having allele frequencies >5%), but a typical individual human genome harbors 
>10,000 nonsynonymous variants. Each person in the 1000 Genomes Project, and 
therefore each of us in general, has 20–40 variants at conserved sites that are iden-
tified as damaging; 10–20 loss of function variants; 2–5 damaging mutations; and 
1–2 variants previously identified from cancer genome sequencing (1000 Genomes 
Project Consortium et al., 2012). A separate analysis by the consortium suggested 
that each person harbors the following (Xue et al., 2012):

•	 40–85 homozygous missense mutations that are predicted to be damaging;
•	 40–110 variants classified as disease-causing by the Human Gene Mutation Data-

base (HGMD; Chapter 21);
•	 0–8 disease-causing mutations that are predicted to be highly damaging; and
•	 0–1 of these mutations in the homozygous state.

To work with 1000 Genomes data you can visit the project website or its browser 
which is modeled closely on the Ensembl genome browser. Enter HBB and you can view 
variants. By clicking on an individual SNP you can view its alleles, population data (e.g., 
allele frequencies across a range of populations), and phenotype data (with clinical data). 
A link on the left sidebar allows you to “Get VCF data.” This presents the Data Slicer, 
a tool that allows you to upload BAM or VCF files (Chapter 9). By default, the selected 

The 1000 Genomes Browser 
is online at  http://
browser.1000genomes.org/ 
(WebLink 20.45). NCBI also offers 
a 1000 Genomes Browser at  

 http://www.ncbi.nlm.nih.gov/
variation/tools/1000genomes/ 
(WebLink 20.46).

The 1000 Genomes Website is at 
 http://www.1000genomes.org/ 

(WebLink 20.44).

http://www.1000genomes.org/
http://browser.1000genomes.org/
http://browser.1000genomes.org/
http://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
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region (HBB; in this case 11:5246694–5250625) can be analyzed. By following the Data 
Slicer steps you can select all 1000 Genomes data or filter by population or individual, 
and obtain a VCF file for download. You can analyze this VCF using VCFtools, IGV 
(as described above), Ensembl, NCBI, or UCSC browsers, or annotate its variants with 
VAAST or other software (Chapter 9).

An example of Data Slicer output for the HBB region is as follows, showing the VCF 
header lines and the first two rows of variants.

The URL for the VCF spanning 
HBB, for which one individual 
is selected, is  ftp://
ftp.1000genomes.ebi.ac.uk/vol1/
ftp/phase1/analysis_results/
integrated_call_sets/ALL.chr11.
integrated_phase1_v3.20101123.
snps_indels_svs.genotypes.vcf.
gz. This file is available as Web 
Document 20.2.

(a) Trio sequencing: haplotypes phased by transmission

(b) Low coverage whole-genome sequencing: statistical phasing of haplotypes

(c) Exon sequencing: haplotypes remain unphased

Exon variants

Common haplotypes

Individual haploid genomes

FIgure 20.21 Haplotype phasing in the 1000 Genomes Project. Each individual has two haplotypes 
at each autosomal locus; these are typically shared with others in the same population. Methods vary 
in their abilities to reconstruct these haplotypes. Colors (left side) indicate different haplotypes in indi-
vidual genomes. Line widths indicate depth of coverage (not to scale). Shaded region (right) indicates 
examples of genotype data that could be observed or inferred for the same sample using three strategies. 
(a) Trio sequencing allows accurate discovery of variants and phasing of haplotypes across most of 
the genome. (b) Low-coverage sequencing identifies shared variants on common haplotypes (red, blue 
bars) but is less powered to detect rare haplotypes (e.g., light green) as well as associated variants (see 
dots indicating missing alleles). Some inaccurate genotypes occur (red allele is incorrectly assigned G; 
it should be A). (c) Exon sequencing includes less coverage of the genome. Common, rare, and low- 
frequency variation can be detected in targeted portions of the genome. Haplotypes cannot be phased. 
Redrawn from the 1000 Genomes Project Consortium et al. (2010). Reproduced with permission from 
Macmillan Publishers Ltd.

##fileformat=VCFv4.1
##INFO=<ID=LDAF,Number=1,Type=Float,Description="MLE Allele Frequency 
Accounting for LD">

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr11.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz.
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ALL.chr11.integrated_phase1_v3.20101123.snps_indels_svs.genotypes.vcf.gz.
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taBle 20.20 Variant load per individual at conserved sites from the 1000 genomes project. DaF: derived allele 
frequency across sample. 

Variant type

Number of derived variant sites per individual
Excess rare 

deleterious

Excess low-frequency 

deleterioius<0.5% DAF 0.5–5% DAF >5% DAF

All sites 30,000–150,000 120,000–680,000 3.6M–3.9M ND ND

Synonymous 29–120 82–420 1300–1400 ND ND

Nonsynonymous 130–400 240–910 2300–2700 76–190 77–130

Stop-gain 3.9–10 5.3–19 24–28 3.4–7.5 3.8–11

Stop-loss 1.0–1.2 1.0–1.9 2.1–2.8 0.8–1.1 0.80–1.0

HGMD-DM 2.5–5.1 4.8–17 11–18 1.6–4.7 3.8–12

COSMIC 1.3–2.0 1.8–5.1 5.2–10 0.93–1.6 1.3–2.0

Indel fameshift 1.0–1.3 11–24 60–66 ND 3.2–11

Indel nonframeshift 2.1–2.3 9.5–24 67–71 ND 0–0.73

Source: The 1000 Genomes Project Consortium (2012; not all rows are displayed here.) Reproduced with permission from Macmillan 
 Publishers Ltd.

##INFO=<ID=AVGPOST,Number=1,Type=Float,Description="Average posterior 
probability from MaCH/Thunder">
##INFO=<ID=RSQ,Number=1,Type=Float,Description="Genotype imputation 
quality from MaCH/Thunder">
##INFO=<ID=ERATE,Number=1,Type=Float,Description="Per-marker Mutation rate 
from MaCH/Thunder">
##INFO=<ID=THETA,Number=1,Type=Float,Description="Per-marker Transition 
rate from MaCH/Thunder">
##INFO=<ID=CIEND,Number=2,Type=Integer,Description="Confidence interval 
around END for imprecise variants">
##INFO=<ID=CIPOS,Number=2,Type=Integer,Description="Confidence interval 
around POS for imprecise variants">
##INFO=<ID=END,Number=1,Type=Integer,Description="End position of the 
variant described in this record">
##INFO=<ID=HOMLEN,Number=.,Type=Integer,Description="Length of base pair 
identical micro-homology at event breakpoints">
##INFO=<ID=HOMSEQ,Number=.,Type=String,Description="Sequence of base pair 
identical micro-homology at event breakpoints">
##INFO=<ID=SVLEN,Number=1,Type=Integer,Description="Difference in length 
between REF and ALT alleles">
##INFO=<ID=SVTYPE,Number=1,Type=String,Description="Type of structural 
variant">
##INFO=<ID=AC,Number=.,Type=Integer,Description="Alternate Allele Count">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Total Allele Count">
##ALT=<ID=DEL,Description="Deletion">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DS,Number=1,Type=Float,Description="Genotype dosage from  
MaCH/Thunder">
##FORMAT=<ID=GL,Number=.,Type=Float,Description="Genotype Likelihoods">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele,  
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/reference/
ancestral_alignments/README">
##INFO=<ID=AF,Number=1,Type=Float,Description="Global Allele Frequency 
based on AC/AN">
##INFO=<ID=AMR_AF,Number=1,Type=Float,Description="Allele Frequency for 
samples from AMR based on AC/AN">
##INFO=<ID=ASN_AF,Number=1,Type=Float,Description="Allele Frequency for 
samples from ASN based on AC/AN">
##INFO=<ID=AFR_AF,Number=1,Type=Float,Description="Allele Frequency for 
samples from AFR based on AC/AN">
##INFO=<ID=EUR_AF,Number=1,Type=Float,Description="Allele Frequency for 
samples from EUR based on AC/AN">
##INFO=<ID=VT,Number=1,Type=String,Description="indicates what type of 
variant the line represents">

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/technical/reference/
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In computer laboratory exercise 
(20.1) below, we perform BLAST 
searches against the Venter 
genome.

This example shows that it is easy to obtain and analyze 1000 Genomes data. The header 
provides a guide to the specific information offered for each variant. It is critical to exam-
ine whether the variant may be associated with artifacts (e.g., strand bias or low read 
depth). The variant information includes allele frequencies in different populations and 
the type of experiment (low coverage versus exome-targeted sequencing). In this exam-
ple the source shows that we have chosen just one individual (NA18912) for analysis, 
although a single VCF can include variants from large numbers of individuals.

Variation: Sequencing Individual genomes

While sequencing the human genome was a massive project, one that has been compared 
in magnitude to landing a human on the moon, resequencing an individual human genome 
is easier. The National Human Genome Research Institute (NHGRI) of the National Insti-
tutes of Health has launched programs to reduce the cost of sequencing an individual 
genome from the early value (tens of millions of dollars in the late 2000s) to the current 
cost (nearing US$ 1000) and eventually to under US$ 1000 each.

The significance of individual genome sequencing is that it has the potential to facil-
itate the start of an era of individualized medicine in which DNA changes that are asso-
ciated with a disease condition are identified. As discussed in Chapter 21, most diseases 
involve an interplay between genetic and environmental factors. Even for diseases that are 
seemingly caused by environmental factors, from traumatic brain injury to malnutrition 
to infectious disease, an individual’s genetic constitution is likely to have a large effect on 
the disease process. Another significant aspect of individual genome sequencing is that it 
will help to elucidate the genetic diversity and history of the species.

In 2007 the first two individual human genome sequences were announced: those of 
J. Craig Venter (Levy et al., 2007) and James Watson, Nobel laureate and co-discoverer 
of the structure of DNA (Wheeler et al., 2008). The Venter genome was reported as 
the diploid sequence of an individual. In contrast, the Celera human genome sequence 
(Venter et al., 2001) was based on a consensus of DNA sequences from five individu-
als, and the public consortium sequence (IHGSC, 2001) was also based on genomes 
from multiple individuals. These were composite efforts that represented sequence data 
that were essentially averaged to yield information on 23 pairs of chromosomes. They 
did not assess the variation that occurs in an individual having each autosome derived 
from maternal and paternal alleles. The surprising finding of Levy et al. was that there 
were four million variants between the parental chromosomes, about five-fold more than 
had been anticipated. It was not until the years 2004–2006 that the great diversity of 
copy number variants as well as smaller indels and SNPs became more fully appreciated 

The NHGRI genome technology 
program website is  http://
www.genome.gov/10000368 
(WebLink 20.47). The decline in 
sequencing costs is depicted in 
Figure 9.3.

##INFO=<ID=SNPSOURCE,Number=.,Type=String,Description="indicates if a snp 
was called when analysing the low coverage or exome alignment data">
##reference=GRCh37
##source_20140302.1=/nfs/public/rw/ensembl/vcftools/bin/vcf-subset -c 
NA18912 /net/isilonP/public/rw/ensembl/1000genomes/release-14/tmp/
slicer/11.5246694-5250625.ALL.chr11.integrated_phase1_v3.20101123.snps_
indels_svs.genotypes.vcf.gz
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA18912
   
11 5246794 rs200399660  C T 100 PASS  
 AA=c;AC=0;AF=0.0005;AN=2;ASN_AF=0.0017;AVGPOST=1.0000; 
ERATE=0.0003; LDAF=0.0005;RSQ=1.0000;SNPSOURCE=EXOME; THETA=0.0003; 
VT=SNP GT:DS:GL 0|0:0.000:0.00,-5.00,-5.00
11 5246840 rs36020563 G A 100 PASS 
 AA=g;AC=0; AF=0.0005;AFR_AF=0.0020;AN=2;AVGPOST=1.0000; 
ERATE=0.0003;LDAF=0.0005;
RSQ=1.0000;SNPSOURCE=LOWCOV,EXOME;THETA=0.0006;VT=SNP  GT:DS:GL 
0|0:0.000:0.00,-5.00,-5.00

http://www.genome.gov/10000368
http://www.genome.gov/10000368
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(e.g., Iafrate et al., 2004; Sebat et al., 2004; Redon et al., 2006; Pinto et al., 2007; 
Scherer et al., 2007).

The strategy employed by Levy et al. (2007) to sequence, assemble, and analyze the 
genome included seven steps: (1) obtaining informed consent to collect the DNA sample; 
(2) genome sequencing; (3) genome assembly; (4) comparative mapping of the individ-
ual genome to an NCBI reference genome; (5) DNA variation detection and filtering;  
(6) haplotype assembly; and (7) data annotation and interpretation.

The assembly of Venter’s genome was based on 32 million sequence reads generat-
ing ∼20 billion base pairs of DNA sequence with a 7.5-fold depth of coverage. Sanger 
dideoxynucleotide sequencing technology was used because each read is longer than cur-
rently available 454 technology (used to sequence Watson’s genome) or Illumina technol-
ogy (see Chapter 9). The assembly included 2,782,357,138 bases of DNA. Comparison 
to the NCBI reference genome revealed 4.1 million variants. These included 3.2 million 
SNPs (slightly more than one per 1000 base pairs), over 50,000 block substitutions (of 
length 2–206 base pairs), almost 300,000 insertions/deletions (indels) of 1–571 base pairs, 
∼560,000 homozygous indels (ranging up to ∼80,000 base pairs), 90 inversions, and many 
copy number variants. The majority of variants relative to the reference human genome 
were SNPs. Insertions and deletions accounted for a smaller proportion of the variable 
events (22%) but, because they tend to involve larger genomic regions, they accounted 
for 74% of the variant nucleotides relative to the reference NCBI genome. In an effort to 
identify the full spectrum of variation in this genome, Pang et al. (2010) reannotated the 
Venter genome using data from additional sequencing and microarray platforms. They 
reported thousands of new variants, in particular structural variants that are difficult to 
detect by sequencing alone.

In recent years thousands of individual genomes have been sequenced. Early exam-
ples include the genome of an Asian individual, YH (Wang et al., 2008); the genome of 
James D. Watson (Wheeler et al., 2008); Korean individuals SJK (Ahn et al., 2009) and 
AK1 (Kim et al., 2009); the genome of a Yoruba male, sample NA18507 (Bentley et al., 
2008); and the genomes of four indigenous Namibian hunter-gatherers (KB1, NB1, TK1 
and MD8) and Archbishop Desmond Tutu (ABT) who is a Bantu (Schuster et al., 2010). 
The focus of these early studies was on validating the technologies that were applied to 
the massive task of sequencing a 6 Gb diploid human genome at adequate depth of cover-
age; identifying SNPs, including those present in dbSNP; identifying structural variation; 
performing comparative genomics to learn which variants were shared; and predicting 
which variants were disease-associated.

Gonzaga-Jauregui et al. (2012) analyzed variants in ten whole genomes (Fig. 20.22). 
Cumulatively, these 10 genomes included 14.6 million nonredundant SNPs. As expected, 
the greatest number of unique SNPs were contributed by individuals of African descent.

It is likely that the number of sequenced genomes (or exomes) is rapidly approach-
ing 100,000 if not more (although the majority of these data are in the process of being 
collected and analyzed). Examples of large-scale projects, other than the 1000 Genomes 
Project, are the UK10K project (with a goal of sequencing the genomes of 10,000 individ-
uals in the UK); the Autism Genome 10K project; the Personal Genome Project (an effort 
to sequence 100,000 human genomes); and several cancer initiatives.

PersPectIVe
The sequencing of the human genome represents one of the great accomplishments in 
the history of science. This effort is the culmination of decades of work in an inter-
national effort. Two major technological advances enabled the human genome to be 
sequenced: (1) the invention of automated DNA sequencing machines in the 1980s 
allowed nucleotide data to be collected on a large scale; and (2) the computational 

The UK10K project is described 
at  http://www.sanger.ac.uk/
about/press/2010/100624-uk10k.
html (WebLink 20.48). The Autism 
Genome 10K Project website is 

 http://autismgenome10k.org/ 
(WebLink 20.49), and the Personal 
Genome Project website is  

 http://www.personalgenomes.
org/ (WebLink 20.50).

http://www.sanger.ac.uk/about/press/2010/100624-uk10k.html
http://autismgenome10k.org/
http://www.personalgenomes.org/
http://www.sanger.ac.uk/about/press/2010/100624-uk10k.html
http://www.sanger.ac.uk/about/press/2010/100624-uk10k.html
http://www.personalgenomes.org/
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biology tools necessary to analyze those sequence data were created by biologists and 
computer scientists.

By some estimates, the total number of sequenced human genomes is already 
approaching one hundred thousand in the year 2015. When the human genome project 
concluded in around 2003, very few people anticipated the new revolution that would be 
introduced by next-generation sequencing. In the coming years, we can expect the pace 
of DNA sequence to continue to increase. It is already becoming possible to compare 
the complete genome sequence of many individuals in an effort to relate genotype to 
phenotype. The genomic sequence permits analyses of sequence variation such as SNPs 
and copy number variants; disease-causing mutations; evolutionary forces; and genomic 
properties such as recombination, replication, and the regulation of gene function. While 
in the past we relied heavily on mouse and other model organisms to model gene function, 
it is becoming possible to envision a “human knockout collection” in which the pheno-
types of large numbers of individuals with a particular homozygous gene knockout, copy 
number variant, or other genetic profile are explored.

PItfalls
As each chromosome has been finished, there have been many technical problems to 
solve regarding sequencing depth, assembly (particularly in regions with highly repetitive 
DNA), and annotation. There are discrepancies between the results of gene-finding algo-
rithms (as revealed by the ENCODE project, Chapter 8) and there are often discrepancies 
between different databases. Copy number variants can be particularly difficult to iden-
tify and assemble because they are often associated with repetitive DNA, and segmental 
duplications are difficult to resolve using whole-genome shotgun assembly.

S
in

gl
e 

nu
cl

eo
tid

e 
po

ly
m

or
ph

is
m

s 
(S

N
P

s)

All SNPs Unique SNPs per
individual genome

Unique 
novel SNPs

Unique SNPs
by ethnic group

14,000,000

12,000,000

10,000,000

0

2,000,000

4,000,000

6,000,000

8,000,000

AF1/AF2
AF1
AF2
KB1
ABT
YH
SJK
AK1

JCV
JDW
JRL
African
Asian
Caucasian
All SNPs (non-
redundant)

FIgure 20.22 Comparison of single-nucleotide polymorphisms (SNPs) in 10 personal genomes. 
All SNPs in each genome were compared with the 9 others. First bar: there were 14,608,404 nonre-
dundant SNPs (first bar). Second bar: SNPs that were unique to each genome. Third bar: SNPs that 
were unique in an individual genome and novel. Fourth bar: SNPs shared by individuals of the same 
ethnic group. Abbreviations: AF1: NA18507; AF2: NA18507; KB1: Khoisan genome; ABT: Archbishop 
Desmond Tutu; YH: Chinese genome; SJK: Korean genome 1; AK1: Korean genome 2; JCV: J. Craig 
Venter; JDW: James D. Watson; JRL: James R. Lupski. Redrawn from Gonzaga-Jauregui et al. (2012). 
Reproduced with permission from Annual Reviews.



HUMaN GENOME 1001

There are a number of outstanding problems that have yet to be solved:

 • How can we accurately determine the number of protein-coding genes?
 • How can we determine the number of noncoding genes?
 • How can we determine the function of genes and proteins?
 • What is the evolutionary history of our species?
 • What is the degree of heterogeneity between individuals at the nucleotide level?

As we take our initial look at the human genome, it is appropriate to see this moment 
as a beginning rather than an end. Having the sequence in hand, and having the opportu-
nity to compare the human genome sequence to that of many other genomes, we are now 
in a position to pose a new generation of questions.

Regarding individual human genome sequences, perhaps the biggest pitfall is the 
misconception that there is a single, agreed-upon set of variants associated with that 
genome. The methods selected for alignment to a reference genome, variant calling, and 
annotation of variants will have a large impact on the final description of the genome.

adVIce for students
Many individual human genome sequences are publicly available in the BAM format, 
including HapMap individuals. Following the computational methods outlined in Chap-
ter 9, analyze this genome with different aligners, variant callers, and annotators. For one 
workflow, for example using SAMtools, perform alignment with different parameters to 
learn the effects.

Discussion Questions
[20-1] If you had the resources and facil-
ities to sequence the entire genome of 50 
individuals, which would you select? Why? 
Describe how you would approach the data 

analysis.

[20-2] The Saccharomyces cerevisiae genome duplicated 
about 100 MYA, as indicated by BLAST searching (Chap-
ter 18), and we discussed whole-genome duplication in fish, 
Paramecium, and plants (Chapter 19). Why is it not equally 
straightforward to identify large duplications of the human 
genome? Is it because they did not occur, because the evolu-
tionary history of humans obscures such events, or because 
we lack the tools to detect such large-scale genomic changes?

proBleMS/CoMputer laB
[20-1] Determine the sequence of beta globin in Craig Ven-
ter’s genome. First, identify the accession number for beta 
globin (NM_000518). Next, identity the accession number 
for the genome; Levy et al. (2007) list it as ABBA00000000. 
By viewing that record, note that ABBA00000000 itself 
does not directly refer to DNA sequences, but it lists the 
accessions ABBA01000001–ABBA01255300 that do 

contain whole-genome shotgun sequence data. Perform 
a BLASTN search at NCBI, using the beta globin query 
NM_000518 and setting the database to whole-genome 
shotgun reads (WGS). In the Entrez query box enter 
ABBA01000001:ABBA01255300[PACC] in order to limit 
the search to just Venter’s genome sequences. (You can 
visit the Entrez help link to learn the appropriate formats 
for limits.) Extra problem: the ABCC11 gene (ATP-binding 
cassette, subfamily C, member 11; NM_032583) encodes 
a protein that Venter has in a variant form that predisposes 
someone to wet rather than dry earwax. Identify the variant 
nucleotides and/or amino acids.

[20-2] Go to NCBI Gene and select a human gene of inter-
est, such as alpha 2 globin. Examine the features of this 
gene at the Ensembl, NCBI, and UCSC websites. Make 
a table of various properties (e.g., exon/intron structure, 
number of ESTs corresponding to the expressed gene, 
polymorphisms identified in the gene, neighboring genes). 
Are there discrepancies between the data reported in the 
three databases? It is also possible to compare the contents 
of these databases by searching and comparing within any 
one resource.
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[20-3] How many protein-coding genes are on each human 
chromosome? Use EDirect (introduced in Chapter 2). This 
problem is adapted from  http://www.ncbi.nlm.nih.gov/
books/NBK179288/. Try the following code (in blue) and 
compare your answer to that below.Note the paucity of 
genes on chromosomes 18, 21, Y, and MT as well as the 
large number on chromosome 19.

for chr in {1..22} X Y MT
 do
 esearch -db gene -query "Homo sapiens [ORGN] 
AND $chr [CHR]" |
 efilter -query "alive [PROP] AND genetype 
protein coding [PROP]" |
 efetch -format docsum |
 xtract -pattern DocumentSummary -NAME Name \
 -block GenomicInfoType -match "ChrLoc:$chr" \
 -tab "\n" -element ChrLoc,"&NAME" |
 grep '.' | sort | uniq | cut -f 1 |
 sort-uniq-count-rank
 done
2063 1
1268 2
1081 3
766 4
871 5
1035 6
932 7
683 8
801 9
751 10
1292 11
1034 12
334 13
612 14
609 15
843 16
1195 17
275 18
1409 19
550 20
245 21
455 22
849 X
74 Y
13 MT

20, and X). You can also set the output to hyperlinks to 
the Genome Browser, showing that most of these regions 
are indeed subtelomeric. (4) Identify sites with the lowest 
recombination rate in the genome using a similar strategy. 
(5) Identify RefSeq genes that are close to the highest (or 
lowest) recombination rates. Use the intersection tool at the 
UCSC Table Browser site.

[20-5] Compare the extent of conserved synteny between 
human and the rhesus macaque (Macaca mulatta) on 
chromosomes 1 (the largest chromosome in humans), 21 
(the smallest autosome), X, and Y. Which shows the most 
conservation? What specific genes are conserved between 
human and rhesus macaque on the Y chromosome? Why 
is the extent of conservation on that chromosome so low? 
One way to accomplish this exercise is to visit the Ensembl 
human genome browser (  http://www.ensembl.org/
Homo_sapiens, WebLink 20.52), click on a chromosome 
(e.g., Y), then use the pull-down menu “View Chr Y Syn-
teny” on the left sidebar.

[20-6] HLA-B is the most polymorphic gene in the 
human genome. Explore its properties. (1) Set the UCSC 
Genome Browser (e.g., GRCh38 assembly) to coordinates 
chr6:31,353,872–31,357,212 and view the SNPs. You can 
see the spectacular amount of polymorphism. (2) Obtain 
a broader perspective by viewing the SNPs across a one 
million base pair region, chr6:31,000,001–32,000,000. (3) 
Use the Table Browser and its intersection feature to find 
the five most polymorphic genes across the entire genome.

[20-7] Human mitochondrial DNA (RefSeq identi-
fier NC_012920.1) has a bacterial origin. (1) Perform 
a BLASTN search of the nonredundant (nr) database, 
restricting the output to bacteria. To which group of bac-
teria is the human sequence most related? (You may view 
the Taxonomy Report for a convenient summary.) (2) To 
which genes is the human sequence most related? You 
may inspect your BLASTN results. (3) There is just one 
bacterial protein that is related to the proteins encoded by 
the human mitochondrial genome. What is it? You may 
inspect your BLASTN results or, to specifically search 
for proteins encoded by human mitochondrial DNA, use 
NC_012920.1 as a query in a BLASTX search restricted to 
bacteria. (4) The UCSC Genome Browser includes a track 
in the Variation section called “NumtS Sequence.” These 
are nuclear mitochondrial sequences, that is, sequences 
that transferred from the bacterial endosymbiont into the 
human nuclear genome. How many entries are there? (Use 
the Table Browser to find out, selecting summary statis-
tics.) Are they clustered at particular genomic loci? You 
can select Tools > Genome Graphs and display that (or any 
other) track (Fig. 20.23).

[20-4] The recombination rate is higher near the telo-
meres (see Fig. 20.8). Use the UCSC Table Browser to iden-
tify regions having very high recombination rates. (1) Go 
to  http://genome.ucsc.edu (WebLink 20.51) and select 
Table Browser. Select the human genome, mapping and 
sequencing group, Recomb Rate track. Clicking on the 
summary statistics button shows that there are 2822 entries 
(one per megabase). (2) Select filter and set the decodeAvg 
(DeCode genetic map average value) to greater than 5. Try 
setting the filter using other genetic maps. (3) When you 
submit this, the summary statistics show that there are now 
just 12 entries (on chromosomes 4, 9, 10, 12, 14, 17, 19, 

http://www.ncbi.nlm.nih.gov/books/NBK179288/
http://www.ensembl.org/Homo_sapiens
http://www.ensembl.org/Homo_sapiens
http://genome.ucsc.edu
http://www.ncbi.nlm.nih.gov/books/NBK179288/
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FIgure 20.23 The UCSC Genome Graphs tool allows you to plot any UCSC or custom-selected tracks on ideograms. The distribution 
of NumtS genes is shown, that is, nuclear genes of mitochondrial origin. 

Source: http://genome.ucsc.edu, courtesy of UCSC.

Self-test Quiz
[20-1] Approximately how large is the 
human genome?

(a) 3 Mb;

(b) 300 Mb;

(c) 3000 Mb; or

(d) 30,000 Mb.

[20-2] Approximately what percentage of the  
human genome consists of repetitive elements of various 
kinds?

(a) 5%;

(b) 25%;

(c) 50%; or

(d) 85%.

[20-3] What percentage of the human genome is devoted 
to the protein-coding regions?

(a) 1–5%;

(b) 5–10%;

(c) 10–20%; or

(d) 20–40%.

[20-4] The human genome contains many transposon- 
derived repeats. These are described as:

(a) dead fossils;

(b) young, active elements;

(c) human-specific elements; or

(d) inverted repeats.

http://genome.ucsc.edu
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[20-5] Approximately how much of the human genome 
do segmental duplications occupy?

(a) <1%;

(b) 5%;

(c) 20–30%; or

(d) 50%.

[20-6] In areas of high GC content of the human 
genome,

(a) gene density tends to be low;

(b) gene density tends to be high;

(c) gene density is highly variable; or

(d) genes tend to have fewer introns.

[20-7] In comparison to other metazoan genomes (such as 
nematodes, insects and mouse),

(a) the human genome contains considerably more 
 protein-coding genes;

(b) the human genome has considerably more unique 
genes that lack identifiable orthologs;

(c) the human genome has a higher GC content; or

(d) the human genome has somewhat more multidomain 
proteins and alternative splicing.

[20-8] When the human genome project was completed 
by 2001–2004, how much of the genome remained impos-
sible to sequence due to repetitive content and other tech-
nical challenges?

(a) essentially none;

(b) about 2 Mb;

(c) about 25 Mb; or

(d) about 225 Mb.

[20-10] Single-nucleotide polymorphisms (SNPs) are 
useful to characterize all aspects of the human genome 
except for:

(a) disease association;

(b) microduplications;

(c) inverse selection; or

(d) population migration.

suGGested readInG
In this chapter, we discussed the public consortium description of the human genome 
(IHGSC, 2001) and the finishing of the euchromatic portion of the genome (IHGSC, 
2004). The companion Celera article (Venter et al., 2001) is also of great interest, as are 
the many accompanying articles in those issues of Science and Nature. We also discussed 
individual genomes. The first of these is the Levy et al. (2007) article on the genome of 
an individual, with an emphasis on variants of assorted sizes.

For each of the 22 autosomes and two sex chromosomes, there has been a paper pub-
lished in Nature that describes the chromosome in detail. We provide links to these papers 
at  http://www.bioinfbook.org/chapter20. These important papers describe the in-depth 
analyses of finished (or nearly finished) chromosomal sequences. They highlight the need 
for complete sequencing in order to perform more accurate annotation and comparative 
analyses.
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As soon as proteins were discovered, investiga-
tors studied their role in disease. Prosper-Sylvain 
Denis (1799–1863) wrote Études Chimiques, Phys-
iologiques, et Médicales, Faites de 1835 à 1840, sur 
les Matières Albumineuses (Chemical, Physiological 
and Medical Studies, done from 1835 to 1840, on 
the Albuminous Materials) in 1842. His chapter 9 (p. 
141) is entitled “On the chemical modifications that 
prove the albuminous materials of solids and fluids 
in the sick person.” He wrote (see arrow 1): “In effect, 
the disorders that so often torment the economy, 
frequently manifest themselves in these materi-
als.” This passage includes a reference to caseine 
(“caséine”) and concludes (arrow 2) “Such knowl-
edge already acquired proves that we will come to 
discover, one day, all the chemical modifications 
that illnesses carry in the albuminous materials.” 
The lower panel (from p. 144) shows a table com-
paring the water, proteins, alkali, and salts from 
healthy and diseased serum. 

Source: Denis (1842).
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Life is a relationship between molecules, not a property of any one molecule. So is 
 therefore disease, which endangers life. While there are molecular diseases, there are 
no diseased molecules. At the level of the molecules we find only variations in structure 
and physicochemical properties. Likewise, at that level we rarely detect any criterion by 
virtue of which to place a given molecule “higher” or “lower” on the evolutionary scale. 
Human hemoglobin, although different to some extent from that of the horse, appears in 
no way more highly organized. Molecular disease and evolution are realities belonging to 
superior levels of biological integration. There they are found to be closely linked, with no 
sharp borderline between them. The mechanism of molecular disease represents one ele-
ment of the mechanism of evolution. Even subjectively the two phenomena of disease and 
evolution may at times lead to identical experiences. The appearance of the concept of 
good and evil, interpreted by man as his painful expulsion from Paradise, was probably a 
molecular disease that turned out to be evolution. Subjectively, to evolve must most often 
have amounted to suffering from a disease. And these diseases were of course molecular.

—Emile Zuckerkandl and Linus Pauling (1962, pp. 189–190)

Human Disease C h a p t e r 

21

LeArnIng ObjeCTIveS

After studying this chapter, you should be able to:
 ■ describe major categories of human disease;
 ■ explain different approaches to identifying disease-associated genes;
 ■ compare and contrast the main disease databases; and
 ■ describe how studies of model organisms elucidate disease-related variation.

Human Genetic Disease: a consequence of  
Dna Variation
Variation in DNA sequence is a defining feature of life on Earth. For each species, genetic 
variation is responsible for the adaptive changes that underlie evolution. Evolution is a 
process by which species adapt to their environment. When changes in DNA improve the 
fitness of a species, its population reproduces more successfully. When changes are rela-
tively maladaptive, the species may become extinct. At the level of the individual within 
a species, some mutations improve fitness, most mutations have no effect on fitness, and 
some are maladaptive (relative to some norm). Disease may be defined as maladaptive 
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changes that afflict individuals within a population. Disease is also defined as an abnor-
mal condition in which physiological function is impaired. Our focus is on the molecular 
basis of physiological defects at the levels of DNA, RNA, and protein.

From a medical perspective, disease is “a pathological condition of the body that 
presents a group of clinical signs, symptoms, and laboratory findings peculiar to it and 
setting the condition apart as an abnormal entity differing from other normal or patho-
logical condition” (Thomas, 1997, p. 552). Disorder is a “pathological condition of the 
mind or body” (Thomas, 1997, p. 559). A syndrome is “a group of symptoms and signs of 
disordered function related to one another by means of some anatomical, physiological, 
or biochemical peculiarity. This definition does not include a precise cause of an illness 
but does provide a framework of reference for investigating it” (Thomas, 1997, p. 1185). 
Costa et al. (1985) follow a World Health Organization definition of disease as a cause 
through a process (pathogenesis) resulting in manifestations.

There is a tremendous diversity to the nature of human diseases for several reasons:

 • Mutations affect all parts of the human genome. There are limitless opportunities for 
maladaptive mutations to occur, and there are many mechanisms by which mutations 
can cause disease (summarized in table 21.1). These include disruptions of gene func-
tion by point mutations that change the identity of amino acid residues; by deletions 
or insertions of DNA, ranging in size from one nucleotide to an entire chromosome 
that is over 100 million base pairs (Mb); or inversions of the orientation of a DNA 
fragment. In many cases, different kinds of mutations affecting the same gene cause 
distinct phenotypes.

 • Protein‐coding genes function by producing a protein as a gene product. A disease‐
causing mutation in a gene results in the failure to produce the gene product with 
normal function. This has profound consequences on the ability of the cells in which 
the gene product is normally expressed to function.

 • The interaction of an individual with his or her environment has profound effects 
on disease phenotype. Genetically identical twins may have entirely different phe-
notypes. Such differences are attributable to environmental influences or to epigen-
etic effects. The concordance rate between monozygotic twins for a given clinical 
phenotype is an indication of the relative extent to which genetic and environ-
mental effects influence disease. Even for highly genetic disorders, such as autism 
(see “Complex Disorders” below) and schizophrenia, the concordance rate is never 
100%.

a Bioinformatics perspective on human Disease

In Chapter 1, we defined bioinformatics as a discipline that uses computer databases and 
computer algorithms to analyze proteins, genes, and genomes. Our approach to human 
disease is reductionist, in that we seek to describe genes and gene products that cause 
disease. However, an appreciation of the molecular basis of disease may be integrated 
with a holistic approach to uncover the logic of disease in the entire human population 
(Childs and Valle, 2000). As we explore bioinformatics approaches to human disease, 
we are constantly faced with the complexity of all biological systems. Even when we 
uncover the gene that when mutated causes a disease, our challenge is to attempt to 
connect the genotype to the phenotype. We can only accomplish this by synthesizing 
information about the biological context in which each gene functions and in which 
each gene product contributes to cellular function (Childs and Valle, 2000; Dipple  
et al., 2001).

The field of bioinformatics offers approaches to human disease that may help us 
to understand basic questions about the influence of genes and the environment on all 
aspects of the disease process. Some examples of ways in which this field can have an 

Mutation is the alteration of 
DNA sequence. The cause may 
be errors in DNA replication or 
repair, the effects of chemical 
mutagens, or radiation. 
While there may be negative 
connotations associated with the 
concept of mutations, mutation 
and fixation are the essential 
driving forces behind evolution.
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impact on our knowledge of disease are highlighted throughout the chapter, and include 
the following.

 • To the extent that the genetic basis of disease is a function of variation in DNA 
sequences, DNA databases offer us the basic material necessary to compare DNA 
sequences. These databases include major, general repositories of DNA sequence 
such as GenBank/EMBL/DDBJ and SRA (Chapter  2), general resources such as 
Online Mendelian Inheritance in Man (OMIM), and locus‐specific databases that 
provide data on sequence variations at individual loci.

 • Geneticists who search for disease‐causing genes through linkage studies,  association 
studies, or other tests (described in “Approaches to Identifying Disease‐Associated 
Genes and Loci” below) depend on physical and genetic maps in their efforts to 
 identify mutant genes.

 • When a protein‐coding gene is mutated, there may be a consequence on the 
three‐dimensional structure of the protein product. Bioinformatics tools described in 
Chapter 13 allow us to predict the structure of protein variants and, from such analy-
ses, we may infer changes in function.

 • Once a mutant gene is identified, we want to understand the consequence of that 
mutation on cellular function. We have described a variety of approaches to under-
standing protein function in Chapters  12–14. In our discussion of Saccharomyces 
cerevisiae, we discussed additional high‐throughput approaches to understanding 
eukaryotic protein function (Chapter 14). Gene expression studies (Chapters 10 and 
11) have been employed to study the transcriptional response to disease states.

 • We may obtain great insight into the role of a particular human gene by identifying 
orthologs in simpler organisms. We discuss orthologs of human disease genes found 
in a variety of model systems.

taBle 21.1 Mechanisms of genetic mutation. aG/Gt indicates mutations in the 
canonical first two and last two base pairs of an intron. Outside aG/Gt indicates 
mutations in less canonical sequences. adapted from Beaudet et al. (2001, p. 9) with 
permission from McGraw hill.

Mechanism Usual effect Example

Large mutation

Deletion Null Duchenne dystrophy

Insertion Null Hemophila A/LINE

Duplication Null, gene disrupted Duchenne dystrophy

Duplication Dosage, gene intact Charcot–Marie–Tooth

Inversion Null Hemophila A

Expanding triplet Null Fragile X

Expanding triplet Gain of function Huntington

Point mutation

Silent None Cystic fibrosis

Missense or in‐frame deletion Null, hypomorphic, altered function, benign Globin

Nonsense Null Cystic fibrosis

Frame shift Null Cystic fibrosis

Splicing (AG/GT) Null Globin

Splicing (outside AG/GT) Hypomorphic Globin

Regulatory (TATA, other) Hypomorphic Globin

Regulatory (poly A site) Hypomorphic Globin
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This chapter is organized in six main sections. (1) We first provide an overview of 
human disease, including approaches to disease classification. We consider the sub-
ject of human disease at several levels (outlined in Fig. 21.1). (2) We describe catego-
ries of disease (monogenic, complex, and genomic disorders as well as environmental 
disease, somatic disease, and cancer). (3) We introduce disease databases including 
Online Mendelian Inheritance in Man (OMIM, a principal disease database), HGMD, 
and ClinVar. There are also several thousand locus‐specific mutation databases, and 
we discuss these. (4) We describe approaches to identifying disease-associated genes 
such as linkage, genome-wide association studies, and human genome sequencing. 
(5) Human diseases have been studied in a variety of model organisms, and we intro-
duce these projects. (6) Finally, we consider the functional classification of disease 
genes.

Garrod’s View of Disease

Sir Archibald Garrod (1857–1936) made important contributions to our understanding of 
the nature of human disease. In a 1902 paper, Garrod described his studies of alkapton-
uria, a rare inherited disorder. In alkaptonuria, the enzyme homogentisate 1,2‐dioxygen-
ase (HGD) is defective or missing. As a result, the amino acids phenylalanine and tyrosine 
cannot be metabolized properly, and a metabolite (homogentisic acid) accumulates. This 
metabolite oxides in urine and turns dark. Garrod considered this phenotype from the 
perspective of evolution, noting the influence of natural selection on chemical processes. 
Variations in metabolic processes between individuals might include those changes that 
cause disease.

Garrod had the insight that, for each of the rare disorders he studied, the disease phe-
notype reflects the chemical individuality of the individual. He further realized that this 
trait was inherited; he proposed that alkaptonuria is transmitted by recessive Mendelian 
inheritance.

The OMIM entry for alkaptonuria 
is #20355; the # sign is defined in 
“OMIM: Central Bioinformatics 
Resource for Human Disease” 
below. The RefSeq accession of 
HGD is NP_000178.2. The gene is 
localized to chromosome 3q21‐
q23. You can read Garrod’s 1902 
paper on alkaptonuria online as 
Web Document 21.1 at  http://
www.bioinfbook.org/chapter21.

A trait is a characteristic or 
property of an individual that is 
the outcome of the action of a 
gene or genes.

FiGure 21.1 Bioinformatics resources for the study of human disease are organized at a variety of 
levels.
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At the time, it was thought that most diseases were caused by external forces such as 
bacterial infection. In studying this and related recessive disorders (such as cystinuria and 
albinism) he instead proposed that the manifestation of the disease is caused by an inher-
ited enzyme deficiency or biochemical error (Scriver and Childs, 1989). He described this 
point of view in his first book, Inborn errors of metabolism (1909). Garrod wrote in 1923 
(cited in Scriver and Childs, 1989, p. 7):

If it may be granted that the individual members of a species vary from the normal 
of the species in chemical structure and chemical behavior, it is obvious that such 
variations or mutations are capable of being perpetuated by natural selection; and 
not a few biologists of the present day assign to chemical structure and function 
a most important share in the evolution of species … Very few individuals exhibit 
such striking deviations from normal metabolism as porphyrinurics and cystinurics 
show, but I suspect strongly that minimal deviations which escape notice are almost 
universal. How else can be explained the part played by heredity in disease? There 
are some diseases which are handed down from generation to generation … which 
tend to develop in later childhood and early adult life … It is difficult to escape the 
conclusion that although these maladies are not congenital, their underlying causes 
are inborn peculiarities.

Garrod thus presented a new view of how inborn factors cause disease. He worked at 
a time before Beadle and Tatum offered the hypothesis that one gene encodes one protein, 
and Garrod never used the word “gene.” We now understand that the “inborn peculiari-
ties” he described are mutated genes. A main conclusion of his work is that chemical indi-
viduality, achieved through genetic differences, is a major determinant of human health 
and disease. Although the phrase “chemical individuality” is not used often today, the 
concept is of tremendous interest in the field of pharmacogenomics. Not everyone who is 
exposed to an infectious agent becomes sick, and it is imperative to understand why. Not 
everyone who takes a drug responds in a similar way.

Garrod further developed these ideas in a second book, Inborn Factors in Disease 
(1931). Here he addressed the question of why certain individuals are susceptible to dis-
eases: whether the disease is clearly inherited or derives from another cause such as an 
environmental agent. He argued that chemical individuality predisposes us to disease. 
Every disease process is affected by both internal and external forces: our genetic com-
plement and the environmental factors we face. In some cases, such as inborn errors of 
metabolism, genetic factors have a more prominent role. In other cases, such as multifacto-
rial disease, mutations in many genes are responsible for the disease. In infectious disease, 
genes also have an important role in defining the individual’s susceptibility and bodily 
response to the infectious agent. We next proceed to discuss these various kinds of disease.

Classification of Disease

We describe several general categories of disease below such as single‐gene disorders, 
complex disorders, chromosomal disorders and environmental disease. From the perspec-
tive of bioinformatics, we are interested in understanding the mechanism of disease in 
relation to genomic DNA, genes, and their gene products. We are further interested in the 
consequences of mutations on cell function and on the comparative genomics of disease‐
causing genes throughout evolution. This perspective is complemenatary to and yet quite 
distinct from that of the clinician or epidemiologist.

For any study of disease a classification system is useful, and many approaches are 
available. One is to describe mortality statistics. These data (based on death certificates in 
the United States from the year 2010) include rankings of the cause of death (table 21.2). 
This information is helpful in identifying the most common diseases, and projections of 
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the most common causes of death in the future have been made (Fig. 21.2). According 
to the World Health Organization, the four leading causes of death globally in 2030 are 
projected to be ischemic heart disease, stroke, HIV/AIDS, and chronic obstructive pulmo-
nary disease (Mathers and Loncar, 2006). Tobacco is projected to kill 50% more people 
than HIV/AIDS in 2015 and will be responsible for 10% of all deaths.

Another approach to describing the scope of human disease is to measure the global 
burden of disease in terms of the percentage of affected individuals or in terms of dis-
ability‐adjusted life years (DALYs; Murray et al., 2012). DALYs are a summary metric 
of population health, consisting of years of life lost due to premature mortality and years 

The data in Table 21.2 are 
available from the website of 
the National Center for Health 
Statistics (  http://www.cdc.gov/
nchs/nvss.htm, WebLink 21.1).

taBle 21.2 leading causes of death in united States in 2010. Cause of death is based 
on the international Classification of Diseases, tenth revision, 1992.

Rank Cause of death Number Percent of all deaths

– All causes 2,468,435 100.0

 1 Diseases of heart 597,689 24.2

 2 Malignant neoplasms 574,743 23.3

 3 Chronic lower respiratory diseases 138,080 5.6

 4 Cerebrovascular diseases 129,476 5.2

 5 Accidents (unintentional injuries) 120,859 4.9

 6 Alzheimer’s disease 83,494 3.4

 7 Diabetes mellitus 69,071 2.8

 8 Nephritis, nephrotic syndrome, 
and nephrosis

50,476 2.0

 9 Influenza and pneumonia 50,097 2.0

10 Intentional self‐harm (suicide) 38,364 1.6

Source: National Vital Statistics Reports, 62(6) (http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_06.pdf)

FiGure 21.2 Projected global deaths for selected causes of death, 2002–2030. Redrawn from the 
World Health Organization (World Health Statistics 2007,  http://www.who.int/whosis/whostat2007.
pdf). Reproduced with permission from World Health Organization.
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lived with disability. The causes of DALYs change across the lifespan (Fig. 21.3), with 
major differences across geographic locations. The causes of DALYs change over time; 
between 1990 and 2010 the rank of some disorders increased dramatically (e.g., HIV/
AIDS, major depressive disorder, diabetes, low back pain) while others decreased (e.g., 
measles, meningitis, protein‐energy malnutrition, tuberculosis).

A far more extensive listing of morbidity data is provided by the International Sta-
tistical Classification of Diseases and Related Health Problems (abbreviated ICD). This 
resource, published by the World Health Organization (WHO), is used to classify diseases 
(table 21.3). It provides a standard for coding patients at most hospitals.

Mortality statistics list the most common diseases. We are interested in the full spec-
trum of disease, including rare diseases. These are defined as diseases affecting fewer 
than 200,000 people. In the United States, an estimated 25 million individuals (almost 
10% of the population) suffer from one or more of 7000 rare diseases.

Nih Disease Classification: MeSh terms

The National Library of Medicine (NLM) has developed Medical Subjects Heading 
(MeSH) terms as a unified language for biomedical literature database searches. The cur-
rent MeSH term system includes 23 disease categories (Fig. 21.4). PubMed at NCBI also 
uses this classification system for indexing articles.

MeSH terms are a controlled vocabulary thesaurus used to index MEDLINE (and 
PubMed, which is based on MEDLINE). A search for the term “Sturge‐Weber syndrome” 
results in a description of that syndrome and a list of MeSH subheadings. Selecting one 
such as “genetics” allows you to use a PubMed Search Builder to create a PubMed query, 
“Sturge‐Weber Syndrome/genetics” [Mesh]. This PubMed search is directed by the 

A summary of the Global Burden 
of Disease findings is available 
at  http://www.thelancet.
com/themed/global‐burden‐of‐
disease (WebLink 21.2). DALYs 
are calculated by adding the 
years of life lost through all 
deaths in a year plus the years 
of life expected to be lived with a 
disability for all cases beginning 
in that year. The DALYs metric 
was introduced in the 1990 Global 
Burden of Disease study (Murray 
and Lopez, 1996).

The WHO ICD website is at  
 http://www.who.int/

classifications/icd/en/ (WebLink 
21.3). This resource was begun in 
1893 as the International List of 
Causes of Death.

The Office of Rare Diseases at 
the National Institutes of Health 
(NIH) has a website that serves 
as a portal to information on rare 
diseases (  http://rarediseases.
info.nih.gov/, WebLink 21.4).

FiGure 21.3 Percentage of global disability‐adjusted life years (DALY) for various causes in 2010. 
Data are for females; results for males (not shown) are similar. Redrawn from Murray et al. (2012). 
Reproduced with permission from Elsevier.
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MeSH terms you select. The MeSH site also shows the hierarchical tree structure of the 
MeSH terms relevant to Sturge‐Weber syndrome.

We have used EDirect to query NCBI Entrez databases on the command line 
 (Chapter 2); we can do that now to explore MeSH. For information about MeSH, such as 
the number of records it contains and the fields you can search, try the following:

You can access the MeSH 
system at NLM (  http://www.
nlm.nih.gov/mesh/MBrowser.
html, WebLink 21.5) or at NCBI 
(from PubMed, select MeSH 
terms, then enter a query such 
as “disease”).

taBle 21.3 iCD Classification System (iCD-10 Version 2015).

I Certain infectious and parasitic diseases

II Neoplasms

III Diseases of the blood and blood‐forming organs and certain disorders involving the 
immune mechanism

IV Endocrine, nutritional, and metabolic diseases

V Mental and behavioral disorders

VI Diseases of the nervous system

VII Diseases of the eye and adnexa

VIII Diseases of the ear and mastoid process

IX Diseases of the circulatory system

X Diseases of the respiratory system

XI Diseases of the digestive system

XII Diseases of the skin and subcutaneous tissue

XIII Diseases of the musculoskeletal system and connective tissue

XIV Diseases of the genitourinary system

XV Pregnancy, childbirth, and the puerperium

XVI Certain conditions originating in the perinatal period

XVII Congenital malformations, deformations, and chromosomal abnormalities

XVIII Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified

XIX Injury, poisoning, and certain other consequences of external causes

XX External causes of morbidity and mortality

XXI Factors influencing health status and contact with health services

XXII Codes for special purposes

Source:  http://apps.who.int/classifications/icd10/browse/2015/en.

$ einfo -db mesh

$ esearch -db mesh –query “disease”

We next use as an example a paper from my lab by Shirley et al. (2013) reporting 
a mutation that causes a rare disease (Sturge‐Weber syndrome) as well as a commonly 
occurring port‐wine stain birthmark. The PubMed identifier (given in the reference list 
at the end of the chapter) is 23656586. MeSH database limiters include [MESH] (for all 
MeSH terms), [MAJR] (for MeSH major topics), and [SUBH] for MeSH subheadings. 
What are the MeSH headings and subheadings of the Shirley et al. paper? The main steps 
include efetch to download the PubMed record in the XML format, xtract to convert 
the XML into a table of values, the -block statement to explore each MeSH heading in 
the XML file for that PubMed entry, and the use of the UNIX stream editor called sed to 
format the output and add an asterisk to each major heading. You can perform this query 

You can begin constructing a query with a general search term such as disease:

http://apps.who.int/classifications/icd10/browse/2015/en
http://www.nlm.nih.gov/mesh/MBrowser.html
http://www.nlm.nih.gov/mesh/MBrowser.html
http://www.nlm.nih.gov/mesh/MBrowser.html
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on a Mac operating system using its terminal (or in Cygwin on a PC); using a Linux oper-
ating system type $ man to learn more about a utility such as sed (i.e., type man sed).

FiGure  21.4 The Medical 
Subject Heading (MeSH) term 
system at the National Library 
of Medicine includes 16 major 
categories (2015 version, upper 
panel). The disease category 
further includes the 26  headings 
shown in the lower panel. 

Source: Medical Subject Heading 
(MeSH), NLM  http://www.nlm.
nih.gov/mesh/).

$ efetch -db pubmed -id 23656586 -format xml | xtract -pattern 
PubmedArticle -tab " " -element MedlineCitation/PMID -block 
MeshHeading -pfx "\n|" -sep "|" -tab " " -element DescriptorName@
MajorTopicYN,DescriptorName -subset QualifierName -pfx "/|" -sep "|" 
-tab " " -element "@MajorTopicYN,QualifierName" | sed -e 's/|N|//g' -e 
's/|Y|/*/g'
23656586 # the start of the output lists the PubMed ID
Brain /pathology 
Female 
GTP-Binding Protein alpha Subunits /*genetics 
Humans 
Infant, Newborn 
Magnetic Resonance Imaging 
Male 
*Mutation 
Port-Wine Stain /*genetics 
Sequence Analysis, DNA 
Sturge-Weber Syndrome /*genetics

Major MeSH categories therefore include genetics and mutation.

The script is available in text 
format at Web Document 21.2. 
This example is adapted from the 
online documentation for EDirect 
at  http://www.ncbi.nlm.nih.gov/
books/NBK179288/ (WebLink 21.6). 
You can also use EDirect to count 
the number of MeSH disease 
entries with the command:

$ esearch -db pubmed  
-query "disease [MESH]"

The result matches a web‐
based PubMed search for 
disease[MESH].

http://www.nlm.nih.gov/mesh/
http://www.ncbi.nlm.nih.gov/books/NBK179288/
http://www.nlm.nih.gov/mesh/
http://www.ncbi.nlm.nih.gov/books/NBK179288/
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cateGories of Disease
What kinds of diseases afflict humans? We can describe four main categories:  single‐gene 
(monogenic) disease, complex disease, genomic disease, and environmental disease 
(Fig. 21.5). Additionally there are somatic diseases (such as cancer), and  mitochondrial 
disease. All these categories are interconnected in many ways, as we discuss next. 
 Consistent with Garrod’s perspective, the pathophysiology of any disease may be 
considered multigenic. Two individuals who are exposed to the same disease‐causing 
stimulus – whether it is a virus or lead paint or a mutated gene – may have entirely differ-
ent reactions. One person may become ill, while the other is unaffected. There is a large 
genetic component to the responses to any disease‐causing condition.

allele Frequencies and effect Sizes

As we begin thinking about disease we can consider two properties of disease alleles, 
illustrated in a plot from Manolio et al. (2009) based on an earlier version by McCar-
thy et al. (2008; Fig. 21.6). The first property is allele frequencies, shown on the x axis. 
These range from common (often defined as ≥5% minor allele frequency (MAF)) to low 
frequency (<5% MAF), rare (<0.5% MAF), or very rare (<0.1% MAF). The HapMap 
Project and the 1000 Genomes Project have helped to catalog millions of variants and 
reported each of their allele frequencies. A variety of SNP-based and sequencing-based 
approaches (described in “Approaches to Identifying Disease-Associated Genes and 
Loci” below) have shown which of these variants are likely to be pathogenic or neutral.

Pathology is the study of the 
nature and cause of disease. 
Pathophysiology is the study 
of how disease alters normal 
physiological processes.

FiGure 21.5 Human disease can be categorized based on the cause. These include single‐gene or 
monogenic disorders (caused primarily by mutations in a single gene; examples include phenylketonuria 
and sickle cell anemia); complex disorders (having mutations in two or more genes, such as cancer or 
schizophrenia); genomic disorders (such as Down syndrome, involving chromosomal abnormalities); 
and environmental disease (including infectious disease). The values for the incidence of these disorders 
are only approximate estimates. The four quadrants of the circle are not intended to reflect incidence. 
Overall, complex disorders are far more common than single‐gene disorders. However, it is far easier to 
discover the genetic defect that underlies single‐gene disorders. For all categories of disease, the patho-
physiology (i.e., the disease‐altered physiological processes) depends on the influence of many genetic 
and environmental factors.

Mendelian disorders    11/1000
   autosomal dominant     6/1000
   autosomal recessive     3/1000
   X-linked recessive      1/1000
   X-linked mental retardation 1/1000

Multigenic disorders  ~630/1000
   congentical anomoalies  30/1000
   CNS disorders  100/1000
   cardiovascular  500/1000

Examples: 
   Malnutrition
   Lead poisoning
   Traumatic injury
   Infectious disease

Examples:
   Trisomy 21 (Down syndrome)
   Monosomy
   Segmental aneuploidy
   Microdeletion syndromes
   Microduplication syndromes

disease
phenotype

environmental
disease

single gene
disorders

complex
disorders

genomic 
disorders
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A second property of disease‐associated variants is the effect size (y axis). This may 
be quantitated as an odds ratio (OR; Szumilas, 2010). An OR is a measure of association 
between an exposure (in our case a genetic variant) and an outcome (expression of a 
disease). An OR of 1 implies that the presence of a variant does not affect the odds of a 
disease outcome; OR>1 implies an association with higher odds of a disease occurrence.

A major goal of human genetics and genomics is to identify variants that cause dis-
ease (or confer risk for disease). We can focus on the region within the dashed lines 
of Figure 21.6. Rare alleles having large effects sizes tend to cause Mendelian diseases 
that are primarily monogenic (see figure, upper left). Low‐frequency alleles tend to have 
effects that are less strong (see center of figure). Some common alleles have a low effect 
size yet still contribute to common disease (lower right of figure). Such common alleles 
have been captured by genome‐wide association studies (GWAS; see “Genome‐Wide 
Association Studies” below). There are very few examples of common variants that have 
large effects in contributing to common diseases (upper right). Rare variants having small 
effects (lower left) can be extremely difficult to identify.

We next describe several categories of disease. Considerations of the allele frequen-
cies and effect sizes further impacts the choice of experimental approach used to study 
the causes of disease. For example, rare and very rare variants may be studied more effec-
tively with whole‐genome and/or whole‐exome sequencing approaches rather than with 
SNP arrays which target common alleles. Both allele frequencies and effect sizes impact 
the sample size required to achieve statistical power for studies of disease‐associated 
variation.

Monogenic Disorders

Our perspectives on the molecular nature of disease have evolved in recent decades. Pre-
viously, geneticists recognized a dichotomy between simple traits and complex traits. 
More recently, all traits have come to be appreciated as part of a continuum. Simple 
traits are transmitted following the rules of Mendel. Online Mendelian Inheritance in 
Man (OMIM) database currently lists over 5000 phenotypes for which the molecular 

FiGure  21.6 Risk allele frequencies (x axis) and strength of genetic effect (odds ratio; y axis) 
 determine the feasibility of identifying disease‐associated genetic variants. Most emphasis has been on 
the region within the dotted lines. Redrawn from Manolio et al. (2009). Reproduced with permission 
from Macmillan Publishers.

Effect size

Allele frequency

Very rare Rare Low frequency Common
0.001 0.005 0.05

High
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50.0

3.0

1.5

1.1
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by genetic means
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causing
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common disease

by GWA

Few examples of
high-effect
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basis is known. (Here a phenotype refers to single‐gene Mendelian disorders, traits, some 
susceptibilities to complex disease, and some somatic conditions.) While each Mendelian 
disease tends to be rare in the population, cumulatively these conditions affect at least 1% 
of liveborn infants (Costa et al., 1985). Over 90% of these disorders manifest by the age 
of puberty. Single‐gene disorders are estimated to affect 25–30 million individuals in the 
United States (Cutting, 2014).

Several monogenic disorders are listed in table 21.4. As an example of a single‐gene 
disorder, consider sickle cell anemia (Box 21.1). In 1949 Linus Pauling and colleagues 
described the abnormal electrophoretic behavior of sickle cell hemoglobin (Pauling  
et al., 1949). It was subsequently shown that a single amino acid substitution accounts 
for the abnormal behavior of the sickle cell and is the basis of sickle cell anemia. This 
is a single‐gene disorder that is inherited in an autosomal recessive fashion. Single‐gene 
disorders tend to be rare in the general population. Note that sickle cell disease is the out-
come of having a particular mutant hemoglobin protein. While there are common features 
of sickle cell disease, such as sickling of the red blood cells, there is not a single disease 
phenotype. The pleiotropic phenotype is caused by the influence of other genes.

Rett syndrome is another example of a single‐gene disorder (Katz et al., 2012; 
Box 21.2). This disease affects girls almost exclusively. While they are apparently born 
healthy, Rett syndrome girls acquire a constellation of symptoms beginning at 6–18 
months of age. They lose the ability to make purposeful hand movements, and they typ-
ically exhibit hand‐wringing behavior. Whatever language skills they have acquired are 
lost, and they may display autistic‐like behaviors. Rett syndrome is caused by mutations 
in the gene encoding MeCP2, a transcriptional repressor that binds methylated CpG 
islands (Amir et al., 1999). It is not yet known why mutations affecting a transcriptional 
repressor that functions throughout the body cause a primarily neurological disorder.

While Rett syndrome is a disease caused by a mutation in a single gene, it exemplifies 
the extraordinary complexity of human disease and even monogenic disorders:

 • The disease occurs primarily in females. It was thought that this could be explained by 
the location of the MECP2 gene on the X chromosome: a mutation in this gene might 
be lethal for males in utero (having only a single X chromosome), while females 
might have the disease phenotype because they have one normal and one mutant 

We examined the structure of 
normal beta globin (HBB) as well 
as the most common mutated 
form (HBS) in Chapter 13. The E7V 
substitution (valine in place of 
glutamate as the seventh amino 
acid) adds a hydrophobic patch 
to the protein, promoting the 
aggregation of globin molecules 
and the formation of sickle‐shaped 
red blood cells. Sickle cell anemia 
is unusually common for a single‐
gene disorder. This is presumably 
because of the protection it 
confers to heterozygotes exposed 
to malaria (Box 21.1).

Read the Pauling et al. (1949) 
ariticle online at  http://profiles.
nlm.nih.gov/MM/B/B/R/L/ 
(WebLink 21.7). The National 
Library of Medicine (NLM) 
offers online access to all the 
publications of several prominent 
biologists through its Profiles in 
Science site (  http://profiles.
nlm.nih.gov/, WebLink 21.8). The 
scientists include Linus Pauling 
and other Nobel Prize laureates 
such as Barbara McClintock, 
Julius Axelrod, and Oswald Avery.

taBle 21.4 examples of monogenic disorders. adapted from Beaudet et al. (2001) with permission from  
McGraw hill.

Mechanism Disorder Frequency

Autosomal dominant BRCA1 and BRCA2 breast cancer 1 in 1000 (1 in 100 for Ashkenazim)

Huntington chorea 1 in 2500

Neurofibromatosis I 1 in 3000

Tuberous sclerosis 1 in 15,000

Autosomal recessive Albinism 1 in 10,000

Sickle cell anemia 1 in 655 (US African‐Americans)

Cystic fibrosis 1 in 2500 (Europeans)

Phenylketonuria 1 in 12,000

X linked Hemophilia A 1 in 10,000 (males)

Glucose 6‐phosphate dehydrogenase deficiency Variable; up to 1 in 10 males

Fragile X syndrome 1 in 1250 males

Color blindness 1 in 12 males

Rett syndrome 1 in 20,000 females

Adrenoleukodystrophy 1 in 17,000

http://profiles.nlm.nih.gov/MM/B/B/R/L/
http://profiles.nlm.nih.gov/
http://profiles.nlm.nih.gov/
http://profiles.nlm.nih.gov/MM/B/B/R/L/
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copy of the gene. Instead, the more likely explanation is that most mutations occur in 
fathers. The father is healthy, but a new germline mutation arises and is passed to a 
daughter. Thus all sons (XY) receive a normal Y chromosome from the father, while 
a daughter may receive a mutant copy of the X chromosome from the father.

 • After the discovery that mutations in MECP2 cause Rett syndrome, it was discovered 
that some males with intellectual disability also have mutations in this gene (Hammer 
et al., 2002; Zeev et al., 2002). However, the phenotype of mutations in the male is 
distinctly different than in females, often involving severe neonatal encephalopathy. 
In males, having a single X chromosome means that the mutant gene is expected to 
adversely affect virtually every cell in the body. In contrast, females undergo ran-
dom X‐chromosome inactivation. Having two copies of the X chromosome, every 
cell expresses only one chromosome (either the maternal or paternal chromosome, 
randomly selected early in development). Females are therefore a mosaic in terms of 

Box 21.1 sickle cell anemia anD tHalassemias 

Our cells depend on oxygen to live, and blood transports oxygen throughout the body. However, oxygen is a hydrophobic molecule that 
requires the carrier protein hemoglobin to transport it through blood. (The homologous protein myoglobin transports oxygen in muscle 
cells.) Adult hemoglobin is composed of two α chains and two β chains. Other α‐ and β‐type chains are used at different developmental 
stages, such as α2/γ2 in fetal hemoglobin and α2/ε2 in embryonic hemoglobin. Mutation in the β chain (NM_000518 and NP_000509) on 
chromosome 11p15.5 causes sickle cell anemia (OMIM 603903). Red blood cells in patients can assume a curved, “sickled” appearance 
that reflects hemoglobin aggregation in the presence of low oxygen levels.
 Sickle cell anemia is the most common inherited blood disorder in the United States, affecting 1 in 500 African‐Americans. It is 
inherited as an autosomal recessive disease. Heterozygotes (individuals with one normal copy of hemoglobin beta and one mutant copy; 
the HBS mutation) are somewhat protected against the malaria parasite, Plasmodium falciparum. This may be because normal red 
blood cells infected by the parasite are destroyed. There is therefore a selective evolutionary pressure to preserve the HBS mutation in 
the population that is at risk for malaria.
 Red blood cells closely regulate the proportions of α and β globin that are produced, as well as the heme moiety that is inserted into 
the globin tetramer to form hemoglobin. The absence of the β chain causes beta‐zero‐thalassemia, while the production of reduced 
amounts of β globin causes beta‐plus‐thalassemia. Reduced levels of α globin cause alpha thalassemias. Thalassemia can cause severe 
anemia, in which hemoglobin levels are low.
 Web resources for sickle cell disease include an NIH fact sheet (  http://www.nhlbi.nih.gov/health/health‐topics/topics/sca/), Genes 

and Disease at NCBI (  http://www.ncbi.nlm.nih.gov/books/NBK22183/), and the Sickle Cell Disease Assocation of America (  http://
www.sicklecelldisease.org/).

Box 21.2 rett synDrome 

Rett syndrome (RTT; OMIM #312750) is a developmental neurological syndrome that occurs almost exclusively in females (Hagberg 
et al., 1983). Affected females are apparently normal through pre‐ and perinatal development, following which there is a developmental 
arrest. This is accompanied by decelerated head and brain growth, loss of speech and social skills, severe intellectual disability, truncal 
ataxia, and characteristic hand‐wringing motions. Prominent neuropathological features include reductions in cortical thickness in 
multiple cerebral cortical regions, reduced neuronal soma size, and dramatically decreased dendritic arborization (Bauman et al., 1995).
 Mutations in the methyl‐CpG‐binding protein 2 (MECP2) gene located in Xq28 have been found in most cases of RTT (Amir et al., 
1999, 2000). MeCP2 binds to methylated CpG dinucleotides throughout the genome and is involved in methylation‐dependent repres-
sion of gene expression via the recruitment of the corepressor mSin3A and the chromatin‐remodeling histone deacetylases HDAC1 and 
HDAC2. The expression of MeCP2 mRNA in many tissues and its interaction with regulatory DNA elements in multiple chromosomes 
suggest that MeCP2 is a global repressor of gene expression (Nan et al., 1997). DNA methylation‐dependent repression of gene expres-
sion has been associated with genetic imprinting, X‐chromosome inactivation, carcinogenesis, and tissue‐specific gene expression.
 Why is it that some tissues are spared the effects of MECP2 mutations? There could be tissue‐specific redundancy of gene function, 
or other compensation mechanisms. This provides an example of how the tools of bioinformatics are relevant to studying many different 
aspects of human disease.

http://www.nhlbi.nih.gov/health/health%E2%80%90topics/topics/sca/
http://www.ncbi.nlm.nih.gov/books/NBK22183/
http://www.sicklecelldisease.org/
http://www.sicklecelldisease.org/
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X‐chromosome allelic expression, and a Rett syndrome female has on average 50% 
normal cells throughout her body.

 • MECP2 duplication syndrome is 100% penetrant in males and causes symptoms 
including infantile hypotonia, severe to profound intellectual disability, autism or 
autistic features, and poor speech development (Ramocki et al., 2010).

 • While Rett syndrome is caused by mutations in a gene encoding a transcriptional 
repressor, it is almost certain that the consequence of this mutation involves subse-
quent effects on the expression of many other genes. Like any other monogenic dis-
order, many other genes are involved and may influence the phenotype of the disease.

 • Two females having the identical mutation in MECP2 may have entirely different 
phenotypes (in terms of severity of the disease). There are two main explanations 
for this observation, which is also seen for many other single‐gene disorders. (1) 
There may be modifier genes that influence the disease process (Dipple and McCabe, 
2000). Modifier genes have been identified for patients with sickle cell anemia, 
adrenoleukodystrophy, cystic fibrosis, and Hirschsprung disease. Most (if not all) 
apparently monogenic disorders are complex. (2) A variety of epigenetic influences 
may drastically affect the clinical phenotype. For example, the methylation status of 
genomic DNA could determine the molecular consequences of mutations in MECP2. 
X chromosome inactivation is sometimes skewed, such that the phenotype is more 
severe (if the X chromosome copy with mutant MECP2 is preferentially expressed) 
or less severe (if the healthy X chromosome is selectively expressed).

 • While the disorder is neurodevelopmental, introduction of a mutation that deletes the 
protein beginning in adulthood recapitulates the germline knockout phenotype (McGraw 
et al., 2011). The developmental effects of single‐gene disorders are often complex.

Complex Disorders

Complex disorders such as Alzheimer’s disease and cardiovascular disease are caused by 
defects in multiple genes. These disorders are also called multifactorial, reflecting that they 
are expressed as a function of both genetic and environmental factors. In comparison to 
monogenic disorders, complex disorders tend to be highly prevalent (Todd, 2001). These 
traits do not segregate in a simple, discrete, Mendelian manner. Examples are asthma, autism 
(Box  21.3), depression, diabetes, high blood pressure, obesity, and osteoporosis. In the 
United States, chronic diseases such as heart disease, senile dementia, cancer, and diabetes 
are leading causes of death and disability. These all have some degree of genetic basis.

Complex disorders are characterized by the following features:

 • Multiple genes are thought to be involved. It is the combination of mutations in mul-
tiple genes that defines the disease. In single‐gene disorders, even if there are modi-
fying loci, one gene has a dramatic influence on the disease phenotype.

 • Complex diseases involve the combined effect of multiple genes, but they are 
also caused by both environmental factors and behaviors that elevate the risk of 
disease.

 • Complex diseases are non-Mendelian: they show familial aggregation but not segre-
gation. For example, autism is a highly heritable condition (if one identical twin is 
affected, there is a very high probability that the other is also affected).

 • Susceptibility alleles have a high population frequency, that is, complex diseases are 
generally more frequent than single‐gene disorders. Sickle cell anemia, a single‐gene 
disorder, is unusually frequent in the African‐American population, but the heterozy-
gous condition confers a selective advantage (see Box 21.1).

 • Susceptibility alleles have low penetrance. Penetrance is the frequency with which 
a dominant or homozygous recessive gene produces its characteristic phenotype in 
a population. At the extremes, it is an all‐or‐none phenomenon: a genotype is either 
expressed or it is not. In complex disorders, partial penetrance is common.

A quantitative trait locus (QTL) 
is an allele that contributes to a 
multifactorial disease.

Penetrance is the frequency of 
manifestation of a hereditary 
condition in individuals. Having 
the genotype for a disease does 
not imply that the phenotype 
will occur, especially if multiple 
genes have modifying effects 
on the presentation of the 
phenotype.
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Genomic Disorders

Large‐scale chromosomal abnormalities are extremely common causes of disease in 
humans. Lupski (1998) defined genomic disorders as those changes in the structure of the 
genome that cause disease. Some genomic disorders involve large‐scale changes such as 
aneuploidies in which a chromosomal copy is gained (trisomy) or lost (monosomy). More 
rarely, two copies are gained (tetrasomy) or lost (nullsomy). Trisomies 13 (Patau syndrome), 
18 (Edwards syndrome), and 21 (Down syndrome) are the only autosomal trisomies that are 
compatible with life (table 21.5). Of these, trisomies 13 and 18 are typically fatal in the first 
years of life. A variety of X chromosome aneuploidies are compatible with life.

Many developmental abnormalities involve a portion of a chromosome. Some 
involve cytogenetically detectable changes and span millions of base pairs. If they 
are too small to be cytogenetically visible (e.g., smaller than about 3 Mb) they are 
usually referred to as cryptic changes. Examples of microdeletion syndromes include 
Cri‐du‐chat syndrome, Angelman syndrome, Prader Willi syndrome, Smith‐Magenis 
syndrome, and various forms of intellectual disability that result from the gain 
(microduplication) or loss (microdeletion) of chromosomal regions. table 21.6 lists 

An aneuploidy is the condition 
of having an abnormal number 
of chromosomes. Segmental 
aneuploidy affects a portion of a 
chromosome.

Box 21.3 autism: complex DisorDer of unknown etioloGy 

Autism (OMIM %209850) is a lifelong neurological disorder with onset before three years of age (Kanner, 1943; reviewed in Rapin, 1997). 
It is characterized by a triad of deficits: (1) an individual’s failure to have normal reciprocal social interaction; (2) impaired language or com-
munication skills; and (3) restricted, stereotyped patterns of interests and activities. Autistic children’s play is abnormal beginning in infancy, 
and there is a notable lack of imaginative play. Approximately 30% of autistic children appear to develop normally, but then undergo a period 
of regression in language skills between 18 and 24 months of age. In addition, cognitive function may be impaired. Seventy‐five percent of 
autistic individuals have intellectual disability. Approximately 10% of autistic individuals have savant‐like superior abilities in areas such as 
mathematical calculation, rote memory, or musical performance. Autism is accompanied by seizures; by adulthood about one‐third of autistic 
individuals will have had at least two unprovoked seizures (Olsson et al., 1988; Volkmar and Nelson, 1990; Rossi et al., 1995).
 In the 1990s, the prevalence of autism was estimated to be between 0.2 and 2 per 1000 individuals (Smalley et al., 1988; Rapin and 
Katzman, 1998; Fombonne, 1999; Gillberg and Wing, 1999). More recently, the prevalence has been estimated to be about 1:68. How-
ever, the definition of autism has broadened considerably in recent years, with a large number of patients formerly defined as having 
intellectual disability now diagnosed as having autism or autism spectrum disorder. About three to four times more males are affected 
than females (Fombonne, 1999).
 The cause of autism is unknown, but there is strong evidence that the disorder is genetic (Smalley et al., 1988; Szatmari et al., 1998; 
Turner et al., 2000). The concordance between monozygotic twins is approximately 60%, and >90% if coaffected twins are defined as 
having classically defined autism or more generalized impairments in social skills, language, and cognition (Bailey et al., 1995). Autism 
has a far stronger genetic basis than most other common neuropsychiatric disorders such as schizophrenia or depression. Linkage, 
GWAS, and exome sequencing studies suggest that there is extreme locus heterogeneity: there are very few penetrant variants having a 
large effect on the phenotype.

taBle 21.5 Frequency of chromosomal aneuploidies among liveborn infants.

Abnormalities Disorder Frequency

Autosomal Trisomy 13 (Patau syndrome) 1 in 15,000

Trisomy 18 (Edwards syndrome) 1 in 5000

Trisomy 21 (Down syndrome) 1 in 600

Sex chromosome Klinefelter syndrome (47,XXY) 1 in 700 males

XYY syndrome (47, XYY) 1 in 800 males

Triple X syndrome (47, XXX) 1 in 1000 females

Turner syndrome (45, X or 45X/46XX or 45X/46, 
XY or isochromosome Xq)

1 in 1500 females

Source: Beaudet et al. (2001) with permission from McGraw Hill.
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examples of genomic disorders that are inherited in a Mendelian fashion and involve 
only one or several genes (Stankiewicz and Lupski, 2002). table 21.7 provides a  similar 
list of common structural variations that are associated with disease, reported by the 
Human Genome Structural Variation Working Group et al. (2007). That group reported 
an initiative to characterize structural variation in phenotypically normal individuals 
using fosmid libraries.

We considered several mechanisms by which non‐allelic homologous recombina-
tion causes deletions or duplications of chromosomal segments (see Fig. 8.19). Figure 21.7 
shows six possible consequences of such events, such as loss of normal gene function, the 
fusion of two genes, or the exposure of a recessive allele.

Consistent with our view of allele frequencies in Figure 21.6, chromosomal alter-
ations may be considered to occur along a spectrum from having little or no adverse 
effects to causing disease (Fig. 21.8). Copy number variants (described in Chapters 8 
and 20) may have no phenotypic consequences and may be thought of as chromosomal 
alterations (in contrast to chromosomal abnormalities). Some copy number variants 
may increase disease susceptibility, perhaps contributing to common complex (mul-
tigenic) disorders. Some common and relatively benign traits such as color blindness 
can be attributed to copy number variants. At the extreme end of the spectrum, chro-
mosomal changes may cause or contribute to a variety of genomic disorders including 
aneuploidies, microdeletion syndromes, and microduplication syndromes. Genomic 
disorders are also notably common in cancers, with occurrence of amplifications and 
deletions of loci. We discuss cancer in more detail in “Cancer: A Somatic Mosaic 
Disease” below.

Chromosomal disorders are an extremely common feature of normal human 
 development. Humans have a very low fecundity even relative to other mammals, with 
perhaps 50–80% of all human conceptions resulting in miscarriage. This low fecundity is 

The database of chromosomal 
imbalance and phenotype in 
humans using Ensembl resources 
(DECIPHER) is a major database 
resource for genomic disease. It 
is available at  http://decipher.
sanger.ac.uk/ (WebLink 21.9).

taBle 21.7 Common structural polymorphisms and disease. VNtr: variable number 
tandem repeats. 

Gene Type Locus Size (kb) Phenotype Copy number 

variation

UGT2B17 Deletion 4q13 150 Variable testosterone levels, 
risk of prostate cancer

0–2

DEFB4 VNTR 8p23.1 20 Colonic Crohn’s disease 2–10

FCGR3 Deletion 1q23.3 >5 Glomerulonephritis, 
systemic lupus 
erythematosus

0–14

OPN1LW/
OPN1MW

VNTR Xq28 13‐15 Red/green color blindness 0–4/0–7

LPA VNTR 6q25.3 5.5 Altered coronary heart 
disease risk

2–38

CCL3L1/
CCL4L1

VNTR 17q12 Not 
known

Reduced HIV infection; 
reduced AIDS susceptibility

0–14

RHD Deletion 1p36.11 60 Rhesus blood group 
sensitivity

0–2

CYP2A6 Deletion 19q13.2 7 Altered nicotine 
metabolism

2–3

Source: Human Genome Structural Variation Working Group (2007). Reproduced with permission from 
Macmillan Publishers.

http://decipher.sanger.ac.uk/
http://decipher.sanger.ac.uk/
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FiGure 21.7 Models for the molecular mechanisms of genomic disorders. For each, a hemizygous 
deletion is depicted (i.e., loss of one of the normal two copies of an allele) in brackets, and the two chro-
mosomal homologs are indicated by horizontal lines. Note that duplications also potentially cause dis-
ease; homozygous deletions (resulting in zero copies of a gene) typically have more severe consequences 
than hemizygous deletions. (a) Gene dosage effect in which one (of two) copies is deleted. Genes vary 
in their dosage sensitivity. (b) Gene interruption. A rearrangement breakpoint interrupts a gene. (c) Gene 
fusion in which two genes (and/or regulatory elements such as enhancers or promoters) are fused fol-
lowing a deletion. (d) Position effect: the expression or function of a gene near a breakpoint is disrupted 
by loss of a regulatory element. (e) Unmasking a recessive allele. The deletion results in hemizygous 
expression of a recessive mutation (asterisk) in a gene or a regulatory sequence. (f) Transvection, in 
which a deletion impairs communication between two alleles. Genes are indicated as red (or gray) filled 
ovals, while regulatory sequences are smaller ovals. Adapted from Lupski and Stankiewicz (2005), with 
permission from J. R. Lupski.
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primarily due to the common occurrence of chromosomal abnormalities (Voullaire et al., 
2000; Wells and Delhanty, 2000):

 • A woman who has already had one child (and is therefore of established fertility) has 
only a 25% chance of achieving a viable pregnancy in any given menstrual cycle.

 • 52% of all women that conceive have an early miscarriage.
 • Following in vitro fertilization, pregnancies that are confirmed positive in the first 
two weeks result in miscarriage 30% of the time.

 • Over 60% of spontaneous abortions that occur at 12 weeks gestation or earlier are 
aneuploid, suggesting that early pregnancy failures are likely due to lethal chromo-
some abnormalities.

A review of 36 published studies showed that of 815 human preimplantation embryos, 
only 177 (22%) were diploid (van Echten‐Arends et al., 2011). A total of 73% were 
mosaic, meaning that not all cells contain the same chromosomal constitution. The major-
ity of these were diploid‐aneuploid mosaic embryos, having one or more diploid cells as 
well as other cells that were haploid or polyploid for a particular chromosome. Mitotic 
errors could account for the high rate of chromosomal mosaicism.
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environmentally Caused Disease

Environmental diseases are extremely common. We may consider two types.

 1. Infectious diseases are caused by a pathogen (such as a virus, bacterium, protozoan, 
fungus, or nematode). From birth to old age, infectious disease is a leading cause 
of death worldwide. We described common, vaccine-preventable diseases caused by 
viruses in Chapter 16 (Table 16.2) and by bacteria in Chapter 17 (Table 17.7), and we 
discussed fungal pathogens and a variety of protozoan pathogens in Chapters 18 and 
19,  respectively.

 2. Many diseases or other conditions are not caused by an infectious agent. These include 
malnutrition (whether maternal, fetal, or in an independent individual),  poisoning by 
toxicants such as lead or mercury, or injury.

Genome‐wide association studies (GWAS; see below) have been used to compare the 
genotypes of large numbers of individuals who are susceptible to an infectious disease 
relative to controls (reviewed in Chapman and Hill, 2012). Markers with strong evidence 
of association have been identified for diseases such as HIV‐1/AIDS, Hepatitis B and C, 
dengue, malaria, tuberculosis, and leprosy. In many cases there is only a small increase 
in risk, and the biological relevance of the variants (often in intergenic loci) is uncertain. 
In some cases the variant confers resistance by impairing the function of a receptor for 
a pathogen, as in the case of the CCR5 for HIV‐2, FUT2 for norovirus, and DARC for 
Plasmodium vivax (a malaria pathogen).

About 8% of all children in the 
United States have blood levels 
that are defined as “alarming,” 
according to the Centers for 
Disease Control and Prevention. 
For more information, see  

 http://www.cdc.gov/nceh/lead/ 
(WebLink 21.10).

GIDEON (Global Infectious 
Disease and Epidemiology 
Network) is a commercial 
database of infectious diseases 
available at  http://www.
gideononline.com (WebLink 21.11).

FiGure  21.8 Spectrum of effects of copy number variants. At one extreme, copy number 
 variants cause genomic diseases such as microdeletion and microduplication syndromes. At the other 
extreme, copy number variants have no known phenotypic effects and occur in the apparently normal 
 population. For example, many of the 270 HapMap individuals (who are defined as normal although 
 everyone is susceptible to some diseases) have hemizygous and homozygous deletions as well as 
extended tracts of homozygosity. Adapted from Lupski and Stankiewicz (2005), with permission 
from J. R. Lupski.
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Disease and Genetic Background

While we have presented four disease categories so far (monogenic, complex, genomic, 
and environmental), these are interrelated categories. If four children who have the same 
highly elevated blood lead levels due to lead poisoning are examined, they may display 
entirely different responses. One might be aggressive, another intellectually disabled, 
another hyperactive, and another might appear unaffected. Four individuals exposed to 
the same pathogen might have different responses. It is likely that the genetic background 
has a key role in responses to environmental insults, as suggested by GWAS. Similarly, 
four children who have the identical single base pair mutation in the ABCD1 gene might 
have entirely different severities of adrenoleukodystrophy, or the identical mutation in 
MECP2 may cause very different forms of Rett syndrome. Modifier genes are likely to 
be involved (highlighting the concept that monogenic disorders may be caused primarily 
by the abnormal function of a single gene yet they always involve multiple genes), and 
environmental factors are certain to have large roles in genetic diseases.

There are other ways of classifying basic disease types. For example, particular eth-
nic groups or other discrete groups have high susceptibility to some genetic diseases. 
Examples include the following:

 • Tay‐Sachs disease is prevalent among Ashkenazi Jews.
 • About 8% of the African‐American population are carriers of a mutant HBB gene.
 • Males rather than females are susceptible to Alport disease, male pattern baldness, 
and prostate cancer.

 • Cystic fibrosis affects ∼30,000 people in the United States with ∼12 million carriers, 
and is the most common fatal genetic disease in that country. While it affects all 
groups, Caucasians of northern European ancestry are particularly susceptible.

Mitochondrial Disease

Another basis for classifying disease is according to tissue type organ system, or 
 subcellular organelle. Eukaryotic cells are organized into organelles, such as the nucleus, 
endoplasmic reticulum, Golgi complex, peroxisome, lysosome, endosome, and mitochon-
drion. Each organelle serves a specialized function, gathering particular protein products 
to form enzymatic reactions necessary for cell survival, separating metabolic processes, 
and segregating harmful products. We have considered human disease from the perspec-
tive of genes and gene products. We can also examine disease in the context of the higher 
organizational level of organelles and pathways.

Consider the mitochondrion. This organelle was described as the site of respiration 
in the 1940s, and mitochondrial DNA was first reported by Nass and Nass (1963). It was 
not until 1988 that the first disease‐causing mutations in mitochondria were described, 
however (Holt et al., 1988; Wallace et al., 1988a, b). Today, over 100 disease‐causing 
point mutations have been described (reviewed in DiMauro and Schon, 2001; DiMauro et 
al., 2013). The mitochondrial genome contains 37 genes, any of which can be associated 
with disease. Figure 21.9 shows a morbidity map of the human mitochondrial genome.

Mitochondrial genetics differs from Mendelian genetics in three main ways (DiMauro 
and Schon, 2001; DiMauro et al., 2013):

 1. Mitochondrial DNA is maternally inherited. Mitochondria in the embryo are derived 
primarily from the ovum, while sperm mitochondria fail to enter the egg and are actively 
degraded. A woman having a mitochondrial DNA mutation may therefore transmit it to 
her children, but only her daughters will further transmit the mutation to their children.

 2. While nuclear genes exist with two alleles (one maternal and one paternal), 
 mitochondrial genes exist in hundreds or thousands of haploid copies per cell. (A 
typical mitochondrion contains about ten copies of the mitochondrial genome.)  

Most (∼1500) mitochondrial 
proteins are the product of 
nuclear genes, and most 
mitochondrial diseases are 
caused by mutations in nuclear 
genes. Normally all mitochondrial 
genomes are the same, a 
condition called homoplasy. 
Pathogenic mutations may be 
heteroplasmic (having a mixture 
of normal and mutated genomes). 
We introduced NCBI tools to 
view the human mitochondrial 
genome in Chapter 15.
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An individual may harbor varying ratios of normal and mutated mitochondrial 
genomes. Some critical threshold of mutated mitochondrial genomes is required 
before a disease is manifested. As for nuclear DNA, mitochondrial DNA can there-
fore have somatic mutations that cause disease (Schon et al., 2012).

 3. As cells divide the proportion of mitochondria having mutated genomes can change, 
affecting the phenotypic expression of mitochondrial disorders. Clinically, mitochondrial 
disorders present at different times and in different regions of the body. An extremely 
broad variety of diseases are associated with mutations in mitochondrial DNA.

FiGure 21.9 Morbidity map of the human mitochondrial genome. Colored sections represent protein‐coding genes. These are seven 
subunits of complex I (ND; pink sections); one subunit of complex III (cyt b; light blue section); three subunits of cytochrome c oxidase (CO; 
purple sections); two subunits of ATP synthase (A6 and A8; yellow sections): 12 S and 16 S ribosomal RNA (green sections); and 22 transfer 
RNAs identified by three‐letter codes for the corresponding amino acids (blue sections). Blue circles indicate diseases caused by mutations 
in genes that impair protein synthesis. Pink circles indicate diseases caused by mutations in genes that encode respiratory chain proteins. 
Numbers in circles represent the numbers of mutations reported at that site. Cyt b: cytochrome b; FBSN: familial bilateral striatal necrosis; 
LHON: Leber hereditary optic neuropathy; LS: Leigh syndrome; MELAS: mitochondrial encephalomyopathy, lactic acidosis, and stroke‐like 
episodes; MERRF: myoclonus epilepsy with ragged‐red fibres; MILS: maternally inherited Leigh syndrome; NARP: neuropathy, ataxia and 
retinitis pigmentosa; ND: NADH‐dehydrogenase (complex I); PEO: progressive external ophthalmoplegia. 

Source: DiMauro et al. (2013). Reproduced with permission from Macmillan Publishers.
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We invoke a perl script, use –i to specify the input BAM file location, use –t to 
define the type of BAM file (1 denotes whole exome, 2 is for whole‐genome data, 3 is 
for RNA‐seq data, and 4 is for mitochondrial DNA data) and specify –d for the mini-
mum depth required to detect heteroplasmy. MitoSeek then reports heteroplasmy, somatic 
mutations (comparing allele counts between paired tumor/normal samples), relative copy 
number variation, and large structural variation.

Somatic Mosaic Disease

Mosaicism is the occurrence of genetically distinct populations of cells within an organ-
ism (Youssoufian and Pyeritz, 2002; Lupski, 2013; Poduri et al., 2013). Genetic changes 
may involve somatic cells such as skin or liver (somatic mosaicism), or they may involve 
germline cells (germline mosaicism, also called gonadal mosaicism). By some estimates 
the human body has ∼1014 cells (e.g., Erickson, 2010) and, because errors during rep-
lication and cell division occur frequently, there is an appreciable amount of somatic 
mutation. We are therefore all mosaics. In many cases, somatic mosaicism is associated 
with disease. This idea was suggested by Sir Macfarlane Burnet (1959) who noted two 
examples of somatic mutation (in the fleece of sheep and in blood groups), and proposed 
mosaicism as an explanation for autoimmune disease.

Somatic mosaicsim involving the skin, whether in the fleece of sheep or in human 
cutaneous disorders, is readily apparent. Rudolf Happle (1987) hypothesized that a set 
of disorders (such as McCune‐Albright syndrome, Sturge‐Weber syndrome, and Proteus 
syndrome) having a mosaic distribution of skin defects are each caused by a mutation 
in a gene that would be embryonic lethal as an inherited mutation in early development. 
Instead, the origin of these conditions is as a somatic variant.

Postzygotic, somatic, mosaic mutations have indeed been identified for the  McCune‐
Albright syndrome (GNAS mutations; Weinstein et al., 1991), the Proteus syndrome 
(AKT mutations; Lindhurst et al., 2011), and other disorders. My lab reported that muta-
tions in GNAQ encoding a G protein alpha subunit cause both the neurocutaneous Sturge‐
Weber syndrome and commonly occurring nonsyndromic port‐wine stain birthmarks 
(Shirley et al., 2013). Our approach was to obtain biopsies of affected parts of the body 
(e.g., a port‐wine stain birthmark) and presumably unaffected regions (e.g., blood), and 
then to perform whole‐genome sequencing of paired samples (from three individuals). 
After alignment to a reference genome and variant calling, the genotypes were compared 
using somatic variant callers. Matt Shirley, then a graduate student in my lab, employed 

MitoSeek is available at  
 https://github.com/riverlee/

MitoSeek (WebLink 21.13). It 
requires Perl scripts used by 
Circos (Box 19.2).

Mosaicism is distinguished from 
chimerism in which cells having 
genetic differences are derived 
from separate ancestries, as may 
happen when an egg is fertilized 
by sperm from two different men.

Somatic variation includes both 
single‐nucleotide and copy 
number changes (Dumanski and 
Piotrowski, 2012). Pham et al. 
(2014) used high‐resolution array 
comparative hybridization to 
evaluate >10,300 patients. They 
found somatic chromosomal 
mosaicism, resulting from 
postzygotic errors, in 57 cases 
(0.55% of the total).

MITOMAP is a useful mitochondrial genome database (Ruiz‐Pesini et al., 2007). 
The site lists a broad variety of information on mutations and polymorphisms in mito-
chondrial genomes involving all known genetic mechanisms (inversions, insertions, dele-
tions, etc.).

Next‐generation sequencing has been employed to characterize variants in both the 
mitochondrial genome and in nuclear genes relevant to mitochondrial function (Vasta et 
al., 2009), although Sanger sequencing also continues to be used (e.g., Tang et al., 2013).

It is easy to analyze mitochondrial DNA variation in whole‐exome sequence (WES) 
data. This may seem surprising since the basis of WES is selective capture or enrichment 
of nuclear‐encoded exons using long oligonucleotides. However, there are so many cop-
ies of mitochondrial DNA that it is routinely, incidentally sequenced. Guo et al. (2013) 
developed MitoSeek, a package that extracts mitochondrial sequences from WES or 
whole‐genome sequence data from BAM files, assembles the genome, and performs qual-
ity control (e.g., read depth, percent of base pairs covered, and base quality scores). We 
can invoke MitoSeek with the following command:

MITOMAP is online at  
 http://www.mitomap.org/ 

(WebLink 21.12).

$ perl mitoSeek.pl -i /home/data/fshd216.bam -t 1 -d 5

http://www.mitomap.org/
https://github.com/riverlee/MitoSeek
https://github.com/riverlee/MitoSeek
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Strelka (Saunders et al., 2012); other prominent somatic variant callers include VarScan 2 
(Koboldt et al., 2012) and MuTect (Cibulskis et al., 2013). By understanding the molec-
ular defect – a G protein alpha subunit coupled to a seven transmembrane receptor is 
persistently activated – we hope we can modulate affected signaling pathways to offer 
treatment to patients.

We mentioned that mutations in GNAQ cause Sturge‐Weber syndrome and port‐wine 
stain birthmarks. These involve an R183Q mutation (an arginine is substituted by a glu-
tamine). Somatic mutations in the same gene, causing the identical R183Q mutation, 
are also a cause of uveal melanoma and a pigmentation condition called blue nevi (Van 
Raamsdonk et al., 2009). In the childhood disease the somatic mutation occurs before 
birth in an unknown cell type (perhaps endothelial cells). In uveal melanoma the somatic 
mutation occurs in adulthood, in melanocytes. The same mutation occurring in yet another 
cell type might have no clinical phenotype. Where in the body a mutation occurs, and at 
what stage of development, are critical considerations.

Cancer: a Somatic Mosaic Disease

Cancer is a somatic mosaic disease, arising from a clone having somatic mutations and 
leading to malignant transformation (Chin et al., 2011; Watson et al., 2013). Cancer 
occurs when DNA mutations confer selective advantage to cells that proliferate, often 
uncontrollably (Varmus, 2006). Knudson (1971) introduced a two‐hit hypothesis of can-
cer, suggesting that for dominantly inherited retinoblastoma one mutation is inherited 
through the germ cells while a second somatic mutation occurs; for a nonhereditary form 
of cancer two somatic mutations occur. There are six hallmarks of cancer, described 
by Hanahan and Weinberg (2011): proliferative signaling, evading growth suppressors, 
resisting cell death, enabling replicative immortality, induction of angiogenesis, and inac-
tivating invasion and metastasis.

There are >200 types of cancer and many disease mechanisms, and a growing num-
ber of key tumor suppressor genes and other oncogenic genes have been identified. Given 
the completion of the human genome project and the availability of improved sequenc-
ing capabilities, a human cancer genome project has been launched to catalog the DNA 
sequence of a variety of cancer genomes (Stratton, 2011).

One intiative is COSMIC (catalogue of somatic mutations in cancer; Forbes et al., 
2011). It includes information on nearly 1 million cancer samples, >1.6 million muta-
tions, and various types of mutations (fusions, genomic rearrangements, and copy number 
variants). It also offers extensive literature annotation and a BioMart (Shepherd et al., 
2011). To explore GNAQ, you can do the following:

 • Visit the main COSMIC website and obtains information such as a list of mutations 
in the gene.

 • View the gene in a COSMIC web browser.
 • Use the COSMIC BioMart to explore the many features.
 • Use the main Ensembl human website, select BioMart, set the Dataset to Homo sapi-
ens Somatic Short Variation (SNPs and indels). Under Filters select COSMIC as the 
variation source, and select the Ensembl Gene ID (ENSG00000156052, which is 
listed at the COSMIC or Ensembl sites). You can then select attributes of interest to 
learn more about the gene and associated mutations.

 • In the main Ensembl human website you can perform a search for GNAQ and select 
the variation table. There you can access COSMIC database variants associated with 
the gene.

The Cancer Genome Atlas (TCGA) and the International Cancer Genome  Consortium 
(ICGC) are other major initiatives. Their goals are to analyze mutations in thousands of 

The website of the Cancer 
Genome Project at the Wellcome 
Trust Sanger Institute is  http://
www.sanger.ac.uk/research/
projects/cancergenome/ (WebLink 
21.14) with links to many cancer 
resources. COSMIC is available 
at  http://cancer.sanger.ac.uk/
cancergenome/projects/census/ 
(WebLink 21.15). For the COSMIC 
BioMart visit  http://www.sanger.
ac.uk/genetics/CGP/cosmic/
biomart/martview/ (WebLink 21.16).

http://www.sanger.ac.uk/research/projects/cancergenome/
http://www.sanger.ac.uk/research/projects/cancergenome/
http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://www.sanger.ac.uk/genetics/CGP/cosmic/biomart/martview/
http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://www.sanger.ac.uk/genetics/CGP/cosmic/biomart/martview/


Genome AnAlysis1034

tumor samples to characterize genetic changes, as well as alterations in the transcriptome 
and epigenome.

The UCSC Cancer Genomics Browser is a resource offering extensive data on can-
cer, including from the TCGA project (Cline et al., 2013; Goldman et al., 2013). Features 
include the availability of large datasets with views by cancer subtype, chromosome loca-
tion, clinical features, or genes and pathways of interest. Gemomic heatmaps can show 
regions of deletion and amplification, while a clinical heatmap shows samples (on the 
y axis) versus features such as tumor grade, histological type, and survival statistics (x 
axis). Kaplan–Meier plots can display percent survival versus time organized by user‐
selected groups such as patients receiving different treatments.

The landscape of cancer includes two types of mutations (Greenman et al., 2007; 
Wood et al., 2007; Vogelstein et al., 2013). “Driver” mutations confer a selective growth 
advantage to cells, are implicated as causing the neoplastic process, and are positively 
selected for during tumorogenesis. “Passenger” mutations are retained by chance but 
confer no selective advantage and do not contribute to oncogenesis. A challenge is to 
identify driver mutations throughout the genome of a cancer cell and to distinguish them 
from passenger mutations. Driver mutations occurring at high frequency have been called 
mountains interspersed with many hills (corresponding to driver mutations that occur 
with lower frequency). The large number of infrequently mutated genes represented in 
the hills may be as important as the mountains, and may represent the relevant mutational 
signature of each cancer (e.g., Wood et al., 2007). A goal is to relate such a molecular 
profile of a cancer to an appropriate therapy to eradicate the cancer.

The advent of next‐generation sequencing has enabled deep cataloguing of many 
cancer types. Bert Vogelstein and colleagues summarized the number of somatic muta-
tions in selected human cancers (Fig. 21.10a). They also described signaling pathways that 
are commonly affected. Some conclusions are (Vogelstein et al., 2013):

 • The rate of nonsynonymous mutations (each of which is predicted to alter a specified 
amino acid) varies greatly. Cancers that compromise DNA repair function can lead 
to thousands of nonsynonymous mutations per tumor (Fig. 21.10b). Cancer caused 
by mutagens such as tobacco or ultraviolet radiation from sunlight tend to cause 
∼100–200 nonsynonymous mutations per tumor. Lung cancers in smokers may there-
fore have ten times as many somatic mutations as lung cancers in nonsmokers.

 • Cancers having relatively few mutations include pediatric tumors and leukemias (∼10 
per tumor). One reason is that some tumors aquire mutations over time (particularly 
tumors in self‐renewing tissues).

 • Metastatic cancer develops through somatic mutations that are acquired over a period 
of decades. Also, mutations in metastatic tumors were already present in many cells 
in primary tumors.

 • Aneuploidy is common in cancer cells, including whole‐chromosome or segmen-
tal copy number changes, inversions, and translocations. Translocations often result 
in the fusion of two genes to create an oncogene such as BCR‐ABL. Chromosomal 
deletions are the most common form of aneuploidy in cancer, often deleting a tumor 
suppressor gene.

 • It is challenging to determine whether a somatic mutation represents a driver or a pas-
senger. A driver gene contains driver gene mutation(s) (Thiagalingam et al., 1996), 
but it may also contain passenger mutations.Vogelstein et al. propose introducing 
the term “mut‐driver genes” to denote driver gene mutations from “epi‐driver genes” 
which are expressed aberrantly in tumors but are not frequently mutated.

 • Oncogenes tend to have recurrent mutations at one or a few amino acid positions 
(as for PIK3CA and IDH1), while tumor suppressor genes tend to acquire truncating 
mutations along their length. Vogelstein et al. describe a “20/20 rule” in which a 

The TCGA website is  http://
cancergenome.nih.gov/ 
(WebLink 21.17). It is a US$ 375 
million sequencing project 
started in 2006 by the NHGRI. The 
National Cancer Institute (NCI) at 
the National Institutes of Health 
website is  http://www.cancer 
.gov/ (WebLink 21.18). Data for 
TCGA are stored at the UCSC 
Cancer Genomics Hub (CGHub) 
at  https://cghub.ucsc.edu/ 
(WebLink 21.19). Currently that 
site houses ∼1,420,900 gigabytes 
of data (1.4 petabytes) organized 
by three dozens types of cancer. 
The ICGC website is  http://
www.icgc.org/ (WebLink 21.20), 
and its data portal is  http://
dcc.icgc.org/ (WebLink 21.21). 
Currently (March 2015) it lists ∼13 
million somatic mutations across 
18 cancer sites.

The UCSC Cancer Genomics 
Browser is online at  https://
genome‐cancer.ucsc.edu/ 
(WebLink 21.22).

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://www.cancer.gov/
https://cghub.ucsc.edu/
http://www.icgc.org/
http://www.icgc.org/
http://dcc.icgc.org/
http://dcc.icgc.org/
https://genome%E2%80%90cancer.ucsc.edu/
https://genome%E2%80%90cancer.ucsc.edu/
http://www.cancer.gov/
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FiGure 21.10 Somatic mutations in representative human cancers, based on genome‐wide sequenc-
ing studies. (a) The genomes of adult (right) and pediatric (left) cancers are represented. Numbers in 
parentheses are the median number of nonsynonymous mutations per tumor. Redrawn from Vogelstein 
et al. (2013). Reproduced with permission from AAAS. (b) Median number of nonsynonymous substi-
tutions per tumor. Horizonal bars indicate the 25% and 75% quartiles. MSI: microsatellite instability; 
SCLC: small cell lung cancers; NSCLC: non‐small cell lung cancers; ESCC: esophageal squamous cell 
carcinomas; MSS: microsatellite stable; EAC: esophageal adenocarcinomas.
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gene is classified as an oncogene if >20% of the recorded mutations are missense 
at recurrent positions. It is a tumor suppressor gene if >20% of its mutations are 
inactivating. Occassionally one gene (such as NOTCH1) may have different roles in 
different cancer types.

 • Heterogeneity of cancer mutations may be observed: (1) among the cells of a single 
tumor; (2) among different metastatic lesions of one patient; (3) among the cells of a 
single metastatic lesion; and (4) among tumors of different patients.

 • While the cancer genome appears extraordinarily complex, the vast majority of 
genetic variants are passengers that do not influence neoplasia. Vogelstein et al. list 
138 key driver genes and divide their functional effects into a small number of cellu-
lar signaling pathways that confer a selective growth advantage. Functionally, driver 
mutations influence three cellular processes: cell fate, cell survival, and genome 
maintenance.

Disease DataBases
We next describe two major types of human disease database: (1) central databases such 
as OMIM, HGMD, and ClinVar provide great breadth in surveying thousands of diseases; 
and (2) thousands of locus‐specific mutation databases provide great depth in reporting 
mutations associated with genes, with a focus on either one specific gene and/or one dis-
ease. Patrinos and Brookes (2005) and Thorisson et al. (2009) reviewed these two types 
of databases, emphasizing the great challenges associated with relating genotype to phe-
notype (that is, relating data on DNA mutations to clinical phenotypes).

OMiM: Central Bioinformatics resource for human Disease

OMIM® is a comprehensive database for human genes and genetic disorders, particularly 
rare (often monogenic) disorders having a genetic basis (McKusick, 2007; Amberger et 
al., 2011). The OMIM database contains bibliographic entries for over 22,000 human 
diseases and relevant genes. A focus of OMIM is inherited genetic diseases. As indicated 
by its name, the OMIM database is concerned with Mendelian genetics. These are inher-
ited traits that are transmitted between generations. There is relatively little information 
in the database about genetic mutations in complex disorders, or chromosomal disorders. 
Its focus is a comprehensive survey of single‐gene disorders, with richly detailed descrip-
tions as well as links to many database resources.

We can examine OMIM using sickle cell anemia and HBB as examples of a disease 
and a gene implicated in a disease. OMIM can be searched from the NCBI site, and is 
linked from NCBI Gene. Within the OMIM site, there is a search page that allows you 
to query a variety of fields including chromosome, map position, or clinical information. 
The result of a search for “beta globin” includes both the relevant gene (Fig. 21.11) and 
relevant diseases (e.g., sickle cell anemia and thalassemias).

We can next view the entry for beta globin (Fig. 21.12), with its OMIM identi-
fier +141900. Each entry in OMIM is associated with a numbering system. There is a    
six‐digit code in which the first digit indicates the mode of inheritance of the gene involved 
(table 21.8). The beta globin entry is preceded by a plus sign to indicate that the entry 
 contains the description of a gene of known sequence and a phenotype. The first number 
(1) indicates that this gene has an autosomal locus (and the entry was created by 1994). 
The entry includes bibliographic data such as available information on an animal model 
for globinopathies. OMIM entries link to a gene map, which provides a tabular listing of 
the cytogenetic position of disease loci. This gene map further links to the NCBI Map 
Viewer and to resources for the orthologous mouse gene. The OMIM morbid map also 
provides cytogenetic loci but is organized alphabetically.

Mendelian Inheritance in Man 
(MIM) was started in 1966 
by Victor A. McKusick. The 
online version OMIM became 
integrated with NCBI in 1995, 
available at  http://www.ncbi.
nlm.nih.gov/omim/ (WebLink 
21.23) or through  http://www.
omim.org (WebLink 21.24). The 
scientific director of OMIM 
is Ada Hamosh of the Johns 
Hopkins Medical Institutions.

http://www.ncbi.nlm.nih.gov/omim/
http://www.omim.org
http://www.ncbi.nlm.nih.gov/omim/
http://www.omim.org
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An important feature of OMIM entries is that many contain a list of allelic variants. 
Most of these represent disease‐causing mutations. An example of several allelic variant 
entries is shown for HBB (Fig. 21.12). These allelic variants provide a glimpse of all the 
human genes that are known to contain disease‐causing mutations. Allelic variants within 
OMIM are selected based on criteria such as being the first mutation to be discovered, 
having a high population frequency, or having an unusual pathogenetic mechanism. Some 
allelic variants in OMIM represent polymorphisms. These may be of particular interest if 
they show a positive correlation with common disorders. In the particular case of HBB, 
hundreds of allelic variants are included.

The current holdings of OMIM are summarized by chromosome (table 21.9) 
and  according to mode of inheritance (autosomal, X‐ or Y‐linked, mitochondrial; 
table 21.10). OMIM continues to be a crucial and comprehensive resource for  information 
on the human genome. Many other disease databases incorporate OMIM identifiers to 
provide a common reference to disease‐related genes.

FiGure 21.11 Online Mendelian Inheritance in Man (OMIM), accessible via the NCBI website, allows text searches by criteria such as 
author, gene identifier, or chromosome. A search of OMIM for “beta globin” produces results including entries on that gene, related globin 
genes, and diseases such as thalassemias and sickle cell anemia. The insets show links to external resources and to ICD clinical diagnostic 
categories. 

Source: OMIM (http://omim.org/).

http://omim.org/
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FiGure 21.12 The OMIM entry for beta globin includes the OMIM identifier (+141900) and a variety of information, indexed on the 
sidebar, such as clinical features, a description of available animal models, and allelic variants. 

Source: OMIM (http://omim.org/).

taBle 21.8 OMiM numbering system. OMiM number beginning 1 or 2 implies it entered the database before 
May 1994; OMiM number beginning 6 implies it was created after May 1994; + indicates a gene of known sequence 
and a phenotype; % indicates a confirmed mendelian phenotype (or phenotypic locus) for which the underlying 
molecular basis is not known; # indicates a descriptive entry (usually of phenotype); * preceding entry indicates a 
gene of known sequence. For the autS1 entry, the number 1 indicates that this is the first listing of several autism 
susceptibility loci (e.g., autS2). adapted from OMiM (  http://omim.org/help/faq, accessed March 2014). reproduced 
with permission from Johns hopkins university.

OMIM no. Phenotype OMIM identifier Disorder (example) Chromosome number

1___ Autosomal dominant +143100 Huntington disease 4p16.3

2___ Autosomal recessive %209850 Autism, susceptibility 
to, (AUTS1)

7q

3___ X‐linked loci or 
phenotypes

#312750 Rett syndrome Xq28

4___ Y‐linked loci or 
phenotypes

*480000 Sex‐determining 
region Y

Yp11.3

5___ Mitochondrial loci or 
phenotypes

#556500 Parkinson disease –

6___ Autosomal loci or 
phenotypes

#603903 Sickle cell anemia –

http://omim.org/
http://omim.org/help/faq
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Earlier we introduced Genome Workbench, an NCBI tool to query Entrez data-
bases. Select NCBI Gene and enter the query globin AND human[ORGN] (Fig. 21.13a). 
 (Alternatively, search directly for the beta globin accession NM_000518.) HBB appears in 
the results list; right‐click to add it to a new project. You can then select a SNP table view 
and obtain a tabular list of genomic variants (with dbSNP identifiers), including those which 
have OMIM entries (Fig. 21.13b). Using Genome Workbench to obtain tabular outputs from 
NCBI Entrez is analogous to using the UCSC Table Browser to obtain tabular outputs from 
the UCSC Genome Browser. Note however that (at present) OMIM variant data can be 
viewed in the UCSC Genome Browser but are not available in the UCSC Table Browser.

human Gene Mutation Database (hGMD)

The Human Gene Mutation Database (HGMD) is another major source of information on 
disease‐associated mutations (Stenson et al., 2012, 2014). The database is partly commer-
cial (requiring payment for full access). George et al. (2008) compared OMIM and HGMD, 
noting differences in their approaches. For example, OMIM places emphasis on detailed 
descriptions of genes and disorders and their clinical phenotypes, while HGMD emphasizes 
more comprehensive cataloguing of mutations. In sequencing human genomes and exomes, 
it is common to filter variants based on whether they have been previously associated with 
disease; HGMD has emerged as a basic resource in many analysis pipelines.

Genome Workbench can be 
downloaded from  http:// 
www.ncbi.nlm.nih.gov/tools/
gbench/ (WebLink 21.25).

HGMD is a project of David 
Cooper and colleagues at Cardiff 
University. It is available at 

 http://www.hgmd.cf.ac.uk/
ac (WebLink 21.26). There are 
∼115,000 mutation entries for 
public release and ∼164,000 
entries for commercial release 
(March, 2015).

taBle 21.9 Synopsis of OMiM human genes per chromosome. total number of loci: 
14,622. adapted from OMiM (  http://omim.org/help/faq, accessed March 2014). 
reproduced with permission from Johns hopkins university.

Chromosome Loci Chromosome Loci Chromosome Loci

1 1,445  9 553 17 838

2 919 10 545 18 212

3 782 11 886 19 912

4 565 12 770 20 371

5 659 13 273 21 154

6 865 14 474 22 355

7 692 15 436  X 807

8 516 16 593  Y  53

taBle 21.10 Current holdings of OMiM. adapted from OMiM (  http://omim.org/
help/faq, accessed March 2014). reproduced with permission from Johns hopkins 
university.

Autosomal X‐linked Y‐linked Mitochondrial Total

* Gene with known sequence 13,752 672 48 35 14,507

+ Gene with known sequence 
and phenotype

100 2  0  2 104

# Phenotype description, 
molecular basis known

3,732 282  4 28 4,406

% Mendelian phenotype or 
locus, molecular basis unknown

1,577 135  5  0 1,717

Other, mainly phenotypes with 
suspected mendelian basis

1,745 115  2  0 1,862

Total 20,906 1,206 59 65 22,236

http://omim.org/help/faq
http://omim.org/help/faq
http://omim.org/help/faq
http://www.ncbi.nlm.nih.gov/tools/gbench/
http://www.ncbi.nlm.nih.gov/tools/gbench/
http://www.hgmd.cf.ac.uk/ac
http://www.hgmd.cf.ac.uk/ac
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ClinVar and Databases of Clinically relevant Variants

The ClinVar database provides data on human variants and their relationship to disease 
(Landrum et al., 2014). It further provides links to the NIH Genetic Testing Registry 
(GTR), MedGen, Gene, OMIM, and PubMed. GTR centralizes genetic test information 
that is volunteered by providers, for example listing where genetic testing can be per-
formed for a particular condition. MedGen organizes human medical genetics informa-
tion, for example providing several hundred entries on medical conditions relevant to a 
query for hemoglobin.

There are five categories of content in ClinVar (Landrum et al., 2014): submitter, vari-
ation, phenotype, interpretation, and evidence. (1) Submissions are from organizations 

FiGure  21.13 Accessing OMIM allelic variants with NCBI Genome Workbench. (a) In Search View, the query hemoglobin AND 
human[ORGN] is entered. Results include RefSeq accessions for human hemoglobin proteins. By selecting hemoglobin subunit beta, it is 
added as a new project. (b) A SNP table view for the corresponding mRNA (accession NM_000518.4) is launched by clicking the project 
on the left sidebar. The table includes columns listing RefSNPs (RS ID), alleles, location in the sequence, variation class (e.g., SNP, indel), 
phenotype, and whether each variant is observed in 1000 Genomes data. The phenotype entries include hyperlinks to OMIM, OMIA (Online 
Mendelian Inheritance in Animals), and locus‐specific databases (LSDB). 

Source: Genome Workbench, NCBI.

(a) Genome Workbench query for human hemoglobin

(b) Genome Workbench SNP Table View
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ClinVar is at NCBI (  http://www.
ncbi.nlm.nih.gov/clinvar/, WebLink 
21.27). It currently includes 
∼75,000 variations from 18,700 
genes. GTR is at  http://www.
ncbi.nlm.nih.gov/gtr/ (WebLink 
21.28), and MedGen is at  http://
www.ncbi.nlm.nih.gov/medgen/ 
(WebLink 21.29). To learn more 
about the contents and fields 
of each database, use EDirect 
commands such as $ einfo 
–db clinvar where –db 
specifies the database of interest.

and individuals. (2) Variation includes sequences at one location (single allele) or multi-
ple alleles (e.g., compound heterozygotes in which two parents transmit different alleles 
at a single locus, sometimes causing a phenotypic change). Variants are cross‐referenced 
to dbSNP and dbVar. (3) Phenotype may represent one concept or more and is annotated 
by MeSH term (see Fig. 21.4), OMIM number, MedGen identifier, or Human Phenotype 
Ontology (HPO; Robinson et al., 2008). (4) Interpretation in ClinVar is  submitter‐driven 
and uses terms recommended by the American College of Medical Genetics and Genom-
ics (ACMG). (5) Evidence typically consists of the number of individuals in which a 
given mutation was observed.

As an example of using ClinVar, enter a query for HBB[gene]. There are 720 results, 
and you can restrict these to single‐nucleotide changes (n =  528), pathogenic  variants 
(n  =  178), or both (n  = 120). Several of these are shown in Figure 21.14a, as well as 
details on variant E7V (Fig. 21.14b). Those details include the HGVS nomenclature (e.g., 
NM_000518.4:c.20A>T specifies the accession number with version number for the 
DNA sequence that has a coding (“c.”) change from A to T), genomic location, and allele 
frequency.

GeneCards

GeneCards is a human gene compendium that includes a wealth of information on human 
disease genes (Stelzer et al., 2011). GeneCards differs from OMIM in that it collects and 
integrates data from several dozen independent databases including OMIM, GenBank, 
UniGene, Ensembl, the University of California at Santa Cruz (UCSC), and the Munich 
Information Center for Protein Sequences (MIPS). Relative to OMIM, GeneCards uses 
relatively less descriptive text of human diseases and provides relatively more functional 
genomics data (George et al., 2008).

integration of Disease Database information at the uCSC Genome Browser

 The UCSC Genome and Table Browser offers a convenient site to compare and contrast 
the contents of disease databases. We can view a 5000 base pair region encompassing the 
beta globin gene (Fig. 21.15). Although HGMD is overall far more comprehensive than 
OMIM and ClinVar, for genes such as HBB they represent comparable numbers of allelic 
variants, most of which overlap exons. Additional databases, described in the following, 
display allelic variants and copy number variants in that region.

locus-Specific Mutation Databases and lOVD

Central databases such as OMIM and HGMD attempt to comprehensively describe all 
disease‐related genes without necessarily cataloguing every known allelic variant. In con-
trast, locus‐specific mutation databases describe variations in a single gene (or sometimes 
in several genes) in depth (Samuels and Rouleau, 2011). Curators of these databases 
provide particular expertise on the genetic aspects of one specific gene, locus, or disease. 
The coverage of known mutations also tends to be far deeper in locus‐specific databases 
as a group than in central databases (Scriver et al., 1999). These two types of databases 
therefore serve complementary purposes.

A locus‐specific mutation database is a repository for allelic variations. There are thou-
sands of such databases. The essential components of a locus‐specific  database include 
the following (Scriver et al., 1999, 2000; Claustres et al., 2002;  Cotton et al., 2008):

 • a unique identifier for each allele;
 • information on the source of the data;
 • the context of the allele; and
 • information on the allele (e.g., its name, type, and nucleotide variation).

For the HPO see  http://www.
human‐phenotype‐ontology.org/ 
(WebLink 21.30); ACMG is  
at  https://www.acmg.net/ 
(WebLink 21.31).

You can search ClinVar by 
disease with a command such as 
autism[dis].

GeneCards, a project of Doron 
Lancet and colleagues at the 
Weizmann Institute, is available 
at  http://www.genecards.org/ 
(WebLink 21.32).

In the context of mutation 
databases, a mutation is defined 
as an allelic variant (Scriver 
et al., 1999). The allele (or the 
unique sequence change) may be 
disease causing; such an allele 
tends to occur at low frequency. 
The allele may also be neutral, 
not having any apparent effect on 
phenotype.

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/gtr/
http://www.ncbi.nlm.nih.gov/medgen/
http://www.ncbi.nlm.nih.gov/medgen/
http://www.human%E2%80%90phenotype%E2%80%90ontology.org/
https://www.acmg.net/
http://www.genecards.org/
http://www.ncbi.nlm.nih.gov/gtr/
http://www.human%E2%80%90phenotype%E2%80%90ontology.org/
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Mutation databases have an important role in gathering information about mutations, 
but there have not been uniform standards for their creation until recently. Claustres et 
al. (2002) surveyed 94 websites that encompassed 262 locus‐specific databases; Cotton 
et al. (2008) noted over 700 such databases. Both studies noted great variability in the 
way data are collected, presented, linked, named, and updated. Scriver et al. (1999, 2000) 

FiGure 21.14 Output of a ClinVar query for the HBB gene. (a) There are 120 pathogenic, single‐
nucleotide variants of which three are shown here. (b) Details for a variant (E7V in which a wildtype 
glutamate at amino acid position 7 is substituted by a valine). 

Source: ClinVar.

(a) Tabular view of ClinVar results

(b) Detailed view of a ClinVar entry for the E7V HBB variant
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FiGure  21.15 UCSC Genome Browser includes tracks to display data from disease databases. A 5000 base pair region is shown 
(chr11:5,245,001–5,250,000) including HBB as shown by the RefSeq Genes track. The OMIM entry is shaded dark green, indicating it 
has disease‐causing variants. HGMD, ClinVar, OMIM, and PhenCode entries are displayed at squish density, with similar profiles and with 
the majority of variants overlapping the exons (thick blue rectangles of the RefSeq track). Copy number variants (CNVs) are displayed in 
a separate ClinVar track, in the Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources (DECIPHER) 
database, in the Coriell track displaying cell lines (and/or genomic DNA samples) available to the research community, and in the Leiden 
Open Variation Database (LOVD) which includes both single‐nucleotide variants (SNVs) and CNVs. 

Source:  http://genome.ucsc.edu, courtesy of UCSC.

Scale
chr11:

HBB

141900

2 kb hg19
5,245,500 5,246,000 5,246,500 5,247,000 5,247,500 5,248,000 5,248,500 5,249,000 5,249,500

RefSeq Genes

OMIM Genes - Dark Green Are Disease-causing

Coriell Cell Line Copy Number Variants

ClinVar Variants, CNVs Excluded

ClinVar Variants, CNVs Only

DECIPHER: Chromosomal Imbalance and Phenotype in Humans

Human Gene Mutation Database Public Variants

Leiden Open Variation Database Public Variants

OMIM Allelic Variant SNPs

Locus Variants

; Thalassemias, beta-; {Malaria, resistance to}a

GM03384

RefSeq gene (HBB)
OMIM gene

HGMD variants

ClinVar variants (no CNVs)

LOVD variants
(SNVs and CNVs)

DECIPHER variants

ClinVar variants (CNVs)

OMIM allelic variant SNPs

PhenCode locus-specific
database variants

ominant inclusion-body

http://genome.ucsc.edu


Genome AnAlysis1044

and Cotton et al. (2008) described guidelines for the content, structure, and deployment 
of mutation databases.

 • There is now increased uniformity in naming alleles (Antonarakis, 1998; den Dunnen 
and Antonarakis, 2000). For example, the A of the ATG of the initiator Met codon is 
denoted nucleotide +1. Many such rules have been explicitly stated to allow uniform 
descriptions of mutations.

 • Ethical guidelines have been described, such as the obligation of preserving the con-
fidentiality of information (Knoppers and Laberge, 2000). Lowrance and Collins 
(2007) have reviewed issues of identifiability in genomic research.

 • Generic software to build and analyze locus‐specific databases has been provided, 
such as the Universal Mutation Database template (Béroud et al., 2005).

A main point of entry to locus‐specific databases is the Human Genome Variation 
Society (HGVS). This provides access to 1600 locus‐specific mutation databases. Its major 
categories include: (1) locus‐specific mutation databases, organized by HUGO approved 
gene symbols; (2) disease‐centered central mutation databases, such as the Asthma Gene 
Database; (3) central mutation and SNP databases, such as OMIM, dbSNP, HGMD, and 
PharmGKB; (4) national and ethnic mutation databases, such as databases for diseases 
affecting Finns or Turks; (5) mitochondrial mutation databases, such as MITOMAP; (6) 
chromosomal variation databases, such as the Mitelman database of chromosome aber-
rations in cancer; (7) nonhuman mutation databases, such as OMIA (Online Mendelian 
Inheritance in Animals); and (8) clinical databases such as those of the National Organi-
zation for Rare Disorders (NORD).

The Leiden Open Variation Database (LOVD) has emerged as a platform supporting 
thousands of locus‐specific databases (Fokkema et al., 2011). This project provides soft-
ware to establish locus‐specific databases and curate data on individuals, phenotypes, and 
DNA sequencing variants following HGVS standards for nomenclature. LOVD provides 
access to Mutalyzer, a software package that confirms variant data are presented in a 
consistent standard.

As an example of a locus‐specific database, we can examine HbVar (Giardine et al., 
2014). It can be accessed from searches in HGVS or LOVD, is linked from the NCBI 
Genome Workbench output of Figure 21.13b, and you can access it (and LOVD globin 
databases) at the bottom of its NCBI Gene page. The HbVar database is a useful resource 
for sequence variation associated with hemoglobinopathies, and is designed for both 
research purposes and clinical utility. The search page includes over a dozen fields that 
can be expanded to focus on a particular aspect of the globins such as those with par-
ticular physical properties (stability, chromatographic behavior, structural alterations) 
or functional properties (e.g., sickling of red blood cells, affinity of oxygen binding) 
or epidemiological aspects (ethnic background, frequency). There are currently over 
6900 entries including categories such as entries involving hemoglobin variants (∼980); 
thalassemia (∼400 entries); the α1, α2, β, δ, Aγ, and Gγ genes; and mutations involving 
insertions, deletions, substitutions, gene fusions, or altered stability or oxygen‐binding 
properties.

the phenCode project

Locus‐specific mutation databases provide tremendous depth and breadth of information 
about one gene and/or disease. However, the information in these databases is usually 
separate from the wealth of information contained in major genome browsers. The Phen-
Code project connects data in locus‐specific databases with genomic data from the UCSC 
Genome Browser (Giardine et al., 2007), including the ENCODE project (described in 
Chapter 8). For a variety of locus‐specific mutation databases, properties of interest can 

To see the Universal Mutation 
Database template of Béroud et 
al., visit  http://www.umd.be/ 
(WebLink 21.33).

HGVS databases are accessible 
at  http://www.hgvs.org/
content/databases‐tools 
(WebLink 21.34); the Mitelman 
database is available at  http://
cgap.nci.nih.gov/Chromosomes/
Mitelman (WebLink 21.35), and 
the OMIA website is  http://
omia.angis.org.au/  
(WebLink 21.36).

LOVD 3.0 is available online at 
 http://www.lovd.nl/3.0/home 

(WebLink 21.37). It currently lists 
>22,000 genes.

HbVar is available at  http://
globin.cse.psu.edu/hbvar/
menu.html (WebLink 21.38). 
It is a collaboration between 
investigators at Penn State 
University, INSERM Creteil 
(France), and Boston University 
Medical Center.

http://www.umd.be/
http://www.hgvs.org/content/databases%E2%80%90tools
http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://cgap.nci.nih.gov/Chromosomes/Mitelman
http://omia.angis.org.au/
http://omia.angis.org.au/
http://www.lovd.nl/3.0/home
http://globin.cse.psu.edu/hbvar/menu.html
http://globin.cse.psu.edu/hbvar/menu.html
http://www.hgvs.org/content/databases%E2%80%90tools
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be selected such as the type and location of the mutation. This information is then dis-
played as a custom track on the UCSC Genome Browser (Fig. 21.15, bottom panel). The 
significance of PhenCode is that it facilitates the exploration and discovery of genomic 
features associated with disease‐causing mutations. For example, the genomic landscape 
could include ultraconserved elements in noncoding regions (Chapter 8) that are asso-
ciated with disease, or repetitive elements that serve as substrates for recombination in 
deleted or duplicated regions.

limitations of Disease Databases: the Growing interpretive Gap

Databases reporting which alleles are associated with human disease have critical roles 
in the interpretation of the clinical significance of genomic variants. Data analysis pipe-
lines for next‐generation sequencing studies typically filter‐exclude variants that are 
likely to be benign (neutral) because they appear in databases of apparently normal 
individuals. Such databases include dbSNP (although that contains a mixture of neu-
tral and pathogenic SNPs) and the 1000 Genomes Project. Analysis pipelines typically 
filter‐include variants that are likely to be pathogenic because they have been anno-
tated as disease‐associated. Many false positive results occur when a disease database 
contains entries that are actually neutral. For example, Bell et al. (2011) performed a 
targeted sequencing study involving severe, childhood, recessive diseases for which the 
causative mutation was likely to be extremely rare in the population. They reported that 
74% of disease‐associated calls were common polymorphisms with frequencies >5%. 
Also, 14 of 113 mutations that were annotated in the literature as disease mutations 
were incorrect.

Some of the challenges faced in assessing variants include the following (Cutting, 
2014):

 • For monogenic disorders, some variants in a disease‐associated gene occur relatively 
frequently and their pathogenicity is established. For other rare variants, the clinical 
significance is unknown.

 • For multigenic disorders, allelic heterogeneity makes the interpretation of the clinical 
significance of variants even more difficult.

 • There is a large “interpretive gap” as increasing numbers of variants are identified, 
but their significance has not yet been assessed. Locus‐specific databases are excel-
lent repositories for the cataloguing of variants, but they also need associated clinical 
or phenotypic data.

 • Databases such as the variants from the 1000 Genome Project are currently used to 
define neutral variants, but clinical and phenotypic data are not available for those 
individuals. Even if they are defined as “apparently normal,” all are susceptible to 
disease.

Efforts such as Gen2Phen are designed to broadly integrate human and model organ-
ism genetic variation databases into a federated network. Gen2Phen is establishing stan-
dards for data collection, storage, and sharing with a goal of facilitating genotype to 
phenotype studies (Webb et al., 2011).

human Disease Genes and amino acid Substitutions

The information in databases such as HGMD, OMIM, ClinVar, and central protein 
sequence repositories such as UniProt allows us to explore the amino acid substitu-
tions that occur in human disease. Peterson et al. (2013) compiled substitutions in these 
databases and plotted a heatmap summarizing observed changes (Fig. 21.16). The three 
most common substitutions were leucine to proline, glycine to arginine, and arginine to 

The PhenCode website is  
 http://www.bx.psu.edu/

phencode (WebLink 21.39).

The Gen2Phen website is  
 http://www.gen2phen.org/ 

(WebLink 21.40).

http://www.bx.psu.edu/phencode
http://www.gen2phen.org/
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FiGure 21.16 Heat map of amino acid variants in human diseases. The observed frequencies of 
wildtype transitions to mutated variants that are implicated in human disease are shown. The variants 
are from OMIM, HGMD,UniProt/Swiss‐Prot, and ClinVar. Redrawn from Peterson et al. (2013). Repro-
duced with permissions from Elsevier.

 cysteine. From the BLOSUM62 matrix these have scores of −3, −2, and 0 (Fig. 3.17) or, 
considering the substitutions of the PAM10 matrix involving closely related proteins, the 
scores are −10, −13, and −11, respectively (Fig. 3.15).

These results are generally consistent with evolutionary approaches taken by Kumar 
and colleagues (Miller and Kumar, 2001; Miller et al., 2003; Subramanian and Kumar, 
2006). They combined data from locus‐specific databases and alignments of metazoan 
orthologs (such as primates, rodents, fish, insects, and nematodes). There is general con-
cordance between their results (Web Document 21.3) and those of Peterson et al. (2013). 
These analyses suggest that disease‐associated changes tend to occur at conserved res-
idues. Furthermore, the amino acid changes found in human disease do not commonly 
occur in comparisons between species.

approacHes to iDentifyinG Disease-associateD 
Genes anD loci
How can we determine the causes of diseases? There are many approaches to finding 
genes and loci that confer risk for the disease (Brunham and Hayden, 2013). By identi-
fying such genes we may rationally develop treatments (or, ultimately, find cures). For 
example, phenylketonria (PKU; OMIM +261600) is an inborn error of metabolism that 
results in intellectual disability and other symptoms. It is caused by a deficiency in phe-
nylalanine hydroxylase activity. Knowing this, it is possible to screen newborns and, if 
PKU is found, to provide a diet lacking phenylalanine. PKU provides another example 
of the complexity of any disease. The enzyme phenylalanine hydroxylase is localized to 
the liver, and yet the symptoms of intellectual disability are neurological; if searching for 
the cause by studying brain tissue it would be challenging to discover any biochemical 
defects. Also, while mutation disrupting phenylalanine hydroxylase is overwhelmingly 
the major cause, it is not the only cause of PKU.

We next discuss several approaches that are used to identify disease‐associated genes 
(or other genetic elements). Once a gene has been associated with a disease, it is further 
necessary to determine how susceptibility genes confer risk.



HuMAn DISeASe 1047

linkage analysis

A genetic linkage map displays genetic information in reference to linkage groups (chro-
mosomes) in a genome. The mapping units are centiMorgans, based on recombination 
frequency between polymorphic markers such as SNPs or microsatellites. (One cM equals 
one recombination event in 100 meioses; for the human genome, the recombination rate 
is typically 1–2 cM/Mb.)

In linkage studies, genetic markers are used to search for coinheritance of chromo-
somal regions within families, that is, polymorphic markers that flank a disease locus 
segregate with the disease in families. Two genes that are in proximity on a chromosome 
will usually cosegregate during meiosis. By following the pattern of transmission of a 
large set of markers in a large pedigree, linkage analysis can be used to localize a dis-
ease gene based on its linkage to a genetic marker locus. Huntington’s disease (OMIM 
#143100), a progressive degenerative disorder, was the first autosomal disorder for which 
linkage analysis was used to identify the disease locus (reviewed in Gusella, 1989).

Linkage is usually successful for single‐gene disease models rather than for complex 
traits. It also typically involves studies of large pedigrees. For Mendelian diseases the 
LOD score approach is used, providing a maximum likelihood estimate of the position 
of the disease locus (Ott, 2001; Szumilas, 2010). A LOD score of 3 implies that there 
is a 1 in 1000 chance that a given unlinked locus could have given rise to the observed 
cosegregation data. Many dozens of software packages are available for linkage analysis. 
Among the most widely used is Merlin (Multipoint Engine for Rapid Likelihood INfer-
ence; Abecasis et al., 2002).

Altschuler et al. (2008) reviewed genetic mapping by linkage and described these 
conclusions from studies of Mendelian disease genes:

 • The “candidate gene” approach was inadequate because most disease genes could not 
have been predicted a priori.

 • Mutations that cause disease often radically alter the function of encoded proteins.
 • There is locus heterogeneity: there are often many disease‐causing alleles within a 
gene, as we have seen in the example of HBB (e.g., Fig. 21.15). (There may also be 
locus heterogeneity involving distinct genes that cause a similar phenotype.)

 • Mendelian diseases often display incomplete penetrance and variable expressivity.
 • For common diseases linkage studies did not identify causal genes, consistent with a 
model in which common diseases are multigenic in origin.

Genome-Wide association Studies

While the genetic basis of over a thousand single‐gene disorders has been found, it is far 
more difficult to identify the genetic causes of common human diseases that involve mul-
tiple genes. Part of the challenge is that a large number of genes may each make only a 
small contribution to the disease risk. Association studies provide an important approach 
(reviewed in Hirschhorn and Daly, 2005; McCarthy et al., 2008; Pearson and Manolio, 
2008). Genome‐wide association studies (GWAS) provide a powerful approach that can 
rely on SNP microarrays (Chapter 8) having several hundred thousand to more than a 
million SNPs represented on a single array. There are two main experimental designs 
used in association studies (Laird and Lange, 2006). In family‐based designs, markers 
are measured in affected individuals (probands) and unaffected individuals to identify 
differences in the frequency of variants (Ott et al., 2011). In population‐based designs, a 
large number of unrelated cases and controls are studied (typically hundreds or thousands 
in each group). Larger sample sizes offer increased statistical power.

As an example of a successful GWAS, Menzel et al. (2007) searched for variants 
associated with very high levels of fetal hemoglobin in adults. Fetal hemoglobin (HbF), 

The Laboratory of Statistical 
Genetics at Rockefeller University, 
directed by Jürg Ott, offers a 
website listing dozens of software 
packages useful for linkage 
analysis. The Rockefeller website 
is  http://lab.rockefeller.edu/
ott/ (WebLink 21.41). Merlin was 
developed by Gonçalo Abecasis 
and colleagues and is available 
at  http://www.sph.umich.edu/
csg/abecasis/Merlin (WebLink 
21.42). Another popular software 
package, PLINK, was developed 
by Shaun Purcell and colleagues 
(2007) and is at  http://pngu.
mgh.harvard.edu/~purcell/plink/ 
(WebLink 21.43). We introduced 
PLINK in Chapter 20.

http://lab.rockefeller.edu/ott/
http://www.sph.umich.edu/csg/abecasis/Merlin
http://pngu.mgh.harvard.edu/~purcell/plink/
http://lab.rockefeller.edu/ott/
http://www.sph.umich.edu/csg/abecasis/Merlin
http://pngu.mgh.harvard.edu/~purcell/plink/
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consisting of an α2γ2 tetramer, is normally expressed at high levels in early development 
but at neglibible levels (<0.6% of total hemoglobin) in adults. Around 10–15% of adults 
have relatively high HbF levels (based on the presence of erythrocytes called F cells that 
contain measureable amounts of HbF). Such elevated HbF levels can be clinically ben-
eficial because they improve the outcome of sickle cell disease and β thalassemia. Men-
zel et al. selected 179 unrelated individuals having very high or very low F cell levels, 
measured ∼300,000 SNP genotypes for each individual, and identified major quantitative 
trait loci (QTLs). These included an expected variant in the beta globin gene cluster and 
two unexpected, independent QTLs overlapping a known oncogene, BCL11A, on chro-
mosome 2p15. This exemplifies an ideal outcome for a GWAS: a relatively small number 
of subjects were genotyped and there was strong evidence of association for a gene not 
previously known to have any relationship to globin function. Functional studies could 
be pursued to further understand the mechanism of how BCL11A interacts with globins, 
and the possibility of clinical intervention in disease through manipulating BCL11A levels 
could be pursued.

More often the effect sizes in GWAS are relatively modest and, to achieve statistical 
power, larger sample sizes are employed. In one study of sexual dimorphism, genotype 
data from 270,000 individuals were analyzed (Randall et al., 2013). In another study, 
Rietveld et al. (2013) performed a GWAS of >126,000 individuals to identify variants 
associated with educational attainment (based on years of education). They reported three 
SNPs with evidence of association; all had minuscule effect sizes (the largest having an 
effect size of 0.02%).

GWAS which succeed in identifying strong evidence of association often implicate 
intergenic regions far removed from protein‐coding genes. Such loci could represent reg-
ulatory regions.

We can illustrate the genome‐wide association approach with a large‐scale study by 
the Wellcome Trust Case Control Consortium (2007) involving 50 research groups from 
the United Kingdom and >16,000 individuals (reviewed by Bowcock, 2007). Around 
2000 affected individuals having one of seven common familial diseases – bipolar dis-
order, coronary artery disease, Crohn’s disease, hypertension, rheumatoid arthritis, type 
1 diabetes, and type 2 diabetes – were studied. There were ∼3000 control individuals. 
About 500,000 SNPs were measured for each individual, and the relationship between 
each SNP and the phenotypic trait (disease status) was measured. Twenty‐four strong 
association signals were found for six of the seven diseases (Fig. 21.17). Many of these 
signals corresponded to previously characterized susceptibility loci, and many novel loci 
were also identified.

A key aspect of genome‐wide association studies is that replication studies are 
required to confirm that positive signals are authentic. The NCI‐NHGRI Working Group 
on Replication in Association Studies et al. (2007) has addressed many of the issues rel-
evant to replication studies, emphasizing the need to eliminate false positive results that 
often occur. Proper experimental design is especially important, with efforts to assess 
phenotypes in a standard way and a need to account for biases such as population strati-
fication.

There are several repositories of GWAS data. One is the Catalog of Published 
Genome‐Wide Association Studies at the National Human Genome Research Institute 
(Hindorff et al., 2009; Welter et al., 2014). This includes an interactive diagram of the 
chromosomes, listing SNP‐trait associations having p values <1×10−5.

The National Library of Medicine (NLM) offers the database of Genotype and Phe-
notype (dbGaP), a database of archived genome‐wide association studies (Mailman  
et al., 2007; Tryka et al., 2014). dbGaP contains four types of data: (1) study documen-
tation (e.g., protocols and data collection instruments); (2) phenotypic data (of individ-
uals and as a summary); (3) genetic data (genotypes, pedigrees, mapping results); and  

The NHGRI GWAS catalog 
is available at  http://www.
genome.gov/gwastudies/ 
(WebLink 21.44). It is made in 
association with the European 
Bioinformatics Institute effort, 
online at  http://www.ebi.ac.uk/
fgpt/gwas (WebLink 21.45).

http://www.genome.gov/gwastudies/
http://www.ebi.ac.uk/fgpt/gwas
http://www.genome.gov/gwastudies/
http://www.ebi.ac.uk/fgpt/gwas
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(4) statistical results (e.g., linkage and association results). Open access is provided, as 
well as controlled access for situations in which permission from a committee is required 
to access information such as pedigrees or phenotypic data associated with genotype data.

If you have a gene of interest and you want to know whether it has been implicated 
in previous GWAS, one approach is to search the NHGRI catalog or dbGaP. You can also 
use the Phenotype‐Genotype Integrator (PheGenI) tool at NCBI. Searches can begin with 
selection of phenotypes, location, gene(s), or SNPs. You can further restrict the search by 
p value of association and by SNP functional class (e.g., exon, intron, neighboring gene, 
or untranslated region). As an example, enter the text hbd and hbe1 for the delta and epsi-
lon globin genes, HBD and HBE1. The output includes an ideogram (chromosome view) 
of SNPs showing significant evidence of association, association results (including one 
for the fetal hemoglobin trait with a p value of 1×10−21), and a list of SNPs including their 
functional class (Fig. 21.18). The output further displays expression quantitative trait locus 
(eQTL) data and relevant dbGaP studies.

dbGaP is available at  
 http://www.ncbi.nlm.nih.gov/

gap (WebLink 21.46).

PheGenI is available at  
 http://www.ncbi.nlm.nih.gov/

gap/phegeni (WebLink 21.47).

FiGure 21.17 Results of a genome‐wide association study using 16,179 individuals to search for 
genes contributing to seven common familial disorders. For each of seven diseases, the y axis shows 
the –log10 p value for SNPs that were positive for quality control criteria. The x axis shows the chromo-
somes. p values <1×10–5 are highlighted in red. Panels are truncated at –log10(p value) = 15. Redrawn 
from figure 4 of the Wellcome Trust Case Control Consortium (2007). Reproduced with permission from 
Macmillan Publishers.
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identification of Chromosomal abnormalities

The most common chromosomal aberrations in early development include the gain or 
loss of whole chromosomes. Such structural abnormalities may be detected by standard 
cytogenetic approaches such as karyotype analysis and fluorescence in situ hybridization 
(FISH). These techniques may also reveal commonly observed phenomena such as large‐
scale duplications, deletions, or rearrangements involving many millions of base pairs. 
One enhancement to FISH is spectral karyotyping/multiplex‐FISH (SKY/M‐FISH). This 
permits each chromosome to be depicted in a different color, facilitating the identifica-
tion of abnormal karyotypes. In Chapter  8 we introduced array comparative genomic 
hybridization (aCGH), a form of genomic microarray using bacterial artificial chro-
mosomes (BACs) that also represents an extension of FISH technology. NCBI offers a 

FiGure 21.18 The Phenotype and Genotype Integrator (PheGenI) tool at NCBI displays GWAS data from queries of traits, genes, SNPs, 
or genomic loci. Here a query with the gene symbols HBD and HBE1 results in an ideogram (top), association results (including fetal hemo-
globin and blood sedimentation), and a list of SNPs. 

Source: Phenotype and Genotype Integrator (PheGenI), NCBI.
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SKY/M‐FISH & CGH Database that includes tools to view SKY/M‐FISH and aCGH 
data, particularly as ideograms of cancer datasets (Knutsen et al., 2005).

Both genomic microarrays (aCGH) and SNP microarrays are used routinely to 
identify disease‐associated chromosomal abnormalities. SNP microarrays offer higher 
resolution. (Currently, SNP arrays have ∼one million markers per array, spaced several 
kilobases apart on average. Typical aCGH platforms have densely spaced oligonucleotide 
probes.) In addition to measuring copy number based on fluorescence intensity measure-
ments, SNP technologies also permit estimates of genotypes which provides information 
about inheritance patterns and homozygosity. Both aCGH and SNP microarrays have 
been used to measure chromosomal variations in cancer, idiopathic intellectual disability, 
and a variety of other diseases.

The Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl 
Resources (DECIPHER) is a web‐based database that is a major resource for studying 
copy number imbalances in patients (Firth et al., 2009). It can be searched by syndrome 
or karyotype, and includes data on copy number change in normal populations as well as 
patients. Data can be viewed through Ensembl or UCSC genome browsers (as shown in 
Fig. 21.15).

human Genome Sequencing

We introduced high‐throughput DNA sequencing in Chapter 9, and described genome 
sequencing projects in subsequent chapters. Another use of high‐throughput sequencing 
is to resequence genomes, exomes, or targeted genomic regions in patients in order to 
define nucleotide differences that may be associated with disease.

As we explore the results of next‐generation sequencing of patients, it is important 
to keep in mind how data analysis pipelines are only at their earliest stages of develop-
ment. Gholson Lyon and colleagues compared multiple alignment and variant‐calling 
pipelines (BWA‐GATK, BWA‐SAMtools, BWA‐SNVer, GNUMAP, and SOAP; O’Rawe 
et al., 2013). Single‐nucleotide variant concordance across 15 exomes was ∼57%, with 
0.5–5.1% of variants unique to each pipeline. For three indel analysis pipelines, the con-
cordance was only ∼27%. These findings highlight the need for caution in interpreting 
variants in individual genomes, and the need for validation of findings.

Genome Sequencing to Identify Monogenic Disorders
Exome sequencing has been particularly useful for identifying variants that cause 
 monogenic disorders (Bamshad et al., 2011). The majority of Mendelian diseases 
are caused primarily by mutations affecting the coding region of a gene. The yield of 
whole‐exome sequencing has therefore been high: despite its focus on a small subset 
of the genome (typically ∼60 megabases), the exome is enriched for functionally rel-
evant loci. The main motivation to perform whole‐exome rather than whole‐genome 
sequencing is the cost of whole‐genome sequencing that until recently has been sub-
stantially greater.

Targeted next‐generation sequencing is a powerful approach to studying monogenic 
disorders. Stephen Kingsmore and colleagues used targeted sequencing as a preconcep-
tion carrier screen for 448 severe, recessive, childhood diseases (Bell et al., 2011). This 
approach targeted >7000 regions from 437 target genes. They observed an average carrier 
burden of 2.8 severe recessive substitutions, indels, or structural variants per genome (291 
in 104 samples, primarily from individuals with severe, recessive disorders).

Genome Sequencing to Solve Complex Disorders
Genome‐wide association studies involving thousands of individuals with or without a 
given phenotype has been used to identify common alleles of small effect (as shown 

NCBI’s SKY/M‐FISH & CGH 
Database is available at  

 http://www.ncbi.nlm.nih.gov/
sky/ (WebLink 21.48).

DECIPHER, led by Helen Firth, 
Nigel Carter and colleagues, is 
available at  http://decipher.
sanger.ac.uk/ (WebLink 21.49).

http://www.ncbi.nlm.nih.gov/sky/
http://decipher.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/sky/
http://decipher.sanger.ac.uk/
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in Fig. 21.6, lower right). GWAS has typically involved single‐nucleotide polymorphism 
arrays; now whole‐genome and whole‐exome sequencing is being applied to complex 
diseases (Kilpinen and Barrett, 2013). While SNP arrays generate data on several hundred 
thousand (up to several million) variants, exome and genome sequencing permit broader 
variant discovery. Just as thousands of affected versus unaffected samples have been stud-
ied by GWAS in recent years, similarly large numbers of samples are currently being 
sequenced for complex disorders such as schizophrenia, bipolar disorder, and autism.

Recent studies on autism have employed father/mother/affected child trios (or some-
times quartets with two children). This design allows de novo mutations to be distinguished 
from inherited mutations. (A premise has been that de novo mutations are more likely to be 
relevant to the disease phenotype, although the possible presence of autism or subclincical 
features of autism in the parents is not typically assessed.) As an example, O’Roak et al. 
(2012) sequenced the exomes of 189 trios, most of whom lacked large de novo copy number 
variants. They reported 248 de novo variants (225  single‐nucleotide variants, 17 indels, and 
6 copy number variants); of the de novo events classified as severe, 33 of 120 (28%) were 
truncating. There were only two recurrent mutations (i.e., mutations occurring in the same 
gene in multiple affecteds), consistent with a model of extreme locus heterogeneity.

Research Versus Clinical Sequencing and Incidental Findings
Whole‐exome, whole‐genome, and targeted next‐generation sequencing can be performed 
in the context of research studies or clinical evaluations. (These purposes may also be com-
bined.) In the United States, research studies must be approved by an Institutional Review 
Board (IRB) to confirm that appropriate procedures are in place. Informed consent must be 
obtained from the research participants; an informed consent document explains the risks 
and benefits of a study. For example, the risk of an exome study includes the potential loss 
of sequence data by the research team (e.g., if their computer server is breached) or the 
possible negative impact of learning that a family member has a disease‐causing mutation.

Consider a research study involving whole‐exome sequencing of a child with autism and 
his/her parents. The inclusion of the parents’ exomes is critical because it allows inherited 
variants to be distinguished from de novo variants. What procedure will be followed if a par-
ent or child has a mutation in a cancer‐causing gene? This possibility should be addressed as 
part of the informed consent process, and the IRB should review this procedure.

For clinical sequencing, the American College of Medical Genetics and Genomics 
(ACMG) issued recommendations for reporting incidental findings in exome and genome 
sequencing (Green et al., 2013). They define a primary finding as “pathogenic alterations 
in a gene or genes that are relevant to the diagnostic indication for which the sequencing 
was ordered (e.g., a mutation in MECP2 in a girl with loss of developmental milestones).” 
Incidental findings are unexpected positive findings. These are “the results of a deliberate 
search for pathogenic or likely pathogenic alterations in genes that are not apparently 
relevant to a diagnostic indication for which the sequencing test was ordered.” They pro-
duced a list of 56 genes (muations which cause conditons such as cancer) for which they 
recommend results be returned (table 21.11). In brief, the ACMG recommendations are as 
follows (with additional key details given in the ACMG paper):

 1. Constitutional mutations found in the genes (listed in table 21.11) should be reported 
by the laboratory to the ordering clinician.

 2. Laboratories should seek and report only the types of variants in this list of genes.
 3. It is the responsibility of the ordering clinician to provide pre‐ and post‐test  counseling 

to the patient.
 4. These recommendations are focused on disorders caused by point mutations and small 

indels rather than structural variants, repeat expansions, or copy number  variants.
 5. The ACMG and others should refine and update the list of genes frequently.
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taBle 21.11 Conditions, genes, and variants recommended by the aCMG for return of incidental findings in  
clinical sequencing. abbreviations for inheritance: aD: autosomal dominant; SD: semidominant; Xl: X-linked. 
abbreviations for variants to report: Kp: known pathogenic; ep: expected pathogenic (sequence variation is 
previously unreported and is expected to cause the disorder). 

Phenotype MIM (disorder)

PMID 

(GeneReviews)

Typical age 

of onset Gene

MIM 

(gene) Inher.

Variants

to report

Hereditary breast and ovarian 
cancer

604370, 
612555

20301425 Adult BRCA1
BRCA2

113705
600185

AD KP, EP

Li–Fraumeni syndrome 175200 20301488 Child/adult TP53 191170 AD KP, EP

Peutz–Jeghers syndrome 175200 20301443 Child/adult TK11 602216 AD KP, EP

Lynch syndrome 120435 20301390 Adult MLH1
MSH2
MSH6
PMS2

120436
609309
600678
600259

AD KP, EP

Familial adenomatous 
polyposis
MYH‐associated polyposis; 
adenomas, multiple 
colorectal, FAP type 2; 
colorectal adenomatous 
polyposis, autosomal 
recessive, with  
pilomatricomas

175100
608456
132600

20301519
23035301

Child
Adult

APC
MUTYH

611731
604933

AD
AR

KP, EP
KP, EP

Von Hippel–Lindau syndrome 193300 20301636 Child/adult VHL 608537 AD KP, EP

Multiple endocrine neoplasia 
type 1

131100 20301710 Child/adult MEN1 613733 AD KP, EP

Multiple endocrine neoplasia 
type 2

171400
162300

20301434 Child/adult RET 164761 AD KP

Familial medullary thyroid 
cancer

1552401 20301434 Child/adult RET 164761 AD KP

PTEN hamartoma tumor 
syndrome

153480 20301661 Child/adult PTEN 601728 AD KP, EP

Retinoblastoma 180200 20301625 Child RB1 614041 AD KP, EP

Hereditary paraganglioma–
pheochromocytoma 
syndrome

168000 (PGL1)
601650 (PGL2)
605373 (PGL3)
115310 (PGL4)

20301715 Child/adult SDHD
SDHAF2
SDHC
SDHB

602690
613019
602413
185470

AD KP, EP
KP
KP, EP

Tuberous sclerosis complex 191100
613254

20301399 Child TSC1
TSC2

605284
191092

AD KP, EP

WT1‐related Wilms tumor 194070 20301471 Child WT1 607102 AD KP, EP

Neurofibromatosis type 2 101100 20301380 Child/adult NF2 607379 AD KP, EP

Ehlers–Danlos
syndrome, vascular type

130050 20301667 Child/adult COL3A1 120180 AD KP, EP

Marfan syndrome, Loeys–
Dietz syndromes, and familial 
thoracic aortic aneurysms and 
dissections

154700
609192
608967
610168
610380
613795
611788

20301510
20301312
20301299

Child/adult FBN1
TGFBR1
TGFBR2
SMAD3
ACTA2
MYLK
MYH11

134797
190181
190182
603109
102620
600922
160745

AD KP, EP

(Continued)
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There are many ethical issues surrounding research and clinical sequencing technol-
ogies. For example, predictive testing for adult‐onset diseases is performed by exome or 
genome sequencing of a child, and that information could impact the child, siblings, par-
ents, and the entire family. For research-based sequencing it is common for researchers 
to explore as many variants as possible. These results are sometimes shared with study 
participants (depending on the details of the informed consent) even though the functional 
consequences of variation are always difficult to interpret. 

Disease‐causing Variants in Apparently Normal Individuals
How many disease‐associated variants occur in healthy people? Specifically, how many 
variants that disrupt the function of protein‐coding genes occur in apparently normal peo-
ple? One might expect the answer to be extremely few, yet ∼100 such variants may occur 
in each genome (MacArthur and Tyler‐Smith, 2010).

The 1000 Genomes Project identified variants in apparently normal human populations 
(Chapter 20). Members of that consortium identified >2600 HGMD entries in the 1000 
Genomes low‐coverage pilot data (Xue et al., 2012). Each individual harbored 281–515 
missense mutations (40–85 of which were homozygous and predicted to be deleterious). 
Furthermore, each individual had 40–110 variants identified as disease‐causing in the 
HGMD database. Of these variants 3–24 were homozygous, meaning that both chromo-
somal copies carried the deleterious variants. There are two perspectives on these findings. 
First, the number of deleterious alleles present in the genome of even apparently normal 

Phenotype MIM (disorder)

PMID 

(GeneReviews)

Typical age 

of onset Gene

MIM 

(gene) Inher.

Variants

to report

Hypertrophic cardiomyopathy, 
dilated cardiomyopathy

115197
192600
601094
613690
115196
608751
612098
600858
301500
608758
115200

20301725 Child/adult
 
 
 
 
 
 
 
 
 
 

MYBPC3
MYH7
TNNT2
TNNI3
TPM1
MYL3
ACTC1
PRKAG2
GLA
MYL2
LMNA

600958
160760
191045
191044
191010
160790
102540
602743
300644
160781
150330

AD

XL
AD

KP, EP
KP
KP, EP
KP

KP, EP
KP
KP, EP

Catecholaminergic 
polymorphic ventricular 
tachycardia

604772 — — RYR2 180902 AD KP

Arrhythmogenic right‐
ventricular cardiomyopathy

609040
604400
610476
607450
610193

20301310 Child/adult
 

PKP2
DSP
DSC2
TMEM43
DSG2

602861
125647
125645
612048
125671

AD KP, EP

KP
KP, EP

Romano–Ward long QT 
syndrome types 1, 2, and 3, 
Brugada syndrome

192500
613688
603830
601144

20301308 Child/adult
 

KCNQ1
KCNH2
SCN5A

607542
152427
600163

AD KP, EP

Familial hypercholesterolemia 143890
603776

No GeneReviews
entry

Child/adult
 

LDLR
APOB
PCSK9

606945
107730
607786

SD
SD
AD

KP, EP
KP

Malignant hyperthermia 
susceptibility

145600 20301325 Child/adult RYR1
CACMA1S

180901
114208

AD KP

Source: Green et al. (2013). Reproduced with permission from Macmillan Publishers.

taBle 21.11 (continued)



HuMAn DISeASe 1055

individuals is quite high. Second, the databases such as HGMD that predict which variants 
are deleterious may include false positive entries. Xue et al. report that of 577 variants in 
the 1000 Genomes population that were classified as disease‐causing mutations by HGMD, 
>90% were not predicted to be severely damaging by their analyses. Annotation of disease‐
associated variants therefore needs to be improved across all relevant databases.

Other studies involving the 1000 Genomes Project Consortium et al. (2010, 2012; 
MacArthur et al., 2012) reached similar conclusions about the numbers of loss of function 
variants per individual (about 100) and the number of completely inactivated genes (∼20 
per person). MacArthur et al. noted that loss‐of‐function variants in healthy individuals 
may be categorized several ways:

 • Severe recessive alleles may occur in the heterozygous state.
 • Alleles that are not severe may still impact disease risk and phenotype.
 • There is benign loss of function variation (perhaps an example would be the loss of 
an olfactory receptor gene).

 • There are variants that do not appreciably disrupt gene function.
 • Many variants represent sequencing and annotation artifacts.

MacArthur et al. identified, validated, and characterized many loss‐of‐function vari-
ants. HapMap individual NA12878 (whose genome has been extensively sequenced with 
multiple technologies) has 97 loss‐of‐function variants, including 26 that are known 
recessive disease‐causing mutations (present in the heterozygous state) and 18 that are 
homozygous. For some variants, the loss of function was accompanied by a decreased 
level of RNA expression.

We described incidental findings above. How many clinically relevant incidental 
findings occur in apparently normal individuals? Dorschner et al. (2013) approached this 
problem by analyzing the exome sequences of 1000 adult individuals (half of European 
descent and half of African descent) with an emphasis on 114 medically actionable genes 
(i.e., genes for which variants are highly penetrant, pathological, and for which resulting 
medical recommendations could improve clinical outcomes in terms of morbidity and 
mortality). Their gene list included 52 of the 56 from the ACMG list described above.

 • A total of 585 instances of 239 unique variants were found that were defined as 
 disease‐causing in HGMD. Most of those were false positive results, however; only 
16 unique autosomal dominant variants were defined by Dorshner et al. as patho-
genic or likely pathogenic.

 • Pathogenic variants have low allele frequencies (typically <0.1% and in 15 cases out 
of 16 were observed just once in the cohort of 1000 individuals).

 • Fewer pathogenic variants were identified in the individuals of African ancestry, 
 perhaps reflecting the paucity of genetics literature on non‐European populations.

Human Disease Genes in moDel orGanisms
The study of human disease genes and gene products in other organisms is of  fundamental 
importance in our efforts to understand the pathophysiology of human disease. While muta-
tions in genes cause many diseases, it is the aberrant protein product that has the proximal 
functional consequence on the cell and ultimately on the organism. Once a human disease 
gene is identified in a model organism, it can often be knocked out or otherwise manip-
ulated. This allows the phenotypic consequences of specific mutations to be assessed. 
 Earlier we introduced Rett syndrome. Over a dozen mouse models have been developed 
(Katz et al., 2012), enabling Adrian Bird and colleagues to demonstrate  phenotypic rever-
sal of symptoms in adult mice (Guy et al., 2007). Complementary  studies in a Drosophila 
model confirmed anatomical and behavioral abnormalities (Cukier et al., 2008). This work 
led to the identification of genetic modifiers relevant to the function of MECP2.
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human Disease Orthologs in Nonvertebrate Species

A basic approach is to identify which known human disease genes have orthologs in 
model organisms. This is of interest even though the consequence of mutating that ortho-
log may differ. Drosophila has become an established model for overexpression of gain‐
of‐function deleterious mutations that occur in genes that are orthologous to human dis-
ease genes (Chen and Crowther, 2012).

Which human disease genes have orthologs in nonverterbrates? In an early comparative 
genomics study Rubin et al. (2000) analyzed the newly sequenced genomes of  Drosophila 
melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae. They identified 
289 genes that are mutated, altered, amplified, or deleted in human disease. Of these genes, 
177 (61%) were found to have an ortholog in Drosophila. These data are displayed in Web 
 Document 21.4 showing the presence of fly, worm, and yeast orthologs to human disease genes 
that are functionally categorized in cancer, neurological, cardiovascular, endocrine, and other 
disease types. Reiter et al. (2001) extended this study to 929 human disease genes in OMIM, 
714 of which (77%) matched 548 Drosophila protein sequences (Web Document 21.5).

The cataloguing of human disease genes in model organisms is important in our efforts 
to establish functional assays for these genes. In addition to the results in S. cerevisiae, 
D. melanogaster, and C. elegans, similar descriptions have been made in other eukaryotes 
such as Schizosaccharomyces pombe (Wood et al., 2002), Arabidopsis (Arabidopsis Genome 
Initiative, 2000), and the amoeba Dictyostelium discoideum (Eichinger et al., 2005). For  
S. pombe, orthologs were identified both for human cancer genes (table 21.12) and a 

At the time that C. elegans was 
sequenced, about 65% of  
human disease genes had 
identifiable C. elegans orthologs 
(Ahringer, 1997).

taBle 21.12 Schizosaccharomyces pombe genes related to human cancer genes. Score is the expect value from a 
BlaSt search; a score of <1×10−40 refers to a score between <1×10−40 and 1×10−100. adapted from Wood et al. (2002), 
with permission from Macmillan publishers.

Human cancer gene Score S. pombe gene/product Systematic name

Xeroderma pigmentosum D; XPD <1×10−100 rad15, rhp3 SPAC1D4.12

Xeroderma pigmentosum B; ERCC3 <1×10−100 rad25 SPAC17A5.06

Hereditary nonpolyposis colorectal cancer (HNPCC); MSH2 <1×10−100 rad16, rad10, rad20, swi9 SPBC24C6.12C

Xeroderma pigmentosum F; XPF <1×10−100 cdc17 SPCC970.01

HNPCC; PMS2 <1×10−100 pms1 SPAC57A10.13C

HNPCC; MSH6 <1×10−100 msh6 SPAC19G12.02C

HNPCC; MSH3 <1×10−100 swi4 SPCC285.16C

HNPCC; MLH1 <1×10−100 mlh1 SPAC8F11.03

Haematological Chediak–Higashi syndrome; CHS1 <1×10−100 — SPBC1703.4

Darier–White disease; SERCA <1×10−100 Pgak SPBC28E12.06C

Bloom syndrome; BLM <1×10−100 Hus2, rqh1, rad12 SPBC31E1.02C

Ataxia telangiectasia; ATM <1×10−100 Tel1 SPAC2G11.12

Xeroderma pigmentosum G; XPG <1×10−40 rad13 SPBC3E7.08C

Tuberous sclerosis 2; TSC2 <1×10−40 — SPAC630.13C

Immune bare lymphocyte; ABCB3 <1×10−40 — SPBC9B6.09C

Downregulated in adenoma; DRA <1×10−40 — SPAC869.05C

Diamond–Blackfan anemia; RPS19 <1×10−40 rps19 SPBC649.02

Cockayne syndrome 1; CKN1 <1×10−40 — SPBC577.09

RAS <1×10−40 Ste5, ras1 SPAC17H9.09C

Cyclin‐dependent kinase 4; CDK4 <1×10−40 Cdc2 SPBC11B10.09

CHK2 protein kinase <1×10−40 Cds1 SPCC18B5.11C

AKT2 <1×10−40 Pck2, sts6, pkc1 SPBC12D12.04C
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taBle 21.13 Schizosaccharomyces pombe genes related to human disease genes. Score is the expect value from a 
BlaSt search. GNp: guanine nucleotide binding. adapted from Wood et al. (2002), with permission from Macmillan 
publishers.

Human cancer gene Disease Score S. pombe gene/product

Wilson disease; ATP7B Metabolic <1×10−100 P‐type copper ATPase

Non‐insulin‐dependent diabetes; PCSK1 Metabolic <1×10−100 Krp1, kinesin related

Hyperinsulinism; ABCC8 Metabolic <1×10−100 ABC transporter

G6PD deficiency; G6PD Metabolic <1×10−100 Zwf1 GP6 dehydrogenase

Citrullinemia type I; ASS Metabolic <1×10−100 Arginosuccinate synthase

Wernicke–Korsakoff syndrome; TKT Metabolic <1×10−40 Transketolase

Variegate pophyria; PPOX Metabolic <1×10−40 Protoporphyrinogen oxidase

Maturity‐onset diabetes of the young (MODY2); GCK Metabolic <1×10−40 Hxk1, hexokinase

Gitelman’s syndrome; SLC12A3 Metabolic <1×10−40 CCC Na‐K‐Cl transporter

Cystinuria type 1; SLC3A1 Metabolic <1×10−40 α‐Glucosidase

Cystic fibrosis; ABCC7 Metabolic <1×10−40 ABC transporter

Bartter’s syndrome; SLC12A1 Metabolic <1×10−40 CCC Na‐K‐Cl transporter

Menkes syndrome; ATP7A Neurological <1×10−100 P‐type copper ATPase

Deafness, hereditary; MYO15 Neurological <1×10−100 Myo51 class V myosin

Zellweger syndrome; PEX1 Neurological <1×10−40 AAA‐family ATPase

Thomsen disease; CLCN1 Neurological <1×10−40 ClC chloride channel

Spinocerebellar ataxia type 6 (SCA6); CACNA1A Neurological <1×10−40 VIC sodium channel

Myotonic dystrophy; DM1 Neurological <1×10−40 Orb6 Ser/Thr protein kinase

McCune–Albright syndrome; GNAS1 Neurological <1×10−40 Gpa1 GNP

Lowe’s oculocerebrorenal syndrome; OCRL Neurological <1×10−40 PIP phosphatase

Dents; CLCN5 Neurological <1×10−40 ClC chloride channel

Coffin–Lowry; RPS6KA3 Neurological <1×10−40 Ser/Thr protein kinase

Angelman; UBE3A Neurological <1×10−40 Ubiquitin–protein lgase

Amyotrophic lateral sclerosis; SOD1 Neurological <1×10−40 Sod1, superoxide dismutase

Oguschi type 2; RHKIN Neurological <1×10−40 Ser/Thr protein kinase

Familial cardiac myopathy; MYH7 Cardiac <1×10−100 Myo2, myosin II

Renal tubular acidosis; ATP6B1 Renal <1×10−100 V‐type ATPase

 variety of neurological, metabolic, and other disorders (table 21.13). In Dictyostelium, 
which is intermediate in complexity between fungi and multicellular animals, many 
human disease orthologs were identified including nine that were absent from S. pombe 
and/or S. cerevisiae.

It is perhaps expected that human genes involved in cancer are also present in fungi; 
examples include genes encoding proteins involved in DNA damage and repair and the 
cell cycle. It might seem surprising that genes implicated in neurological disorders are 
present in single‐celled fungi. However, the explanation may be that neurons are a par-
ticularly susceptible cell type with unique metabolic requirements. For example, most 
lysosomal disorders are caused by the loss of an enzyme that normally contributes to 
lysosmal function or to intracellular trafficking to lysosomes. Multiple organ systems 
are typically compromised, but neurological features such as intellectual disability are a 
common consequence of these disorders. The lysosome is a primary site for catabolism 
in the cell. The vacuole performs similar functions in fungi, and many human homologs 
of fungal vacuolar proteins have been identified.



Genome AnAlysis1058

human Disease Orthologs in rodents

The mouse genome, reported by the Mouse Genome Sequencing Consortium et al. 
(2002), presents us with perhaps the most important animal model of human disease. A 
number of key resources are available:

 • The FANTOM database, part of the RIKEN Mouse Gene Encyclopedia Project, con-
tains information on full‐length mouse cDNA clones (Kawaji et al., 2011).

 • The Jackson Laboratory website offers a list of mouse/human gene homologs, includ-
ing mouse models for human disease.

 • High‐efficiency mutagens such as N‐ethyl‐N‐nitrosourea (ENU) or radiation have 
been applied to mice to generate models of human disease (see Chapter 14) (Probst 
and Justice, 2010; Stottmann and Beier, 2010).

 • The Whole Mouse Catalog describes mouse models of human disease.

The sequencing of the mouse genome was achieved by both Celera Genomics and by 
a public consortium (Chapter 19). Celera sequenced the genomic DNA of several mouse 
strains and noted their differences in susceptibility to infectious disease (table 21.14) and 
complex inherited disease (table 21.15). Comparative genomic data will likely help explain 
why some mouse strains vary in their disease susceptibility.

The public consortium that sequenced the mouse genome reported that 687 human 
disease genes have clear orthologs in mouse (Mouse Genome Sequencing Consortium 
et al., 2002). Surprisingly, for several dozen genes, the wildtype mouse gene sequence 
was identical to the sequence that is associated with disease in humans. These genes are 

You can access this mouse 
information at  http://www.
rodentia.com/wmc/domain_
genome.html#transgenics 
(WebLink 21.50) and  http://
www.rodentia.com/wmc/
domain_mouse.html  
(WebLink 21.51).

taBle 21.14 infectious disease susceptibility of mouse strains.

Infectious disease

Inbred mouse strain

A/J C57BL/6J

Legionnaire’s pneumonia Susceptible Resistant

Malaria Susceptible Resistant

Viral (MHV3) hepatitis Resistant Susceptible

Murine AIDS Resistant Susceptible

taBle 21.15 Common complex disease susceptibility of mouse strains.

 

Complex disease

Inbred mouse strain

A/J C57BL/6J

Arthritis Susceptible Resistant

Colon cancer Susceptible Resistant

Lung cancer Susceptible Resistant

Asthma Susceptible Resistant

Atherosclerosis Resistant Susceptible

Hypertension Resistant Susceptible

Type II diabetes Resistant Susceptible

Osteoporosis Susceptible Resistant

Obesity Resistant Susceptible

http://www.rodentia.com/wmc/domain_genome.html#transgenics
http://www.rodentia.com/wmc/domain_mouse.html
http://www.rodentia.com/wmc/domain_mouse.html
http://www.rodentia.com/wmc/domain_mouse.html


HuMAn DISeASe 1059

taBle 21.16 human disease-associated sequence variants for which wildtype  
mouse sequence matches diseased human sequence. adapted from  
Mouse Genome Sequencing Consortium et al. (2002), with permission from  
Macmillan publishers.

Disease OMIM Mutation

Hirschsprung disease 142623 E251K

Leukencephaly with vanishing white matter 603896 R113H

Mucopolysaccharidosis type IVA 253000 R376Q

Breast cancer 113705 L892S

Breast cancer 600185 V211A, Q2421H

Parkinson’s disease 601508 A53T

Tuberous sclerosis 605284 Q654E

Bardet–Biedl syndrome, type 6 209900 T57A

Mesothelioma 156240 N93S

Long QT syndrome 5 176261 V109I

Cystic fibrosis 602421 F87L, V754M

Porphyria variegata 176200 Q127H

Non‐Hodgkin’s lymphoma 605027 A25T, P183L

Severe combined immunodeficiency disease 102700 R142Q

Limb‐girdle muscular dystrophy type 2D 254110 P30L

Long‐chain acyl‐CoA dehydrogenase deficiency 201460 Q333K

Usher syndrome type 1B 276902 G955S

Chronic nonspherocytic haemolytic anemia 206400 A295V

Mantle cell lymphoma 208900 N750K

Becker muscular dystrophy 300377 H2921R

Complete androgen insensitivity syndrome 300068 G491S

Prostate cancer 176807 P269S, S647N

Crohn’s disease 266600 W157R

listed in table 21.16. This suggests that, assuming the mouse does not have these diseases, 
any mouse model for these diseases must be used with caution. Conceivably, mice have 
modifying genes (or paralogous genes) not present in humans. Also, inbred strains of lab-
oratory mice are exposed to different environmental stressors than mice in the wild, and 
their disease susceptibility could vary.

Sequencing of the genome of the Norway rat (Chapter 19; Rat Genome Sequencing 
Project Consortium, 2004) allowed the detailed comparison of human, mouse, and rat 
disease genes. Of 1112 well‐characterized human disease genes from HGMD (described 
above), 76% have orthologs in rat. This is a higher percentage than for all rat versus all 
human genes (of which 46% have 1:1 orthologous matches). Only six human disease 
genes were found to lack rat orthologs. In general, the consortium concluded that human 
disease genes tend to be well conserved in rat, as also indicated by measurement of KN/KS 
ratios.

human Disease Orthologs in primates

While the chimpanzee and human genomes are extremely closely related (Chimpanzee 
Sequencing and Analysis Consortium, 2005; Chapter 19), it is surprising that many com-
mon human disease variants correspond to the wildtype form allele in the chimpanzee; 
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sixteen examples are presented in table 21.17. In the gorilla, several genes also have wild-
type sequences that correspond to human disease alleles (GRN, TCAP, and the globin 
HBA1; Scally et al., 2012).

It is possible that not all of these mutations are true positive disease‐associated alleles 
in humans. When a particular sequence occurs in chimpanzee, gorilla, and macaque, 
this indicates that it is an ancestral allele. Conceivably, specific changes in the human 
 environment in the past several million years have made such ancestral sequences dele-
terious, such that an altered sequence in humans is adaptive. Other compensatory muta-
tions may also be important in interpreting the findings. Similar results were reported by 
the Rhesus Macaque Genome Sequencing and Analysis Consortium (2007) including 
229 amino acid substitutions for which the amino acid identified as mutant in human 
 corresponds to the wildtype allele in macaque, chimpanzee, and/or a reconstructed ances-
tral genome.

functional classification of Disease Genes
We conclude by considering the principles of human disease. The variety of human 
 diseases is extraordinarily broad, yet the field of bioinformatics may provide insight into 
a logic of disease. One such attempt was by Jimenez‐Sanchez et al. (2001), who  analyzed 
923 human genes that are associated with human disease. These genes primarily cause 
monogenic  disorders. They classified each disease gene according to the function of 
its protein product (Fig. 21.19a). Enzymes represent the largest functional category and 
account for 31% of the total gene products associated with disease. In contrast, only 
15% of positionally cloned  disease genes encode enzymes. There may therefore be some 

taBle 21.17 human disease variants matching the wildtype chimpanzee allele. 
Variants are listed as benign variant, codon number, disease/chimpanzee variant. 
ancestral variants are inferred using primate outgroups. Frequency is of the disease 
allele in humans. PON1 (Q192r) is polymorphic in chimpanzee.

Gene Variant Disease association Ancestral Frequency

AIRE P252L Autoimmune syndrome Unresolved 0

MKKS R518H Bardet–Biedl syndrome Wild type 0

MLH1 A441T Colorectal cancer Wild type 0

MYOC Q48H Glaucoma Wild type 0

OTC T125M Hyperammonemia Wild type 0

PRSS1 N29T Pacreatitis Disease 0

ABCA1 I883M Coronary artery disease Unresolved 0.136

APOE C130R Coronary artery disease 
and Alzheimer’s disease

Disease 0.15

DIO2 T92A Insulin resistance Disease 0.35

ENPP1 K121Q Insulin resistance Disease 0.17

GSTP1 I105V Oral cancer Disease 0.348

PON1 I102V Prostate cancer Wild type 0.016

PON1 Q192R Coronary artery disease Disease 0.3

PPARG A12P Type 2 diabetes Disease 0.85

SLC2A2 T110I Type 2 diabetes Disease 0.12

UCP1 A64T Waist‐to‐hip ratio Disease 0.12

Source: Chimpanzee Sequencing and Analysis Consortium (2005). Reproduced with permission from 
Macmillan Publishers.
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 historical bias toward our knowledge of disease‐causing mutations that are based on 
enzymatic defects.

Jimenez‐Sanchez et al. further analyzed the correlation between the function of a 
gene product and the age of disease onset (Fig. 20.19b–f). Genes encoding enzymes and 
transcription factors are especially likely to be involved in disease in utero, reflecting 
the importance of transcription factors in early development. Enzymes are particularly 
involved in disease up to puberty (Fig. 20.19b–d). The developing fetus has access to its 
mother’s metabolic systems and thus may be viable even if it has a gene defect. After 
birth, such diseases are manifested. Disease genes encoding enzymes are less prevalent in 
diseases having a later onset in life (Fig. 21.19e).

All of the common diseases in this sample occur with only a very low frequency when 
analyzed for any of four functional categories of disease: frequency, mode of inheritance, 

FiGure 21.19 The functions of the protein products of disease genes: (a) all genes (n = 923); (b–f) disease genes listed according to the 
typical age of onset of the disease phenotype. 

Source: Jimenez‐Sanchez et al. (2001). Reproduced with permission from Macmillan  Publishers.
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age of onset, and reduction of life expectancy (Fig. 21.20, leftmost column). This very low 
frequency reflects the population of disease genes that are currently available to study, that 
is, genes implicated in single‐gene disorders. The mode of inheritance tends to be autoso-
mal recessive, particularly for genes encoding enzymes. As also described in  Figure 21.19, 
the age of onset tends to be: in utero for transcription factors; from birth to 1 year for genes 
encoding enzymes; between 1 year and puberty and into adulthood for receptors; and early 
adulthood for modifiers of protein function (such as proteins that stabilize, activate, or fold 

FiGure 21.20 The characteristics of diseases, organized by the function of the protein encoded by the disease gene. AR: autosomal 
recessive; AD: autosomal dominant; early adulthood: puberty to <50 years old; late adulthood: >50 years old. 

Source: Jimenez‐Sanchez et al. (2001). Reproduced with permission from Macmillan Publishers.
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other proteins). The severity of the disease, reflected in reduction of life expectancy, varies 
for diseases without a strong pattern based on functional categories.

These studies represent an early attempt to define a logic of disease. Such genomic‐
scale efforts will be enhanced when we have more information available on the genetic 
basis of complex disorders. Early whole‐exome and whole‐genome sequencing studies 
suggest that some complex disorders display extreme locus heterogeneity, involving 
mutations in many genes across and within individuals. Functional analyses may be com-
bined using all the tools of bioinformatics and genomics to help elucidate the relationship 
between genotype and disease phenotype.

perspectiVe
There are several kinds of bioinformatics approaches to human disease:

 • Human disease is a consequence of variation in DNA sequence. These variations are 
catalogued in databases of molecular sequences (such as GenBank, SRA, and ENA).

 • Human disease databases have a major role in organizing information about disease 
genes. There are centralized databases, most notably OMIM, ClinVar, and HGMD, 
as well as locus‐specific mutation databases.

 • Functional genomics screens provide insight into the mechanisms of disease genes 
and disease processes.

pitfalls
A fundamental gap in our understanding is how a genotype such as a mutated gene is 
related to a disease phenotype. We can approach disease from either end of the spectrum. 
Starting with a disease phenotype we can ask what genes, when mutated, might cause this 
disease? Starting with a gene, we can ask what disease occurs when this gene is mutated? 
However, connecting these two ends of the continuum has been nearly impossible. For 
the majority of diseases, the discovery of a disease gene has not yet led to the subsequent 
discovery of new treatment options or cures, or to an understanding of pathophysiology. 
A hope is that bioinformatics and functional genomics approaches may lead to an under-
standing of biochemical pathways that account for the molecular basis of pathophysiol-
ogy. This could be accomplished by learning the function of disease‐causing genes in 
model organisms or via high‐throughput technologies such as RNA-seq that reveals the 
transcriptional response of susceptible cell types to the presence of a mutated gene.

The state of disease databases presents challenges for the field. As tens of millions of 
single‐nucleotide variants are quickly being discovered through next‐generation sequenc-
ing, how can we know which are neutral or pathogenic? Many diseases display allelic 
heterogeneity; many genes known to harbor pathogenic mutations also harbor benign 
variants; and there are many false positives (e.g., variants initially defined as pathogenic 
that are subsequently found to be neutral) and false negatives.

aDVice for stuDents
Select a disease and explore what is known about its mode of inheritance, clinical phe-
notype (e.g., by reviewing its OMIM entry), and implicated genes. Examine its variants 
in NCBI resources such as PheGenI and ClinVar, in locus‐specific databases (if any), 
and HGMD. For genes that are associated with the disease, examine both paralogs and 
orthologs (e.g., beginning with HomoloGene). Do the phenotypes of a mouse, zebrafish, 
worm, fly, or yeast knockout illuminate the relevance of the gene to human disease? For a 
gene having allelic variants, systematically collect those variants (from OMIM, HGMD, 
or locus‐specific databases). Do any of them have relatively high minor allele frequencies 
and, if so, does that suggest they are likely to be false positives?



Discussion Questions
[21-1] Many neurological diseases such 
as Rett syndrome, vanishing white matter 
syndrome, and Huntington’s disease have 
devastating consequences on brain func-

tion. For some of these diseases, the responsible genes have 
homologs in single‐celled organisms such as fungi. Why 
do you think this is so?

[21-2] How have microarrays and next‐generation 
sequencing been used to study human disease? Give some 
specific examples of progress that has been made.

COMputer laB/prOBleMS
[21-1] How many inherited diseases have a known 
sequence associated with them? Visit OMIM and search 
for the number of genes having allelic variants. Use EDi-
rect to search for the answer.

[21-2] Mutations in MECP2 cause Rett syndrome.  
(1) Explore this gene and this disease in OMIM. What is the 
phenotype of the disease? What chromosome is MECP2 
localized to? How many allelic variants are reported? Are 
mouse models available? (2) Explore MECP2 at a locus‐
specific mutation database, RettBase. Compare the types of 
information you obtain from this resource versus OMIM. 
(3) Explore MECP2 at dbSNP. Are there any SNPs that cor-
respond to disease‐associated substitutions? Do any SNPs 
alter the amino acid sequence? (4) Explore MECP2 at the 
UCSC Genome Browser. Again, compare the types of 
information you obtain from this resource versus OMIM. 
(5) Use  EDirect to produce a table of nonsynonymous vari-
ants identified in MECP2.

[21-3] Use BioMart at Ensembl to analyze any single can-
cer gene (such as GNAQ). In parallel, you can view the 
Variation Table for that gene to view its variants that are 
in dbSNP and COSMIC databases. For each variant it is 
possible to view the SIFT and PolyPhen scores (in the Vari-
ation Table they are color‐coded red or green for deleteri-
ous or benign). We expect dbSNP entries to tend to be pre-
dicted to have neutral (benign) substitutions, while SIFT 
and PolyPhen predictions for  COSMIC entries should tend 
to be deleterious. Tabulate the entries to determine if this is 
the case. Optionally, use the R package biomaRt in place 
of the BioMart web service.
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21-4  What is the record of publications on the following 
diseases and conditions, organized by decade? Use EDi-
rect and select mania, pertussis, diphtheria, schizophrenia, 
AIDS, SARS, and Ebola. You may select other diseases 
and time periods. You can use the following code (also 
available at the NCBI EDirect website).

$ for disease in mania pertussis diphtheria 
schizophrenia AIDS SARS ebola
 do
 citations=`esearch -db pubmed -query "$disease 
[TITL]"`
 current=`for (( yr = 2010; yr = 1860; yr -= 10 ))
 do
  echo "$citations" |
  efilter -mindate "$yr" -maxdate "$((yr+9))" 
-datetype PDAT |
  xtract -pattern ENTREZ_DIRECT -lbl "$((yr))s" 
-element Count
 done`
 heading=`echo -e "${disease:0:4}" | tr [a-z] 
[A-Z]`
 current=`echo -e "YEARS\t$heading\n—–\t—-\
n$current"`
 if [ -n "$result" ]
 then
 result=`join -t $'\t' <(echo "$result") <(echo 
"$current")`
 else
 result=$current
 fi
 done
 echo "$result"
$ echo "$result"
YEARS MANI PERT DIPH SCHI AIDS SARS EBOL
—–—– —-—– —-—– —-—– —-—– —-—– —-—– —–—-
2010s 558 1154 405 12637 5800 375 587
2000s 1000 1966 890 17275 14117 2778 509
1990s 684 2660 1149 8113 23554 22 230
1980s 520 1746 780 4148 12351 5 46
1970s 194 698 749 3019 943 16 25
1960s 76 635 1152 2283 602 1 0
1950s 26 491 1224 1493 560 1 0
1940s 6 172 452 140 184 0 0
1930s 1 26 157 23 16 0 0
1920s 0 5 128 3 27 0 0
1910s 2 7 83 0 5 1 0
1900s 3 3 93 0 0 0 0
1890s 0 0 142 0 4 0 0
1880s 3 0 29 0 2 0 0
1870s 4 2 29 0 2 0 0
1860s 1 1 1 0 0 0 0



Self-test Quiz
[21-1] In humans, disorders that are 
inherited by simple Mendelian inheritance 
account for about what percentage of all 
human disease?

(a) 1%;

(b) 10%;

(c) 50%; or

(d) it is impossible to accurately measure the percent-
age.

[21-2] To a significant extent, susceptibility to a variety of 
infectious diseases is determined by variants of an individ-
ual's genes:

(a) true; or

(b) false.

[21-3] Which of the following best describes single‐gene 
disorders? Each single‐gene disorder:

(a) Is caused by a mutation in a single gene; they repre-
sent a basic category of disease that is in contrast to 
complex disorders.

(b) Is primarily caused by a mutation in a single gene, 
but the disease process always involve the contribu-
tion of many genes. They therefore represent a cat-
egory of disease along a continuum with complex 
disorders.

(c) Is primarily caused by a mutation in a single gene in 
which the mutation almost always introduces a syn-
onymous substitution.

(d) Is primarily caused by a mutation in a single gene in 
which the mutation almost always introduces a non-
synonymous substitution.

[21-4] The United States population is ∼320 million. How 
many people in the US have a rare disease?

(a) 200,000;

(b) 2 million;

(c) 25 million; or

(d) 100 million.

[21-5] Single‐gene disorders tend to be:

(a) rare in the general population, with an early onset in 
life;

(b) common in the general population, with an early 
onset in life;

(c) rare in the general population, with a late onset in 
life; or

(d) common in the general population, with a late onset 
in life.

[21-6] Online Mendelian Inheritance in Man (OMIM) 
includes entries that focus on:

(a) particular diseases;

(b) particular genes;

(c) either genes or diseases; or

(d) complex chromosomal disorders.

[21-7] There are several thousand locus‐specific data-
bases. What information do they offer that is not available 
in central databases such as OMIM and GeneCards?

(a) comprehensive descriptions of the gene implicated 
in a disease;

(b) comprehensive lists of mutations associated with 
disease;

(c) links to foundations and other organizations; or

(d) links to chromosome maps displaying the disease‐
causing gene.

[21-8] You are interested in seeing a summary of the 
genome‐wide association study (GWAS) results for a set of 
10 genes. Which of the following resources is most useful?

(a) HGMD;

(b) NCBI GWAS;

(c) OMIM; or

(d) PheGenI.

[21-9] Human disease genes have orthologs in a variety 
of organisms including worms, insects, and fungi. For a 
number of human proteins that are implicated in disease, 
multiple sequence alignments with orthologous proteins 
have been made. These show that amino acid positions 
associated with disease‐causing mutations in human pro-
teins tend to be residues that are:

(a) strongly conserved in other organisms;

(b) sometimes conserved in other organisms;

(c) poorly conserved in other organisms; or

(d) only sometimes aligned with orthologous sequences.
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suGGesteD reaDinG
W. Gregory Feero, Alan Guttmacher, and Francis Collins provide an excellent primer 
on genomic medicine (Feero et al., 2010). An essential resource for the study of human 
disease is The Metabolic and Molecular Basis of Inherited Disease (Scriver et al., 2001). 
This four‐volume tome has hundreds of chapters including introductions to disease from 
a variety of perspectives (e.g., Mendelian disorders, complex disorders, a logic of disease, 
mutation mechanisms, and animal models). A recommended introduction to disease is an 
essay by Barton Childs and David Valle (2000).

For an overview of cancer genomics see Vogelstein et al. (2013) as well as reviews 
by Chin et al. (2011) and Watson et al. (2013). Thorisson et al. (2009) introduce disease 
databases with an emphasis on genotype‐phenotype correlations. Garry Cutting (2014) 
surveys the challenge of annotating genomic DNA variants and discusses the problem 
of the “interpretive gap.” David Altshuler, Mark Daly, and Eric Lander (2008) review 
genetic mapping in human disease, including linkage and association approaches. For an 
overview of GWAS see an article by Thomas Pearson and Teri Manolio (2008). Manolio 
et al. (2009) offer the important review “Finding the missing heritability of complex dis-
eases” (see Fig. 21.6). See also Lupski et al. (2011) for a related article on the role of allelic 
variants of differing frequencies in human disease. For an overview of the fascinating 
topic of mitochondrial disease, see DiMauro et al. (2013).
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This glossary is combined from six web‐based glossaries and each entry is marked 
accordingly: (1) the National Center for Biotechnology Information (NCBI BLAST); 
(2) NCBI genome; (3) the Oak Ridge National Laboratory (ORNL); (4) the talking 
glossary at the National Human Genome Research Institute (NHGRI); (5) the SMART 
database; and (6) the protein folds glossary from the Structural Classification of Proteins 
website (SCOP) (these entries are modified). The glossaries are available online.

A
Accession number An accession number is a unique identifier given to a sequence when 
it is submitted to one of the DNA repositories (GenBank, EMBL, DDBJ). The initial 
deposition of a sequence record is referred to as version 1. If the sequence is updated, the 
version number is incremented but the accession number will remain constant.

Additive genetic effects When the combined effects of alleles at different loci are equal 
to the sum of their individual effects (ORNL).

Adenine (A) A nitrogenous base, one member of the base pair AT (adenine–thymine). 
See also: base pair (ORNL).

AGP A file that describes how primary sequences can be assembled to make a nonre-
dundant, contiguous sequence. The sequence being assembled may be a contig or a chro-
mosome. This file describes the portion of the component sequence used in the contig, in 
addition to the location on the contig of the component sequence (NCBI).

Algorithm A fixed procedure embodied in a computer program (NCBI BLAST).

Alignment (a) The process of lining up two or more sequences to achieve maximal levels 
of identity (and conservation, in the case of amino acid sequences) for the purpose of assess-
ing the degree of similarity and the possibility of homology (NCBI BLAST). (b) Represen-
tation of a prediction of the amino acids in tertiary structures of homologs that overlay in 
three dimensions. Alignments held by SMART are mostly based on published observations 
(see domain annotations for details) but are updated and edited manually (SMART).

All alpha A class that has the number of secondary structures in the domain or common 
core described as 3‐, 4‐, 5‐, 6‐, or multihelical (SCOP).

All beta A class that includes two major fold groups: sandwiches and barrels. The sand-
wich folds are made of two β sheets which are usually twisted and packed so their strands 
are aligned. The barrel fold are made of a single β sheet that twists and coils upon itself 
so that, in most cases, the first strand in the β sheet hydrogen bonds to the last strand. The 
strand directions in the two opposite sides of a barrel fold are roughly orthogonal. Orthog-
onal packing of sheets is also seen in a few special cases of sandwich folds (SCOP).

Allele (a) Alternative form of a genetic locus; a single allele for each locus is inherited 
from each parent (e.g., at a locus for eye color the allele might result in blue or brown 

Glossary  http://www.ncbi.nlm.nih.gov/
books/NBK62051/ (NCBI BLAST 
glossary by Drs Jan Fassler and 
Peter Cooper)
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projects/genome/glossary.shtml 
(NCBI)
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glossary.cfm (NHGRI)
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(SMART)
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eyes; ORNL). (b) One of the variant forms of a gene at a particular locus, or location, on 
a chromosome. Different alleles produce variation in inherited characteristics such as hair 
color or blood type. In an individual, one form of the allele (the dominant form) may be 
expressed more than another form (the recessive form; NHGRI).

Allelic series A collection of distinct mutations that affect a single locus. Often, these 
different mutations will produce different phenotypes, thus providing a powerful genetic 
tool for the dissection of gene function.

Allogeneic Variation in alleles among members of the same species (ORNL).

Alternative splicing Different ways of combining a gene’s exons to make variants of the 
complete protein (ORNL).

Amino acid Any of a class of 20 molecules that are combined to form proteins in living 
things. The sequence of amino acids in a protein and hence protein function is determined 
by the genetic code (ORNL).

Amplification An increase in the number of copies of a specific DNA fragment; can be 
in vivo or in vitro. See also: cloning (ORNL).

Animal model See: model organisms (ORNL).

Annotation (a) Adding pertinent information such as gene coded for, amino acid sequence, 
or other commentary to the database entry of raw sequence of DNA bases. See also: bio-
informatics (ORNL). (b) Adding biological information to genome sequence. This is a 
very complex task, and the process for performing this is rapidly evolving. Several groups 
are performing automated computational annotation of several genomes. Features that are 
added to the genome often include gene models, SNPs, and STSs (NCBI).

Anticipation Each generation of offspring has increased severity of a genetic disorder; 
for example, a grandchild may have earlier onset and more severe symptoms than the 
parent, who had earlier onset than the grandparent. See also: additive genetic effects, 
complex trait (ORNL).

Antisense Nucleic acid that has a sequence exactly opposite to an mRNA molecule made 
by the body; binds to the mRNA molecule to prevent a protein from being made. See also: 
transcription (ORNL).

Apoptosis Programmed cell death, the body’s normal method of disposing of damaged, 
unwanted, or unneeded cells (ORNL).

Array (of hairpins) An assemble of α helices that cannot be described as a bundle or a 
folded leaf (SCOP).

Array comparative genome hybridization (aCGH) A technique involving the com-
petitive hybridization of “test” and “reference” DNA probes to target genomic (or cDNA 
clones) immobilized on a microarray. Most often used for the detection of copy number 
variation (CNV), aCGH also has applications in gene annotation and diagnostics (NCBI).

Arrayed library Individual primary recombinant clones (hosted in phage, cosmid, YAC, 
or other vector) that are placed in two‐dimensional arrays in microtiter dishes. Each pri-
mary clone can be identified by the identity of the plate and the clone location (row and 
column) on that plate. Arrayed libraries of clones can be used for many applications, 
including screening for a specific gene or genomic region of interest. See also: library, 
genomic library, gene chip technology (ORNL).

Assembly Putting sequenced fragments of DNA into their correct chromosomal posi-
tions (ORNL).

Autoradiography A technique that uses X‐ray film to visualize radioactively labeled 
molecules or fragments of molecules; used in analyzing length and number of DNA frag-
ments after they are separated by gel electrophoresis (ORNL).
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Autosomal dominant A gene on one of the non‐sex chromosomes that is always 
expressed, even if only one copy is present. The chance of passing the gene to offspring is 
50% for each pregnancy. See also: autosome, dominant, gene (ORNL).

Autosome A chromosome not involved in sex determination. The diploid human genome 
consists of a total of 46 chromosomes: 22 pairs of autosomes and 1 pair of sex chromo-
somes (the X and Y chromosomes). See also: sex chromosome (ORNL).

B
Backcross A cross between an animal that is heterozygous for alleles obtained from 
two parental strains and a second animal from one of those parental strains. Also used to 
describe the breeding protocol of an outcross followed by a backcross. See also: model 
organisms (ORNL).

Bacterial artificial chromosome (BAC) (a) A vector used to clone DNA fragments 
(100–300 kb insert size; average 150 kb) in Escherichia coli cells. Based on naturally 
occurring F‐factor plasmid found in the bacterium E. coli. See also: cloning vector 
(ORNL). (b) Large segments of DNA, 100,000–200,000 bases, from another species 
cloned into bacteria. Once the foreign DNA has been cloned into the host bacteria, many 
copies of it can be made (NHGRI).

BAC end sequence The ends of BACs are sequenced and the clone association informa-
tion is retained. In this way, BAC clones that do not have insert sequence can be integrated 
with other BAC clones, or with WGS assemblies (NCBI).

Bacteriophage See also: phage (ORNL).

Barrel Structures are usually closed by main‐chain hydrogen bonds between the first and 
last strands of the β sheet. In this case it is defined by the two integer numbers: the number 
of strand in the β sheet n, and a measure of the extent to which the strands in the sheet are 
staggered, the shear number S (SCOP).

Base One of the molecules that form DNA and RNA molecules. See also: nucleotide, 
base pair, base sequence (ORNL).

Base pair (bp) Two nitrogenous bases (adenine and thymine or guanine and cytosine) 
held together by weak bonds. Two strands of DNA are held together in the shape of a 
double helix by the bonds between base pairs (ORNL).

Base sequence The order of nucleotide bases in a DNA molecule; determines the struc-
ture of proteins encoded by that DNA (ORNL).

Base sequence analysis A method, sometimes automated, for determining the base 
sequence (ORNL).

Behavioral genetics The study of genes that may influence behavior (ORNL).

Beta (β) sheet Can be antiparallel (i.e., the strand direction in any two adjacent strands 
are antiparallel), parallel (all strands are parallel to each other), and mixed (there is at least 
one strand that is parallel to one of its two neighbors and antiparallel to the other) (SCOP).

Bioinformatics (a) The merger of biotechnology and information technology with the 
goal of revealing new insights and principles in biology (NCBI BLAST). (b) The science 
of managing and analyzing biological data using advanced computing techniques. Espe-
cially important in analyzing genomic research data (ORNL).

Bioremediation The use of biological organisms such as plants or microbes to aid in 
removing hazardous substances from an area (ORNL).

Biotechnology A set of biological techniques developed through basic research and now 
applied to research and product development. In particular, biotechnology refers to the use 
by industry of recombinant DNA, cell fusion, and new bioprocessing techniques (ORNL).
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Birth defect Any harmful trait, physical or biochemical, present at birth, whether a result 
of a genetic mutation or some other nongenetic factor. See also: congenital, gene, muta-
tion, syndrome (ORNL).

Bit score (a) The value S′ is derived from the raw alignment score S in which the sta-
tistical properties of the scoring system used have been taken into account. Because bit 
scores have been normalized with respect to the scoring system, they can be used to 
compare alignment scores from different searches (NCBI BLAST). (b) Alignment scores 
are reported by HMMer and BLAST as bit scores. The likelihood that the query sequence 
is a bona fide homolog of the database sequence is compared to the likelihood that the 
sequence was instead generated by a “random” model. Taking the logarithm (to base 2) 
of this likelihood ratio gives the bits score (SMART).

BLAST (a) Basic Local Alignment Search Tool. A sequence comparison algorithm opti-
mized for speed used to search sequence databases for optimal local alignments to a 
query. The initial search is performed for a word of length W that scores at least T when 
compared to the query using a substitution matrix. Word hits are then extended in either 
direction in an attempt to generate an alignment with a score exceeding the threshold of S. 
The T parameter dictates the speed and sensitivity of the search. For additional details, see 
one of the BLAST tutorials (Query or BLAST) or the narrative guide to BLAST (NCBI 
BLAST). (b) A computer program that identifies homologous (similar) genes in different 
organisms, such as human, fruit fly, or nematode (ORNL).

BLAT A hashing algorithm developed by Jim Kent to allow rapid searching of large 
amounts of genome sequence. A hashing algorithm divides the database into words 
of a prescribed size (often 12–14 bases). The locations of these words are stored in 
memory. The query sequence is scanned for exact matches to words stored in mem-
ory. These types of algorithms tend to be very fast and effective for closely related 
sequences, but fail as sequences diverge. In addition to nucleotide BLAT, translated 
BLAT allows for comparison of protein sequences. This sequence aligner also allows 
for accurate alignment of transcribed sequences by looking at splice site information 
(NCBI).

BLOSUM Blocks Substitution Matrix. A substitution matrix in which scores for each 
position are derived from observations of the frequencies of substitutions in blocks of 
local alignments in related proteins. Each matrix is tailored to a particular evolutionary 
distance. In the BLOSUM62 matrix, for example, the alignment from which scores were 
derived was created using sequences sharing no more than 62% identity. Sequences more 
identical than 62% are represented by a single sequence in the alignment in order to avoid 
overweighting closely related family members (NCBI BLAST).

Bundle An array of α helices each oriented roughly along the same (bundle) axis. It may 
have twist, either left‐handed if each helix makes a positive angle with the bundle axis or 
right‐handed if each helix makes a negative angle with the bundle axis (SCOP).

C
Cancer Diseases in which abnormal cells divide and grow unchecked. Cancer can spread 
from its original site to other parts of the body and can be fatal. See also: hereditary can-
cer, sporadic cancer (ORNL).

Candidate gene A gene located in a chromosome region suspected of being involved in 
a disease. See also: positional cloning, protein (ORNL).

Capillary array Gel‐filled silica capillaries used to separate fragments for DNA 
sequencing. The small diameter of the capillaries permit the application of higher electric 
fields, providing high‐speed, high‐throughput separations that are significantly faster than 
traditional slab gels (ORNL).
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Carcinogen Something which causes cancer to occur by causing changes in a cell’s 
DNA. See also: mutagen (ORNL).

Carrier An individual who possesses an unexpressed, recessive trait (ORNL).

cDNA library A collection of DNA sequences that code for genes. The sequences are 
generated in the laboratory from mRNA sequences. See also: messenger RNA (ORNL).

CDS Coding sequence. This is the portion of an mRNA or genomic sequence that 
encodes for a protein sequence (NCBI).

Cell The basic unit of any living organism that carries on the biochemical processes of 
life. See also: genome, nucleus (ORNL).

Centimorgan (cM) A unit of measure of recombination frequency. One centimorgan is 
equal to a 1% chance that a marker at one genetic locus will be separated from a marker 
at a second locus due to crossing over in a single generation. In human beings, one centi-
morgan is equivalent, on average, to one million base pairs. See also: megabase (ORNL).

Centromere A specialized chromosome region to which spindle fibers attach during cell 
division (ORNL).

Chimera (plural chimaera) An organism that contains cells or tissues with a different 
genotype. These can be mutated cells of the host organism or cells from a different organ-
ism or species (ORNL).

ChIP/chip The hybridization of ChIP purified DNA to microarrays containing genomic 
DNA sequences to achieve genome‐wide identification of protein‐DNA interactions 
(NCBI).

ChIP/seq A technique involving size selection, high‐throughput sequencing (typically 
using next‐generation sequencing technologies that produce millions of reads in a run) 
and mapping of ChIP purified DNA onto a reference genome to achieve genome‐wide 
identification of protein–DNA interactions (NCBI).

Chloroplast chromosome Circular DNA found in the photosynthesizing organelle 
(chloroplast) of plants instead of the cell nucleus, where most genetic material is located 
(ORNL).

Chromatin immunoprecipitation (ChIP) A method for identifying protein–DNA 
interactions. Genomic DNA and associated proteins are cross‐linked, sheared, and immu-
noprecipitated with antibodies that recognize specific DNA proteins. Purified DNA frag-
ments are then assayed by various techniques to determine the association of specific 
sequences with the protein of interest (NCBI).

Chromosomal deletion The loss of part of a chromosome’s DNA (ORNL).

Chromosomal inversion Chromosome segments that have been turned 180°. The gene 
sequence for the segment is reversed with respect to the rest of the chromosome (ORNL).

Chromosome The self‐replicating genetic structure of cells containing the cellular DNA 
that bears in its nucleotide sequence the linear array of genes. In prokaryotes, chromo-
somal DNA is circular and the entire genome is carried on one chromosome. Eukaryotic 
genomes consist of a number of chromosomes whose DNA is associated with different 
kinds of proteins (ORNL).

Chromosome painting Attachment of certain fluorescent dyes to targeted parts of the 
chromosome. Used as a diagnostic for particular diseases, for example, types of leukemia 
(ORNL).

Chromosome region p A designation for the short arm of a chromosome (ORNL).

Chromosome region q A designation for the long arm of a chromosome (ORNL).

Clone An exact copy made of biological material such as a DNA segment (e.g., a gene 
or other region), a whole cell, or a complete organism (ORNL).
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Clone bank See: genomic library (ORNL).

Cloning Using specialized DNA technology to produce multiple, exact copies of a single 
gene or other segment of DNA to obtain enough material for further study. This process, 
used by researchers in the Human Genome Project, is referred to as cloning DNA. The 
resulting cloned (copied) collections of DNA molecules are called clone libraries. A sec-
ond type of cloning exploits the natural process of cell division to make many copies of 
an entire cell. The genetic makeup of these cloned cells, called a cell line, is identical to 
the original cell. A third type of cloning produces complete, genetically identical animals 
such as the famous Scottish sheep, Dolly. See also: cloning vector (ORNL).

Cloning vector DNA molecule originating from a virus, a plasmid, or the cell of a higher 
organism into which another DNA fragment of appropriate size can be integrated with-
out loss of the vector’s capacity for self‐replication; vectors introduce foreign DNA into 
host cells, where the DNA can be reproduced in large quantities. Examples are plasmids, 
cosmids, and yeast artificial chromosomes; vectors are often recombinant molecules con-
taining DNA sequences from several sources (ORNL).

Closed, Partly Opened, and Opened For all‐alpha structures, the extent to which the 
hydrophobic core is screened by the α helices comprising the structure. Opened means 
that there is space for at least one more helix to be easily attached to the core (SCOP).

Code See: genetic code (ORNL).

Codominance Situation in which two different alleles for a genetic trait are both 
expressed. See also: autosomal dominant, recessive gene (ORNL).

Codon See: genetic code (ORNL).

Coisogenic or congenic Nearly identical strains of an organism which vary at only a 
single locus (ORNL).

Comparative genomics The study of human genetics by comparisons with model organ-
isms such as mice, the fruit fly, and the bacterium Escherichia coli (ORNL).

Complementary DNA (cDNA) DNA that is synthesized in the laboratory from a mes-
senger RNA template (ORNL).

Complementary sequence Nucleic acid–base sequence that can form a double‐stranded 
structure with another DNA fragment by following base‐pairing rules (A pairs with T 
and C with G). The complementary sequence to GTAC, for example, is CATG (ORNL).

Complex trait Trait that has a genetic component that does not follow strict Mendelian 
inheritance. May involve the interaction of two or more genes or gene–environment inter-
actions. See also: Mendelian inheritance, additive genetic effects (ORNL).

Computational biology See: bioinformatics (ORNL).

Confidentiality In genetics, the expectation that genetic material and the information 
gained from testing that material will not be available without the donor’s consent (ORNL).

Congenital Any trait present at birth, whether the result of a genetic or nongenetic factor. 
See also: birth defect (ORNL).

Conservation Changes at a specific position of an amino acid or (less commonly, DNA) 
sequence that preserve the physicochemical properties of the original residue (NCBI 
BLAST).

Conserved sequence A base sequence in a DNA molecule (or an amino acid sequence in 
a protein) that has remained essentially unchanged throughout evolution (ORNL).

Contig (a) Group of cloned (copied) pieces of DNA representing overlapping regions 
of a particular chromosome (ORNL). (b) Short for contiguous sequence. When two 
sequences overlap at their ends (known as a “dove‐tail”). The sequences can be collapsed 
into a single, nonredundant sequence (NCBI).
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Contig map A map depicting the relative order of a linked library of overlapping clones 
representing a complete chromosomal segment (ORNL).

Copy number variation Large‐scale structural changes in DNA that vary from individual 
to individual. These include insertions, deletions, duplications, and complex multi‐site vari-
ants that range from kilobases to megabases in size. CNV can influence gene expression, 
phenotypic variation, and gene dosage. In certain instances it may be associated with devel-
opmental disorders, cause disease, or confer susceptibility to complex disease traits (NCBI).

Cosmid Artificially constructed cloning vector containing the cos gene of phage lambda. 
Cosmids can be packaged in lambda phage particles for infection into Escherichia coli; 
this permits cloning of larger DNA fragments (up to 45 kb) than can be introduced into 
bacterial hosts in plasmid vectors (ORNL).

Crossing over The breaking during meiosis of one maternal and one paternal chromo-
some, the exchange of corresponding sections of DNA, and the rejoining of the chromo-
somes. This process can result in an exchange of alleles between chromosomes. See also: 
recombination (ORNL).

Cross‐over Connection that links secondary structures at the opposite ends of the struc-
tural core and goes across the surface of the domain (SCOP).

Cytogenetics The study of the physical appearance of chromosomes. See also: karyo-
type (ORNL).

Cytological band An area of the chromosome that stains differently from areas around 
it. See also: cytological map (ORNL).

Cytological map A type of chromosome map whereby genes are located on the basis of 
cytological findings obtained with the aid of chromosome mutations (ORNL).

Cytoplasmic trait A genetic characteristic in which the genes are found outside the 
nucleus, in chloroplasts or mitochondria. Results in offspring inheriting genetic material 
from only one parent (ORNL).

Cytoplasmic (uniparental) inheritance See: cytoplasmic trait (ORNL).

Cytosine (C) A nitrogenous base, one member of the base pair GC (guanine and cyto-
sine) in DNA. See also: base pair, nucleotide (ORNL).

D
Data warehouse A collection of databases, data tables, and mechanisms to access the 
data on a single subject (ORNL).

Deletion A loss of part of the DNA from a chromosome; can lead to a disease or abnor-
mality. See also: chromosome, mutation (ORNL).

Deletion map A description of a specific chromosome that uses defined mutations – 
specific deleted areas in the genome – as “biochemical signposts” or markers for specific 
areas (ORNL).

Deoxyribonucleotide See: nucleotide (ORNL).

Deoxyribose A type of sugar that is one component of DNA (deoxyribonucleic acid) 
(ORNL).

Diploid A full set of genetic material consisting of paired chromosomes, one from each 
parental set. Most animal cells except the gametes have a diploid set of chromosomes. 
The diploid human genome has 46 chromosomes. See also: haploid (ORNL).

Directed evolution A laboratory process used on isolated molecules or microbes to 
cause mutations and identify subsequent adaptations to novel environments (ORNL).

Directed mutagenesis Alteration of DNA at a specific site and its reinsertion into an 
organism to study any effects of the change (ORNL).
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Directed sequencing Successively sequencing DNA from adjacent stretches of chromo-
some (ORNL).

Disease‐associated genes Alleles carrying particular DNA sequences associated with 
the presence of disease (ORNL).

DNA (deoxyribonucleic acid) The molecule that encodes genetic information. DNA is 
a double‐stranded molecule held together by weak bonds between base pairs of nucleo-
tides. The four nucleotides in DNA contain the bases adenine (A), guanine (G), cytosine 
(C), and thymine (T). In nature, base pairs only form between A and T and between G 
and C; the base sequence of each single strand can therefore be deduced from that of its 
partner (ORNL).

DNA bank A service that stores DNA extracted from blood samples or other human 
tissue (ORNL).

DNA probe See: probe (ORNL).

DNA repair genes Genes encoding proteins that correct errors in DNA sequencing 
(ORNL).

DNA replication The use of existing DNA as a template for the synthesis of new DNA 
strands. In humans and other eukaryotes, replication occurs in the cell nucleus (ORNL).

DNA sequence The relative order of base pairs, whether in a DNA fragment, gene, chro-
mosome, or an entire genome. See also: base sequence analysis (ORNL).

Domain (a) A discrete portion of a protein assumed to fold independently of the rest of 
the protein and possessing its own function (NCBI BLAST). (b) A discrete portion of a 
protein with its own function. The combination of domains in a single protein determines 
its overall function (ORNL). (c) Conserved structural entities with distinctive secondary 
structure content and an hydrophobic core. In small disulfide‐rich and Zn2+‐ or Ca2+‐bind-
ing domains, the hydrophobic core may be provided by cystines and metal ions, respec-
tively. Homologous domains with common functions usually show sequence similarities 
(SMART).

Domain composition Proteins with the same domain composition have at least one copy 
of each of the domains of the query (SMART).

Domain organization Proteins having all the domains as the query in the same order 
(additional domains are allowed) (SMART).

Dominant An allele that is almost always expressed, even if only one copy is present. 
See also: gene, genome (ORNL).

Double helix The twisted‐ladder shape that two linear strands of DNA assume when 
complementary nucleotides on opposing strands bond together (ORNL).

Draft sequence (a) The sequence generated by the Human Genome Project that, while 
incomplete, offers a virtual road map to an estimated 95% of all human genes. Draft 
sequence data are mostly in the form of 10,000 bp‐sized fragments whose approximate 
chromosomal locations are known. See also: sequencing, finished DNA sequence, work-
ing draft DNA sequence (ORNL). (b) This term has had several definitions, but generally 
refers to a sequence that is not yet finished but is of generally high quality. In terms of 
clone‐based projects, draft sequence refers to a project in which greater than 90% of the 
bases are of high quality. This means that a clone project will have several fragments 
connected by Ns. Often, the order and orientation of these fragments is unknown. How-
ever, these sequences, in conjunction with other data, are a useful substrate for genome 
assembly and annotation (NCBI).

DUST A program for filtering low‐complexity regions from nucleic acid sequences 
(NCBI BLAST).
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E
E value (a) Expectation value. The number of different alignments with scores equiv-
alent to or better than S that are expected to occur in a database search by chance. The 
lower the E value, the more significant the score (NCBI BLAST). (b) This represents 
the number of sequences with a score greater than or equal to X expected absolutely by 
chance. The E value connects the score (X) of an alignment between a user‐supplied 
sequence and a database sequence, generated by any algorithm, with the number of 
alignments with similar or greater scores that would be expected from a search of a 
random‐sequence database of equivalent size. Since version 2.0, E values are calcu-
lated using hidden Markov models, leading to more accurate estimates than before 
(SMART).

Electrophoresis A method of separating large molecules (such as DNA fragments or 
proteins) from a mixture of similar molecules. An electric current is passed through a 
medium containing the mixture, and each kind of molecule travels through the medium 
at a different rate, depending on its electrical charge and size. Agarose and acrylamide 
gels are the media commonly used for electrophoresis of proteins and nucleic acids 
(ORNL).

Electroporation A process using high‐voltage current to make cell membranes perme-
able to allow the introduction of new DNA; commonly used in recombinant DNA tech-
nology. See also: transfection (ORNL).

Embryonic stem (ES) cells An embryonic cell that can replicate indefinitely, transform 
into other types of cells, and serve as a continuous source of new cells (ORNL).

Endonuclease See: restriction enzyme (ORNL).

Enzyme A protein that acts as a catalyst, speeding the rate at which a biochemical reac-
tion proceeds but not altering the direction or nature of the reaction (ORNL).

Epistasis One gene interferes with or prevents the expression of another gene located at 
a different locus (ORNL).

Escherichia coli Common bacterium that has been studied intensively by geneticists 
because of its small genome size, normal lack of pathogenicity, and ease of growth in the 
laboratory (ORNL).

Eugenics The study of improving a species by artificial selection; usually refers to the 
selective breeding of humans (ORNL).

Eukaryote Cell or organism with membrane‐bound, structurally discrete nucleus and 
other well‐developed subcellular compartments. Eukaryotes include all organisms except 
viruses, bacteria, and blue‐green algae. See also: prokaryote, chromosome (ORNL).

Evolutionarily conserved See: conserved sequence (ORNL).

Exogenous DNA DNA originating outside an organism that has been introducted into 
the organism (ORNL).

Exon The protein‐coding DNA sequence of a gene. See also: intron (ORNL).

Exonuclease An enzyme that cleaves nucleotides sequentially from free ends of a linear 
nucleic acid substrate (ORNL).

Expressed gene See: gene expression (ORNL).

Expressed sequence tag (EST) (a) A short strand of DNA that is part of a cDNA mol-
ecule and can act as identifier of a gene. Used in locating and mapping genes. See also: 
cDNA, sequence‐tagged site (ORNL). (b) These are single‐pass sequences of cDNA 
clones. Databases of EST sequences are highly redundant but quite useful for gene iden-
tification. There are many efforts to cluster EST sequences to remove the redundancy and 
low‐quality sequences (NCBI).
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F 
FASTA (a) The first widely used algorithm for database similarity searching. The pro-
gram looks for optimal local alignments by scanning the sequence for small matches 
called “words.” Initially, the scores of segments in which there are multiple word hits are 
calculated (“init1”). Later, the scores of several segments may be summed to generate an 
“initn” score. An optimized alignment that includes gaps is shown in the output as “opt.” 
The sensitivity and speed of the search are inversely related and controlled by the “k‐tup” 
variable, which specifies the size of a word (NCBI BLAST). (b) An output format for 
nucleic acid or protein sequences.

Filial generation (F1, F2) Each generation of offspring in a breeding program, desig-
nated F1, F2, et. (ORNL).

Filtering Also known as masking. The process of hiding regions of (nucleic acid or 
amino acid) sequence having characteristics that frequently lead to spurious high scores. 
See also: SEG and DUST (NCBI BLAST).

Fingerprinting (a) In genetics, the identification of multiple specific alleles on a per-
son’s DNA to produce a unique identifier for that person. See also: forensics (ORNL). (b) 
The pattern of bands produced by a clone when restricted by a particular enzyme, such as 
HindIII. Clones that are related will have fingerprint bands in common. The more bands 
in common, the greater the degree of overlap (NCBI).

Finished DNA sequence High‐quality, low‐error, gap‐free DNA sequence of the human 
genome. Achieving this ultimate 2003 Human Genome Project (HGP) goal requires addi-
tional sequencing to close gaps, reduce ambiguities, and allow for only a single error every 
10,000 bases, the agreed‐upon standard for HGP finished sequence. See also: sequencing, 
draft sequence (ORNL).

Flow cytometry Analysis of biological material by detection of the light‐absorbing or 
fluorescing properties of cells or subcellular fractions (i.e., chromosomes) passing in a 
narrow stream through a laser beam. An absorbance or fluorescence profile of the sam-
ple is produced. Automated sorting devices, used to fractionate samples, sort successive 
droplets of the analyzed stream into different fractions depending on the fluorescence 
emitted by each droplet (ORNL).

Flow karyotyping Use of flow cytometry to analyze and separate chromosomes accord-
ing to their DNA content (ORNL).

Fluorescence in situ hybridization (FISH) A physical mapping approach that uses flu-
orescein tags to detect hybridization of probes with metaphase chromosomes and with the 
less‐condensed somatic interphase chromatin (ORNL).

Folded leaf A layer of α helices wrapped around a single hydrophobic core but not with 
the simple geometry of a bundle (SCOP).

Forensics The use of DNA for identification. Some examples of DNA use are to estab-
lish paternity in child support cases, establish the presence of a suspect at a crime scene, 
and identify accident victims (ORNL).

Fosmid A cloning system based on the E. coli F factor. These clones have an average 
insert size of 40 kb, with a very small standard deviation (NCBI).

Fraternal twin Siblings born at the same time as the result of fertilization of two ova by 
two sperm. They share the same genetic relationship to each other as any other siblings. 
See also: identical twin (ORNL).

Full gene sequence The complete order of bases in a gene. This order determines which 
protein a gene will produce (ORNL).

Functional genomics The study of genes, their resulting proteins, and the role played by 
the proteins in the body’s biochemical processes (ORNL).
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G
Gamete Mature male or female reproductive cell (sperm or ovum) with a haploid set of 
chromosomes (23 for humans) (ORNL).

Gap (a) A space introduced into an alignment to compensate for insertions and deletions 
in one sequence relative to another. To prevent the accumulation of too many gaps in 
an alignment, the introduction of a gap causes the deduction of a fixed amount (the gap 
score) from the alignment score. Extension of the gap to encompass additional nucleo-
tides or amino acid is also penalized in the scoring of an alignment (NCBI BLAST). (b) A 
position in an alignment that represents a deletion within one sequence relative to another. 
Gap penalties are requirements for alignment algorithms in order to reduce excessively 
gapped regions. Gaps in alignments represent insertions that usually occur in protruding 
loops or beta‐bulges within protein structures (SMART).

GC‐rich area Many DNA sequences carry long stretches of repeated G and C, which 
often indicates a gene‐rich region (ORNL).

Gel electrophoresis See: electrophoresis (ORNL).

Gene The fundamental physical and functional unit of heredity. A gene is an ordered 
sequence of nucleotides located in a particular position on a particular chromosome that 
encodes a specific functional product (i.e., a protein or RNA molecule). See also: gene 
expression (ORNL).

Gene amplification Repeated copying of a piece of DNA; a characteristic of tumor cells. 
See also: gene, oncogene (ORNL).

Gene chip technology Development of cDNA microarrays from a large number of 
genes. Used to monitor and measure changes in gene expression for each gene repre-
sented on the chip (ORNL).

Gene expression The process by which a gene’s coded information is converted into the 
structures present and operating in the cell. Expressed genes include those that are tran-
scribed into mRNA and then translated into protein, and those that are transcribed into 
RNA but not translated into protein (e.g., transfer and ribosomal RNAs) (ORNL).

Gene family Group of closely related genes that make similar products (ORNL).

Gene library See: genomic library (ORNL).

Gene mapping Determination of the relative positions of genes on a DNA molecule 
(chromosome or plasmid) and of the distance, in linkage units or physical units, between 
them (ORNL).

Gene pool All the variations of genes in a species. See also: allele, gene, polymorphism 
(ORNL).

Gene prediction Predictions of possible genes made by a computer program based on 
how well a stretch of DNA sequence matches known gene sequences (ORNL).

Gene product The biochemical material, either RNA or protein, resulting from expres-
sion of a gene. The amount of gene product is used to measure how active a gene is; 
abnormal amounts can be correlated with disease‐causing alleles (ORNL).

Gene targeting This is a specific type of transgenesis that targets a particular gene. If 
a mutated copy of a gene is electroporated into a cell, the inserted DNA will find the 
endogenous copy of itself and recombination will occur with some frequency (1–25%). 
If this event occurs in embryonic stem cells, cells carrying the new copy of the gene can 
be used to generate embryos that can be assessed for the phenotypic consequences of the 
mutation. This technique is used frequently in mice to study loss‐of‐function mutations 
(NCBI).

Gene testing See: genetic testing, genetic screening (ORNL).
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Gene therapy An experimental procedure aimed at replacing, manipulating, or sup-
plementing nonfunctional or misfunctioning genes with healthy genes. See also: gene, 
inherit, somatic cell gene therapy, germ line gene therapy (ORNL).

Gene trapping This strategy uses transgenesis to introduce DNA carrying a reporter gene 
(lacZ or GFP) flanked by various genomic signals (splice donor or acceptor sites, pro-
moters, etc.). Expression of the reporter gene indicates that the DNA has integrated into a 
region of the genome containing a gene. The gene that has been trapped can be recovered 
using the DNA sequences associated with the reporter construct. Often, the introduction of 
the gene‐trapping vector inactivates the gene into which it was introduced (NCBI).

Genetic code The sequence of nucleotides, coded in triplets (codons) along the mRNA, 
that determines the sequence of amino acids in protein synthesis. A gene’s DNA sequence 
can be used to predict the mRNA sequence, and the genetic code can in turn be used to 
predict the amino acid sequence (ORNL).

Genetic counseling Provides patients and their families with education and information 
about genetic‐related conditions and helps them to make informed decisions (ORNL).

Genetic discrimination Prejudice against those who have or are likely to develop an 
inherited disorder (ORNL).

Genetic engineering Altering the genetic material of cells or organisms to enable them 
to make new substances or perform new functions (ORNL).

Genetic engineering technology See: recombinant DNA technology (ORNL).

Genetic illness Sickness, physical disability, or other disorder resulting from the inheri-
tance of one or more deleterious alleles (ORNL).

Genetic informatics See: bioinformatics (ORNL).

Genetic map See: linkage map (ORNL).

Genetic marker A gene or other identifiable portion of DNA whose inheritance can be 
followed. See also: chromosome, DNA, gene, inherit (ORNL).

Genetic material See: genome (ORNL).

Genetic mosaic An organism in which different cells contain different genetic sequence. 
This can be the result of a mutation during development or fusion of embryos at an early 
developmental stage (ORNL).

Genetic polymorphism Difference in DNA sequence among individuals, groups, or 
populations (e.g., genes for blue eyes versus brown eyes) (ORNL).

Genetic predisposition Susceptibility to a genetic disease. May or may not result in 
actual development of the disease (ORNL).

Genetic screening Testing a group of people to identify individuals at high risk of hav-
ing or passing on a specific genetic disorder (ORNL).

Genetic testing Analyzing an individual’s genetic material to determine predisposition 
to a particular health condition or to confirm a diagnosis of genetic disease (ORNL).

Genetics The study of inheritance patterns of specific traits (ORNL).

Gene transfer Incorporation of new DNA into an organism’s cells, usually by a vector 
such as a modified virus. Used in gene therapy. See also: mutation, gene therapy, vector 
(ORNL).

Genome All the genetic material in the chromosomes of a particular organism; its size is 
generally given as its total number of base pairs (ORNL).

Genome project Research and technology development effort aimed at mapping and 
sequencing the genome of human beings and certain model organisms. See also: Human 
Genome Initiative (ORNL).
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Genomic library A collection of clones made from a set of randomly generated overlap-
ping DNA fragments that represent the entire genome of an organism. See also: library, 
arrayed library (ORNL).

Genomics The study of genes and their function (ORNL).

Genomic sequence See: DNA (ORNL).

Genotype The genetic constitution of an organism, as distinguished from its physical 
appearance (its phenotype) (ORNL).

Germ cell Sperm and egg cells and their precursors. Germ cells are haploid and have 
only one set of chromosomes (23 in all), while all other cells have two copies (46 in all) 
(ORNL).

Germ line The continuation of a set of genetic information from one generation to the 
next. See also: inherit (ORNL).

Germ line gene therapy An experimental process of inserting genes into germ cells or 
fertilized eggs to cause a genetic change that can be passed on to offspring. May be used 
to alleviate effects associated with a genetic disease. See also: genomics, somatic cell 
gene therapy (ORNL).

Germ line genetic mutation See: mutation (ORNL).

Global alignment The alignment of two nucleic acid or protein sequences over their 
entire length (NCBI BLAST).

Greek key A topology for a small number of β‐sheet strands in which some interstrand 
connections go across the end of a barrel or, in a sandwich fold, between β sheets (SCOP).

Guanine (G) A nitrogenous base, one member of the base pair GC (guanine and cyto-
sine) in DNA. See also: base pair, nucleotide (ORNL).

H
H The relative entropy of the target and background residue frequencies H can be thought 
of as a measure of the average information (in bits) available per position that distinguishes 
an alignment from chance. At high values of H short alignments can be distinguished by 
chance, whereas at lower H values a longer alignment may be necessary (NCBI BLAST).

Haploid A single set of chromosomes (half the full set of genetic material) present in the 
egg and sperm cells of animals and in the egg and pollen cells of plants. Human beings 
have 23 chromosomes in their reproductive cells. See also: diploid (ORNL).

Haplotype (a) A way of denoting the collective genotype of a number of closely linked 
loci on a chromosome (ORNL). (b) A set of closely linked genetic markers present on 
one chromosome that tend to be inherited together. A haplotype may also refer to a set 
of single‐nucleotide polymorphisms (SNPs) on a single chromatid that are statistically 
associated with one another (NCBI).

Hemizygous Having only one copy of a particular gene. For example, in humans, males 
are hemizygous for genes found on the Y chromosome (ORNL).

Hereditary cancer Cancer that occurs due to the inheritance of an altered gene within a 
family. See also: sporadic cancer (ORNL).

Heterozygosity The presence of different alleles at one or more loci on homologous 
chromosomes (ORNL).

Heterozygote See: heterozygosity (ORNL).

Highly conserved sequence DNA sequence that is very similar across several different 
types of organisms. See also: gene, mutation (ORNL).

High‐throughput sequencing A fast method of determining the order of bases in DNA. 
See also: sequencing (ORNL).
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Homeobox A short stretch of nucleotides whose base sequence is virtually identical in 
all the genes that contain it. Homeoboxes have been found in many organisms from fruit 
flies to human beings. In the fruit fly, a homeobox appears to determine when particular 
groups of genes are expressed during development (ORNL).

Homolog A member of a chromosome pair in diploid organisms or a gene that has the 
same origin and functions in two or more species (ORNL).

Homologous chromosome Chromosome containing the same linear gene sequences as 
another, each derived from one parent (ORNL).

Homologous recombination Swapping of DNA fragments between paired chromo-
somes (ORNL).

Homology (a) Similarity attributed to descent from a common ancestor (NCBI BLAST). 
(b) Similarity in DNA or protein sequences between individuals of the same species or 
among different species (ORNL). (c) Evolutionary descent from a common ancestor due 
to gene duplication (SMART).

Homozygote An organism that has two identical alleles of a gene. See also: heterozygote 
(ORNL).

Homozygous See: homozygote (ORNL).

HSP High‐scoring segment pair. Local alignments with no gaps that achieve one of the 
top alignment scores in a given search (NCBI BLAST).

Human gene therapy See: gene therapy (ORNL).

Human Genome Initiative Collective name for several projects begun in 1986 by the 
US Department of Energy (DOE) to create an ordered set of DNA segments from known 
chromosomal locations, develop new computational methods for analyzing genetic map 
and DNA sequence data, and develop new techniques and instruments for detecting and 
analyzing DNA. This DOE initiative is now known as the Human Genome Program. The 
joint national effort, led by the DOE and National Institutes of Health, is known as the 
Human Genome Project (ORNL).

Human Genome Project (HGP) Formerly titled Human Genome Initiative. See also: 
Human Genome Initiative (ORNL).

Hybrid The offspring of genetically different parents. See also: heterozygote (ORNL).

Hybridization The process of joining two complementary strands of DNA or one each 
of DNA and RNA to form a double‐stranded molecule (ORNL).

I
Identical twin Twins produced by the division of a single zygote, with identical geno-
types. See also: fraternal twin (ORNL).

Identity The extent to which two (nucleotide or amino acid) sequences are invariant 
(NCBI BLAST).

Immunotherapy Using the immune system to treat disease, for example, in the develop-
ment of vaccines. May also refer to the therapy of diseases caused by the immune system. 
See also: cancer (ORNL).

Imprinting A phenomenon in which the disease phenotype depends on which parent 
passed on the disease gene. For instance, both Prader‐Willi and Angelman syndromes are 
inherited when the same part of chromosome 15 is missing. When the father’s comple-
ment of 15 is missing, the child has Prader‐Willi, but when the mother’s complement of 
15 is missing, the child has Angelman syndrome (ORNL).

Independent assortment During meiosis each of the two copies of a gene is distributed to 
the germ cells independently of the distribution of other genes. See also: linkage (ORNL).
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Informatics See: bioinformatics (ORNL).

Informed consent An individual willingly agrees to participate in an activity after first 
being advised of the risks and benefits. See also: privacy (ORNL).

Inherit In genetics, to receive genetic material from parents through biological processes 
(ORNL).

Inherited See: inherit (ORNL).

Insertion A chromosome abnormality in which a piece of DNA is incorporated into a 
gene and thereby disrupts the gene’s normal function. See also: chromosome, DNA, gene, 
mutation (ORNL).

Insertional mutation See: insertion (ORNL).

In situ hybridization Use of a DNA or RNA probe to detect the presence of the comple-
mentary DNA sequence in cloned bacterial or cultured eukaryotic cells (ORNL).

Intellectual property rights Patents, copyrights, and trademarks. See also: patent 
(ORNL).

Interference One cross‐over event inhibits the chances of another cross‐over event. Also 
known as positive interference. Negative interference increases the chance of a second 
cross‐over. See also: crossing over (ORNL).

Interphase The period in the cell cycle when DNA is replicated in the nucleus; followed 
by mitosis (ORNL).

Intracellular domains Domain families that are most prevalent in proteins within the 
cytoplasm (SMART).

Intron DNA sequence that interrupts the protein‐coding sequence of a gene; an intron is 
transcribed into RNA but is cut out of the message before it is translated into protein. See 
also: exon (ORNL).

In vitro Studies performed outside a living organism, such as in a laboratory (ORNL).

In vivo Studies carried out in living organisms (ORNL).

Isoenzyme An enzyme performing the same function as another enzyme but having a 
different set of amino acids. The two enzymes may function at different speeds (ORNL).

J
Jelly roll A variant of Greek‐key topology with both ends of a sandwich or a barrel fold 
being crossed by two interstrand connections. See also: Greek key (SCOP).

Junk DNA Stretches of DNA that do not code for genes; most of the genome consists 
of so‐called junk DNA which may have regulatory and other functions. Also called non-
coding DNA (ORNL).

K
K A statistical parameter used in calculating BLAST scores that can be thought of as a 
natural scale for search space size. The value K is used in converting a raw score (S) to a 
bit score (S′) (NCBI BLAST).

Karyotype A photomicrograph of an individual’s chromosomes arranged in a stan-
dard format showing the number, size, and shape of each chromosome type; used in 
low‐resolution physical mapping to correlate gross chromosomal abnormalities with the 
characteristics of specific diseases (ORNL).

Kilobase (kb) Unit of length for DNA fragments equal to 1000 nucleotides (ORNL).

Knockout Deactivation of specific genes; used in laboratory organisms to study gene 
function. See also: gene, locus, model organisms (ORNL).
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L
Lambda (λ) A statistical parameter used in calculating BLAST scores that can be 
thought of as a natural scale for a scoring system. The value λ is used in converting a raw 
score (S) to a bit score (S′) (NCBI BLAST).

Library An unordered collection of clones (i.e., cloned DNA from a particular organ-
ism) whose relationship to each other can be established by physical mapping. See also: 
genomic library, arrayed library (ORNL).

Linkage The proximity of two or more markers (e.g., genes, restriction fragment length 
polymorphism markers) on a chromosome; the closer the markers, the lower the probabil-
ity that they will be separated during DNA repair or replication processes (binary fission 
in prokaryotes, mitosis or meiosis in eukaryotes), and hence the greater the probability 
that they will be inherited together (ORNL).

Linkage disequilibrium Where alleles occur together more often than can be accounted 
for by chance. Indicates that the two alleles are physically close on the DNA strand. 
See also: Mendelian inheritance (ORNL).

Linkage map A map of the relative positions of genetic loci on a chromosome, deter-
mined on the basis of how often the loci are inherited together. Distance is measured in 
centimorgans (cM) (ORNL).

Local alignment The alignment of some portion of two nucleic acid or protein sequences 
(NCBI BLAST).

Localization Numbers of domains that are thought from SwissProt annotations to be 
present in different cellular compartments (cytoplasm, extracellular space, nucleus, and 
membrane associated) are shown in annotation pages (SMART).

Localize Determination of the original position (locus) of a gene or other marker on a 
chromosome (ORNL).

Locus (plural loci) The position on a chromosome of a gene or other chromosome 
marker; also, the DNA at that position. The use of locus is sometimes restricted to mean 
expressed DNA regions. See also: gene expression (ORNL).

Long‐range restriction mapping Restriction enzymes are proteins that cut DNA at pre-
cise locations. Restriction maps depict the chromosomal positions of restriction enzyme 
cutting sites. These are used as biochemical “signposts” or markers of specific areas along 
the chromosomes. The map will detail the positions where the DNA molecule is cut by 
particular restriction enzymes (ORNL).

Low‐complexity region (LCR) Regions of biased composition including homopoly-
meric runs, short‐period repeats, and more subtle overrepresentation of one or a few resi-
dues. The SEG program is used to mask or filter LCRs in amino acid queries. The DUST 
program is used to mask or filter LCRs in nucleic acid queries (NCBI BLAST).

M 
Macrorestriction map Map depicting the order of and distance between sites at which 
restriction enzymes cleave chromosomes (ORNL).

Mapping See: gene mapping, linkage map, physical map (ORNL).

Mapping population The group of related organisms used in constructing a genetic map 
(ORNL).

Marker See: genetic marker (ORNL).

Masking Also known as filtering. The removal of repeated or low‐complexity regions 
from a sequence in order to improve the sensitivity of sequence similarity searches per-
formed with that sequence (NCBI BLAST).
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Mass spectrometer An instrument used to identify chemicals in a substance by their 
mass and charge (ORNL).

Mate pair The sequence obtained from opposite ends of a particular clone are referred to 
as mate pairs. Knowing that two sequences are derived from the same clone allows these 
sequences to be linked, even if the full insert of the clone is unavailable. This is key to 
WGS assemblies (NCBI).

Meander A simple topology of a β sheet where any two consecutive strands are adjacent 
and antiparallel (SCOP).

Megabase (Mb) Unit of length for DNA fragments equal to 1 million nucleotides and 
roughly equal to 1 cM. See also: centimorgan (ORNL).

Meiosis The process of two consecutive cell divisions in the diploid progenitors of sex 
cells. Meiosis results in four rather than two daughter cells, each with a haploid set of 
chromosomes. See also: mitosis (ORNL).

Mendelian inheritance One method in which genetic traits are passed from parents to 
offspring. Named for Gregor Mendel, who first studied and recognized the existence of 
genes and this method of inheritance. See also: autosomal dominant, recessive gene, sex 
linked (ORNL).

Messenger RNA (mRNA) RNA that serves as a template for protein synthesis. See also: 
genetic code (ORNL).

Metaphase A stage in mitosis or meiosis during which the chromosomes are aligned 
along the equatorial plane of the cell (ORNL).

Microarray Sets of miniaturized chemical reaction areas that may also be used to test 
DNA fragments, antibodies, or proteins (ORNL).

Microbial genetics The study of genes and gene function in bacteria, archaea, and 
other microorganisms. Often used in research in the fields of bioremediation, alternative 
energy, and disease prevention. See also: model organisms, biotechnology, bioremedia-
tion (ORNL).

Microinjection A technique for introducing a solution of DNA into a cell using a fine 
microcapillary pipet (ORNL).

Mitochondrial DNA The genetic material found in mitochondria, the organelles that 
generate energy for the cell. Not inherited in the same fashion as nucleic DNA. See also: 
cell, DNA, genome, nucleus (ORNL).

Mitosis The process of nuclear division in cells that produces daughter cells that are 
genetically identical to each other and to the parent cell. See also: meiosis (ORNL).

Modeling The use of statistical analysis, computer analysis, or model organisms to pre-
dict outcomes of research (ORNL).

Model organisms A laboratory animal or other organism useful for research (ORNL).

Molecular biology The study of the structure, function, and makeup of biologically 
important molecules (ORNL).

Molecular farming The development of transgenic animals to produce human proteins 
for medical use (ORNL).

Molecular genetics The study of macromolecules important in biological inheritance 
(ORNL).

Molecular medicine The treatment of injury or disease at the molecular level. Examples 
include the use of DNA‐based diagnostic tests or medicine derived from DNA sequence 
information (ORNL).

Monogenic disorder A disorder caused by mutation of a single gene. See also: muta-
tion, polygenic disorder (ORNL).
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Monogenic inheritance See: monogenic disorder (ORNL).

Monosomy Possessing only one copy of a particular chromosome instead of the normal 
two copies. See also: cell, chromosome, gene expression, trisomy (ORNL).

Morbid map A diagram showing the chromosomal location of genes associated with 
disease (ORNL).

Motif (a) A short conserved region in a protein sequence. Motifs are frequently highly 
conserved parts of domains (NCBI BLAST). (b) Sequence motifs are short conserved 
regions of polypeptides. Sets of sequence motifs need not necessarily represent homologs 
(SMART).

Mouse model See: model organisms (ORNL).

Multifactorial or multigenic disorder See: polygenic disorder (ORNL).

Multiple sequence alignment An alignment of three or more sequences with gaps 
inserted in the sequences such that residues with common structural positions and/or 
ancestral residues are aligned in the same column. ClustalW is one of the most widely 
used multiple sequence alignment programs (NCBI BLAST).

Multiplexing A laboratory approach that performs multiple sets of reactions in parallel 
(simultaneously); greatly increasing speed and throughput (ORNL).

Murine Organism in the genus Mus. A rat or mouse (ORNL).

Mutagen An agent that causes a permanent genetic change in a cell. Does not include 
changes occurring during normal genetic recombination (ORNL).

Mutagenicity The capacity of a chemical or physical agent to cause permanent genetic 
alterations. See also: somatic cell genetic mutation (ORNL).

Mutation (a) Any heritable change in DNA sequence. See also: polymorphism (ORNL). 
(b) A sequence variation that deviates from the reference, or “wildtype”, sequence. This 
variation can be a SNP, an insertion of sequence, or a deletion of sequence. There can 
be a great deal of sequence variation between individuals in a population. For example, 
different humans may have as many as 1 base pair difference every 1000 bp. In practice, 
mutations are distinguished from variation because they have phenotypic consequences. 
Mutations in the Pax6 gene that lead to a loss of the function of that gene lead to the 
eyeless mutation in flies, the Small eye mutation in mice, and aniridia in humans (NCBI).

N
N50 The contig/scaffold length at which half of the bases in a given assembly reside. 
This provides a measure of continuity. For instance, a scaffold N50 of 15 Mb means that 
at least half of the bases in the assembly are in a contig that is at least 15 Mb (NCBI).

Nitrogenous base A nitrogen‐containing molecule having the chemical properties of a 
base. DNA contains the nitrogenous bases adenine (A), guanine (G), cytosine (C), and 
thymine (T). See also: DNA (ORNL).

Northern blot A gel‐based laboratory procedure that locates mRNA sequences on a 
gel that are complementary to a piece of DNA used as a probe. See also: DNA, library 
(ORNL).

Nuclear transfer A laboratory procedure in which a cell’s nucleus is removed and 
placed into an oocyte with its own nucleus removed so the genetic information from the 
donor nucleus controls the resulting cell. Such cells can be induced to form embryos. This 
process was used to create the cloned sheep Dolly. See also: cloning (ORNL).

Nucleic acid A large molecule composed of nucleotide subunits. See also: DNA (ORNL).

Nucleolar organizing region A part of the chromosome containing rRNA genes 
(ORNL).
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Nucleotide A subunit of DNA or RNA consisting of a nitrogenous base (adenine, gua-
nine, thymine, or cytosine in DNA; adenine, guanine, uracil, or cytosine in RNA), a 
phosphate molecule, and a sugar molecule (deoxyribose in DNA and ribose in RNA). 
Thousands of nucleotides are linked to form a DNA or RNA molecule. See also: DNA, 
base pair, RNA (ORNL).

Nucleus The cellular organelle in eukaryotes that contains most of the genetic material 
(ORNL).

O
Oligo See: oligonucleotide (ORNL).

Oligogenic A phenotypic trait produced by two or more genes working together. See also: 
polygenic disorder (ORNL).

Oligonucleotide A molecule usually composed of 25 or fewer nucleotides; used as a 
DNA synthesis primer. See also: nucleotide (ORNL).

Oncogene A gene, one or more forms of which are associated with cancer. Many onco-
genes are involved, directly or indirectly, in controlling the rate of cell growth (ORNL).

Open reading frame (ORF) The sequence of DNA or RNA located between the 
start‐code sequence (initiation codon) and the stop‐code sequence (termination codon) 
(ORNL).

Operon A set of genes transcribed under the control of an operator gene (ORNL).

Optimal alignment An alignment of two sequences with the highest possible score 
(NCBI BLAST).

ORF See: open reading frame (SMART).

Orthologous Homologous sequences in different species that arose from a common 
ancestral gene during speciation; may or may not be responsible for a similar function 
(NCBI BLAST).

Overlapping clones See: genomic library (ORNL).

P
p value The probability of an alignment occurring with the score in question or better. 
The p value is calculated by relating the observed alignment score S to the expected dis-
tribution of high‐scoring segment pair scores from comparisons of random sequences of 
the same length and composition as the query to the database. The most highly significant 
p values will be those close to zero. The p and E values are different ways of representing 
the significance of the alignment (NCBI BLAST).

P1‐derived artificial chromosome (PAC) One type of vector used to clone DNA frag-
ments (insert size 100–300 kb; average 150 kb) in Escherichia coli cells. Based on bacte-
riophage (a virus) P1 genome. See also: cloning vector (ORNL).

PAM Point accepted mutation. A unit used to quantify the amount of evolutionary 
change in a protein sequence. The amount of evolution which will change, on average, 
1% of amino acids in a protein sequence is 1.0 PAM units. A PAM(x) substitution matrix 
is a look‐up table in which scores for each amino acid substitution have been calculated 
based on the frequency of that substitution in closely related proteins that have experi-
enced a certain amount (x) of evolutionary divergence (NCBI BLAST).

Paralogous Homologous sequences within a single species that arose by gene duplica-
tion (NCBI BLAST).

Patent In genetics, conferring the right or title to genes, gene variations, or identifiable por-
tions of sequenced genetic material of an individual or organization. See also: gene (ORNL).
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Pedigree A family tree diagram that shows how a particular genetic trait or disease has 
been inherited. See also: inherit (ORNL).

Penetrance The probability of a gene or genetic trait being expressed. “Complete” pen-
etrance means the gene or genes for a trait are expressed in the whole population that has 
the genes. “Incomplete” penetrance means the genetic trait is expressed in only part of the 
population. The percent penetrance may also change with the age range of the population 
(ORNL).

Peptide Two or more amino acids joined by a bond called a “peptide bond.” See also: 
polypeptide (ORNL).

Phage A virus for which the natural host is a bacterial cell (ORNL).

Pharmacogenomics The study of the interaction of an individual’s genetic makeup and 
response to a drug (ORNL).

Phenocopy A trait not caused by inheritance of a gene but that appears to be identical to 
a genetic trait (ORNL).

Phenotype (a) The physical characteristics of an organism or the presence of a disease 
that may or may not be genetic. See also: genotype (ORNL). (b) An observable charac-
teristic displayed by an organism. These characteristics can be controlled by genes, by 
the environment, or a combination of both. The characteristic can be directly observable, 
such as having brown eyes. In some cases, the phenotype will be measurable, such as 
having high blood pressure (NCBI).

Physical map A map of the locations of identifiable landmarks on DNA (e.g., restric-
tion enzyme cutting sites, genes), regardless of inheritance. Distance is measured in base 
pairs. For the human genome, the lowest‐resolution physical map is the banding patterns 
on the 24 different chromosomes; the highest‐resolution map is the complete nucleotide 
sequence of the chromosomes (ORNL).

Plasmid Autonomously replicating extrachromosomal circular DNA molecules, distinct 
from the normal bacterial genome and nonessential for cell survival under nonselective 
conditions. Some plasmids are capable of integrating into the host genome. A number of 
artificially constructed plasmids are used as cloning vectors (ORNL).

Pleiotropy One gene that causes many different physical traits such as multiple disease 
symptoms (ORNL).

Pluripotency The potential of a cell to develop into more than one type of mature cell, 
depending on environment (ORNL).

Polygenic disorder Genetic disorder resulting from the combined action of alleles of 
more than one gene (e.g., heart disease, diabetes, and some cancers). Although such dis-
orders are inherited, they depend on the simultaneous presence of several alleles; hered-
itary patterns are therefore usually more complex than those of single‐gene disorders. 
See also: single‐gene disorder (ORNL).

Polymerase chain reaction (PCR) A method for amplifying a DNA base sequence 
using a heat‐stable polymerase and two 20‐base primers, one complementary to the (+) 
strand at one end of the sequence to be amplified and one complementary to the (–) strand 
at the other end. Because the newly synthesized DNA strands can subsequently serve as 
additional templates for the same primer sequences, successive rounds of primer anneal-
ing, strand elongation, and dissociation produce rapid and highly specific amplification 
of the desired sequence. PCR can also be used to detect the existence of the defined 
sequence in a DNA sample (ORNL).

Polymerase, DNA or RNA Enzyme that catalyzes the synthesis of nucleic acids on 
pre‐existing nucleic acid templates, assembling RNA from ribonucleotides or DNA from 
deoxyribonucleotides (ORNL).
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Polymorphism Difference in DNA sequence among individuals that may underlie dif-
ferences in health. Genetic variations occurring in more than 1% of a population would 
be considered useful polymorphisms for genetic linkage analysis. See also: mutation 
(ORNL).

Polypeptide A protein or part of a protein made of a chain of amino acids joined by a 
peptide bond (ORNL).

Population genetics The study of variation in genes among a group of individuals 
(ORNL).

Positional cloning A technique used to identify genes, usually those that are associated 
with diseases, based on their location on a chromosome (ORNL).

Primer Short pre‐existing polynucleotide chain to which new deoxyribonucleotides can 
be added by DNA polymerase (ORNL).

Privacy In genetics, the right of people to restrict access to their genetic information 
(ORNL).

Probe Single‐stranded DNA or RNA molecules of specific base sequence, labeled 
either radioactively or immunologically, that are used to detect the complementary base 
sequence by hybridization (ORNL).

Profile (a) A table that lists the frequencies of each amino acid in each position of protein 
sequence. Frequencies are calculated from multiple alignments of sequences containing 
a domain of interest. See also: PSSM (NCBI BLAST). (b) A table of position‐specific 
scores and gap penalties, representing a homologous family, that may be used to search 
sequence databases. In ClustalW‐derived profiles those sequences that are more distantly 
related are assigned higher weights (SMART).

Prokaryote Cell or organism lacking a membrane‐bound, structurally discrete nucleus 
and other subcellular compartments. Bacteria are examples of prokaryotes. See also: 
chromosome, eukaryote (ORNL).

Promoter A DNA site to which RNA polymerase will bind and initiate transcription 
(ORNL).

Pronucleus The nucleus of a sperm or egg prior to fertilization. See also: nucleus, trans-
genic (ORNL).

Protein A large molecule composed of one or more chains of amino acids in a specific 
order; the order is determined by the base sequence of nucleotides in the gene that codes 
for the protein. Proteins are required for the structure, function, and regulation of the 
body’s cells, tissues, and organs; each protein has unique functions. Examples are hor-
mones, enzymes, and antibodies (ORNL).

Proteome Proteins expressed by a cell or organ at a particular time and under specific 
conditions (ORNL).

Proteomics Systematic analysis of protein expression of normal and diseased tissues 
that involves the separation, identification, and characterization of all of the proteins in an 
organism (NCBI BLAST).

Pseudogene A sequence of DNA similar to a gene but nonfunctional; probably the rem-
nant of a once‐functional gene that accumulated mutations (ORNL).

PSI‐BLAST Position‐specific iterative BLAST. An iterative search using the BLAST 
algorithm. A profile is built after the initial search, which is then used in subsequent 
searches. The process may be repeated, if desired, with new sequences found in each 
cycle used to refine the profile (NCBI BLAST).

PSSM Position‐specific scoring matrix. The PSSM gives the log‐odds score for finding 
a particular matching amino acid in a target sequence. See also: profile (NCBI BLAST).
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Purine A nitrogen‐containing, double‐ring, basic compound that occurs in nucleic acids. 
The purines in DNA and RNA are adenine and guanine. See also: base pair (ORNL).

Pyrimidine A nitrogen‐containing, single‐ring, basic compound that occurs in nucleic 
acids. The pyrimidines in DNA are cytosine and thymine; in RNA, cytosine and uracil. 
See also: base pair (ORNL).

Q
Query The input sequence (or other type of search term) with which all of the entries in 
a database are to be compared (NCBI BLAST).

R
Radiation hybrid A hybrid cell containing small fragments of irradiated human chro-
mosomes. Maps of irradiation sites on chromosomes for the human, rat, mouse, and 
other genomes provide important markers, allowing the construction of very precise 
sequence‐tagged site maps indispensable to studying multifactorial diseases. See also: 
sequence‐tagged site (ORNL).

Rare‐cutter enzyme See: restriction enzyme cutting site (ORNL).

Raw score The score of an alignment S calculated as the sum of substitution and gap 
scores. Substitution scores are given by a look‐up table. Gap scores are typically calcu-
lated as the sum of G, the gap opening penalty, and L, the gap extension penalty. For a gap 
of length n, the gap cost would be G + Ln. The choice of gap costs G and L is empirical, 
but it is customary to choose a high value for G (10–15) and a low value for L (1–2). See 
also: PAM, BLOSUM (NCBI BLAST).

Recessive gene A gene which will only be expressed if there are two identical copies or, 
for a male, if one copy is present on the X chromosome (ORNL).

Reciprocal translocation When a pair of chromosomes exchange exactly the same 
length and area of DNA. Results in a shuffling of genes (ORNL).

Recombinant clone Clone containing recombinant DNA molecules. See also: recombi-
nant DNA technology (ORNL).

Recombinant DNA molecules A combination of DNA molecules of different origin that 
are joined using recombinant DNA technologies (ORNL).

Recombinant DNA technology Procedure used to join together DNA segments in a 
cell‐free system (an environment outside a cell or organism). Under appropriate condi-
tions, a recombinant DNA molecule can enter a cell and replicate there, either autono-
mously or after it has become integrated into a cellular chromosome (ORNL).

Recombination The process by which progeny derives a combination of genes dif-
ferent from that of either parent. In higher organisms, this can occur by crossing over. 
See also: crossing over, mutation (ORNL).

RefSeq (Reference Sequence) The goal of the RefSeq project is to produce a reference 
sequence for all naturally occurring molecules from the central dogma (DNA, RNA, Pro-
tein) (NCBI).

Regulatory region or sequence A DNA base sequence that controls gene expression 
(ORNL).

Repetitive DNA Sequences of varying lengths that occur in multiple copies in the 
genome; it represents much of the human genome (ORNL).

Reporter gene See: marker (ORNL).

Resolution Degree of molecular detail on a physical map of DNA, ranging from low to 
high (ORNL).



Glossary 1097

Restriction enzyme cutting site A specific nucleotide sequence of DNA at which a particu-
lar restriction enzyme cuts the DNA. Some sites occur frequently in DNA (e.g., every several 
hundred base pairs); others much less frequently (rare cutter; e.g., every 10,000 bp) (ORNL).

Restriction enzyme, endonuclease A protein that recognizes specific, short nucleotide 
sequences and cuts DNA at those sites. Bacteria contain over 400 such enzymes that 
recognize and cut more than 100 different DNA sequences. See also: restriction enzyme 
cutting site (ORNL).

Restriction fragment length polymorphism (RFLP) Variation between individuals in 
DNA fragment sizes cut by specific restriction enzymes; polymorphic sequences that result 
in RFLPs are used as markers on both physical maps and genetic linkage maps. RFLPs 
are usually caused by mutation at a cutting site. See also: marker, polymorphism (ORNL).

Retroviral infection The presence of retroviral vectors, such as some viruses, which use 
their recombinant DNA to insert their genetic material into the chromosomes of the host’s 
cells. The virus is then propagated by the host cell (ORNL).

Reverse transcriptase An enzyme used by retroviruses to form a complementary DNA 
sequence (cDNA) from their RNA. The resulting DNA is then inserted into the chromo-
some of the host cell (ORNL).

Ribonucleotide See: nucleotide (ORNL).

Ribose The five‐carbon sugar that serves as a component of RNA. See also: ribonucleic 
acid, deoxyribose (ORNL).

Ribosomal RNA (rRNA) A class of RNA found in the ribosomes of cells (ORNL).

Ribosomes Small cellular components composed of specialized ribosomal RNA and 
protein; site of protein synthesis. See also: RNA (ORNL).

Risk communication In genetics, a process in which a genetic counselor or other med-
ical professional interprets genetic test results and advises patients of the consequences 
for them and their offspring (ORNL).

RNA (ribonucleic acid) A chemical found in the nucleus and cytoplasm of cells; it plays 
an important role in protein synthesis and other chemical activities of the cell. The struc-
ture of RNA is similar to that of DNA. There are several classes of RNA molecules, 
including messenger RNA, transfer RNA, ribosomal RNA, and other small RNAs, each 
serving a different purpose (ORNL).

S
Sanger sequencing A widely used method of determining the order of bases in DNA. 
See also: sequencing, shotgun sequencing (ORNL).

Satellite A chromosomal segment that branches off from the rest of the chromosome but 
is still connected by a thin filament or stalk (ORNL).

Scaffold In genomic mapping, a series of contigs that are in the right order but not nec-
essarily connected in one continuous stretch of sequence (ORNL).

Seed alignment Alignment that contains only one of each pair of homologs that are rep-
resented in a ClustalW‐derived phylogenetic tree linked by a branch of length less than a 
distance of 0.2 (SMART).

SEG A program for filtering low‐complexity regions in amino acid sequences. Residues 
that have been masked are represented as “X” in an alignment. SEG filtering is performed 
by default in the blastp subroutine of BLAST 2.0 (NCBI BLAST).

Segmental duplication A region of genomic DNA ranging from 1 to 400 kb that may 
be found at more than one site in the genome. Segmental duplications often share >90% 
sequence identity. See also Copy Number Variation (CNV) (NCBI).
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Segregation The normal biological process whereby the two pieces of a chromosome 
pair are separated during meiosis and randomly distributed to the germ cells (ORNL).

Sequence See: base sequence (ORNL).

Sequence assembly A process whereby the order of multiple sequenced DNA fragments 
is determined (ORNL).

Sequence‐tagged site (STS) Short (200–500 bp) DNA sequence that has a single occur-
rence in the human genome and whose location and base sequence are known. Detectable 
by polymerase chain reaction, STSs are useful for localizing and orienting the mapping 
and sequence data reported from many different laboratories, and serve as landmarks on 
the developing physical map of the human genome. Expressed sequence tags (ESTs) are 
STSs derived from cDNAs (ORNL).

Sequencing Determination of the order of nucleotides (base sequences) in a DNA or 
RNA molecule or the order of amino acids in a protein (ORNL).

Sequencing technology The instrumentation and procedures used to determine the order 
of nucleotides in DNA (ORNL).

Sex chromosome The X or Y chromosome in human beings that determines the sex of 
an individual. Females have two X chromosomes in diploid cells; males have an X and a 
Y chromosome. The sex chromosomes comprise the 23rd chromosome pair in a karyo-
type. See also: autosome (ORNL).

Sex linked Traits or diseases associated with the X or Y chromosome; generally seen in 
males. See also: gene, mutation, sex chromosome (ORNL).

Shotgun method Sequencing method that involves randomly sequenced cloned pieces 
of the genome, with no prior knowledge of where the piece originally came from. This can 
be contrasted with “directed” strategies, in which pieces of DNA from known chromo-
somal locations are sequenced. Because there are advantages to both strategies, research-
ers use both random (or shotgun) and directed strategies in combination to sequence the 
human genome. See also: library, genomic library (ORNL).

Similarity The extent to which nucleotide or protein sequences are related. The extent 
of similarity between two sequences can be based on percent sequence identity and/or 
conservation. In BLAST, similarity refers to a positive matrix score (NCBI BLAST).

Single‐gene disorder Hereditary disorder caused by a mutant allele of a single gene 
(e.g., Duchenne muscular dystrophy, retinoblastoma, sickle cell disease). See also: poly-
genic disorders (ORNL).

Single‐nucleotide polymorphism (SNP) (a) DNA sequence variations that occur when 
a single nucleotide (A, T, C, or G) in the genome sequence is altered. See also: mutation, 
polymorphism, single‐gene disorder (ORNL). (b) A single base difference found when 
comparing the same DNA sequence from two different individuals (NCBI).

Somatic cell Any cell in the body except gametes and their precursors. See also: gamete 
(ORNL).

Somatic cell gene therapy Incorporating new genetic material into cells for therapeutic 
purposes. The new genetic material cannot be passed to offspring. See also: gene therapy 
(ORNL).

Somatic cell genetic mutation A change in the genetic structure that is neither inher-
ited nor passed to offspring. Also called acquired mutations. See also: germ line genetic 
mutation (ORNL).

Southern blotting Transfer by absorption of DNA fragments separated in electropho-
retic gels to membrane filters for detection of specific base sequences by radiolabeled 
complementary probes (ORNL).
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Spectral karyotype (SKY) A graphic of all an organism’s chromosomes, each labeled 
with a different color. Useful for identifying chromosomal abnormalities. See also: chro-
mosome (ORNL).

Splice site Location in the DNA sequence where RNA removes the noncoding areas to 
form a continuous gene transcript for translation into a protein (ORNL).

Sporadic cancer Cancer that occurs randomly and is not inherited from parents. Caused 
by DNA changes in one cell that grows and divides, spreading throughout the body. 
See also: hereditary cancer (ORNL).

SSAHA A hashing algorithm developed for rapid searching of large amounts of genome 
sequence. This program is similar to BLAT but does not use splice information to align 
mRNA sequences, nor can it perform translated searches (NCBI).

Stem cell Undifferentiated, primitive cells in the bone marrow that have the ability both 
to multiply and to differentiate into specific blood cells (ORNL).

Structural genomics The effort to determine the three‐dimensional structures of large 
numbers of proteins using both experimental techniques and computer simulation 
(ORNL).

STS (sequence tag site) In general, short sequences (200–500 bp) are produced through-
out a genome. Oligonucleotide primers are generated such that this sequence can be 
amplified using PCR to produce a discrete band when analyzed by electrophoresis. STS 
markers can be polymorphic or monomorphic. They are critical to integrating nonse-
quence‐based maps (such as genetic or radiation hybrid) with sequence‐based maps 
(NCBI).

Substitution (a) The presence of a nonidentical amino acid at a given position in an 
alignment. If the aligned residues have similar physicochemical properties, the substi-
tution is said to be “conservative” (NCBI BLAST). (b) In genetics, a type of mutation 
due to replacement of one nucleotide in a DNA sequence by another nucleotide or 
replacement of one amino acid in a protein by another amino acid. See also: mutation 
(ORNL).

Substitution matrix A substitution matrix containing values proportional to the prob-
ability that amino acid i mutates into amino acid j for all pairs of amino acids. Such 
matrices are constructed by assembling a large and diverse sample of verified pairwise 
alignments of amino acids. If the sample is large enough to be statistically significant, the 
resulting matrices should reflect the true probabilities of mutations occurring through a 
period of evolution (NCBI BLAST).

Supercontig (scaffold) A supercontig is formed when an association can be made 
between two contigs that have no sequence overlap. This commonly occurs using infor-
mation obtained from paired plasmid ends. For example, both ends of a BAC clone are 
sequenced. It can be inferred that these two sequences are approximately 150–200 kb 
apart (based on the average size of a BAC). If the sequence from one end is found in a 
particular sequence contig, and the sequence from the other end is found in a different 
sequence contig, the two sequence contigs are said to be linked. In general, it is use-
ful to have end sequences from more than one clone to provide evidence for linkage 
(NCBI).

Suppressor gene A gene that can suppress the action of another gene (ORNL).

Syndrome The group or recognizable pattern of symptoms or abnormalities that indicate 
a particular trait or disease (ORNL).

Syngeneic Genetically identical members of the same species (ORNL).

Synteny Genes occurring in the same order on chromosomes of different species. 
See also: linkage, conserved sequence (ORNL).
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T
Tandem repeat sequences Multiple copies of the same base sequence on a chromo-
some; used as markers in physical mapping. See also: physical map (ORNL).

Targeted mutagenesis Deliberate change in the genetic structure directed at a specific 
site on the chromosome. Used in research to determine the targeted region’s function. 
See also: mutation, polymorphism (ORNL).

Technology transfer The process of transferring scientific findings from research labo-
ratories to the commercial sector (ORNL).

Telomerase The enzyme that directs the replication of telomeres (ORNL).

Telomere The end of a chromosome. This specialized structure is involved in the replica-
tion and stability of linear DNA molecules. See also: DNA replication (ORNL).

Teratogenic Substances such as chemicals or radiation that causes abnormal develop-
ment of an embryo. See also: mutatgen (ORNL).

Thymine (T) A nitrogenous base, one member of the base pair AT (adenine–thymine). 
See also: base pair, nucleotide (ORNL).

Toxicogenomics The study of how genomes respond to environmental stressors or tox-
icants. Combines genome‐wide mRNA expression profiling with protein expression pat-
terns using bioinformatics to understand the role of gene–environment interactions in 
disease and dysfunction (ORNL).

Transcription The synthesis of an RNA copy from a sequence of DNA (a gene); the first 
step in gene expression. See also: translation (ORNL).

Transcription factor A protein that binds to regulatory regions and helps control gene 
expression (ORNL).

Transcriptome The full complement of activated genes, mRNAs, or transcripts in a par-
ticular tissue at a particular time (ORNL).

Transfection The introduction of foreign DNA into a host cell. See also: cloning vector, 
gene therapy (ORNL).

Transfer RNA (tRNA) A class of RNA having structures with triplet nucleotide sequences 
that are complementary to the triplet nucleotide coding sequences of mRNA. The role of 
tRNAs in protein synthesis is to bond with amino acids and transfer them to the ribosomes, 
where proteins are assembled according to the genetic code carried by mRNA (ORNL).

Transformation A process by which the genetic material carried by an individual cell is 
altered by incorporation of exogenous DNA into its genome (ORNL).

Transgenic An experimentally produced organism in which DNA has been artificially 
introduced and incorporated into the organism’s germ line. See also: cell, DNA, gene, 
nucleus, germ line (ORNL).

Translation The process in which the genetic code carried by mRNA directs the synthe-
sis of proteins from amino acids. See also: transcription (ORNL).

Translocation A mutation in which a large segment of one chromosome breaks off and 
attaches to another chromosome. See also: mutation (ORNL).

Transposable element A class of DNA sequences that can move from one chromosomal 
site to another (ORNL).

Trisomy Possessing three copies of a particular chromosome instead of the normal two 
copies. See also: cell, gene, gene expression, chromosome (ORNL).

U
Unitary matrix Also known as identity matrix. A scoring system in which only identical 
characters receive a positive score (NCBI BLAST).
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Up and down The simplest topology for a helical bundle or folded leaf, in which consec-
utive helices are adjacent and antiparallel; it is approximately equivalent to the meander 
topology of a β sheet (SCOP).

Uracil A nitrogenous base normally found in RNA but not DNA; it is capable of forming 
a base pair with adenine. See also: base pair, nucleotide (ORNL).

V
Vector See: cloning vector (ORNL).

Virus A noncellular biological entity that can reproduce only within a host cell. Viruses 
consist of nucleic acid covered by protein; some animal viruses are also surrounded by 
membrane. Inside the infected cell, the virus uses the synthetic capability of the host to 
produce progeny virus. See also: cloning vector (ORNL).

W
Western blot A technique used to identify and locate proteins based on their ability to 
bind to specific antibodies. See also: DNA, Northern blot, protein, RNA, Southern blot-
ting (ORNL).

Whole‐genome shotgun sequencing (WGS) A sequencing method by which an entire 
genome is cut into chunks of discrete sizes (usually 2,10, 50 and 150 kb) and cloned 
into an appropriate vector. The ends of these clones are sequenced. The two ends from 
the same clone are referred to as mate pairs. The distance between two mate pairs can 
be inferred if the library size is known and should have a narrow window of deviation 
(NCBI).

Wildtype The form of an organism that occurs most frequently in nature (ORNL).

Working draft DNA sequence See: Draft DNA sequence (ORNL).

X
X chromosome One of the two sex chromosomes, X and Y. See also: Y chromosome, 
sex chromosome (ORNL).

Xenograft Tissue or organs from an individual of one species transplanted into or grafted 
onto an organism of another species, genus, or family. A common example is the use of 
pig heart valves in humans (ORNL).

Y
Y chromosome One of the two sex chromosomes, X and Y. See also: X chromosome, 
sex chromosome (ORNL).

Yeast artificial chromosome (YAC) Constructed from yeast DNA, it is a vector used to 
clone large DNA fragments. See also: cloning vector, cosmid (ORNL).

Z
Zinc‐finger protein A secondary feature of some proteins containing a zinc atom; a 
DNA‐binding protein (ORNL).
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[2-1] e
[2-2]  e
[2-3]  c
[2-4]  a
[2-5]  a
[2-6]  a
[2-7]  c
[2-8]  d
[2-9]  c

[3-1]   asparagine N 
glutamine Q 
tryptophan W 
tyrosine Y 
phenylalanine F

[3-2]  a
[3-3]  d
[3-4]  c
[3-5]  d
[3-6]  a
[3-7]  c
[3-8]  false
[3-9]  c
[3-10]  d

[4-1]  d
[4-2]  c
[4-3]  a
[4-4]   BLASTP d 

BLASTN a 
BLASTX c 
TBLASTN b 
TBLASTX e

[4-5]  c
[4-6]  a
[4-7]  a
[4-8]  b
[4-9]  b

[4-10]  c

[5-1]  b
[5-2]  b
[5-3]  c
[5-4]  b
[5-5]  a
[5-6]  a
[5-7]  a
[5-8]  b
[5-9]  d

[6-1]  b
[6-2]  b
[6-3]  c
[6-4]  d
[6-5]  d
[6-6]  a
[6-7]  a
[6-8]  c

[7-1]  d
[7-2]  b
[7-3]  c
[7-4]  a
[7-5]  b
[7-6]  a
[7-7]  b
[7-8]  a
[7-9]  c

[8-1]  c
[8-2]  c
[8-3]  b
[8-4]  c
[8-5]  d
[8-6]  d
[8-7]  a

[8-8]  d
[8-9]  a
[8-10]  c

[9-1]  b
[9-2]  c
[9-3]  c
[9-4]  d
[9-5]  b
[9-6]  b
[9-7]  a
[9-8]  d
[9-9]  c

[10-1]  a
[10-2]  d
[10-3]  c
[10-4]  c
[10-5]  d
[10-6]  c
[10-7]  a
[10-8]  b
[10-9]  c

[11-1]  c
[11-2]  d
[11-3]  a
[11-4]  b
[11-5]  d
[11-6]  d
[11-7]  a
[11-8]  d
[11-9]  a

[12-1]  a
[12-2]  c
[12-3]  b
[12-4]  c
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[12-5]  c
[12-6]  b
[12-7]  d
[12-8]  b

[13-1]  a
[13-2]  c
[13-3]  d
[13-4]  c
[13-5]  d
[13-6]  c
[13-7]  a
[13-8]  b
[13-9]  d

[14-1]  d
[14-2]  a
[14-3]  b
[14-4]  c
[14-5]  a
[14-6]  e
[14-7]  d
[14-8]  a
[14-9]  c

[15-1]  c
[15-2]  a
[15-3]  d
[15-4]  d
[15-5]  b

[15-6]  d
[15-7]  c
[15-8]  c

[16-1]  c
[16-2]  b
[16-3]  d
[16-4]  c
[16-5]  a
[16-6]  d
[16-7]  b
[16-8]  d

[17-1]  c
[17-2]  c
[17-3]  a
[17-4]  c
[17-5]  d
[17-6]  a

[18-1]  c
[18-2]  c
[18-3]  c
[18-4]  b
[18-5]  a
[18-6]  a
[18-7]  c
[18-8]  b
[18-9]  a

[19-1]  a
[19-2]  d
[19-3]  a
[19-4]  d
[19-5]  a
[19-6]  b
[19-7]  a
[19-8]  c
[19-9]  c

[20-1]  c
[20-2]  c
[20-3]  a
[20-4]  a
[20-5]  b
[20-6]  b
[20-7]  d
[20-8]  d
[20-9]  d

[21-1]  a
[21-2]  a
[21-3]  b
[21-4]  c
[21-5]  a
[21-6]  c
[21-7]  b
[21-8]  d
[21-9]  a
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models for creating families, 353–354
single nucleotide polymorphisms 

(SNPs), 354–355
Genetic code, 83
Genetic footprinting, 661

Genome, 5
Genome analysis projects

advice for students, 743
ancient DNA, 725–727
annotation, 737–738
annotation in eukaryotes, 738–742
applications of sequencing, 720
assembly, 730–733
challenges, 735–737
FASTQ, 733–734
HTGS archive, 730
introduction, 720–727
large-scale projects, 721–722
mapping contigs, 734–735
metagenomics projects, 727
perspective, 742
pitfalls, 742–743
resequencing projects, 725
role of comparative genomics, 724–725
selection criteria, 722–724
sequence completed, 735
sequencing centers, 728
trace archive, 728–730

Genome Analysis Toolkit (GATK), 388, 
401, 403–404

Genome Assembly Gold-standard 
Evaluation (GAGE), 397

Genome assembly using NGS data, 
394–396

completion standards, 398
performance evaluation, 396–398
software, 395

Genome browsers, 49–52
Genome Portal of DOE, 710
Genome Reference Consortium (GRC), 

49, 395
Genome sequence alignment, 399–400

Genome Analysis Toolkit (GATK), 401
repetitive DNA, 400–401
software, 399, 1039–1040

Genome Survey Sequences (GSSs), 27
Genome Workbench software, 417, 418, 

855–856, 1039–1040
Genomes On Line Database (GOLD), 

710
Genomes

Archaea, 797–798
Bacteria, 797–798
bioinformatics aspects, 701
biological principles, 701
cataloguing comparative genomic 

information, 701
cataloguing genomic information, 701
chromosomal variation in individual 

genomes, 349–355
compared, 310

currently sequenced, 709
features of eukaryotic genomes,  

310–323
human disease relevance, 701
introduction, 700–710
life on Earth, 705
molecular sequences, 705–709
multicellular organism, 716
organization of eukaryotic 

chromosomes, 312–314
size variation, 310–312
sizes, 309–310, 801
systematics, 701–704
taxonomy, 709–710
web resources, 710
whole-genome duplication, 347–349

Genome-sequencing projects, 711
1976–1978, 711–712
1981, 712–714
1986, 714–715
1992, 715
1996, 715
1997, 715–716
1998, 716
1999, 716
2000, 716
2001, 716–717
2002, 717
2003, 717
2004, 717–718
2005, 718
2006, 718
2007, 718
2008, 718
2009, 718
2011, 719
2012, 719
2013, 719
2014, 719
2015, 720
chronology, 711

Genome-wide association studies 
(GWAS), 468, 643, 1047–1050, 
1052

Genomic disorders, 1025–1028
chromosomal aneuploidy frequency, 

1025
molecular mechanisms, 1028

Genomic DNA databases, 27, 227–234
assessment of whole-genome 

alignment methods, 231–234
Ensembl program, 231, 232
Galaxy program, 229–231
UCSC Genome Bowser, 229, 230

Genomic Evolutionary Rate Profiling 
(GERP), 229
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Genomic multiple sequence alignments, 
227–234

assessment of whole-genome 
alignment methods, 231–234

Ensembl program, 231, 232
Galaxy program, 229–231
UCSC Genome Bowser, 229, 230

Genomic promoter regions software, 343
Genomic regulatory factors

databases, 342–345
nonconserved elements, 346
ultraconserved elements, 345

Genotype and phenotype, 637–638
Genotype-Tissue Expression (GTex) 

project, 459
GENSCAN program, 338
GEO dataset analysis using R

analyses, 504–505
CEL file input, 506
identifying differentially expressed 

genes, 508–510
microarray analysis and reproducibility, 

510–511
microarray analysis plots, 507
RMA normalization, 506–508

GEO2R resource at NCBI, 482
corrections for multiple comparisons, 

494–495
data normalization, 486–488
R scripts, 482–485
robust multiarray analysis (RMA) 

normalization, 488–490
statistical tests, 490–494

Giant viruses, 782–783
Giardia lamblia, 891–892, 942
Gibbs free energy, 590
GLEAN gene model combiner, 339
GLIMMER gene finding algorithm, 

820–825
Global alignment algorithms, 96

Needleman and Wunsch algorithm, 
96–100

statistical significance, 106–108
websites and URLs, 110

Globins, 6–8
see also Myoglobin
beta globin gene, 20, 650–653
beta globin gene mutants, 654
beta globin BLAST example, 136–138
Dayhoff subfamilies, 248
hemoglobin, 6, 7
phylogeny tree, 247
structural biology, 591
substitution frequencies, 111

Glutamic acid (Glu), 76
Glutamine (Gln), 76

Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), 85

Glycine max, 28, 910, 915
Green algae, 908–910
Green fluorescent protein (GFP),  

645
Guanine, 435
GXW motif, 590

Haemophilus influenzae, 19
Hamming distance, 274, 277
Hammondia hammondi, 899
Haploid cells, 309, 348

C value, 310–312
HaplotypeCaller, 408
HapMap browser, 988
HapMap project, 354, 717
Hash tables, alignment based upon, 

194–196
Hemiascomycetes, 865

functional element identification, 
868–869

whole-genome duplication, 866–868
Hemoglobin see Globins
Hepatitis A, 761
Hepatitis B virus (HBV), 761, 762
Hepatitis C virus (HCV), 258, 762
Herpesvirus, 776–780
Heterokonta, 905
Heuristic algorithms, 77
HGNC see HUGO Gene Nomenclature 

Committee
Hidden Markov models (HMMs), 

181–186, 566
HMMER program, 184–186, 187
Protein Family database of profile 

HMMs (Pfam), 223–224, 225, 226
Hierarchical cluster analysis, 511–516
Highly homologous sequences, 75
High-throughput gene expression data 

acquisition, 462
High-Throughput Genomic Sequences 

(HTGS), 27
H-Invitational Database, 459
Histidine (His), 76
Histones, 52–53
HIV-1 pol, 53–54

BLAST multidomain protein search, 
151–155

HMMER program, 184–186, 187, 223, 
224

Homgentisate 1,2-dioxygenase (HGD), 
1014

Homo sapiens, 25, 28, 311
chromosome sequenced, 716
chromosomes, 313

draft sequence of genome, 716–717
protein domains, 554
variation, 647

HomoloGene, 270
compared with NCBI Gene, 42

Homology
definition, 70–74
evolution of life, 78–79
history, 72
modeling, 618–619

Honeybee, 921, 923
Hordeum vulgare, 25
Hubbard plots, 623
HUGO Gene Nomenclature Committee, 

20, 27, 54, 60, 61, 62, 314, 
316–317, 319

Human chromosomes, 313, 979–981
Group A, 981–982
Group B, 982–983
Group C, 983
Group D, 983
Group E, 984
Group F, 984
Group G, 984
groups, 980

Human disease-associated genes and 
loci, 1046

chromosomal abnormalities, 
1050–1051

genome-wide association studies 
(GWAS), 1047–1050

linkage analysis, 1047
Human disease categories, 1020– 

1036
allele frequencies and effects sizes, 

1020–1021
cancer, 1033
complex disorders, 1024
environmentally caused disease, 1029
genetic background, 1030
genomic disorders, 1025
mitochondrial disease, 1030–1032
monogenetic disorders, 1021–1024
somatic mosaic disease, 1032–1033, 

1035
Human disease databases, 1036

amino acid substitutions, 1045–1046
ClinVar, 1040–1041
GeneCards, 1041
Human Disease Mutation Database 

(HGMD), 1039
Integration of Disease Database,  

1041
limitations, 1045
Locus-Specific Mutation Databases, 

1041–1044
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Online Mendelian Inheritance in Man 
(OMIM), 1036–1039

PhenCode project, 1044–1045
Human disease gene functional 

classification, 1060–1063
disease characteristics, 1062
protein products, 1061

Human disease genes in model 
organisms, 1055

nonvertebrate species, 1056–1057
primates, 1059–1060
rodents, 1058–1059

Human Disease Mutation Database 
(HGMD), 1039

Human diseases
advice for students, 1063
perspective, 1063
pitfalls, 1063

Human Gene Mutation Database 
(HGMD), 417, 420

Human genetic disease
bioinformatics perspective, 1012–1014, 

1014
causes of death in USA, 1016
classification, 1015–1017
consequence of DNA variation, 

1011–1019
Garrod’s view of disease, 1014–1015
ICD classification system, 1018
MeSH terms, 1017–1019
mutation mechanisms, 1013
projected global deaths, 1016

Human genome
advice for students, 1001
gateway to access, 959–964
introduction, 957–958
perspective, 999–1000
pitfalls, 1000–1001
statistics, 961

Human Genome Organization (HUGO)
Gene Nomenclature Committee 

(HGNC), 27, 317
Human Genome Project, 964

assemblies, 966–968
background, 964
broad genomic landscape, 968–970
centromeres, 974
comparative proteome analysis, 

975–977
complexity of proteome, 978–979
CpG islands, 969–970
exons, 977
gene characteristics, 976
gene content, 974–979
genetic and physical distance 

compared, 970–971, 973

global statistics, 968
goals, 965
introns, 977
issues addressed, 967
long-range variation in GC content, 

969
main conclusions, 958–959
noncoding genes, 976
noncoding RNAs, 975
paralogous genes, 979
protein-coding genes, 975
repeat content, 971–974
segmental duplications, 973–974
simple sequence repeats, 973
simple sequence repeats, 974
strategic issues, 966
transposon-derived repeats, 972–973

Human genome sequencing, 1051– 
1055

complex disorders, 1051–1052
conditions, genes, and variants, 

1053–1054
disease-causing variants in otherwise 

healthy people, 1054–1055
incidental findings, 1052–1054
monogenic disorders, 1051
research versus clinical sequencing, 

1052–1054
Human genome variation, 986

1000 Genomes Project, 995–998
haplotype phasing, 996
major conclusion of HepMap project, 

994
sequencing individual genomes, 

998–999
SNPs, haplotypes, and HapMap, 

986–988, 989
viewing and analyzing, 988–993
viewing and analyzing, 990

Human Immunodeficiency Virus (HIV-1), 
765–770

Human leukocyte antigen (HLA), 258
Human microbiome, 811–814

bacterial taxa, 813–814
fungi, 870

Human Microbiome Project (HMP), 708, 
710, 721, 727, 811–814

Human mitochondrial genome, 985–986
haplogroups, 986

Human papillomavirus (HPV), 762
Human Protein Reference Database 

(HPRD), 542, 565
Human Proteome Organization (HUPO), 

542
Human T-lymphotropic virus-I (HTLV-I), 

762

Huntingdon disease, 624
Hydropathy index, 565

Identity, definition, 75
Illumina, 382–384
Indels, 408
Influenza, 761
Influenza Genome Sequencing Project 

(IGSP), 773
Influenza virus, 771–774

genes, 772
Informed consent, 390, 1052, 1054
Insertion mutations, 78
Insulin, 248–250
Integrated Microbial Genomes (IMG) 

website, 816
Integration of Disease Database, 1041
Integrative Genomics Viewer (IGV), 407, 

988, 990
International Cancer Genome Consortium 

(ICGC), 1033
International Committee of Taxonomy of 

Viruses (ICTV), 756–758
International Gene Trap Consortium 

(IGTC), 658
International Human Genome Sequencing 

Consortium (IHGSC), 957
International Mouse Phenotyping 

Consortium (IMPC), 647
International Nucleotide Sequence 

Database Collaboration (INSDC), 21
Interpolated context model (ICM), 

822–823
Interpolated Markov models (IMMs), 

820–821
InterPro database, 226–227
Interspersed duplication, 409, 410
Introns, 336
Inversion of chromosomes, 351, 409, 410
Ion Torrent, 387
IProClass database, 226–227
Isoelectric focusing, 544
Isoleucine (Ile), 76
Iterative alignment, 214–218

JIGSAW program, 339
Jukes–Cantor correction, 277

Kaposi’s sarcoma herpesvirus (KSHV), 
762

Kappa caseins, 85, 86
Karlin–Altschul statistics, 142
Kazusa mammalian cDNA set (KIAA), 

459
KDEL sequence, 570
Kimura two-parameter model, 277
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Klenow fragment, 379
K-means clustering algorithm, 516–517
Knockout Mouse Project (KOMP), 647, 

653
Kyoto Encyclopedia of Genes and 

Genomes (KEGG), 682–685

Lactase-phlorizin hydrolase (LPH), 468
Last universal cellular ancestor (LUCA), 

766
Lateral gene transfer (LGT), 827–830
Laurasia, 705, 706, 777, 778
Leishmania, 894–895
Leucine (Leu), 76
Levinthal’s paradox, 598
Life on Earth, 705

geological history, 706, 707–708
evolution of, 78–79

Ligation sequencing, 385
Likelihood mapping, 290
Likelihood ratio test, 279
Lilium formosanum, 311
Limited Area Global Alignment of 

Nucleotides (LAGAN), 192–194
algorithm, 193

Linkage analysis, 1047
Linux, 11

commands, 43–44
Literature access, 58–59
Local alignment, 74
Local alignment algorithms, 96

dotplots, 104–105
FASTA and BLAST, 103–104
Smith and Waterman algorithm, 

101–103
statistical significance, 108
websites and URLs, 110

Locus Reference Genomic (LRG), 37
Locus-Specific Mutation Databases, 

1041–1044
Locusta migratoria, 311
Logarithms in base-2, 499
Log-expectation (LE) score, 219
Log-odds ratio, 92
Log–odds scoring matrix, 89–91
Long interspersed elements (LINEs), 326, 

327
Long-branch attraction, 287–289
Los Alamos National Laboratory (LANL) 

HIV databases, 769, 770
Lymphoblastoid cell lines (LCLs), 468
Lysine (Lys), 76

MA plots, 498
Major histocompatibility complex 

(MHC), 50

Malaria, 895–898
Mammalian Gene Collection (MGC),  

459
Mann–Whitney test, 493
MAQ program, 195
Markov chains, 181, 183, 292–293
Markov models, 181

see also hidden Markov models 
(HMMs) 

MASCOT® software, 551
Mass spectrometry (MS), 547–551

matrix-assisted laser desorption 
ionization (MALDI), 548

matrix-assisted laser desorption 
ionization time-of-flight (MALDI-
TOF), 548, 551, 675

protein complexes, 675–676
tandem affinity purification mass 

spectrometry (TAP), 676
triple quadrupole (QQQ), 548

Mass Spectrometry protein sequence 
Data Base (MSDB), 548

Massive Open Online Courses (MOOCs), 
13

Matrix multiplication method, 87
Matrix-assisted laser desorption 

ionization (MALDI) mass 
spectrometry, 548

Matrix-assisted laser desorption 
ionization time-of-flight (MALDI-
TOF) mass spectrometry, 548, 551, 
675

Maximal unique matches (MUM), 784
Maximum likelihood methods, 289–90, 

291
Maximum parsimony methods,  

287–289
Mean (average), 107, 491
Measles, 761
Measles virus, 774–775

proteins, 775
Medical Subject Heading (MeSH) terms, 

1017–1019
MEDLINE, 31, 58
MEGA software, 259
MegaBLAST, 191–192
Meiotic errors, 348
Mendelian genomic disorders, 1026
Merkel cell polyomavirus (MCV), 762
Messenger RNA (mRNA), 434, 450

full-length cDNA projects, 459
gene expression analysis in cDNA 

libraries, 455–458
gene expression studies, 450–452
low- and high-throughput studies, 

452–455

measuring gene expression across the 
body, 459

RNA export, 451, 452
RNA processing, 451, 452
RNA surveillance, 451, 452
transcription, 450–451, 452

Metadata, 14
Metaphase, 312
Metazoans, 24, 916, 917–918

Anopheles gambiae, 921–922
butterflies, 922–923
Caenorhabditis elegans, 918–919
Ciona intestinalis, 925–926
Dictyostelium discoideum, 916–917
Drosophila melanogaster, 919–921
fish genomes, 926–929
frogs, 929
honeybee, 923
insect genomes, 923–924
mammalian genomes, 933–934
mouse, 934–937
opposum, 931–933
platypus, 931–933
primate genomes, 937–940
rat, 934–937
reptiles, 929–931
sea urchin, 924–925
silkworms, 922–923

Methionine (Met), 76
MicroArray Quality Control (MAQC) 

project, 495, 511
Microarray RNA expression data 

analysis, 479–482
advice for students, 531
descriptive statistics, 511–519
functional annotation, 528–529
GEO dataset analysis using R,  

504–511
GEO2R at NCBI, 482–495
Partek Genomics Suite, 495–504
perspective, 529–530
pitfalls, 530–531

Microarray RNA expression 
measurement, 460–466

biological confirmation, 465
data acquisition, 464–465
data analysis, 465
databases, 465
experimental design, 461, 494
further analysis, 466
probe preparation, 464
radioactive probes, 463
sample preparation, 461–464

Microbe, 700
Microorganism, 700
MicroRNA (miRNA), 445–447
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Minimum Information About a 
Microarray Experiment (MIAME), 
465

MiRBase, 446
Mitochondrial disease, 1030–1032
Mitochondrial Eve, 985
MitoSeek software, 421–422
Mitotic errors, 348
Mobile-element insertions, 409, 410
ModelTest program, 279
Molecular barcodes, 653–657
Molecular clock hypothesis, 250–254

amino acid substitution rates, 253
corrected number of amino acid 

changes per 100 residues, 252
nucleotide substitution rates, 254

Molecular evolution, 245–246
Molecular Genetics Evolutionary 

Analysis (MEGA) program, 282
bootstrap procedure, 295
maximum parsimony method, 287

Molecular Modeling Database (MMDB), 
32, 608

Molecular phylogeny and evolution
advice for students, 296
five stages of phylogenetic analysis, 

270–295
goals, 246–247
historical background, 247–250
molecular clock hypothesis,  

250–254
neutral theory of molecular evolution, 

258–259
perspective, 295
phylogenetic trees, 259–266
pitfalls, 295–296
positive and negative selection, 

254–258
Tajima’s relative rate test, 255, 256
types of phylogenetic trees,  

266–270
web resources, 297

Monogenic disorders, 1021–1024
examples, 1022

Monte Carlo Markov Chain (MCMC) 
command, 292–293

Mosquito-borne human diseases, 922
Moss, 916
Motifs, 552–559

characteristic of proteins, 557–559
definition, 553

Mouse Genome Informatics Database 
(MGD/GXD), 566, 646

Mouse knockouts, 650–653
MrBayes program, 282, 292, 294
MSD, 32

Multidimensional scaling (MDS), 518
compared with principal component 

analysis (PCA), 517
Multiparent Advanced Generation 

Inter-Cross (MAGIC), 913
Multiple Alignment using Fast Fourier 

Transform (MAFFT) program, 
214–218

Multiple sequence alignment
advice for students, 235
algorithm assessment, 207–208
benchmarking, 207–208
benchmarking studies, 221–222
consistency-based alignment, 218–220
databases, 222–227
definition, 206–207
evaluation, 223
exact approaches, 208
genomic regions, 227–234
introduction, 205–208
iterative alignment, 214–218
main approaches, 208–221
perspective, 234
pitfalls, 234
practical strategies, 207
progressive sequence alignment, 

209–214
structure-based alignment, 220–221
typical uses, 207

Multiple Sequence Comparison by Log 
Expectation (MUSCLE) program, 
215–218

profile–profile alignment, 219
MUMmer program, 346–347, 833–834

virus genomes, 783–785
Mumps, 761
Mus musculus, 25, 28, 646–647,  

935–937
knockout mice, 650–653

MUSCLE program, 208, 215–219
Mutageneic Insertion and Chromosome 

Engineering Resource (MICER), 658
Mutation probability matrix for 1 PAM 

evolutionary distance, 82–84
Mutations, 78, 269

forbidden, 863–864
mechanisms, 1013
transition substitutions, 270
transversion substitutions, 270

Mycobacterium tuberculosis, 101
Myoglobin, 6, 7, 70–75, 77–80, 94, 96, 

106–108, 111, 114, 247, 248, 250, 
253, 258, 260, 263, 266, 272, 273, 
275, 276, 280, 283, 285, 289, 291, 
294, 295, 297, 588, 590, 593–596, 
603–613, 615, 616, 626, 678

National Center for Biotechnology 
Information (NCBI), 11, 21

access via gene resource, 38–42
BLAST-related algorithms, 170
command-line access, 42–49
command-line access to Entrez 

databases, 45
compared with HomoloGene, 42
compared with UniGene, 41–42
Conserved Domain Database (CDD), 

177, 226
EDirect access, 45–49
Ensembl, 50–52
genome browsers, 49–52
Genomes, 710
GEO2 for RNA gene expression 

analysis, 482–495
Human Genome Project, 959
introduction, 31–32
Map Viewer, 52, 314
PDB access, 606–609

National Human Genome Research 
Institute (NHGRI), 398

Human Genome Project, 961–963
National Library of Medicine (NLM), 

31, 58
Needleman and Wunsch global alignment 

algorithm, 96–100
Negative selection, 254–258
Neighbor-joining tree

p-distance correction, 276
Poisson correction, 276, 280

Neurospora crassa, 311, 873–874
Next-generation sequencing (NGS), 19, 

359, 378–379, 1051
advice for students, 423
alignment to reference genome,  

194–197
BLAST-related algorithms,  

170–171
Burrows–Wheeler Transform (BWT) 

alignment, 196–197
DNA sequencing analysis, 387–421
DNA sequencing technologies, 

379–387
hash table alignment, 194–196
perspective, 422–423
pitfalls, 423
short read alignment strategies, 195
specialized applications, 421–422
web resources, 424

Nicotania tabacum, 311, 908
Nodes of phylogenetic trees, 259
Noncoding RNA, 436

long noncoding RNA (lncNA), 
447–448
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microRNA (miRNA), 445–447
other noncoding RNAs, 448
Rfam database, 436–438
ribosomal RNA (rRNA), 441–444
short interfering RNA (RNAi), 447
small nuclear RNA (snRNA), 445
small nucleolar RNA (snoRNA), 445
splicosomal RNAs, 445
transfer RNA (tRNA), 438–441
UCSC Genome and Table Browser,  

448–449
Nonconserved elements, 346
Nonparametric bootstrapping, 293–295
Nonparametric tests, 488, 493
Normal distribution, 107
Novel sequence insertions, 409, 410
Novel species, 348
Nuclear magnetic resonance (NMR) 

spectroscopy, 600
Nucleomorphs, 902–904
Nucleotides

Limited Area Global Alignment of 
Nucleotides (LAGAN), 192–194

sequence databases searchable via 
BLAST, 127

step matrix, 270, 271
substitution rates, 254
transition substitutions, 270
transversion substitutions, 270

Null hypothesis, 106

Obligately intracellular and parasitic 
bacteria, 807–808

Obligately intracellular and symbiotic 
bacteria, 806–807

Odds ratio, 89
Odorant-binding protein (OBP),  

572–573
One-based counting, 57, 58
Online Mendelian Inheritance in Man 

(OMIM), 32, 417, 419, 420, 1021, 
1036–1039

numbering system, 1038
Oömycetes, 905
Open reading frames (ORFs), 336, 447

Saccharomyces cerevisiae, 640
Open Regulatory annotation (ORegAnno) 

database, 342–343
Operational taxonomic unit (OTU), 

259–264
microarray data, 514
number of rooted and unrooted trees, 

263, 265
tree-building by neighbor-joining (NJ), 

285–287
Opposum, 931–933

Organism-specific BLAST sites,  
168–170

Ortheus program, 231, 232, 233
Orthologous proteins or genes, 70–71, 

319, 552, 568, 571, 573, 575, 642, 
645, 650, 673, 680, 685, 866, 868, 
874

Oryza sativa, 311, 913–914
Oxytocin, 250

P value, 491–492
Pacific Biosciences DNA sequencing,  

387
Pairwise sequence alignment, 69–79

advice for students, 112
gaps, 78
global and local alignment algorithms, 

96–106
homology and evolution of life, 78–79
limits of detection, 94–96
perspective, 110–112
pitfalls, 112
scoring matrices, 79–96
statistical significance, 106–110
web resources, 112

Pairwise Sequence Comparison (PASC) 
tool, 780–782

Pan troglodytes, 91
Pangaea, 705, 706, 778
Parabasala, 891
Paralogous proteins or genes, 70–71, 73, 

320, 552, 642, 643, 656, 679, 864, 
866, 867

Paramecium aurelia, 311
Paramecium caudatum, 311
Paramecium tetraurelia, 899–901
Parametric tests, 488
Parascaris equorum, 311
Parkinson disease, 624
Parsimony analysis, 287–289

maximum parsimony principle, 288
Partek Genomics Suite, 495–496

ANOVA, 501–504
data analysis, exploratory, 498–501
data import, 496
log2 transformed microarray data,  

498
MA plots, 498
principal components analysis (PCA), 

498–501
quality control, 496–497
sample histogram, 498
sample information, adding , 497
scatter plots, 498
t-test, 503–504

PartTree program, 215

Pattern-hit initiated BLAST (PHI-
BLAST), 179–181

choosing a pattern, 180
PatternHunter, 188

nonconsecutive seeds, 189
P-distance correction, 276
Pearson correlation coefficient, 510
Pecan program, 191, 231, 232
Peptide bonds, 593
Percent identity, 108–109
Percent similarity, 75
Perfect match (PM) probesets, 488
Perl, 11, 627, 728, 1032
Phaeophyceae, 906
Phanerochaete chrysosporium, 875
PHAST package, 229
PHD program, 596
PhenCode project, 1044–1045
Phenotype and genotype, 637–638
Phenylalanine (Phe), 76
Phosphorylation, 564–565
PHRED scores, 391, 392
Phylogenetic analysis, 270–295

amino acid substitution, 272–281
DNA models, 272–281
multiple sequence alignment, 271–272
pitfalls, 295–296
sequence acquisition, 270–271
tree-building methods, 281–293

Phylogenetic Analysis Using Parsimony 
(PAUP) program, 282

Phylogenetic trees, 257 259
DNA trees, 268–270
enumeration, 263–266
globins, 247, 248, 260, 276, 280, 291, 

294
number of rooted and unrooted trees, 

263, 266
protein-based trees, 268–270
RNA trees, 268–270
roots, 262–263
search strategies, 263–266
species trees versus gene/protein trees, 

266–268
topologies and branch length, 259–262, 

286
types, 266–270

Phylogenetic trees of species
bacteria, 802
comparative, 725
E. coli, 815
eukaryotes, 849, 888, 907
fish, 927
fungi, 849, 850
global tree of life, 7, 703, 812, 873
herpesviruses, 777, 778
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Phylogenetic trees of species (continued)
lentiviruses, 767
mammals, 932
metazoans (animals), 917
origin of life, 704
plants, 908
primates, 938
reptiles, 930

Phylogenies, inconsistent, 890
Phylogeny, 246
Phylogeny Inference Package (PHYLIP) 

program, 282
Phylograms, 262
Pinus resinosa, 311
PipMaker software, 346–347
Plant genomes, 906–908

Arabidopsis thaliana, 910–913
Chlorophyta, 908–910
detecting ancient whole-genome 

duplications, 912
evolution of plants, 907
giant genomes, 915
land plants, 915
moss, 916
Oryza sativa, 913–914
phylogeny, 908
Populus trichocarpa, 914
tiny genomes, 915
Vinus vinifera, 915

Plasmodium falciparum, 895–898
Plastids, 902
Platypus, 931–933
PLINK, 992
Ploidy see Polyploidy
Point-and-click web-based software, 
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